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Key Points: 

• We present a new quasi-nonstationary joint probability method that estimates tidally 
driven interannual fluctuations in flood hazard  

• This method provides more precise and stable storm tide frequency estimates than 
extreme value distributions fit to measured storm tides  

• In the Gulf of Maine, tides force decadal oscillations in the 1% annual chance storm tide 
at a rate exceeding mean historical sea-level rise   
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Abstract 1 

Astronomical variations in tidal magnitude can strongly modulate the severity of coastal 2 
flooding on daily, monthly, and interannual timescales. Here, we present a new quasi-3 
nonstationary skew surge joint probability method (qn-SSJPM) that estimates interannual 4 
fluctuations in flood hazard caused by the 18.6 and quasi 4.4-year modulations of tides. We 5 
demonstrate that qn-SSJPM-derived storm tide frequency estimates are more precise and stable 6 
compared with the standard practice of fitting an extreme value distribution to measured storm 7 
tides, which is often biased by the largest few events within the observational period. Applying 8 
the qn-SSJPM in the Gulf of Maine, we find significant tidal forcing of winter storm season 9 
flood hazard by the 18.6-year nodal cycle, whereas 4.4-year modulations and a secular trend in 10 
tides are small compared to interannual variation and long-term trends in sea-level. The nodal 11 
cycle forces decadal oscillations in the 1% annual chance storm tide at an average rate of ±13.5 12 
mm/y in Eastport, ME; ±4.0 mm/y in Portland, ME; and ±5.9 mm/y in Boston, MA. Currently 13 
(in 2020), nodal forcing is counteracting the sea-level rise-induced increase in flood hazard; 14 
however, in 2025, the nodal cycle will reach a minimum and then begin to accelerate flood 15 
hazard increase as it moves toward its maximum phase over the subsequent decade. Along the 16 
world’s meso-to-macrotidal coastlines, it is therefore critical to consider both sea-level rise and 17 
tidal non-stationarity in planning for the transition to chronic flooding that will be driven by sea-18 
level rise in many regions over the next century.  19 

Plain Language Summary 20 

Coastal management practices around flood risk often rely on estimates of the percent 21 
chance of a particular flood height occurring within a year. For example, U.S. flood insurance 22 
requires designating areas with a 100-year flood recurrence interval (the “100-year flood zone”). 23 
When storms hit regions with large tides, the height and timing of high tide often determine 24 
flood severity. Thus, the relationship between flood height and annual frequency can be altered 25 
by natural, daily-to-decadal cyclical variation in tide heights. Here, we present a new method for 26 
calculating annually-varying flood height–frequency relationships based on known tidal cycles. 27 
Applying the new method in the Gulf of Maine, we find an 18.6-year-long tidal cycle (the nodal 28 
cycle) has forced decadal variation in the 1% annual chance flood at a faster rate than the 29 
historical average rate of sea-level rise over the past century. Currently, nodal cycle forcing is 30 
counteracting the sea-level rise-induced increase in flood hazard; however, in 2025, the nodal 31 
cycle will reach a minimum in the Gulf and then begin to accelerate flood hazard as it moves 32 
toward its maximum over the subsequent decade. It is therefore critical to consider sea-level rise 33 
and tidal variation in medium-term flood hazard planning.  34 
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Glossary of acronyms 42 

GEV   Generalized Extreme Value distribution 43 
GPD  Generalized Pareto distribution 44 
GPDST  Generalized Pareto distribution fit to measured storm tides  45 
JPM   Joint probability method  46 
MSL  Mean sea level 47 
NOAA  National Oceanic and Atmospheric Administration  48 
qn-SSJPM Quasi-nonstationary joint probability method  49 
RJPM  Revised joint probability method 50 
SLR  Sea-level rise 51 
SSJPM  Skew surge joint probability method 52 
ST0.01  Storm tide at the 0.01 exceedances/year level 53 

