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Abstract. We compute the knot Floer filtration induced by a cable of the
meridian of a knot in the manifold obtained by large integer surgery along the
knot. We give a formula in terms of the original knot Floer complex of the
knot in the three-sphere. As an application, we show that a knot concordance
invariant of Hom can equivalently be defined in terms of filtered maps on
the Heegaard Floer homology groups induced by the two-handle attachment
cobordism of surgery along a knot.

1. Introduction

We provide a description of the knot Floer homology of certain knots lying in
three-manifolds obtained by Dehn surgeries. This description generalizes the large
surgery formulae of Ozvsváth-Szabó to a knot Floer context. Our results expand the
set of knot Floer calculations that are practical outside of the three-sphere, where
available computational tools are more limited than for knots in the three-sphere.

Let K denote a null-homologous oriented knot in an oriented, closed three-
manifold Y . Let Yt(K) denote the manifold constructed as Dehn surgery along
K ⊂ Y with surgery coefficient t. In [OS04] Ozsváth and Szabó construct a chain
homotopy equivalence between certain subquotient complexes of the full knot Floer

chain complex CFK∞(Y,K) and Heegaard Floer chain complexes ĈF(Yt(K), sm)
for sufficiently large integers t for each spinc structure sm ∈ Spinc(Yt(K)) (see
Remark 2.2). This equivalence is known as the large integer surgery formula.

The meridian μ of K naturally lies inside of the knot complement Y \K and the

surgered manifold Yt(K). The meridian μ induces a filtration on ĈF(Yt(K), sm) for
each spinc structure sm. In [Hed07] Hedden gives a formula for the filtered complex

ĈFK(S3
t (K), μ, sm) in terms of CFK∞(S3,K) for sufficiently large t. As an appli-

cation of this formula, Hedden computes the knot Floer homology of Whitehead
doubles and the Ozsváth-Szabó concordance invariant τ of Whitehead doubles. In
[HKL16] Hedden, Kim, and Livingston generalize Hedden’s formula by computing
the full knot Floer complex CFK∞(Yt(K), μ, sm) in terms of CFK∞(Y,K) for suffi-
ciently large t. As an application to knot concordance, they show that the subgroup
of topologically slice knots of the concordance group contains a Z∞

2 subgroup.
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1758 L. TRUONG

K

μn

Figure 1. The two-component link μn and K for n = 5

We refine the theorems of Ozsváth-Szabó, Hedden, and Hedden-Kim-Livingston
to determine the filtered chain homotopy type of CFK∞(Yt(K), μn), where μn de-
notes the (n, 1)–cable of the meridian of K, viewed as a knot in Yt(K). See Figure 1.
For each spinc structure sm, we show that the complex CFK∞(Yt(K), μn, sm) is
isomorphic to CFK∞(Y,K), but endowed with a different Z ⊕ Z filtration and an
overall shift in the homological grading.

Theorem 1.1. Let K be a null-homologous knot in Y and fix m,n ∈ Z. Then there
exists T =T (m,n)>0 such that for all t>T , the complex CFK∞(Yt(K), μn, sm) is
isomorphic to CFK∞(Y,K)[ε] as an unfiltered complex, where [ε] denotes a grading
shift that depends only on m and t. Given a generator [x, i, j] for CFK∞(Y,K), the
Z ⊕ Z filtration level of the same generator, viewed as a chain in
CFK∞(Yt(K), μn, sm), is given by:

F([x, i, j]) =

⎧⎪⎨⎪⎩
[i, i] if j ≤ m+ i,

[j −m, j −m− k] if j = m+ i+ k, where 1 ≤ k < n,

[j −m, j −m− n] if j ≥ m+ i+ n.

Similarly, the complex CFK∞(Y−t(K), μn, sm) is isomorphic to CFK∞(Y,K)[ε′] as
an unfiltered complex, where [ε′] denotes a grading shift that depends only on m and
t. Given a generator [x, i, j] for CFK∞(Y,K), the Z⊕Z filtration level of the same
generator, viewed as a chain in CFK∞(Y−t(K), μn, sm), is given by:

F([x, i, j]) =

⎧⎪⎨⎪⎩
[i, i] if j ≥ m+ i,

[j −m, j −m+ k] if j = m+ i− k, where 1 ≤ k < n,

[j −m, j −m+ n] if j ≤ m+ i− n.

As a corollary, the Z–filtered complex ĈFK(Yt(K), μn, sm) is isomorphic to a
subquotient complex of CFK∞(Y,K), endowed with an (n+ 1) step filtration F :

0 ⊆ C{i<−n+1,j=m} ⊆ · · · ⊆ C{i<0,j=m} ⊆ C{max(i,j−m)=0}.

This filtration is illustrated in Figure 2(A) in the case n = 3. Similarly, the Z–

filtered complex ĈFK(Y−t(K), μn, sm) is isomorphic to a subquotient complex of
CFK∞(Y,K), endowed with an (n+ 1) step filtration F ′:

0 ⊆ C{min(i,j−m)=0}∩{i<1} ⊆ · · · ⊆ C{min(i,j−m)=0}∩{i<n} ⊆ C{min(i,j−m)=0}.

