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ABSTRACT. We compute the knot Floer filtration induced by a cable of the
meridian of a knot in the manifold obtained by large integer surgery along the
knot. We give a formula in terms of the original knot Floer complex of the
knot in the three-sphere. As an application, we show that a knot concordance
invariant of Hom can equivalently be defined in terms of filtered maps on
the Heegaard Floer homology groups induced by the two-handle attachment
cobordism of surgery along a knot.

1. INTRODUCTION

We provide a description of the knot Floer homology of certain knots lying in
three-manifolds obtained by Dehn surgeries. This description generalizes the large
surgery formulae of Ozvsvath-Szabd to a knot Floer context. Our results expand the
set of knot Floer calculations that are practical outside of the three-sphere, where
available computational tools are more limited than for knots in the three-sphere.

Let K denote a null-homologous oriented knot in an oriented, closed three-
manifold Y. Let Y;(K) denote the manifold constructed as Dehn surgery along
K C Y with surgery coefficient ¢. In [OS04] Ozsvéth and Szabé construct a chain
homotopy equivalence between certain subquotient complexes of the full knot Floer
chain complex CFK™ (Y, K) and Heegaard Floer chain complexes CF (Yi(K),5m)
for sufficiently large integers ¢ for each spin® structure s,, € Spin®(Y;(K)) (see
Remark 2.2)). This equivalence is known as the large integer surgery formula.

The meridian u of K naturally lies inside of the knot complement Y\ K and the
surgered manifold Y;(K'). The meridian p induces a filtration on (/IF(Yg(K),ﬁm) for
each spin® structure s,,. In [Hed07] Hedden gives a formula for the filtered complex
(TI*;T((SE’(K), iy 5 in terms of CFK™ (93, K) for sufficiently large t. As an appli-
cation of this formula, Hedden computes the knot Floer homology of Whitehead
doubles and the Ozsvath-Szabd concordance invariant 7 of Whitehead doubles. In
[HKL16] Hedden, Kim, and Livingston generalize Hedden’s formula by computing
the full knot Floer complex CFK* (Y;(K), i, §,,) in terms of CFK* (Y, K) for suffi-
ciently large t. As an application to knot concordance, they show that the subgroup
of topologically slice knots of the concordance group contains a Z§° subgroup.
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FIGURE 1. The two-component link p,, and K forn =25

We refine the theorems of Ozsvath-Szabd, Hedden, and Hedden-Kim-Livingston
to determine the filtered chain homotopy type of CFK*(Y;(K), ), where p,, de-
notes the (n, 1)—cable of the meridian of K, viewed as a knot in Y;(K). See Figure[Il
For each spin® structure s,,, we show that the complex CFK* (Y;(K), tin,5m) is
isomorphic to CFK*(Y, K), but endowed with a different Z @ Z filtration and an
overall shift in the homological grading.

Theorem 1.1. Let K be a null-homologous knot in'Y and fir m,n € Z. Then there
exists T=T(m,n)>0 such that for all t>T, the complex CFK™(Y;(K), tin,5m) is
isomorphic to CFK>(Y, K)le] as an unfiltered complex, where [€] denotes a grading
shift that depends only on m and t. Given a generator [z,1, j| for CFK* (Y, K), the
Z @& 7Z filtration level of the same generator, wviewed as a chain in

CFK™ (Yi(K), fin, 5m), is given by:

[z, 1] if j <m+1,
F(lz,4,5]) =< [1—m,j—m—k| ifj=m+i+k, wherel <k<n,
[f—m,j—m—n] ifj>m+i+n.
Similarly, the complex CFK™ (Y_y(K), fin, Sm) is isomorphic to CFK* (Y, K)[¢'] as
an unfiltered complex, where [€'] denotes a grading shift that depends only on m and

t. Given a generator [x,1,j] for CFK*™(Y, K), the Z®Z filtration level of the same
generator, viewed as a chain in CFK*(Y_y(K), tin, 5m), s given by:

[i, 1] if j >m+i,
F(lz,3,5]) =< [ —m,j—m+k] ifj=m+i—k, wherel <k<mn,
[f—m,j—m+n] fj<m+i—n.
As a corollary, the Z-filtered complex C/FT((Yt(K ), ln, Sm) 18 isomorphic to a
subquotient complex of CFK* (Y, K), endowed with an (n + 1) step filtration F:
0C Cric—nt1j=m} €+ C Clicoj=m} € Clmax(i,j—m)=0}-
This filtration is illustrated in Figure [2(A)[in the case n = 3. Similarly, the Z—

filtered complex (ﬁ:‘T{(Y,t(K ), tn,Sm) 1S isSomorphic to a subquotient complex of
CFK™(Y, K), endowed with an (n + 1) step filtration F':