1 Introduction 54 

Extreme coastal flooding poses a growing hazard to coastal communities (e.g. Hallegatte 55 
et al., 2013; Neumann et al., 2015). Management practices around flood risk often require 56 
estimates of extreme sea level recurrence intervals; for example, in the United States, federal 57 
flood insurance and building codes depend on estimates of the current 100-year flood zone 58 
(Galloway et al., 2006; Hunter, 2010; Buchanan et al., 2017).  Coastal flood hazard, however, is 59 
not stationary. The relationship between flood height and recurrence interval is approximately 60 
log-linear, so even small interannual variations in storm surge, tides, waves, or mean sea-level 61 
(trends on the order of millimeters per year) can significantly alter extreme sea level frequencies 62 
(e.g. Oppenheimer et al., 2019). Robust statistical methods for considering sea-level non-63 
stationarity (Hunter, 2010; Buchanan et al., 2017; Wahl et al., 2017) have been used to 64 
incorporate uncertain sea-level rise (SLR) projections into global (e.g. Lin et al., 2016; Garner et 65 
al., 2017; Oppenheimer et al., 2019) and local (e.g. NYC, 2013; Douglas et al., 2016; Griggs et 66 
al., 2017) hazard assessments. In this paper, we investigate the impact of quasi-deterministic 67 
variation in astronomical tides on low-frequency, high-impact extreme sea levels. 68 

Tidal magnitude modulates the severity of flooding in meso-to-macrotidal regions, and 69 
interannual variation in tides causing periods of enhanced flood risk is a well-known 70 
phenomenon (e.g. Sobey, 2005; Eliot, 2010; Menéndez & Woodworth, 2010; Ray & Foster, 71 
2016; Talke et al., 2018; Peng et al., 2019; Haigh et al., 2020; Talke & Jay, 2020). In particular, 72 
the 18.6-year lunar nodal cycle and the 8.85-year cycle of lunar perigee influence high water 73 
globally on weekly, monthly, and annual timescales (e.g., Haigh et al., 2011; Peng et al., 2019). 74 
Ray and Foster (2016) showed that the perigean cycle modulates predicted future nuisance tidal 75 
flooding at a quasi 4.4-year period. For extreme flooding, Menéndez and Woodworth (2010) 76 
modeled global nodal and perigean astronomical modulations using a non-stationary location 77 
parameter in extreme sea level probability distributions fit to satellite altimetry records over the 78 
1970–2008 time period. Over a longer, nearly 200-year record from Boston, Massachusetts, 79 
Talke et al. (2018) also showed that the nodal cycle produces 10–20 cm of variation in extreme 80 
sea levels with recurrence intervals between 2 and 100 years.  81 

On decadal to centennial timescales, non-astronomical factors also force local-to-global-82 
scale variations and trends in tides (Schindelegger et al., 2018; Haigh et al., 2020; Talke & Jay, 83 
2020). Changes in water depth, shoreline position, frictional resistance, and river flow have led 84 
to dramatic local-scale tidal amplification and reduction over the past two centuries, particularly 85 
in estuaries and tidal rivers (Winterwerp et al., 2013; Haigh et al., 2020; Talke & Jay, 2020). 86 
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Spatially coherent, regional-scale variation in tides has been driven by changes in ocean depth, 87 
shoreline position, sea ice extent, ocean stratification, non-linear interactions, and radiational 88 
forcing (e.g. Woodworth, 2010; Müller et al., 2011; Müller, 2012; Haigh et al., 2020).  89 

In summary, interannual variations and long-term trends in tides have significant 90 
implications for flood hazard. Astronomical nodal and perigean cycles can significantly increase 91 
flood hazard compared to the long-term average during their positive phases (e.g. Talke et al., 92 
2018), and secular changes in tides driven by non-astronomical factors will either enhance or 93 
counteract the increase in flood hazard driven by SLR (e.g. Haigh et al., 2020). Given that the 94 
expected frequency of flooding changes year-to-year, considering sea-level rise and tidal non-95 
stationarity together is important to both short and long-term municipal planning and emergency 96 
management at the coast. However, as mentioned by Talke et al. (2018), methods for assessing 97 
tidally driven interannual variation in extreme sea-level hazard require further development.  98 

In this paper, we describe a new method for estimating tidally driven non-stationarity in 99 
extreme still water levels measured at tide gauges using an adaptation of the measurement-based 100 
joint probability methods developed by Pugh and Vassie (1978, 1980), Tawn and Vassie (1989), 101 
Tawn (1992), and Batstone et al. (2013). We apply and validate our methodology using century-102 
long tide gauge records from the Gulf of Maine coast in the northwest Atlantic Ocean (Fig. 1), a 103 
region with significant nodal variability and secular trends in tides (Ray, 2006; Ray & Talke, 104 
2019).  Under the assumption of stationary storm characteristics, this new quasi-nonstationary 105 
joint probability method provides separate statistical treatment of tides and surge and accounts 106 
for interannual variation in tides. We use the term “still water level” to convey that the tide 107 
gauge-based analyses presented here do not consider wave impacts. Tide gauges located in 108 
wave-sheltered harbors measure the contributions storm surge, tides, and mean sea level to flood 109 
level (i.e. the still water level) but exclude waves (Melet et al., 2018; Dodet et al., 2019; 110 
Woodworth et al., 2019). Note that in subsequent sections, we use the term “storm tides” for 111 
extreme still water levels referenced to the annual mean sea-level.  112 

