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Truncated Heegaard Floer homology and
knot concordance invariants

LINH TRUONG

We construct a sequence of smooth concordance invariants v, (K) defined using
truncated Heegaard Floer homology. The invariants generalize the concordance
invariants v of Ozsvéth and Szab6 and v of Hom and Wu. We exhibit an example
in which the gap between two consecutive elements in the sequence v, can be
arbitrarily large. We also prove that the sequence v, contains more concordance
information than 7, v, v/, v and v*’.

57TM25, 57TM27, 57R58

1 Introduction

Two knots, Ko and K1, in S2 are smoothly concordant if there is a smooth proper
embedding of a cylinder S! x [0, 1] into S3 x [0, 1] with boundary S x {0} = K¢ and
S1x {1} = —K;. The Heegaard Floer homology package of Ozsvith and Szab6 has
led to a wealth of smooth concordance invariants. A survey on this topic can be found
in Hom [6].

Two concordance invariants motivate this article:

(1) v(K), defined by Ozsvath and Szabé [14] using maps on Heegaard Floer homol-
ogy HF induced by the two-handle cobordism corresponding to integral surgery
along K.

(2) v (K), defined by Hom and Wu [7] using maps induced by surgery on HF .
Hom and Wu showed that vt (K) produces arbitrarily better four-ball genus
bounds than v(K).

We construct a sequence of concordance invariants v, (K) for n € Z which are defined
using maps induced by surgery on the truncated Heegaard Floer homology HF". The
invariants v, (K) generalize v(K) and vt (K), as v{(K)=v(K) and v, (K) =vT(K)
for n sufficiently large. The properties of v, (K) are stated below.
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Theorem 1.1 The knot invariants v, (K), where n € Z, satisfy the following proper-
ties:

e v,(K) is a concordance invariant.

e V1 (K)=v(K).

e va(K) =vpp1(K).

e For sufficiently large n, v,(K) = v (K).

e vy (—K)=—v_,(K), where —K is the mirror of K.

e va(K) = g4(K).
By an extension of the large integer surgery formulas to truncated Floer homology (see

Propositions 3.1 and 3.2) the invariants v, (K) can be computed from the Z ®Z filtered
knot Floer chain complex CFK*°(K).

Homologically thin knots are a special class of knots whose knot Floer homology lies
inasingle 6 = A— M grading, where A is the Alexander grading and M is the Maslov
grading. We prove that v, (K) of thin knots only depends on t(K).

Proposition 4.1 Let K be a homologically thin knot with ©(K) = t.
1) If t=0,v,(K)=0 foralln.

(i) If >0,
0 fornf—%(r—{—l),
m(K)y=497t+2n+1 for—%rfnf—l,
T for n > 0.
(i) Ift <O,
T for n <0,
(K)=<3t+2n—1 forlfnf—%r,
0 for n > %(—r +1).

The computation of v,(K) for thin knots illustrates that the gap between v,(K) and
Vn+1(K) can be more than one. In fact, the gap between v, (K) and v,41(K) can be
arbitrarily big.

Theorem 1.2 Let T) ;1 denote the (p, p+1)—torus knot. For p > 3,

V1 (Tp,p+1) —v—2(Tp,p+1) = p.
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Finally, we show that the sequence v, contains more concordance information than 7,
4
v, v, vt and v,

Proposition 1.3 There exist knots K and K’ with equal T, v, V/, vt and vt invari-
ants, but v, (K) # v, (K') for some n € Z,.

Organization of the paper In Section 2 we review the constructions of the con-
cordance invariants v(K) and v (K). In Section 3 we define the invariants v, (K)
and prove their properties: monotonicity, stabilization and behavior under mirroring.
In Section 4 we compute v, (K) for special families of knots and compare them
to v(K) and v (K). In Section 5 we pose some questions about the concordance
invariants vy, (K).
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2 Background on the invariants v(K) and v*(K)

A four-dimensional cobordism equipped with a Spin¢ structure between two three-
manifolds induces a map on the Heegaard Floer homology groups [12]. In particular,
for a knot K in S3, the 2—handle attachment cobordism from S]3\,(K) or S3 N (K)
to S induces maps

(1) Ts,x: HE(S3 (K), 55) — HE(S?), 0 . HE(S®) — HF(S2 y (K). 55),
) vy, HET (S} (K).55) = HFT(S3),  vf,: HFT(S%) — HF (83 (K), 55).