See Figure 2(B) for an illustration in the case n = 3.
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A REFINEMENT OF THE SURGERY FORMULA AND CONCORDANCE 1759

Corollary 1.2. Let K ⊂ Y be a null-homologous knot, and fix m,n ∈ Z. Then

there exists T=T (m,n)>0 such that for all t>T , the Z–filtration on ĈF (Yt(K), sm)
induced by μn ⊂ Yt(K) is isomorphic to the filtered chain homotopy type of the
(n+ 1) step filtration on C{max(i, j −m) = 0} described above. Similarly, the Z–

filtration on ĈF (Y−t(K), sm) induced by μn ⊂ Y−t(K) is isomorphic to the filtered
chain homotopy type of the (n+1) step filtration on C{min(i, j−m) = 0} described
above.

j

i

(A) C{max(i, j −m) = 0} is the shaded
region. The subregions bounded by the
colored dots represent subcomplexes of
the filtration F in the case n = 3 and
m = 4.

j

i

(B) C{min(i, j −m) = 0} is the shaded
region. The subregions bounded by the
colored dots represent subcomplexes of
the filtration F ′ in the case n = 3 and
m = 1.

Figure 2. Filtrations F and F ′.

As an application, we show that the concordance invariant a1(K) of Hom
[Hom14b] can equivalently be defined in terms of filtered maps on the Heegaard
Floer homology groups induced by the two-handle attachment cobordism of surgery
along a knot K in S3. We will be particularly interested in the spinc struc-
ture sτ corresponding to the τ = τ (K) concordance invariant of Ozsváth-Szabó
[OS03]. The rationally null-homologous knot μn ⊂ S3

t (K) induces a Z-filtration of

ĈF(S3
t (K), sτ ) and ĈF(S3

−t(K), sτ ), that is, a sequence of subcomplexes:

0 ⊂ Fbottom ⊂ Fbottom+1 ⊂ · · · ⊂ Ftop−1 ⊂ Ftop = ĈF(S3
t (K), sτ ),

0 ⊂ F ′
bottom ⊂ F ′

bottom+1 ⊂ · · · ⊂ F ′
top−1 ⊂ F ′

top = ĈF(S3
−t(K), sτ ).

Using the knot filtrations, an equivalent definition of a1(K) can be formulated in
terms of the filtration F and F ′ induced by μn as a knot inside S3

t (K) and S3
−t(K).

Theorem 1.3. Let n > 2g(K). For sufficiently large surgery coefficient t, the
concordance invariant a1(K) is equal to:

a1(K) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max

{
m | ĈF(S3

tK, sτ )/Ftop−1−m → ĈF(S3)

induces a trivial map on homology

}
if ε(K) = −1,

0 if ε(K) = 0,

min

{
m | ĈF(S

3) → F ′
bottom+m ⊂ ĈF(S3

−tK, sτ )

induces a trivial map on homology

}
if ε(K) = 1.
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1760 L. TRUONG

This interpretation of the invariant a1(K) offers a topological perspective that
complements the original algebraic definition of a1(K). We will also include prop-
erties of the invariant a1(K) as well as computations of a1(K) for homologically
thin knots and L–space knots.

2. The knot Floer filtration of cables of the meridian in Dehn

surgery along a knot

In this section we will refine the theorem of Ozsváth-Szabó to determine the
filtered chain homotopy type of the knot Floer complex of (Yt(K), μn).

We begin by recalling the large integer surgery formula from Ozsváth and Szabó
[OS04]. Let (Σg, α1, . . . , αg, γ1, . . . , γg, w, z) be a doubly-pointed Heegaard dia-
gram for (Y,K), where

• the curve γg = μ is a meridian of the knot K,
• the curve αg is a longitude for K,
• there is a single intersection point in αg ∩ γg = x0,
• the basepoints w and z lie on either side of γg.

Let β = {γ1, . . . , γg−1, λt} be the set of curves in γ, with γg replaced by a longitude
βg = λt winding t times around μ. Label the unique intersection point γg ∩βg = θ.
The Heegaard triple diagram (Σ, α, β, γ, w, z) represents a cobordism between Y
and Yt(K). See Figure 3.

x1x2x3x4 x−1 x−2 x−3x0

θ

αg

βg

γg

wz

Figure 3. Local picture of the winding region of the Heegaard
triple diagram (Σ, α, β, γ, w, z) for the cobordism between YtK and
Y

Let C{max(i, j − m) = 0} denote the subquotient complex of CFK∞(Y,K)
generated by triples [x, i, j] with the i and j filtration levels satisfying the specified
constraints.

Theorem 2.1 ([OS04]). Let K ⊂ Y be a knot, and fix m ∈ Z. Then there exists
T = T (m) > 0 such that for all t > T , the chain map

Φm : ĈF(Yt(K), sm) → C{max(i, j −m) = 0}
defined by

Φm([x]) =
∑

y∈Tα∩Tγ

∑
{ψ∈π2(x,θ,y) | nz(ψ)−nw(ψ)=m−F(y), μ(ψ)=0}

[y,−nw(ψ),m−nz(ψ)]

induces an isomorphism of chain complexes.