0C C{min(i,jfm)zo}ﬁ{i<1} c---C C{min(i,jfm):()}ﬂ{i<n} c C{min(i,jfm):O}-
See Figure for an illustration in the case n = 3.
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Corollary 1.2. Let K C Y be a null-homologous knot, and fit m,n € Z. Then
there exists T=T(m,n) >0 such that for allt>T, the Z-filtration on 6‘?(}/} (K),5m)
induced by p, C Y;(K) is isomorphic to the filtered chain homotopy type of the
(n+1) step filtration on C{max(i,j —m) = 0} described above. Similarly, the Z—
filtration on ﬁ(Y,t(KLsm) induced by p, CY_(K) is isomorphic to the filtered
chain homotopy type of the (n+1) step filtration on C{min(i, j —m) = 0} described
above.

B,

(A) C{max(i,j —m) = 0} is the shaded (B) C{min(i,j — m) = 0} is the shaded

region. The subregions bounded by the region. The subregions bounded by the
colored dots represent subcomplexes of colored dots represent subcomplexes of
the filtration F in the case n = 3 and the filtration F’ in the case n = 3 and

FIGURE 2. Filtrations F and F'.

As an application, we show that the concordance invariant a;(K) of Hom
[Hom14b] can equivalently be defined in terms of filtered maps on the Heegaard
Floer homology groups induced by the two-handle attachment cobordism of surgery
along a knot K in S3. We will be particularly interested in the spin® struc-
ture s, corresponding to the 7 = 7(K) concordance invariant of Ozsvéth-Szabd
[OS03]. The rationally null-homologous knot p,, C S3(K) induces a Z-filtration of
@(SE’(K),sT) and @(Sit(K),sT), that is, a sequence of subcomplexes:

0cC Fbottom C fbottom+1 c---C -Ftop—l C Ftop = CF(SE(K)757')a

0cC flgottom - ]:lgottom-ﬁ—l c---C ‘Ftlop—l - fzgop = @(Sit(K)’sT)
Using the knot filtrations, an equivalent definition of a1(K) can be formulated in
terms of the filtration F and F’ induced by 1, as a knot inside S7(K) and S2 ,(K).

Theorem 1.3. Let n > 2g(K). For sufficiently large surgery coefficient t, the
concordance invariant a1 (K) is equal to:

CF(SPK, 5,)/Fiop-1-m — CF(S?)
max{ m
induces a trivial map on homology

} if e(K) = —1,

a(K) =40 if (K) =0,

min < m ‘ CF(SB) - ]:Il)ottom-i-m C CF(SEtK, 57_)
induces a trivial map on homology

} if e(K) = 1.
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1760 L. TRUONG

This interpretation of the invariant aq(K) offers a topological perspective that
complements the original algebraic definition of a1 (K). We will also include prop-
erties of the invariant a;(K) as well as computations of a;(K) for homologically
thin knots and L-space knots.

2. THE KNOT FLOER FILTRATION OF CABLES OF THE MERIDIAN IN DEHN
SURGERY ALONG A KNOT

In this section we will refine the theorem of Ozsvath-Szabé to determine the
filtered chain homotopy type of the knot Floer complex of (Y;(K), un).

We begin by recalling the large integer surgery formula from Ozsvéath and Szabd
[OS04]. Let (X4, o1,...,Qg, Y15---,7g, W, 2) be a doubly-pointed Heegaard dia-
gram for (Y, K), where

the curve 74 = p is a meridian of the knot K,

the curve ay is a longitude for K,

there is a single intersection point in ag Ny, = o,
the basepoints w and z lie on either side of ,.

Let 8= {v1,...,74-1, At} be the set of curves in v, with 7, replaced by a longitude
B¢ = A+ winding ¢ times around p. Label the unique intersection point v, N 3, = 0.
The Heegaard triple diagram (3, a, 8,7, w, z) represents a cobordism between Y
and Y;(K). See Figure Bl

Tz | - w
Bg

S S

FIGURE 3. Local picture of the winding region of the Heegaard
triple diagram (X, «r, 8,7, w, z) for the cobordism between Y; K and
Y

Let C{max(i,j — m) = 0} denote the subquotient complex of CFK*(Y, K)
generated by triples [z, i, j] with the ¢ and j filtration levels satisfying the specified
constraints.