(3) v;.: HF (S} (K),s5) > HF(S?), v;;: HF™(S?) — HF(S2  (K), 55),

3

where sg denotes the restriction to S ]3\,(1( ) or 82 (K) of a Spin® structure t on the

corresponding 2—handle cobordism such that

A~

(1), [F)+ N =25, (c1(0),[F]) =N =2s,

where F is a capped-off Seifert surface for K. These cobordism maps on HF and
HF™ play a key role in defining the concordance invariants v and v .
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Definition 2.1 [14, Section 9] The concordance invariant v(K) is defined as

v(K) = min{s € Z | Uy, is surjective}.

Definition 2.2 The concordance invariant v'(K) is defined as

V'(K) = max{s € Z | U, is injective}.
For a rational homology 3—sphere Y with a Spin® structure s, HF (Y, s) can be
decomposed as the direct sum of two groups: the first group is the image of HF*°(Y, s) =

F[U,U~!] in HF' (Y, s), which is isomorphic to T+ = F[U, U~!]/UF[U]; the sec-
ond group is HFcq(Y, s) = HFT (Y, s)/T". That is,

HF'(Y,5) = T+ @ HF o4 (Y. 5).

Definition 2.3 [7] The concordance invariant v is defined as
vT(K) = min{s | vj:*: HF+(S1%,(K),5S) — HF"(S?) sends 1 to 1},
where 1 denotes the lowest-graded generator in the subgroup T+ of the homology,
and N is sufficiently large that the integer surgery formula holds.
Equivalently, Hom [6] defines the invariant v~ (K) in terms of the map

Vs« HF (SR} K. s5) —> HF(S?).

Definition 2.4 [6] The concordance invariant
v (K) =min{s € Z | v, is surjective}
is equal to v (K).
Hom and Wu show that
7(K) < v(K) <v*(K)

and v (K) > 0. In addition, vT gives a lower bound on the four-ball genus, v (K) <
24(K). Furthermore, Hom and Wu provide a family of knots where vt (K) is an
arbitrarily better bound on g4(K) than 7(K).

The concordance invariants v and v are easily computable from CFK®°(K) via the
large integer surgery formulas. Let CX denote the subgroup of CFK*°(K) generated
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by elements [x, i, j] that lie in filtration level (i, j) € X C Z & Z. Consider the chain
maps
Uy: C{max(i, j —s) =0} - C{i =0},

v C{max(i, j —s) >0} — C{i >0},

defined by taking the quotient by C{i <0, j = s} or C{i <0, j > s}, respectively,
followed by the inclusions. The large integer surgery formula of Ozsvéth and Szabé [11]
asserts that the maps vs and vs‘Ir induce the maps from (1) and (2). Similarly, consider

the chain maps
U5 C{i =0} — C{min(i, j —s) =0},

vs+/: C{i =0} - C{min(i, j —s) > 0},

consisting of quotienting by C{i =0, j < s} followed by the inclusion. Ozsvath and
Szabd [11] show that these maps induce the maps from (1) and (2).

We introduce a concordance invariant v1’, so that the pair vt and vt is the HFT
analogue to the pair v and v’.
Definition 2.5 The concordance invariant vt is defined as

v+/(K) =max{s € Z | vs":,;: HF(S3) —» HF+(SEN (K), s5) is injective},
where —N is sufficiently negative that the (negative) large integer surgery formula

holds.

We prove a mirroring property which relates pt (K) to the invariant v (—K) of the
mirror of K:

Lemma 2.6 v(K) = —vH(=K).

Proof Recall the symmetry of CFK* under mirroring [11, Section 3.5],
CFK*®(—K) ~ CFK*(K)*,

where CFK*®(K)* is the dual complex Homp g y—17(CFK*°(K), F[U, U~1). There-
fore,

vi—;,*: HF*(S?) - HF (82  (K),5_y) is injective
S Ug HF (S} (—K).s5) — HF(S?) is surjective,

which implies the result. a
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It follows from the above lemma that the invariant v’ exhibits properties similar

tovT,

v (K) <v(K) <t(K) <v(K) <vT(K)

and v’ (K) < 0. In addition, the absolute value of v (K) gives a lower bound on
the four-ball genus:

Theorem 2.7 |v+/(K)| < g4(K).