Remark 2.2. Here, as usual, the labeling of the spinc structures is determined by
the condition that sm can be extended over the cobordism −Wt from −Yt(K) to
−Y associated to the two-handle addition along K with framing t, yielding a spinc

structure rm satisfying

〈c1(rm, [S])〉+ t = 2m.

Licensed to Univ of Michigan. Prepared on Tue Jun  1 01:08:17 EDT 2021 for download from IP 141.211.4.224.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



A REFINEMENT OF THE SURGERY FORMULA AND CONCORDANCE 1761

Above, S denotes a surface in Wt obtained from closing off a Seifert surface for K
in Y to produce a surface S of square t.

We refine the theorem of Ozsváth-Szabó to determine the filtered chain homotopy
type of the knot Floer complex of (Yt(K), μn). Consider the meridian μ = μK of a
knot K. The meridian μ naturally lies inside of the knot complement Y \K and the
surgered manifold Yt(K). For n ∈ N, μn denotes the (n, 1)–cable of μK , and also
lies inside Y \K and the surgered manifold Yt(K). The knot μn is homologically
equivalent to n · [μ] in H1(Yt(K)). When n = 1, μ1 = μ. See Figure 1 for a picture
of the two-component link K ∪ μn.

For all n ≥ 1 there is a natural (n + 1) step algebraic filtration F on the sub-
quotient complex C{max(i,j−m)=0} of CFK∞(Y,K):

0 ⊆ C{i<−n+1,j=m} ⊆ · · · ⊆ C{i<0,j=m} ⊆ C{max(i,j−m)=0}.

This filtration is illustrated in the case n = 3 in Figure 2(A).
Theorem 2.3 says that this algebraic filtration F corresponds to a relative Z-

filtration on ĈF(Yt(K), sm) induced by μn ∈ Yt(K). This generalizes work of Hed-

den [Hed07] who studied the n = 1 case of the filtered complex ĈFK(S3
t (K), μ, sm).

Theorem 2.3. Let K ⊂ Y be a null-homologous knot, and fix m,n ∈ Z. Then there
exists T = T (m,n) > 0 such that for all t > T , the following holds: The filtered
chain homotopy type of the (n + 1) step filtration F on C{max(i, j − m) = 0}
described above is filtered chain homotopy equivalent to that of the filtration on

ĈF (Yt(K), sm) induced by μn ⊂ Yt(K).

Proof. The key observation will be that the triple diagram (Σ, α, β, γ, w, z) used
to define Φm not only specifies a Heegaard diagram for the knot (Y,K), but also
a Heegaard diagram for the knot (Yt(K), μn) with the addition of a basepoint z′.
Place an extra basepoint z′ = zn so that it is n regions away from the basepoint w
in the Heegaard triple diagram representing the cobordism between Y and Yt(K)
as in Figure 4. (This can be accomplished if t is sufficiently large, e.g., if t > 2n).
The knot represented by the doubly-pointed Heegaard diagram (Σ, α, β, w, zn) is
μn in Yt(K).

An intersection point x′ ∈ Tα ∩Tβ is said to be supported in the winding region
if the component of x′ in αg lies in the local picture of Figure 4. Intersection points
in the winding region are in t to 1 correspondence with intersection points x in
Tα ∩ Tγ .

Fix a Spinc structure sm where m ∈ Z. For t (the surgery coefficient) sufficiently
large, any generator x′ ∈ Tα ∩ Tβ representing Spinc structure sm is supported in
the winding region. In this case, there is a uniquely determined x ∈ Tα ∩Tγ and a
canonical small triangle ψ ∈ π2(x, θ, x

′).
Suppose ψ ∈ π2(x, θ, x

′) is the canonical small triangle and x′ ∈ Tα ∩ Tβ is a
generator representing Spinc structure sm. If k = nz(ψ) ≥ 0 (so nw(ψ) = 0), then
the αg component of x′ is xk (and lies k units to the left of x0) in Figure 4. In
this case, Φm maps x′ to C{i = 0, j ≤ m}. On the other hand, if x′ is a generator
with nz(ψ) = 0 and l = nw(ψ) > 0, then the αg component of x′ is x−l (and lies l
steps to the right of x0) in Figure 4. In this case, Φm maps x′ to the subcomplex
C{i ≤ −l, j = m} ⊂ C{i < 0, j = m}. The following lemma (which generalizes
Lemma 4.2 of [Hed07]) will be used to finish the proof.
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1762 L. TRUONG

x1x2x3x4 x−1 x−2 x−3 x−4x0

θ

αg

βg

γg

wz
z3

Figure 4. Local picture of the winding region of the Heegaard
triple diagram (Σ, α, β, γ, w, zn) for the cobordism between YtK
and Y . The basepoint zn is located n regions away from the base-
point w in the Heegaard diagram (Σ, α, β, w, zn). Here we depict
the basepoint zn for n = 3.