Theorem 2.1 ([OS04]). Let K C Y be a knot, and fir m € Z. Then there exists
T =T(m) > 0 such that for allt > T, the chain map
®,, : CF(Yy(K), 8m) — C{max(i, j — m) = 0}
defined by
N EIEEDY > [y, =1 (¥), m—n. ()]
YyETaNTy {Ypem2(x,0,y) | nz(¢)—nw(Y)=m—F(y), p()=0}
induces an isomorphism of chain complezes.
Remark 2.2. Here, as usual, the labeling of the spin® structures is determined by
the condition that s,, can be extended over the cobordism —W; from —Y;(K) to

—Y associated to the two-handle addition along K with framing ¢, yielding a spin®
structure v, satisfying

(c1(tm, [S])) + t = 2m.
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A REFINEMENT OF THE SURGERY FORMULA AND CONCORDANCE 1761

Above, S denotes a surface in Wy obtained from closing off a Seifert surface for K
in Y to produce a surface S of square t.

We refine the theorem of Ozsvath-Szabé to determine the filtered chain homotopy
type of the knot Floer complex of (Y;(K), ). Consider the meridian p = pug of a
knot K. The meridian x naturally lies inside of the knot complement Y\ K and the
surgered manifold Y;(K). For n € N, p,, denotes the (n,1)-cable of ux, and also
lies inside Y\ K and the surgered manifold Y;(K). The knot w, is homologically
equivalent to n - [u] in Hy (Y;(K)). When n =1, u; = u. See Figure[l for a picture
of the two-component link K U p,,.

For all n > 1 there is a natural (n + 1) step algebraic filtration F on the sub-
quotient complex Cmax(i,j—m)—0} of CFK™ (Y, K):

0C Clicenst1,j=m) © - C Clico,j=m} S Clmax(i,j—m)=0}-

This filtration is illustrated in the case n = 3 in Figure
Theorem [Z3] says that this algebraic filtration F corresponds to a relative Z-

filtration on CF (Y:(K),spm,) induced by py, € Y:(K). This generalizes work of Hed-
den [Hed(07] who studied the n = 1 case of the filtered complex CFK (S} (K), pt, 51m)-

Theorem 2.3. Let K C Y be a null-homologous knot, and fix m,n € Z. Then there
exists T = T(m,n) > 0 such that for all t > T, the following holds: The filtered
chain homotopy type of the (n + 1) step filtration F on C{max(i,j —m) = 0}
described above is filtered chain homotopy equivalent to that of the filtration on
@(E(K},ﬁm) induced by pu, C Yi(K).

Proof. The key observation will be that the triple diagram (X, «, 3,7, w, z) used
to define ®,,, not only specifies a Heegaard diagram for the knot (Y, K), but also
a Heegaard diagram for the knot (Y;(K), ) with the addition of a basepoint z’.
Place an extra basepoint 2’ = z, so that it is n regions away from the basepoint w
in the Heegaard triple diagram representing the cobordism between Y and Y;(K)
as in Figure [ (This can be accomplished if ¢ is sufficiently large, e.g., if t > 2n).
The knot represented by the doubly-pointed Heegaard diagram (3, a, 8, w, z,) is
tn in Yi(K).

An intersection point &’ € T, NTj is said to be supported in the winding region
if the component of 2’ in a, lies in the local picture of Figure[dl Intersection points
in the winding region are in ¢ to 1 correspondence with intersection points = in
Ty NT,.

Fix a Spin® structure s,, where m € Z. For t (the surgery coeflicient) sufficiently
large, any generator 2’ € T, N Tg representing Spin® structure s, is supported in
the winding region. In this case, there is a uniquely determined = € T, NT, and a
canonical small triangle 1 € ma(z, 6, 2).

Suppose ¢ € ma(x,0,2') is the canonical small triangle and 2’ € T, NTg is a
generator representing Spin® structure s,,. If k = n,(¢) > 0 (so ny(¢) = 0), then
the o, component of 2’ is z;, (and lies k units to the left of o) in Figure @ In
this case, @, maps 2’ to C{i = 0,7 < m}. On the other hand, if 2’ is a generator
with n.(¢) = 0 and | = n,,(¢) > 0, then the o, component of 2’ is x_; (and lies [
steps to the right of xp) in Figure[dl In this case, ®,, maps x’ to the subcomplex
C{i < =l,j =m} C C{i < 0,5 = m}. The following lemma (which generalizes
Lemma 4.2 of [Hed07]) will be used to finish the proof.
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-z - w
/H_/ . z3 Bg
“g T4 3 2 ‘1 | =o T _1 T_o T3 T—gq
g

FIGURE 4. Local picture of the winding region of the Heegaard
triple diagram (3, «, 8,7, w, z,,) for the cobordism between Y; K
and Y. The basepoint z, is located n regions away from the base-
point w in the Heegaard diagram (¥, o, 8, w, z,,). Here we depict
the basepoint z, for n = 3.

Lemma 2.4. Letp e @((Yt(K), ln,Sm) be a generator supported in the winding
region, and let x; denote the oy component of the corresponding intersection point
in To NTp, where the x; are labeled as in Figure @ Then

]:top 7> 0;
]:(p) = ]:toeri —_n<i< 0;
JT"bottom 1 < —n.