Proof This follows from the fact that v (K) < g4(K) and Lemma 2.6. a

3 The concordance invariants v,(K)

The construction of the concordance invariants v, (K) uses truncated Heegaard Floer
homology HF" (Y, s), described in [9; 13]. HF"(Y, s) is the homology of the kernel
CF"(Y,s) of the multiplication map

U"™: CEt(Y,s) — CFT (Y, ),

where n € Z . The two-handle cobordism from SZ%,K or §3 n K, respectively, to S 3
induces a map on the truncated Floer chain complex,

v CF' (S} K, 55) — CF'(S?), v;™: CF"(S?) — CF"(S2 y K, 55),
and on the truncated Floer homology,
v HF' (SR K. s5) > HF'(S?), vy} HF'(S?) > HF"(S2 y K. 55),

where sg denotes the restriction to S 13\, (K) or S3 N (K), respectively, of a Spin©
structure t on the corresponding 2—handle cobordism such that

~

(€1, [F) + N =25, (c1(0),[F]) =N =2s,

where F is a capped-off Seifert surface for K. These cobordism maps on HF and
HF™ play a key role in defining the concordance invariants v and v .

We extend the large integer surgery formula of Ozsvath and Szab6 to truncated Heegaard
Floer homology:
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Proposition 3.1 (large negative integer surgery formula for HF") Consider the
subquotient complex

CFK™(S3, K,m) = C{0 <min(i, j —m) <n —1}

of CFK1(S3, K, m) generated by [x,i, j] with 0 <min(i, j —m) <n — 1. For each
m € 7, there is an integer N(m) such that for all p > N(m), the map ® of Ozsvdth
and Szabo induces isomorphisms in the diagram

0 — CFK™"(S3,K,m) —s CFK*(S3, K,m) L% CFK*(S3,K,m) — 0

l‘ib(n) lq;-&— lq>+

0 — CF"(S2,K.[m]) — CF"(S3 K.[m]) AN CF*(S2,K.[m]) — 0

Proof The map ®7 is an isomorphism of chain complexes by Theorem 4.1 of [11].
By the five lemma, so is ®(n). a

Proposition 3.2 (large positive integer surgery formula for HF") Consider the sub-
quotient complex

CFK"(S3, K,m) = C{0 <max(i, j —m) <n—1}

of CFK+(S3, K, m) generated by [x,i, j] with 0 < max(i, j —s) <n — 1. For each
m € 7, there is an integer N(m) such that for all p > N(m), the map W of Ozsvath
and Szabo induces isomorphisms in the diagram

0 —> CF'(S3K.[m]) — CF(S3K,[m]) —%"— CF*(S3K.[m]) — 0

l‘l’(n) l\l}* l\lﬂr

0 — CFK™(S3,K,m) — bCFKT(S3, K, m) —%"5 bCFK*(S3, K, m) — 0

Proof The map W™ is an isomorphism of chain complexes by Theorem 4.4 of [11].
By the five lemma, so is W (n). a
Notation We sometimes use the notation, for n > 0,
A" = C{0 <max(i,j —m) <n—1}, Al=C{0<max(i,j—m)},
A" =C{0<min(i,j —m)<n—1}, A =C{0<min(i,j—m)}

and
B"=C{0<i<n-1},

BT =C{0<i}.
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The cobordism maps on truncated Heegaard Floer groups lead us to define concordance
invariants vy .

Definition 3.3 For n > 0, define

vp(K) =min{s € Z | v}: CF" (S} (K).s) — CF"(S?)
induces a surjection on homology},

and for n < 0, define

vp(K) =max{s € Z | v': CF"(S%) — CF (82 y(K),s)
induces an injection on homology},
where N is sufficiently large that the Ozsvath—Szab6 large integer surgery formula

of [11] holds. For n = 0, we define vo(K) = t(K).

Remark 3.4 For n = £1, these invariants are already known as v1(K) = v(K) and
v—1(K) =V/'(K).

Proposition 3.5 v, (K) is a concordance invariant.

Proof Suppose K; is concordant to K. Then S 13\, (K1) is homology cobordant to
S]%(Kz). This implies that there exists a (smooth, connected, oriented) cobordism W
from S3 (K1) to S3(K2) with H;(W,Q) =0 for i =1,2.