Lemma 2.4. Let p ∈ ĈFK(Yt(K), μn, sm) be a generator supported in the winding
region, and let xi denote the αg component of the corresponding intersection point
in Tα ∩ Tβ, where the xi are labeled as in Figure 4. Then

F(p) =

⎧⎪⎨⎪⎩
Ftop i > 0;

Ftop+i −n < i < 0;

Fbottom i ≤ −n.

Here, Ftop (respectively, Fbottom) denotes the top (respectively, bottom) filtration

level of ĈFK(Yt(K), μn, sm). Ftop−i denotes the filtration level that is i lower than
Ftop. In addition Fbottom = Ftop−n, so this is an (n+ 1) step filtration.

Proof. The Z-filtration F is defined by the relative Alexander grading A′
n induced

by μn on CF∞(YtK, sm). That is,

F(p)−F(q) = nzn(φ)− nw(φ),

where φ ∈ π2(p, q) is a Whitney disk connecting p, q ∈ Tα ∩ Tβ.

Let p, q ∈ ĈFK(YtK,μn, sm) be generators supported in the winding region,
and let xi, xj denote the αg components of the corresponding intersection points
Tα ∩ Tβ. Assume without loss of generality that i < j (so that xi lies to the right
of xj).

We will define a set of n arcs δ1, . . . , δn on β as follows. Let δ1 denote the arc on
β connecting x1 to x−1. Let δk denote on the arc on β connecting x−(k−1) to x−k

for k ∈ {2, . . . , n}.
We will construct a Whitney disk φp,q ∈ π2(p, q) with the following properties:

• If i > 0 and j > 0, (that is, xi, xj both lie on the left of x0), then ∂φp,q

doesn’t contain any arc δk. Therefore,

F(p)−F(q) = 0.

• If i ≤ −n and j ≤ −n, (that is, xi, xj both lie ≥ n steps to the right of
x0), then ∂φp,q doesn’t contain any arc δk. Therefore,

F(p)−F(q) = 0.

• If i < −n and j > 0, (that is, xj lies to the left of x0 and xi lies i steps
to the right of x0), then ∂φp,q contains the n arcs δ1, . . . , δn, each with
multiplicity one. Therefore,

F(p)−F(q) = −n.
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A REFINEMENT OF THE SURGERY FORMULA AND CONCORDANCE 1763

• If −n ≤ i < 0 and j > 0, (that is, xj lies to the left of x0 and xi lies i
steps to the right of x0), then ∂φp,q contains the i arcs δ1, . . . , δi, each with
multiplicity one. Moreover, ∂φp,q doesn’t contain the arcs δk for k > i.
Therefore,

F(p)−F(q) = −i.

• If −n < j < 0 and i ≤ −n, (that is, xi lies ≥ n steps to the right of x0

and xj lies j steps to the right of x0), then ∂φp,q contains the n + j arcs
δ|j|+1, . . . , δn, each with multiplicity one. Moreover, ∂φp,q doesn’t contain
the arcs δk for k ≤ |j|. Therefore,

F(p)−F(q) = −n− j.

• If −n < i < 0 and −n < j < 0, (that is, xj lies j steps to the right of x0

and xi lies i steps to the right of x0), then ∂φp,q contains the j − i arcs
δ|j|+1, . . . , δ|i|, each with multiplicity one. Therefore,

F(p)−F(q) = i− j.

Assuming the existence of such φp,q, the lemma follows immediately.
In [Hed07, Lemma 4.2] Hedden constructs a Whitney disk φp,q ∈ π2(p, q). The

above enumerated properties of ∂φp,q will be immediate from the construction. We
restate his construction here. Note first since p, q lie in the winding region, they
correspond uniquely to intersection points p̃, q̃ ∈ Tα∩Tγ . These intersection points
p̃, q̃ can be connected by a Whitney disk φ ∈ π2(p̃, q̃) with nw(φ) = 0 and nz(φ) = k
for some k ∈ Z≥0. This means that ∂φ contains γg with multiplicity k, which further
implies that the distance between xi and xj is k, that is, i − j = k. The domain
of φp,q can then be obtained from the domain of φ by a simple modification in the
winding region as described in [Hed07]. This modification is shown in Figure 5.
It replaces the boundary component k · γg by a simple closed curve from an arc
connecting xi and xj along αg followed by an arc connecting xj to xi along βg, and
which wraps k times around the neck of the winding region. �

This completes the description of the knot Floer complex ĈFK(Yt(K), μn) in
terms of the complex CFK∞(Y,K). �

Theorem 2.3 described the Z-filtered chain homotopy type of knot Floer chain

complex ĈFK(Yt(K), μn, sm) for t large with respect to m and n. In Theorem 1.1,
we describe the Z ⊕ Z-filtered chain homotopy type of CFK∞(YtK,μn, sm). This
generalizes Theorem 4.2 of Hedden-Kim-Livingston [HKL16] which studies the n =
1 case.

Proof of Theorem 1.1. The isomorphism of chain complexes induced by the map
(defined in [OS04])

Φm : CF∞(Yt(K), sm) → CFK∞(Y,K)

respects the F[U,U−1]-module structure of both complexes, and hence determines
one of the Z-filtrations (called the U -filtration) of CFK∞(Yt(K), μn, sm).