Here, Fiop (respectively, Foortom) denotes the top (respectively, bottom) filtration

level of (TFT((Yt(K), HnySm). Frop—i denotes the filtration level that is i lower than
Firop- In addition Fyottom = Fiop—n, S0 this is an (n+ 1) step filtration.

Proof. The Z-filtration F is defined by the relative Alezander grading A/ induced
by p, on CF> (YK, s,,). That is,

F(p) — F(q) = na, (¢) — nw(9),

where ¢ € m2(p, ¢) is a Whitney disk connecting p,q € T, N Tg.

Let p,q € @T{(YtK, ln,Sm) be generators supported in the winding region,
and let z;, x; denote the o, components of the corresponding intersection points
T, NTs. Assume without loss of generality that ¢ < j (so that x; lies to the right
of .T?j).

We will define a set of n arcs 4y, ...,d, on 3 as follows. Let §; denote the arc on
B connecting x1 to x_;. Let 3 denote on the arc on 3 connecting x_(;_1) to z_x
for k € {2,...,n}.

We will construct a Whitney disk ¢, € m2(p, ¢) with the following properties:

e If i > 0 and j > 0, (that is, z;, z; both lie on the left of ), then d¢, 4
doesn’t contain any arc ;. Therefore,

F(p) = Fla) =0
o If i < —n and j < —n, (that is, x;, z; both lie > n steps to the right of
x0), then 0¢, , doesn’t contain any arc ;. Therefore,

F(p) — F(g) = 0.

e If i < —m and j > 0, (that is, z; lies to the left of zy and z; lies i steps
to the right of x(), then d¢,, contains the n arcs d1,...,06,, each with
multiplicity one. Therefore,

F(p) — F(q) = —n.
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o If —-n < i< 0andj >0, (that is, ; lies to the left of zy and z; lies ¢
steps to the right of x¢), then d¢, 4 contains the i arcs d1, . .., d;, each with
multiplicity one. Moreover, ¢, , doesn’t contain the arcs d, for k > 1.
Therefore,

F(p) — Flg) = —i.
o If —n < j < 0andi < —n, (that is, z; lies > n steps to the right of zg
and x; lies j steps to the right of z¢), then 0¢, , contains the n + j arcs

Oj|4+15 - - - » On, €ach with multiplicity one. Moreover, d¢, , doesn’t contain
the arcs dy, for k < |j|. Therefore,

F(p) - F(@)=-n—3j.

o If -n<i<0and —n < j <0, (that is, z; lies j steps to the right of zg
and z; lies ¢ steps to the right of x(), then 0¢, , contains the j — ¢ arcs
Oj|4+15 - - - 5 9]q|» each with multiplicity one. Therefore,

Flp) = Flg) =i—j.

Assuming the existence of such ¢, 4, the lemma follows immediately.

In [Hed07, Lemma 4.2] Hedden constructs a Whitney disk ¢, 4, € m2(p,q). The
above enumerated properties of d¢, , will be immediate from the construction. We
restate his construction here. Note first since p, ¢ lie in the winding region, they
correspond uniquely to intersection points p, ¢ € T, NT,,. These intersection points
P, G can be connected by a Whitney disk ¢ € ma(p, §) with n,,(¢) =0 and n,(¢) =k
for some k € Z>o. This means that 0¢ contains v, with multiplicity &, which further
implies that the distance between x; and z; is k, that is, i — 7 = k. The domain
of ¢p 4 can then be obtained from the domain of ¢ by a simple modification in the
winding region as described in [Hed07]. This modification is shown in Figure
It replaces the boundary component % -y, by a simple closed curve from an arc
connecting z; and x; along o, followed by an arc connecting z; to z; along 34, and
which wraps k times around the neck of the winding region. O

This completes the description of the knot Floer complex @T{(Yt(K )y Hp) in
terms of the complex CFK* (Y, K). O

Theorem 23] described the Z-filtered chain homotopy type of knot Floer chain
complex (ﬁ‘?{(Yg (K), tin,Sm) for t large with respect to m and n. In Theorem [
we describe the Z @ Z-filtered chain homotopy type of CFK*(Y; K, tin, Sy, ). This
generalizes Theorem 4.2 of Hedden-Kim-Livingston [HKL16] which studies the n =
1 case.

Proof of Theorem [Tl The isomorphism of chain complexes induced by the map
(defined in [OS04])

B, : CF®(Y;(K),5m) — CFK™(Y, K)

respects the F[U, U~ !]-module structure of both complexes, and hence determines
one of the Z-filtrations (called the U-filtration) of CFK™ (Y;(K), tin,S5m)-

The knot p, C Y;(K) induces an additional Z-filtration (the Alexander filtra-
tion) on CF*°(Y;(K), 6,,,). The additional Z-filtration on CF>(Y;(K), §,,) induced
by p, can be determined in exactly the same way as it was determined for the
case of CF (Yi(K),8,,). Lemma 24 identifies the Z-filtration induced on any given
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(A) The domain of a disk ¢ € m2(p, q).