The map
HF"(S3(K1),s) — HF"(S?)

induced by the cobordism obtained by adding a two-handle along K; factors through
HF” (SZ%] (K2),s). So, if it is surjective, then the map

HF" (53 (K2),s) — HF"(S?)

is also surjective. So we get that v, (K1) > v,(K>2). The same argument with K;
and K, switched shows the inequality v,(K3) > v,(Ky). Therefore, v, (K1) =
Vn (K2)-

For negative n, that v,(K) is a concordance invariant follows from a similar argument
to the above. a

Proposition 3.6 (mirroring property) v,(—K) = —v_,(K).
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Proof Recall the symmetry of CFK® under mirroring [11, Section 3.5],
CFK*(—K) ~ CFK*(K)*,

where CFK®(K)* is the dual complex Homp ¢ y—1(CFK®(K),F[U,U~']). Let-
ting C = CFK®(S3, K) and n > 0, the following conditions are equivalent:

v~ (K): HF"(S3) — HF" (SEN (K),s—s) is injective.

—5§,%

vV_HK): C{0<i <n—1}— C{0<min(i, j +5) <n—1} is injective on H.

U (—K): C{—(n—1) <max(i,j —s) <0} > C{—(n—1) <i <0} is
surjective on Hy.

v (—K): C{0<max(i, j —s) <n—1} - C{0 <i <n—1} is surjective on Hy.
s ¢, (—=K): HF" (S13V (=K),s5) — HF"(S3) is surjective.

Here U"™! is a degree-shifting isomorphism on CFK*(K). Therefore,

vn(—K) = min(s € Z | v{ ,(—K) is surjective)

= —max(—s € Z | v_{ ,(K) is injective) = —v_, (K). O
Proposition 3.7 (monotonicity) v,(K) <v,+1(K).
Proof It is known that v_;(K) < 7(K) < v1(K), so we focus on the two separate

cases where n > 0 and n < 0.

For n > 0, consider the commutative diagram

n+1
HF" (3 K, s) =2 HF""1(S?)

I lv
HF"(S3 K, s) —=— HF"(S3)

where the vertical maps are given by multiplication by U. The vertical map on the

right is surjective. Thus, if v”1! is surjective, then so is v” .

For n < 0, consider the commutative diagram

HF ™ (S3) — 5 HF (53, K. )

—(n— R
HF (=D (8§3) =% HF=D(S3 K. 5)
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where the vertical maps are induced by inclusion of chain groups. In particular, the
left map i} is injective on homology. Therefore, if vg‘;l(K ) is injective, then so is
Vg (K). We conclude that vy—1(K) < vu(K). O

Proposition 3.8 (boundedness) pt (K) <vp(K) <v*(K) foralln.

Proof It is known that v(K) < vt (K) from [7]. For n > 1, consider the commutative
diagram
Hy(A7) —2 Hy(AD)

- n
lvk.* l”k.*

H.(B™) == Hy(B")
The map jp is surjective, so if Uk is surjective, then so is vz’ .

For n < —1, consider the commutative diagram

Hi(B") —2— H.(BY)

4/
l”ﬁ Lk lvk Lk

i /
H*(AZ) —A> H*(A]_:)
. . . . . / . . . . .
The map ip is injective, so if v,j, , 1s injective, then so is UZ, . a

Proposition 3.9 (stabilization) For sufficiently large positive n, v,(K) = vt (K)
and v_,(K) = v+/(K).

Proof Let C; = CF_(SJ%, K,s) and C; = CF(S3). There is a canonical degree-
shifting isomorphism

F[U]

CF'(Y,s) = CF (Y. s) ®F[u] Un

Moreover, the map
FU]
U n

_ F[U]
Vst C1 ®F[u] n — C2 ®F[u]

is the same as the map v?: CF" (S;{, K,s) — CF"(S3). We show that if Uy« 1S not
surjective, then neither is vy, for sufficiently large n. By the universal coefficient
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theorem,

lv;,k@id lvg* l/TOT(Us_)

F[U ; F[U F[U
0—> Hi(Cr) ® IB”] 2 H*(C2® [ ]) —)Tor(H*Cz,%)—)O

Un

FOT o, H*(Cl ® F[U]) — Tor(H*Cl,%) 0

where all tensor products are taken over F[U].
We note the following facts:

e For a rational homology 3—sphere Y, HF (Y, s)/{U—torsion} = T~ = F[X].
So H«(C1) =T~ @ (PF[UI/U™).