The knot μn ⊂ Yt(K) induces an additional Z-filtration (the Alexander filtra-
tion) on CF∞(Yt(K), sm). The additional Z-filtration on CF∞(Yt(K), sm) induced
by μn can be determined in exactly the same way as it was determined for the

case of ĈF(Yt(K), sm). Lemma 2.4 identifies the Z-filtration induced on any given

Licensed to Univ of Michigan. Prepared on Tue Jun  1 01:08:17 EDT 2021 for download from IP 141.211.4.224.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1764 L. TRUONG

(A) The domain of a disk φ ∈ π2(p̃, q̃).

x1x2x3x4 x−1 x−2 x−3 x−4x0

θ

αg

βg

γg

wz
z3

(B) φp,q ∈ π2(p, q) where p, q have αg components x−3, x−1. ∂φp,q contains arcs δ2 and
δ3 on β drawn in violet.

x1x2x3x4 x−1 x−2 x−3 x−4x0

θ

αg

βg

γg

wz
z3

(C) φp,q ∈ π2(p, q) where p, q have αg components x−2, x−1.

x1x2x3x4 x−1 x−2 x−3 x−4x0

θ

αg

βg

γg

wz
z3

(D) φp,q ∈ π2(p, q) where p, q have αg components x1, x2.

x1x2x3x4 x−1 x−2 x−3 x−4x0

θ

αg

βg

γg

wz
z3

(E) φp,q ∈ π2(p, q) where p, q have αg components x−2, x1.

x1x2x3x4 x−1 x−2 x−3 x−4x0

θ

αg

βg

γg

wz
z3

Figure 5. The domain of a disk φp,q ∈ π2(p, q) for p, q ∈ Tα ∩Tβ

in the winding region can be identified with the domain of a disk
φ ∈ π2(p̃, q̃).

i = constant slice in CF∞(Yt(K), sm) with an (n+1) step filtration as above. This
yields the statement of the theorem t > 0. The case t < 0 follows similarly.

Alternatively, the additional (Alexander) Z-filtration on CFK∞(Yt(K), μn, sm)

can be obtained from the Alexander filtration on ĈFK(Yt(K), μn, sm) by the fact
that the U variable decreases Alexander grading by one, i.e., we have the relation
A(U · x) = A(x)− 1. �

Corollary 2.5. Let K be a knot in Y and fix m,n ∈ Z. Then there exists T =
T (m,n) > 0 such that for all t > T the following holds: Up to a grading shift,
the pth filtration level of CFK∞(Yt(K), μn, sm) is described in terms of the original
Z⊕ Z−filtered knot Floer homology CFK∞(Y,K) as

max(i, j −m− n) = p.

That is, each Alexander filtration level p of CFK∞(Yt(K), μn, sm) is a “hook”
shaped region in CFK∞(Y,K).
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thick diagonal

C{max(i, j − 4) = 0} →

i

j

A = 0

A = -1

A = -2

A = -3

A = -4

A = -5

A = -6

A = -7

Figure 6. CFK∞(S3,K) is supported along a thick diagonal of
width 2g(K)+1. The regions labeled A = 0, . . . , A = −7 have con-
stant Alexander grading A′

n induced by μn on CF∞(S3
t (K), sm).

For spinc structures sm where |m| ≤ g(K), sufficiently large
surgery coefficient t, the algebraic filtration i on C{max(i, j −
m) = 0} corresponds to the Z-filtration induced by μn on
CF∞(S3

t (K), sm) where n > 2g(K).

Proof. This follows from Theorem 1.1. �

Proposition 2.6. Let m ∈ Z with |m| ≤ g(K) and let n > 2g(K). For sufficiently
large surgery coefficient t, the Alexander filtration induced by μn on CF∞(Yt(K), sm)
coincides with the algebraic i-filtration on CFK∞(Y,K) under the correspondence
given by Φm.

Proof. Since ĈFK(Y,K) has degree equal to the Seifert genus of the knot,
CFK∞(Y,K) is supported along a thick diagonal of width 2g(K) + 1. By the
hypothesis, we have

m+ n > g(K).

Therefore the corner (p,m + n + p) of the hook region C{max(i, j −m − n) = p}
of each constant Alexander filtration level p of CFK∞(Yt(K), μn, sm) lies above
the thick diagonal along which CFK∞(Y,K) is supported. See Figure 6. For
spinc structures sm where |m| ≤ g(K), this means that the Alexander filtration
induced by μn on CFK∞(Yt(K), μn, sm) coincides with the algebraic i-filtration on
CFK∞(Y,K) under the correspondence given by Φm. �

Because the algebraic i-filtration is used to define concordance invariants (such as
a1(K), which can be interpreted as an integer lift of the Hom ε invariant [Hom14a]),
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the filtration induced by μn on CF∞(S3
t (K), sm) can be used to study the concor-

dance class of a knot K. We will see that we can extract concordance invariants of
K from CFK∞(S3

t (K), μn, sm).