- w
- Z3 69

9 4 3| 2 1 o) T_1 x _o x_3 T_y4
g

(B) ¢p,q € m2(p, q) where p, ¢ have oy components z_3, x_1. ddp 4 contains arcs d> and

53 on 3 drawn in violet. /’r/ / / .
VRV A /

(C) ¢p,q € m2(p, q) where p, g have oy components x_2, x_1.

w
.23 Bg

g 4 3 2 1 | Zo z_1 T_2 z_3 T_gq
Yg

(D) ¢p,q € m2(p, q) where p, ¢ have oy components z1, xs.

w
.23 Bg

g 4 3 2 1 | Zo z_1 T_2 z_3 T_gq
Yg

(E) ¢p,q € m2(p,q) where p, ¢ have ag components z_z, 1.

w
. 23 Bg
g 4 3 2 1 | o T_1 T_2 z_3 T_4
g

FIGURE 5. The domain of a disk ¢, , € m2(p, q) for p,q € T, NTs
in the winding region can be identified with the domain of a disk

¢ € 71—2(}33 Ej)

i = constant slice in CF™ (Y;(K), s,,) with an (n+1) step filtration as above. This

yields the statement of the theorem ¢ > 0. The case ¢ < 0 follows similarly.
Alternatively, the additional (Alexander) Z-filtration on CFK™ (Y;(K), tin,5m)

can be obtained from the Alexander filtration on CTFT{(Y}(K ), tn,Sm) by the fact

that the U variable decreases Alexander grading by one, i.e., we have the relation
AU -z) = A(z) — 1. O

Corollary 2.5. Let K be a knot in'Y and fit m,n € Z. Then there exists T =
T(m,n) > 0 such that for all t > T the following holds: Up to a grading shift,
the pth filtration level of CFK™ (Y;(K), tin, $m) is described in terms of the original
7 ® Z—filtered knot Floer homology CFK*(Y, K) as

max(i,j —m —n) = p.

That is, each Alexander filtration level p of CFK*(Y:(K), pin,Sm) is a “hook”
shaped region in CFK* (Y, K).
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thick diagonal

A =
— 1
A=-2
A=-3
A=-4
A=-5
A=-6 .
A= !

C{max(i,7 —4) =0} —

FIGURE 6. CFK*(S3, K) is supported along a thick diagonal of
width 2g(K)+1. The regions labeled A =0, ..., A = —7 have con-
stant Alexander grading A/, induced by p, on CF®(S3(K),s.,).
For spin® structures s,, where |m| < ¢(K), sufficiently large
surgery coefficient ¢, the algebraic filtration ¢ on C'{max(i,j —
m) = 0} corresponds to the Z-filtration induced by p, on
CF*>*(S3(K),5,,) where n > 2g(K).

Proof. This follows from Theorem 11 O

Proposition 2.6. Let m € Z with |m| < g(K) and let n > 2g(K). For sufficiently
large surgery coefficient t, the Alexander filtration induced by p,, on CF(Y(K),$,,)
coincides with the algebraic i-filtration on CFK* (Y, K) under the correspondence
given by @, .

Proof. Since @T{(Y, K) has degree equal to the Seifert genus of the knot,
CFK™(Y, K) is supported along a thick diagonal of width 2g(K) + 1. By the
hypothesis, we have
m+n > g(K).

Therefore the corner (p,m + n + p) of the hook region C{max(i,j — m —n) = p}
of each constant Alexander filtration level p of CFK™ (Y;(K), tin, 5 ) lies above
the thick diagonal along which CFK* (Y, K) is supported. See Figure For
spin® structures s, where |m| < g(K), this means that the Alexander filtration
induced by i, on CFK*(Y;(K), tin, 6,,) coincides with the algebraic i-filtration on
CFK™ (Y, K) under the correspondence given by ®,,. O

Because the algebraic i-filtration is used to define concordance invariants (such as
a1 (K), which can be interpreted as an integer lift of the Hom e invariant [HomI4al),

Licensed to Univ of Michigan. Prepared on Tue Jun 1 01:08:17 EDT 2021 for download from IP 141.211.4.224.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1766 L. TRUONG

the filtration induced by s, on CF>(S3(K),5,,) can be used to study the concor-
dance class of a knot K. We will see that we can extract concordance invariants of
K from CFK™(S}(K), tin,5m)-

3. A KNOT CONCORDANCE INVARIANT

As an application for the results in the previous section on the Z-filtration in-
duced on CF (83 (K),sm) by the (n,1)-cable of the meridian p,,, our main result
in this section (Theorem [[3)) shows that the concordance invariant a;(K) of Hom
[Hom14b], which has an algebraic definition in terms of maps on subquotient com-
plexes of CFK* (K), can be equivalently defined by studying filtered maps on the
(hat version of the) Heegaard Floer homology groups induced by the two-handle at-
tachment cobordism of large integer surgery along a knot K in S2 and the filtration
induced by the knot pu, inside of the surgered manifold.