2 Background 113 

2.1 Site description 114 

We apply this new quasi-nonstationary joint probability method to estimating extreme 115 
still water level recurrence intervals at the three longest running and most complete National 116 
Oceanic and Atmospheric Administration (NOAA) tide gauge records within the Gulf of Maine 117 
at Boston, Portland, and Eastport (Fig. 1). Table 1 shows their locations, measurement 118 
timespans, and relevant tidal datums. An additional record at St. John, New Brunswick (1893-119 
present) is not included because of significant data gaps and unusual interannual variation in the 120 
amplitude of the M2 tidal constituent after 1980 (Ray & Talke, 2019). In addition to its multiple 121 
century-long tide gauge records, the Gulf of Maine’s large tide range and known local and 122 
regional tidal variation make it an ideal location for applying our statistical method. The region 123 
also hosts major cities and sensitive infrastructure that require careful flood risk assessment; for 124 
example, Hallegate et al. (2013) ranked Boston, Massachusetts within the top twenty cities 125 
globally for modeled flood loss under both present-day and future (2050) scenarios.  126 

The Gulf of Maine coast is vulnerable to flooding from both tropical and extratropical 127 
cyclones, but extratropical cyclones have historically been the dominant flooding mechanism, as 128 
they are more frequent and more likely to intersect with high tide due to their often longer 129 
durations (e.g. Kirshen et al., 2008; Talke et al., 2018). The total still water level (i.e. not 130 
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including waves) recorded during a storm, relative to some vertical datum, is called storm tide 131 
and represents the net impact of meteorological and tidal forcing. Here, we use annual mean sea 132 
level (MSL) as the vertical datum, such that storm tide time series do not include SLR. Storm 133 
surge is the meteorologically forced deviation from the predicted tide, calculated by subtracting 134 
the predicted tide from time series of measured storm tide values. Extreme storm surges reach 135 
~1.3 meters in the Gulf (e.g. Talke et al., 2018), and tides are significantly larger. The great 136 
diurnal tide range increases northward from 3.1 meters in Boston to ~16 meters in the Bay of 137 
Fundy’s northern embayments, making tides a primary control on most of the region’s extreme 138 
coastal flooding events. In Boston, for example, Talke et al. (2018) found that 92 of the top 100 139 
storm events occurring between 1825 and 2018 coincided with a predicted high tide that 140 
exceeded modern mean higher high water. 141 
 Tides in the Gulf of Maine and Bay of Fundy are unusual in several respects. In addition 142 
to the well-known large tidal range, there is a natural resonance frequency in the Gulf near the 143 
frequency of the N2 tide (Garrett, 1972; Godin, 1993). Observed N2 amplitudes are larger than S2 144 
amplitudes, although the opposite is true of the theoretical tidal potential; thus, the classic 145 
fortnightly spring-neap modulation is relatively weak and is smaller than the monthly modulation 146 
induced by M2/N2 beating. The strongest astronomical tides during any month therefore occur 147 
near times of lunar perigee. Similar to many locations, there are additional modulations at 148 
semiannual, 4.4-year, and 18.6-year periods (Haigh et al., 2011; Ray & Merrifield, 2019). The 149 
4.4-year and 18.6-year modulations of the highest predicted tide are moderate at Boston and 150 
Portland (roughly 3–4 cm in amplitude) but get much larger (up to 15 cm in amplitude) inside 151 
the Bay of Fundy (Ray & Merrifield, 2019; see also Ray & Talke, 2019 for 18.6-year 152 
modulations of the M2 constituent in the Gulf of Maine). The 18.6-year modulation is caused by 153 
the lunar nodal cycle, or a precession of the moon’s orbital plane around the ecliptic 360° every 154 
18.6 years. The 4.4-year modulation is caused by perigean spring tides coinciding with the 155 
winter or summer solstice (when the diurnal tidal contribution is largest) twice per 8.85 years 156 
(see Ray & Foster, 2016 for an explanation).     157 
 Perhaps owing to the basin resonance being near N2, Gulf of Maine tides are sensitive to 158 
small changes in basin geometry, depth, and friction. Indeed, they display some of the largest 159 
secular tidal trends observed anywhere in the world for a regional body of water. Since the early-160 
20th century, the amplitude of the M2 tidal constituent has steadily increased at an average rate of 161 
0.25 ± 0.04 mm/y at the Boston tide gauge, 0.59 ± 0.04 mm/y at Portland, and 0.77 ± 0.08 mm/y 162 
at Eastport (Ray & Talke, 2019). In comparison, average rates of SLR measured at these tide 163 
gauges over the same time period (see Tab. 1 for exact date range) are 2.83 ± 0.15 mm/y in 164 
Boston, 1.88 ± 0.14 mm/y in Portland, and 2.14 ± 0.17 mm/y in Eastport. New tide estimates 165 
derived from 19th-century water level measurements show that the M2 trend began sometime in 166 
the late-19th or early-20th century, coincident with the transition to modern rates of SLR (Ray & 167 
Talke, 2019). Numerical models show that SLR has only caused part of the observed increase in 168 
M2 amplitude in the Gulf of Maine (e.g. Müller et al., 2011; Greenberg et al., 2012; Pelling & 169 
Green, 2013; Schindelegger et al., 2018), suggesting that ocean stratification driven by sea-170 
surface temperature warming has also played a role in the increase (Müller, 2012; Ray & Talke, 171 
2019).   172 