¢ T QF[U]/U" =F[U]/U" and F[U]/U™ @ F[U]/U" =F[U]/U™ . So
H.(C)®F[U]/U" =F[U]/U" & (DF[U]/U™).

e Tor(F[U]/U™ F[U]/U™) = F[U]/U™ if m <n.
* H.(G:QF[U]/U") =F[U]/U".

Assume n is sufficiently large that m; < n for all m;. So the above Tor groups are
n —1 torsion.

If vy is not surjective, we can further choose n sufficiently large that the image of
Uy ®id is n —1 U—torsion. By commutativity of the diagram, the image of vy , o1}
is n —1 U—torsion.

Suppose § € H«(C1 ® F[U]/U") is such that v , (§) is an element of order n. Then,
since the short exact sequence in the universal coefficient theorem splits, § = o + 8,
where o € H«(C1) @ F[U]/U"™ and B € Tor(H«C1,F[U]/U"). But

U o] @+ B) = vf (U ) + 07 (U™ B) = 0.

Since Hx(C2 @ F[U]/U™) =F[U]/U", the invariant vy , is not surjective. Therefore,
for sufficiently large n, v, (K) = v (K).

Finally, by the mirroring property, v, (K) = v+/(K ) for sufficiently large negative
integers 7. a

The fact that v, (K) are not concordance homomorphisms from € to Z can easily
be seen. Note v, (K) is not additive under connected sum of knots. For n = 1, just
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consider two knots with (K) = ¢(K’) = —1. Then

v(K)=t(K)+1 and v(K')=1(K')+1,
but
VWK#K)Y=1t(K#K)+1=1(K)+t(K)+1 <v(K)+v(K").

4 Computations

Knot Floer homology groups can be easily computed for certain special families of
knots. For example, homologically thin knots are knots with H/F\K(K ) supported in
a single §—grading, where § = A — M. If the homology is supported on the diagonal
8= —%O(K ), where o (K) denotes the knot signature, then we say the knot is o —thin.
The class of o—thin knots contains as a proper subset all quasialternating knots, and in
particular all alternating knots. The following theorem shows that v, (K) of thin knots
only depends on 7(K):

Proposition 4.1 Let K be a homologically thin knot with T(K) = t.
(1) If =0, vy(K)=0 forall n.

(i) If >0,
0 fornf—%(t—i—l),
vp(K)=<31t+2n+1 for—%rfnf—l,
T for n > 0.
(i) If T <O,
T for n <0,
v(K)=9t+4+2n—-1 forlfnf—%r,
0 for n > %(—r +1).

Proof In [15, Theorem 4] Petkova constructs model complexes for CFK*(K) of
homologically thin knots. She shows the model chain complex contains a direct
summand (called the “staircase”) isomorphic to

CFK™ (T3 5e11) if 7(K) >0,
CFKOO(Tz’z-L—_l) if 7(K) <0.

The “staircase” summand supports H4(CFK*°(K)); that is,

H.(CFK®(K)) = H(CFK®(T3.2:_1)).
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The maps induced on homology by vy (or v, ;) will thus only depend on the “staircase”
summand and not the acyclic summands. Thus, v, (72 2:+1) = va(K).

Without loss of generality, assume 7(K) > 0. The chain complex CFK™ (7% 2¢41) is

generated over IF[U] by generators {zp};:ql with U —filtration levels i and Alexander

filtration levels j specified (forall 1 < p <27+ 1) by

, t—2(p—1) if podd, , 3(p—=1) if podd,
](Zp) = 1 . l(zp) =31 .
T—5(p—2) if peven, 5P if p even,
and differential ) 0 i podd,
P zpm1+2p41 i peven.

The above complex with generators {z, };:’il and given differential maps forms the

generating “staircase” complex Cr, and CFK* (T2 ,2:+1) = C: ®F ] F[U, U~!]. The
U —action lowers i and j by one.

Computation of vt (T2 2,+1) and v, (T2 27+41) for n >0 Since
Cl{i<0,j>1}=0,
the map v is the same as the inclusion
C{0<i<n-1,j<t+n—-1}->C{0<i<n—1}=B".