3. A knot concordance invariant

As an application for the results in the previous section on the Z–filtration in-

duced on ĈF(S3
N (K), sm) by the (n, 1)–cable of the meridian μn, our main result

in this section (Theorem 1.3) shows that the concordance invariant a1(K) of Hom
[Hom14b], which has an algebraic definition in terms of maps on subquotient com-
plexes of CFK∞(K), can be equivalently defined by studying filtered maps on the
(hat version of the) Heegaard Floer homology groups induced by the two-handle at-
tachment cobordism of large integer surgery along a knot K in S3 and the filtration
induced by the knot μn inside of the surgered manifold.

Our result is analogous to the statement that the concordance invariants ν(K)
of Ozsváth-Szabó [OS11] and ε(K) of Hom [Hom14a] can be defined algebraically
or in terms of maps on the (hat version of the) Heegaard Floer homology groups
induced by the two-handle attachment cobordism of large integer surgery along
a knot K in S3. Definition 3.1 gives an algebraic definition of ε(K) in terms of
certain chain maps on the subquotient complexes of the knot Floer chain complex
CFK∞(K). Due to the Ozsváth-Szabó large integer surgery formula [OS04], ε(K)
can equivalently be defined in terms of maps on the Heegaard Floer chain complexes
induced by the two-handle attachment cobordism of (large integer) surgery.

We begin by recalling the definition of the concordance invariants ε(K). Let N
be a sufficiently large integer relative to the genus of a knot K. Consider the map

Fs : ĤF(S3) → ĤF(S3
−N (K), [s]),

induced by the two-handle cobordism W 4
−N . Here, [s] denotes the restriction to

S3
−N (K) of the Spinc structure ss over W 4

−N with the property that

〈c1(ss), [F̂ ]〉 −N = 2s,

where |s| ≤ N
2 and F̂ denotes the capped off Seifert surface in the four-manifold.

We also consider the map

Gs : ĤF(S3
N (K), [s]) → ĤF(S3),

induced by the two-handle cobordism −W 4
N .

The maps Fs and Gs can be defined algebraically by studying certain natural
maps on subquotient complexes of CFK∞(K), as in [OS04]. The map Fs is induced
by the chain map

C{i = 0} → C{min(i, j − s) = 0}
consisting of quotienting by C{i = 0, j < s} followed by the inclusion. Similarly,
the map Gs is induced by the chain map

C{max(i, j − s) = 0} → C{i = 0}
consisting of quotienting by C{i < 0, j = s} followed by the inclusion.

Definition 3.1 ([Hom14a], [Hom14b]). Let τ = τ (K) be the Ozsváth-Szabó con-
cordance invariant. The invariant ε(K) is defined as follows:

• ε(K) = 1 if Fτ is trivial (in which case Gτ is necessarily non-trivial).
• ε(K) = −1 if Gτ is trivial (in which case Fτ is necessarily non-trivial).
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• ε(K) = 0 if Fτ and Gτ are both non-trivial.

In [Hom14b], Hom defines a concordance invariant a1(K) for knots with ε(K) = 1
that is a refinement of ε(K).

Definition 3.2 ([Hom14b]). If ε(K) = 1 (Fτ is trivial), define

a1(K) = min{s | Hs : H∗(C{i = 0}) → H∗(C{min(i, j − τ ) = 0, i ≤ s}) is trivial}.

We extend this definition of a1(K) to all knots (to include knots with ε(K) 
= 1).
Consider the maps

G−s,τ : C{max(i, j − τ ) = 0, i ≥ −s} → C{i = 0}
Fs,τ : C{i = 0} → C{min(i, j − τ ) = 0, i ≤ s}.

Definition 3.3. Given a knot K inside S3, define:

a1(K) =

⎧⎪⎨⎪⎩
max{−s | G−s,τ is trivial on homology} if ε(K) = −1;

0 if ε(K) = 0;

min{s | Fs,τ is trivial on homology} if ε(K) = 1.

Note that a1(K) only depends on the doubly-filtered chain homotopy type of
the knot Floer chain complex CFK∞(K), so it is a knot invariant.

Remark 3.4. When ε(K) = 1, the definition of a1(K) agrees with the invariant
a1(K) defined in Lemma 6.1 in [Hom14b]. As remarked in [Hom14b], a1(K) mea-
sures the “length” of the horizontal differential hitting the special class generating

the vertical homology of ĈF(S3). Similarly, when ε(K) = −1, a1(K) measures the
“length” of the horizontal differential coming out of the special class generating the

vertical homology of ĈF(S3).

Recall that the rationally null-homologous knot μn⊂S3
t (K) induces a Z-filtration

of ĈF(S3
t (K), sτ ) and ĈF(S3

−t(K), sτ ), that is, a sequence of subcomplexes:

0 ⊂ Fbottom ⊂ Fbottom+1 ⊂ · · · ⊂ Ftop−1 ⊂ Ftop = ĈF(S3
t (K), sτ ),

0 ⊂ F ′
bottom ⊂ F ′

bottom+1 ⊂ · · · ⊂ F ′
top−1 ⊂ F ′

top = ĈF(S3
−t(K), sτ ).