2.2 Review of extreme sea level statistical methods 173 

Extreme sea level recurrence intervals can be estimated from data or models. In both 174 
cases, an extreme value probability distribution is fit to a set of measured or simulated extreme 175 
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sea levels assumed to be representative of the possible flood scenarios in a region. 176 
Hydrodynamic simulations have the advantage of explicitly including wave impacts and 177 
providing spatially continuous flood elevations and flow velocities; however, they are 178 
computationally intensive, take time to develop, and as with all models, rely on uncertain 179 
parameterizations, bathymetry, and assumptions (e.g. Vousdoukas et al., 2016; Lin et al., 2010). 180 
At gauged locations with multi-decadal records, estimating storm tide recurrence intervals from 181 
data is a simpler alternative that will be the focus of this paper.  182 
 The two most commonly used extreme value distributions are the Generalized Extreme 183 
Value distribution (GEV) and the Generalized Pareto Distribution (GPD). The GEV is fit to 184 
block maxima data, or the n-largest measurements per some time interval (e.g. the largest event 185 
each year), and the GPD is fit to peaks-over-threshold data, or all measurements over some 186 
threshold value that defines extremes. The GPD approach is more robust because it uses more 187 
available extreme observations (e.g. NERC, 1975; Coles et al., 2001; Tebaldi et al., 2012; 188 
Buchanan et al., 2017). In Boston, for example, only 46 of the top 100 storm tides recorded at the 189 
NOAA gauge occurred in distinct years. A GEV using annual block maxima would therefore 190 
omit more than half of the top-100 events. Compared with the GEV, however, the GPD requires 191 
higher data quality and is more difficult to fit automatically because of its sensitivity to the 192 
choice of threshold (Coles, 2001; Arns et al., 2013). Storm tide statistics published by NOAA, 193 
for example, are derived from GEV fits because choosing a GPD threshold can be subjective, 194 
and NOAA requires a method that can be quickly applied and periodically updated at over 100 195 
gauges (Zervas, 2013). Nonetheless, Talke et al. (2018) found that GEV and GPD fits to Boston 196 
extreme storm tides yielded similar recurrence interval estimates. 197 
 In meso-to-macrotidal regions, where tides are a primary control on flooding, a joint 198 
probability approach that convolves separate tide and surge distributions can capture more 199 
extreme storm surges within a temporally limited tide gauge record (e.g. Pugh & Vassie, 1979, 200 
1980). For example, in 63 of the 100 years in Boston’s record, the largest storm surge of the year 201 
did not coincide with any of the year’s top-3 storm tides; thus, a GPD fit to measured Boston 202 
storm tides would exclude two-thirds of the largest storm surges (assuming a GPD threshold that 203 
was exceeded, on average, three or fewer times per year). The first two published storm tide joint 204 
probability methods were the Joint Probability Method (JPM; Pugh & Vassie, 1978, 1980) and 205 
the Revised Joint Probability Method (RJPM; Tawn & Vassie, 1989; Tawn, 1992). The JPM 206 
separates measured water levels into the predicted tide and a non-tidal residual (measured minus 207 
predicted water level at a given time), fits an empirical probability distribution to each 208 
component, and obtains the joint storm tide distribution by a convolution of the two component 209 
distributions. The RJPM improves upon the JPM by 1) fitting a GEV distribution to extreme 210 
non-tidal residual values in order to model events exceeding the observed maximum, and 2) 211 
applying an extremal index that accounts for dependence of non-tidal residuals occurring close 212 
together in time (the extremal index will be further explained in section 3.2).  213 
 The primary shortcoming of the JPM and RJPM is the assumed independence between 214 
the predicted tide and the non-tidal residual. Storm surge and tides interact; storm surge increases 215 
water depth, and tidal wave speed increases in deeper water (Horsburgh and Wilson, 2007). The 216 