Moreover, the generator with the highest Alexander grading in C{0 <i <n —1}
is U"'zq, with
JU Lz =t +n—1.

Thus, C{0<i <n—1, j > t+n—1}=0. That s, the inclusion v} is an isomorphism
of chain complexes, so v (K) = t(K). Therefore, v,(K) = t(K) forall n > 0.

Computation of v+’(T2,2,+1) The homology of BY is generated by {[U~"z{]}
for all i > 0. The subquotient complex A(J,r " contains U™ C; for all i > 0, and the
homology of U~/ C, is generated by the class [U ' z;]. Therefore, UI;[U_iZl] #0
in H*(A(J{/), and v('{; is injective. So v+/(T2,2t+1) > 0. But since v+/(K) <0 for
any knot K, we conclude v+/(T2,2,+1) =0.

Computation of v, (T2 2 41) for —%‘L’ <n <—1 Consider the subquotient complex
Ay where k =7 +2n+1. Foreach 1 < p <27t +1,
Al 1 . .
. ) min(5(p—1),—5(p—1)—2n—1) if pisodd,
min(i (zp), j(zp) —k) = § . (% 1 ) o
mln(ip,—i(p—2)—2n—1) if p iseven
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%(p—l) if pisoddand p <-2n-—1,
_ —%(p—l)—Zn—l if pisoddand p > —2n,
B %p if pisevenand p < —2n,

—%(p—2)—2n—1 if pisevenand p > —2n.

Using these formulas, it is straightforward to check that A} contains z, for 1 < p <
—2n—1but z_p, ¢ A%. Therefore, [z1] # O in AZ. Similarly, for 1 <i <—n—1,
Ay contains U™'zp for 1 < p < =2(n +1i) —1 but z_53,4;) ¢ A}. Therefore,
[U™"z1] # 0 in Hx(A7). Since Hx«(B") is generated by [U™'z;] for 0 <i <-n—1,
vy is injective on homology.

To check that v, (T2,2¢+1) = T +2n + 1, consider the subquotient complex A” Londa-
Foreach 1 < p <2t +1,

min(i (zp), j(zp) —k) = min(3(p—1),—3(p—1)—2n—2) if pisodd,

min(%p,—%(p—Z)—Zn—2) if piseven

ip-1 if pisoddand p <—2n—1,
_ —Y(p-1)—2n—-2 if pisoddand p > —2n,

%p if pisevenand p <—2n—2,

—%(P—2)—2n—2 if pisevenand p > —2n.

Using the above, it is straightforward to check that A7, ,, ., contains z, for 1 <
p=<—4n—2but z_4n—1 ¢ A7 ,,.,. Therefore, [z1] =0 in H«(A7,,, ,). Thus,
V(T2 2c41) =7 +2n+1.

Computation of v, (T2 27 41) for n < —%(T + 1) Consider A”/, where

W = {—%(r—i—l) if 7 is odd,

—%‘[ —1 if 7 is even.

Foreach 1 < p <2t +1,
. 1 1 . .
Lo ) min(5(p—1),t—5(p—1)) if pisodd,
min(i (zp), j(zp) —0) = % (2 2 )

min(%p, T— %(p —2)) if piseven

2(p-1 if pisoddand p <7 +1,
_ r—%(p—l) if pisoddand p > 1 +1,
N %p if pisevenand p <7 +1,

f—%(p—Z) if pisevenand p > 7+ 1.
These computations show that vg/ is injective on homology:

e If 7 is odd, A’g/ contains z, for 1 < p <—-2n—1but z_5, ¢ A’g/. Similarly,
forl <i < -—-n-—1, A’g/ contains U_izp for 1 < p <-2m+1i)—1 but
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Z_o(m+i) & Ag/. Therefore, [U 'z1] # 0 in H*(Ag/) for0<i<-n-—1.So
v(’)’/ is injective on homology.

e If 7 is even, Ag/ contains all z, for 1 < p <27 + 1. Furthermore, for 1 <i <
—n—1, Ag/ cqntains U_izp for /1 <p<-2(n+i)—1 but z/_z(,,+,~) ¢ Ag/.
Therefore, [U™"z1] # 0 in H«(Afj) for 0 <i <—n—1. So vy is injective on
homology.