Using Theorem 2.3 and Proposition 2.6, an equivalent definition of a1(K) can be
formulated in terms of the filtration F and F ′ induced by μn as a knot inside
S3
t (K) and S3

−t(K). This interpretation of the invariant a1(K) offers a topological
perspective that complements the original algebraic definition of a1(K).

Theorem 3.5. Let n > 2g(K). For sufficiently large surgery coefficient t, the
concordance invariant a1(K) is equal to

a1(K) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max

{
m | ĈF(S3

tK, sτ )/Ftop−1−m → ĈF(S3)

induces a trivial map on homology

}
if ε(K) = −1,

0 if ε(K) = 0,

min

{
m | ĈF(S

3) → F ′
bottom+m ⊂ ĈF(S3

−tK, sτ )

induces a trivial map on homology

}
if ε(K) = 1.
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Proof. Since |τ | ≤ g4(K) ≤ g(K), we can apply Proposition 2.6 which states that
in the spinc structure sτ , the algebraic i-filtration on CFK∞(S3,K) coincides with

the filtration induced by μn on ĈF(S3
N (K), sτ ) under the identification of the two

filtered chain complexes in Theorem 2.3. �

Remark 3.6. Recall that a1(K) is a concordance invariant (see Proposition 3.7) that
fits into a family of concordance invariants studied by Dai, Hom, Stoffregen, and
the author in [DHST19]. It would be interesting to see if an analogue of Theorem
3.5 exists for this entire family of algebraically defined invariants corresponding to
the standard local representative (over F[U, V ]/(UV )) of the knot.

Proposition 3.7 ([Hom14b]). The invariant a1(K) is a concordance invariant.

Proof. Suppose K1 and K2 are concordant knots, i.e., K1#K2 is slice. Then
ε(K1#K2) = 0. By Proposition 3.11 in [Hom15], we may find a basis for
CFK∞(K1#K2) with a distinguished element x that generates the homology
HFK∞(K1#K2) and splits off as a direct summand of CFK∞(K1#K2). Simi-
larly, we can find a basis for CFK∞(K2#K2) with a distinguished element y with
the same properties. Then to compute a1(K2#K1#K2), by the Kunneth principle
[OS04] we can consider either chain complex:

CFK∞(K1#K2)⊗Z[U,U−1] CFK
∞(K2) or CFK∞(K1)⊗Z[U,U−1] CFK

∞(K2#K2).

Using the special bases from above, the relevant summands to a1 are

{x} ⊗ CFK∞(K2) or CFK∞(K1)⊗ {y}.
Thus, a1(K2) = a1(K2#K1#K2) = a1(K1). �

Example 3.8 (Homologically thin knots). Model complexes for CFK∞ of homo-
logically thin knots are studied in [Pet13]. Petkova shows that if τ (K) = n, the
model complex contains a direct summand isomorphic to

CFK∞(T2,2n+1) if n > 0 and CFK∞(T2,2n−1) if n < 0.

This summand supports H∗(CFK
∞(K)) and thus determines the value of a1(K).

It is easy to see from the complex that a1(K) = sgn(τ (K)).

Proposition 3.9. The following are properties of a1(K):

(1) If K is smoothly slice, then a1(K) = 0.
(2) sgn(a1(K)) = ε(K).
(3) a1(K) = −a1(K).
(4) If a1(K) = 0, then a1(K#K ′) = a1(K

′).

Proof of (1). If K is smoothly slice, then ε(K) = 0; therefore, a1(K) = 0. �

Proof of (2). By construction, if a1(K) > 0, then ε(K) = 1; if a1(K) < 0, then
ε(K) = −1.

If a1(K) = 0, we show that ε(K) = 0. Suppose ε(K) = −1. Then the vanishing
of

a1(K) = max{n | Gn,τ is trivial on homology}
implies that the map G0,τ : C{i = 0, j ≤ τ} → C{i = 0} is trivial on homology,
which contradicts the definition of τ . Similarly, ε(K) 
= 1 if a1(K) = 0.

Finally, according to [Hom14a], ε(K) = 0 implies that τ (K) = 0. �
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Proof of (3). The symmetry properties of CFK∞ of Section 3.5 in [OS04] imply
that a1(K) = −a1(K). �

Proof of (4). If a1(K) = 0, ε(K) = 0. By Lemma 3.3 from [Hom14a], we may
find a basis for CFK∞(K) with a distinguished element x which is the generator
of both vertical and horizontal homology. Then a1(K#K ′) can be computed from
{x} ⊗ CFK∞(K ′). �

In fact, we can extend Proposition 3.9(4) to describe the behavior of a1 under
connect sum in many (but not all) cases.

Proposition 3.10.

(1) If a1(K1) > 0 and a1(K2) < 0 and a1(K1) + a1(K2) < 0, then

a1(K1#K2) = a1(K1).

(2) If a1(K1) > 0 and a1(K2) < 0 and a1(K1) + a1(K2) > 0, then

a1(K1#K2) = a1(K2).