Our result is analogous to the statement that the concordance invariants v(K)
of Ozsvath-Szabé [OS11] and e(K) of Hom [Homl4a] can be defined algebraically
or in terms of maps on the (hat version of the) Heegaard Floer homology groups
induced by the two-handle attachment cobordism of large integer surgery along
a knot K in S3. Definition B.I] gives an algebraic definition of £(K) in terms of
certain chain maps on the subquotient complexes of the knot Floer chain complex
CFK*(K). Due to the Ozsvath-Szabé large integer surgery formula [OS04], e(K)
can equivalently be defined in terms of maps on the Heegaard Floer chain complexes
induced by the two-handle attachment cobordism of (large integer) surgery.

We begin by recalling the definition of the concordance invariants (K). Let N
be a sufficiently large integer relative to the genus of a knot K. Consider the map

Fy - HF(S?) — HF(S% y (K), [s]),

induced by the two-handle cobordism W* . Here, [s] denotes the restriction to
S3 v (K) of the Spin® structure s¢ over W* \ with the property that

(er(ss), [F]) = N = 25,

where |s| < % and F denotes the capped off Seifert surface in the four-manifold.
We also consider the map

Gy : HF(S}(K), [s]) = HF(5°),
induced by the two-handle cobordism —Wj,.

The maps Fs; and G4 can be defined algebraically by studying certain natural
maps on subquotient complexes of CFK*(K), as in [OS04]. The map Fj is induced
by the chain map

C{i=0} - C{min(i,j —s) =0}
consisting of quotienting by C'{i = 0,j < s} followed by the inclusion. Similarly,
the map G, is induced by the chain map

C{max(i,j —s) =0} - C{i =0}
consisting of quotienting by C{i < 0,j = s} followed by the inclusion.

Definition 3.1 ([Homl4a], [HomI4b]). Let 7 = 7(K) be the Ozsvath-Szabd con-
cordance invariant. The invariant e(K) is defined as follows:

o ¢(K) =1if F; is trivial (in which case G, is necessarily non-trivial).

e ¢(K) = —1if G, is trivial (in which case F. is necessarily non-trivial).
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e ¢(K)=0if F; and G, are both non-trivial.

In [Hom14b|, Hom defines a concordance invariant a; (K) for knots with e(K) =1
that is a refinement of e(K).

Definition 3.2 ([Homl14b]). If e(K) =1 (F is trivial), define
a1(K) =min{s | H; : H.(C{i =0}) —» H,(C{min(i,j — 7) = 0,7 < s}) is trivial}.
We extend this definition of a1 (K) to all knots (to include knots with e(K) # 1).
Consider the maps
G_sr:C{max(i,j —7)=0,i> —s} - C{i =0}
Fs;:C{i=0} - C{min(i,j —7) = 0,7 < s}.
Definition 3.3. Given a knot K inside S3, define:

max{—s | G_, . is trivial on homology} if e(K) = —1;
a1 (K)=<0 if e(K) = 0;
min{s | F - is trivial on homology} if e(K) = 1.

Note that a;(K) only depends on the doubly-filtered chain homotopy type of
the knot Floer chain complex CFK*(K), so it is a knot invariant.

Remark 3.4. When ¢(K) = 1, the definition of a;(K) agrees with the invariant
a1(K) defined in Lemma 6.1 in [HomI14b]. As remarked in [Hom14b|, a;(K) mea-
sures the “length” of the horizontal differential hitting the special class generating
the vertical homology of CF(S?%). Similarly, when e(K) = —1, a1 (K) measures the
“length” of the horizontal differential coming out of the special class generating the
vertical homology of CF (83).

Recall that the rationally null-homologous knot j,, C S} (K) induces a Z-filtration
of CF(S}(K),s,) and CF(S3,(K),s,), that is, a sequence of subcomplexes:

0C fbottom C fbottom-{-l c---C JT"top—l C ftop = CF(SE(K)vsT)a

0C féottom - ]:lgottom-&-l c---C ]:Iéop—l - fgop = @(Sit(K)asT)

Using Theorem [Z3] and Proposition 226, an equivalent definition of a;(K) can be
formulated in terms of the filtration F and F’ induced by u, as a knot inside
S3(K) and S3,(K). This interpretation of the invariant a;(K) offers a topological
perspective that complements the original algebraic definition of a; (K).