Since v+/(T2,2r+1) = 0 is a lower bound on v, (72 27+1), we conclude that

Vn(T2,2041) =0
forallnf—%(f—i—l). a

We have the following result for strongly quasipositive knots (see [4] for background
on strongly quasipositive knots):

Proposition 4.2 If K is strongly quasipositive, then v, (K) = t(K) = g4(K) = g(K)
for all positive n.

Proof Theorem 1.2 of [4] states that K is strongly quasipositive if and only if 7(K) =
g4(K)=g(K). The result immediately follows since 7(K) <v,(K) <vt(K) < g4(K)
for positive n. See also [7, Proposition 3]. a

Example 4.3 Figure 1 (top-left) shows the knot Floer chain complex CFK® of the
(2, 9)—torus knot. The computation of v_5(7>,9) is shown in Figure 1 (top-right and
bottom-left). We have

4 forall n >0,
3 for n=-1,

vn(T2,9) = 1 forn=-2
0

for all n < -—3.

The computation of v, (K) for thin knots shows that the sequence v, can increase by
more than one at a time, in contrast to the local h—invariants defined by Rasmussen,
which jump by at most one [16, Proposition 7.6].

In fact, the gap between v, (K) and v, 41 (K) can be arbitrarily big. For example, a
straightforward (partial) computation of v, (Tp, p+1) using CFK* (7, ,+1) shows that
for p > 3,

v_1(Tp,p+1) —v—2(Tp,p+1) = p.

Algebraic & Geometric Topology, Volume 19 (2019)



1896 Linh Truong

’U_lZl
Z] ed—e I3 Z1 o 4—e 22
Z3 ed—eZ4 e Z3

Z5 e4—e Zg
Z7 04— Z3g
* 9 X ’

] 'U_lzl | 'U_lzl

Z1 ed—e I3 Z1 ed—e )
Z3 ed—e 24 Z3 e
Z5 ed—o Zg Z5 e 4—e Z6
Z7 ed—eZ3

~ ~

Figure 1: Top-left: Generating complex for CFK* of the (2, 9)-torus
knot T g. Top-right: The classes [U~!z1] and [z] = [z3] generate HF*(S?).
Bottom-left: The classes [z;] and [z3] vanish in HF?(S3 ~ K. [2]). Bottom-
right: The classes [z1] = [z3] and [U~'z;] survive in HF?(S3, K, [1]).

Theorem 4.4 Let Tp p+1 denote the (p, p+1)—torus knot for p > 3. Let © =

“(Tp,p+1) = L(p—1)p. Then
T for n >0,

vn(Tppr1) =37—1 for n = —1,
t—1—p forn=-2.

Thus, v—1(Tp,p+1) —v—2(Tp,p+1) = Pp.

Proof In[1], Allen shows that the staircase model chain complex for CFK*°(7T}, ,+1)
takes the form

m, p-12, p=-2, ..., j,p—j, ..., p—1,1],
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where the indices alternate between the widths of the horizontal and vertical steps.
From this staircase description, there exists a (i, j)—filtered basis for CFK*°(T), ,+1)
consisting of generators {bl}lzi%_l) lying in (i, j)-filtrations

bom : (Z k, 5(p—1Dp- Z(p—k)),
k=1 k=1

m—+1 m
bam+1 ( Z k, 5(p—1)p-— Z(P—k)),
k=1 k=1
and differential

dbom =0,  0bam+1 = bam + bam+2.
The same argument for showing that v+(T2,2,+1) = 7(712,2¢+1) in Proposition 4.1

2(p-1)

holds for the knots 7, p+1. Moreover, in the terminology of [5], the basis {b;};

satisfies:
e by is the vertically distinguished element of a vertically simplified basis.
e bg has a unique incoming horizontal arrow (from b1 ) (and no outgoing horizontal

arrows).

We immediately conclude that £(7p, p41) =1 and v_1(Tp p+1) =7 —1.