(3) If a1(K1) > 0 and a1(K2) > 0, then a1(K1#K2) = min(a1(K1), a1(K2)).
(4) If a1(K1) < 0 and a1(K2) < 0, then a1(K1#K2) = max(a1(K1), a1(K2)).

Proof. Note that we use −K to denote the mirror of a knot K.

(1) See the proof of Lemma 6.3 of [Hom14b].
(2) The mirrors −K1 and −K2 satisfy the hypothesis of (1), so

a1(−K1#−K2) = a1(−K2).

Apply the symmetry property of a1 under mirroring (3.9):

−a1(K1#K2) = −a1(K2).

(3) By Lemma 6.2 of [Hom14b], there exists a basis {xi} over F[U,U−1] for
CFK∞(K1) with basis elements x0 and x1 with the property that
(a) There is a horizontal arrow of length a1 from x1 to x0.
(b) There are no other horizontal arrows or vertical arrows to or from x0.
(c) There are no other horizontal arrows to or from x1.

Similarly, we may find a basis {yi} over F[U,U−1] for CFK∞(K2) with basis ele-
ments y0 and y1 with the above properties. Without loss of generality, assume that
a1(K1) ≤ a1(K2).

Notice x0y0 generates the vertical homology H∗(C({i = 0})) of CFK∞(K1#K2).
Let τ = τ (K1#K2). Consider the subquotient complex

A = C{min(i, j − τ ) = 0}.
There is a direct summand of A consisting of the generators x0y0, x0y1, x1y0, and
x1y1, and four horizontal arrows as shown in Figure 7. The arrow x1y0 to x0y0 has
length a1(K1). Clearly, ε(K1#K2) = 1 and a1(K1#K2) = a1(K1).
(4) The mirrors −K1 and −K2 satisfy the hypothesis of (3). So

−a1(K1#K2) = a1(−K1#−K2) = min(a1(−K1), a1(−K2))

= min(−a1(K1),−a1(K2)) = −max(a1(K1), a1(K2)).

�

Proposition 3.10 can be rewritten as the following.
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x0y0 x1y0

x0y1

x1y1

Figure 7. A direct summand of A = C{min(i, j − τ ) = 0} in
Proposition 3.10(3).

This is the summand that is relevant for computing a1, as it contains the
generator x0y0 of vertical homology H∗(C{i = 0}).

Proposition 3.11. If a1(K1) 
= 0 and a1(K2) 
= 0:

(1) If a1(K1) + a1(K2) < 0, then a1(K1#K2) = max(a1(K1), a1(K2)).
(2) If a1(K1) + a1(K2) > 0, then a1(K1#K2) = min(a1(K1), a1(K2)).

Remark 3.12. If a1(K) 
= 0 and a1(K
′) 
= 0, and a1(K) + a1(K

′) = 0, then
a1(K#K ′) is indeterminate. The next two examples illustrate this case.

Example 3.13. The connect sum of any knot K with the reverse of its mirror −K,
i.e., the inverse of K in the concordance group C, has vanishing a1(K#−K) = 0.

We conclude with some computations of the a1–invariant.

Example 3.14. The full knot Floer chain complexes CFK∞ of the mirror −T2,3;2,5

of the (2, 5)-cable of the torus knot T2,3, the torus knot T2,9, and the connect sum
−T2,3;2,5#T2,9 are described in [HW14]. It is easy to see that a1(−T2,3;2,5) = −1,
a1(T2,9) = 1, and a1(−T2,3;2,5#T2,9) = −1.

Example 3.15. In [Hom16, Figure 1(b)] Hom produces the relevant summand of
CFK∞(T4,5#− T2,3;2,5) for computing ε(T4,5#− T2,3;2,5) and a1(T4,5#− T2,3;2,5).
Note that τ (T4,5#− T2,3;2,5) = 2. Using Figure 8, the map

F2,2 : C{i = 0} → C{min(i, j − 2) = 0, i ≤ 2}
is trivial on homology, whereas the map

F1,2 : C{i = 0} → C{min(i, j − 2) = 0, i ≤ 1}
is not trivial on homology. This gives a1(T4,5#− T2,3;2,5) = 2.

j

i

(A) The relevant summand
of CFK∞(T4,5# − T2,3;2,5)
for computing a1.

j

i

j

i

(B) The map C{i = 0} → C{min(i, j − 2) = 0, i ≤ 2}
is trivial on homology.

Figure 8. Computing a1 for the knot T4,5#− T2,3;2,5.

Example 3.16. The Conway knot C2,1 has a1(C2,1) = 0. According to [Pet10],
the knot Floer chain complex CFK∞(C2,1) is generated as an F[U,U−1]−module
by a single isolated F at the origin plus a collection of null-homologous “boxes”.
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Example 3.17. The knot Floer chain complex of an L-space knot is a given by
Theorem 2.1 in [OSS14]. If K is an L-space knot, with Alexander polynomial

ΔK(t) =
∑k

i=0(−1)itni , where n0 > n1 > · · · > nk, then a1(K) = n0 − n1 by
Lemma 6.5 in [Hom14b].
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