Theorem 3.5. Let n > 2g(K). For sufficiently large surgery coefficient t, the
concordance invariant a1(K) is equal to

CF(SPK, 1)/ Fiop-1-m — CF(S?)
max{ m
induces a trivial map on homology

} if e(K) = —1,

a(K) =40 if (K) =0,

min < m ‘ CF(SB) - ]:Il)ottom-i-m C CF(SEtK, 57_)
induces a trivial map on homology

} if e(K) = 1.
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Proof. Since || < g4(K) < g(K), we can apply Proposition which states that
in the spin® structure s,, the algebraic i-filtration on CFK*(S3, K) coincides with
the filtration induced by p,, on CF (93/(K),s,) under the identification of the two
filtered chain complexes in Theorem 2.3 (Il

Remark 3.6. Recall that a1 (K) is a concordance invariant (see Proposition [3.7) that
fits into a family of concordance invariants studied by Dai, Hom, Stoffregen, and
the author in [DHST19]. It would be interesting to see if an analogue of Theorem
exists for this entire family of algebraically defined invariants corresponding to
the standard local representative (over F[U, V]/(UV)) of the knot.

Proposition 3.7 ([Homl14b]). The invariant a1(K) is a concordance invariant.

Proof. Suppose K; and K, are concordant knots, i.e., K;#K, is slice. Then
e(K1#Ks) = 0. By Proposition 3.11 in [Hom15], we may find a basis for
CFK* (K #K,) with a distinguished element x that generates the homology
HFK™ (K;#K>) and splits off as a direct summand of CFK™(K;#K>). Simi-
larly, we can find a basis for CFK* (K,#K>) with a distinguished element y with
the same properties. Then to compute a; (Ko#K1#K>), by the Kunneth principle
[OS04] we can consider either chain complex:

CFK*™ (K 1#K3) ®zjy,y-1) CFK®(K3) or  CFK™® (K1) ®z,y-1) CFK™® (Ko #K>).
Using the special bases from above, the relevant summands to a; are

{z} @ CFK*(K2) or CFK*(K;)® {y}.
Thus, a1(K2) = a1 (Ky#EK1#K2) = a1 (K)). O
Example 3.8 (Homologically thin knots). Model complexes for CFK* of homo-

logically thin knots are studied in [Pet13]. Petkova shows that if 7(K) = n, the
model complex contains a direct summand isomorphic to

CFKOO(T272n+1) ifn>0 and CFKOO(TZQn,l) if n <0.

This summand supports H,(CFK*(K)) and thus determines the value of a;(K).
It is easy to see from the complex that a;(K) = sgn(7(K)).

Proposition 3.9. The following are properties of a1 (K):
(1) If K is smoothly slice, then a1 (K) = 0.
(2) sgn(a1(K)) = e(K).

)
(3) a1(K) = —a1(K).
(4) If a1(K) =0, then a1 (K#K') = a1 (K').

Proof of (1). If K is smoothly slice, then e(K) = 0; therefore, a;(K) = 0. O
Proof of (2). By construction, if a1(K) > 0, then e(K) = 1; if a1(K) < 0, then
e(K)=-1.

If a1 (K) = 0, we show that ¢(K) = 0. Suppose ¢(K) = —1. Then the vanishing
of

a1(K) = max{n | G, , is trivial on homology}
implies that the map Gy, : C{i = 0,5 < 7} — C{i = 0} is trivial on homology,
which contradicts the definition of 7. Similarly, e(K) # 1 if a1 (K) = 0.
Finally, according to [HomI4al, ¢(K) = 0 implies that 7(K) = 0. O
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Proof of (3). The symmetry properties of CFK* of Section 3.5 in [OS04] imply
that al(K) = —ai (?) O

Proof of (4). If a1(K) = 0, e(K) = 0. By Lemma 3.3 from [Homl4a], we may
find a basis for CFK*°(K) with a distinguished element x which is the generator
of both vertical and horizontal homology. Then a;(K#K’) can be computed from
{2} ® CFK™(K"). O

In fact, we can extend Proposition B:9(4) to describe the behavior of a; under
connect sum in many (but not all) cases.

Proposition 3.10.
(1) If a1 (K1) > 0 and a1(K2) < 0 and a1 (K1) + a1(K2) <0, then
a1 (K1#K3) = a1 (Ky).
(2) If a1(K1) > 0 and a1(K2) <0 and a1 (K;) + a1(K2) > 0, then
a1 (K1 #K>) = a1(K»).
(3) Ifal(Kl) >0 and al(Kz) >0, then al(Kl#Kg) = min(al(Kl),al(Kg)).
(4) If a1(K1) < 0 and a1(K2) <0, then a1 (K1#K2) = max(ai (K1), a1(K2)).
Proof. Note that we use —K to denote the mirror of a knot K.
(1) See the proof of Lemma 6.3 of [Hom14b].
(2) The mirrors —K; and — K3 satisfy the hypothesis of (1), so
a1 (—K1# — K3) = a1 (- K»).
Apply the symmetry property of a; under mirroring (3.9):
—al(Kl#Kg) = —a1(K2).