To show v_»(Tp,p+1) = T — p—1, we observe:
. A;_z =1 contains the generators bg, b1 and by, but b3 ¢ A;E p—1- Therefore,
[bo] # 0O in H*(A;_zp_l). Moreover, [U " 1hg] # 0 in H*(Ar__zp_l). Thus,
vr__zp_1 is injective on homology.

o Ar_f » contains the generators by, by, by and b3, but by ¢ A;E It Therefore,
[bo] =0 in Hi(A72),). |

We show the concordance invariants {v,(K)} contain more concordance information
. 4
than the collection {z, v, v/, v, vT}:

Proposition 4.5 There exist knots K and K’ with equal ©, v, v/, vt and v’
invariants, but v, (K) # v,(K') for some n € 7.

Proof The torus knot 74 5 and the torus knot 77 13 share the following invariants in

common: , ,
VI (Tas) =0=v" (T2,13),

V(Tas) =5=V"(T2,13),
T(Ta5) =v(Ta5) = v (Tu5) =6 =1(T2,13) = v(T2,13) = v (T2,13).
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bo 4 by
b '(—lb3
by ed——ebs
b

Figure 2: Generating complex for CFK* of the left-handed (4, 5)-torus
knot Ty 5. CFK*(Ty ) is generated over F[U, U~!] by the above chain
complex. The arrows, representing terms in the differential, are drawn to
scale, with lengths of arrows ranging between one and three.

However, the invariants v, (74 5) are different from v, (72,13):

6 for n>0,
6 for n>0, 5 ¢ 1
or n =—1,
5 for n=-1,
vu(Ta5) = vn(T2,13) =43 for n=-2,
1 for n=-2, | g 3
or n =—3,
0 for n <-3, 0 f <4
or n <—4,

where v, (T4,5) is computed from the knot Floer chain complex CFK*° (7} 5) as shown
in Figure 2. a

5 Further directions

One question is the effectiveness of v,(K) when compared to other concordance
invariants such as Yk (¢), coming from #—-modified knot Floer homology [10], or V},
coming from surgery formulas of Ozsvath and Szabé [13].

The invariants v, (K) do not define concordance homomorphisms € — Z, where C
is the concordance group of knots. This implies that they do not necessarily vanish
on knots of finite concordance order. The existence of p—torsion, with p # 2, in the
concordance group C is an open question. A related conjecture, based on a question of
Gordon [3], as phrased in [8] is:

Conjecture 5.1 (Gordon) A knot has order two in C if and only if K = —K is
negative amphichiral.

Algebraic & Geometric Topology, Volume 19 (2019)



Truncated Heegaard Floer homology and knot concordance invariants 1899

Recently, Hendricks and Manolescu defined involutive Heegaard Floer concordance
invariants Vo and Vo, which detects the nonsliceness of the figure eight knot. The
nonsliceness of 4; was previously known through classical methods, but this is the
first method of detection coming from the Heegaard Floer package. By additivity of ¢
and the behavior of & under connected sums, t(K) and v(K) vanish for all knots K
of finite concordance order. This leaves open the cases v, (K) for n > 1 and n < —1.
We pose the question:

Question 5.2 Does there exist a knot K of finite concordance order such that v, (K) #
0 for some n?

Another question is how the invariants v, (K) behave under connected sum. It is known
that v¥(K) is subadditive by [2]. That is,

vI(K#L) <vT(K)+vT(L).
Using mirroring relations and subadditivity of v (K) shows that v’ (K) is superad-

ditive:

Lemma 5.3 For any two knots K and L,

v (K#L) = v (K)+ vt (L).

Proof By subadditivity of vt and the mirroring relations,
vI(—K#—-L)<vT(=K)+vT(-L),
—vH(k#L) <= (K)+—vT (L),
v (K#L) > v (K)+ vt (L). O

As pointed out to the author by Jen Hom, it can also be seen by additivity of 7 and
the behavior of ¢ under connected sum that v(K) is subadditive. A similar argument
shows that v/(K) is superadditive. This leads us to ask the following two questions:
Question 5.4 Is v, (K#K') < v,(K) + v,(K’) for all positive integers n € Z 4 ?

Question 5.5 Is v, (K#K') > v, (K) + v, (K’) for all negative integers n € Z_?

The next question was posed by Zhongtao Wu:
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Question 5.6 (Wu) If v,(K) = v,(K’) for all n € Z, then is vV (K # —K') =
vH(—K#K') =07

The condition that vV (K #—K') = vT (=K # K’) = 0 implies that

CFK™®(K #—K') ~ CFK®(U) & 4,

where A is an acyclic complex [6].
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