(3) By Lemma 6.2 of [HomI4b], there exists a basis {z;} over F[U,U~?] for
CFK™(K;) with basis elements x¢ and z; with the property that
(a) There is a horizontal arrow of length ay from z; to xo.
(b) There are no other horizontal arrows or vertical arrows to or from .
(¢) There are no other horizontal arrows to or from z.
Similarly, we may find a basis {y;} over F[U,U~1] for CFK*(K3) with basis ele-
ments yo and y; with the above properties. Without loss of generality, assume that
a1 (K1) < ai(Ka).
Notice 2y generates the vertical homology H,.(C({i = 0})) of CFK* (K1 #K>).
Let 7 = 7(K;#K>). Consider the subquotient complex

A = C{min(¢, j — 7) = 0}.
There is a direct summand of A consisting of the generators xoyo, oY1, 1Yo, and
z1y1, and four horizontal arrows as shown in Figure[ll The arrow z1yo to zgyo has

length a1 (K7). Clearly, e(K1#K>5) = 1 and a1 (K1 #K2) = a1(Kq).
(4) The mirrors —K; and — K> satisfy the hypothesis of (3). So

—al(Kl#Kg) = al(—Kl# — KQ) = min(al(—Kl), al(—Kg))
= min(—al(Kl), —al(Kg)) = — max(al (Kl), al(Kg)).

Proposition B.10l can be rewritten as the following.
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ToYo xl.yO T1Y1
) ° [)
ToY1

FIGURE 7. A direct summand of A = C{min(i,j — 7) = 0} in

Proposition BI0(3).
This is the summand that is relevant for computing a1, as it contains the
generator gy of vertical homology H.(C{i = 0}).

Proposition 3.11. If a1 (K;) # 0 and a1(K3) # 0:
(].) Ifal(Kl) + al(KQ) <0, then al(Kl#Kg) = max(al(Kl),al(Kg)).
(2) If a1(K1) + a1(K2) > 0, then a1 (K1#K2) = min(a1 (K1), a1(K2)).

Remark 3.12. If a;(K) # 0 and a(K') # 0, and a;(K) + a1(K’) = 0, then
a1 (K#K') is indeterminate. The next two examples illustrate this case.

Example 3.13. The connect sum of any knot K with the reverse of its mirror — K,
i.e., the inverse of K in the concordance group C, has vanishing a; (K# — K) = 0.

We conclude with some computations of the a;—invariant.

Example 3.14. The full knot Floer chain complexes CFK™ of the mirror —T5 3.5
of the (2,5)-cable of the torus knot 75 3, the torus knot T5 g, and the connect sum
—T5 3,0 5% 9 are described in [HW14]. It is easy to see that ai(—T53,25) = —1,
al(TQ’g) = 1, and al(—T2’3;2’5#T2’9) =—1.

Example 3.15. In [Hom16, Figure 1(b)] Hom produces the relevant summand of
CFK™ (Tys5# — T2,3;2,5) for computing e(Tys5# — T 3;2,5) and a1 (Tys5# — T2 3:2,5).-
Note that 7(Ty s# — T2 3,2,5) = 2. Using Figure 8 the map

Fro: C{i=0} - C{min(i,j —2) =0,i < 2}
is trivial on homology, whereas the map
Fio: C{i =0} = C{min(s,j —2) = 0,7 < 1}

is not trivial on homology. This gives a1 (Tys# — To3.25) = 2.

J 7 J
7
) )
(A) The relevant summand
of CFK*®(Tus# — To.3,2,5) (B) The map C{i =0} — C{min(s,j — 2) = 0,7 < 2}
for computing a;. is trivial on homology.

FIGURE 8. Computing aq for the knot T475# — T273;275.

Example 3.16. The Conway knot C5 1 has a1(Cs,1) = 0. According to [Petl0],
the knot Floer chain complex CFK*(C5 1) is generated as an F[U,U~'|—module
by a single isolated F at the origin plus a collection of null-homologous “boxes”.
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Example 3.17. The knot Floer chain complex of an L-space knot is a given by
Theorem 2.1 in [OSS14]. If K is an L-space knot, with Alexander polynomial

Ag(t) = Efzo(—l)it"i, where ng > ny > -+ > ng, then a1(K) = ng — ny by
Lemma 6.5 in [Hom14b].
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