non-tidal residual time series of measured minus predicted water level therefore often includes 217 
an “illusory” surge during storm events, which is an artifact of the difference in the predicted tide 218 
and the phase-shifted tide. Furthermore, the amplitude, timing, and timescale of the surge wave 219 
impacts its frictional interaction with tides (Familkhalili et al., 2020).  220 
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The Skew Surge Joint Probability Method (SSJPM; Batstone et al., 2013) improves upon 221 
the JPM by eliminating the bias introduced by the uncertain timing of the tidal prediction during 222 
storm conditions. Skew surge is defined as the difference between the maximum measured water 223 
level and the predicted high water within each tidal cycle. After accounting for seasonal variation 224 
in tides, Williams et al. (2016) found statistical independence between predicted high water and 225 
skew surge at 77 Atlantic tide gauges in the United States and Europe. They concluded that this 226 
skew surge independence enables a simplified joint probability approach for calculating storm 227 
tide recurrence intervals that does not require the inclusion of an empirical relationship between 228 
tide and the non-tidal residual to account for tide-surge interaction. The argument is primarily 229 
statistical and not dynamical, as the absence of correlation does not indicate the absence of 230 
effect; rather, in observational records, natural variability in storm systems dominates over 231 
tidally driven variation in surge. We address this issue by using primarily coastal (rather than 232 
estuary) locations, such that frictional interaction effects are likely less prominent.  233 
 These joint probability methods have lowered bias in storm tide recurrence interval 234 
estimates (compared to GPD or GEV fits to data) in regions where tides are large relative to 235 
meteorological forcing, particularly for short data series (Dixon & Tawn, 1999; Haigh et al., 236 
2010); however, none has accounted for year-to-year fluctuations or secular trends in tidal 237 
properties. In the following sections, we describe a new, quasi-nonstationary (qn) modification 238 
of the SSJPM called the qn-SSJPM, which calculates a separate set of storm tide recurrence 239 
intervals for winter and summer storm seasons using that season’s known high tides. We fit 240 
separate summer and winter distributions because the region’s large storm events mostly occur in 241 
the winter season (e.g. Talke et al., 2018), while summertime tide levels are larger on average 242 
(Ray & Foster, 2016).  243 

3 Methods 244 

3.1 Tide gauge data processing 245 

At the Eastport, Portland, and Boston NOAA gauges, we use hourly water level data 246 
from NOAA, downloaded from the University of Hawaii Sea Level Center database for pre-2016 247 
data (Caldwell et al., 2010) and from NOAA’s website for post-2016 data 248 
(https://tidesandcurrents.noaa.gov). We remove the annual MSL trend by subtracting a one-year 249 
moving average of all hourly water level measurements (following Arns et al., 2013).  250 
 We fit a six-minute cubic spline function to the hourly data over the entire length of each 251 
tide gauge record (six-minute data are only available from NOAA beginning in 1996) to reduce 252 
the peak truncation caused by using hourly records. For example, hourly-based high waters from 253 
Boston in 2018 were an average of 4.1 cm lower than 6-minute resolution records. The six-254 
minute spline fit reduces this bias to 0.7 cm. Since the precision of individual, pre-digital 255 
measurements varies from 0.015 meters (due to rounding) to 0.05–0.1 meters or more during 256 
periods with timing or gauge problems (e.g. Talke et al., 2018, 2020), this small bias is less than 257 
other sources of error. All subsequent calculations use this MSL-adjusted six-minute spline fit to 258 
the hourly data.  259 
 We estimate the tidal contribution to each water level measurement using the MATLAB-260 
based harmonic analysis program r_t_tide (Pawlowicz et al., 2002; Leffler and Jay, 2009). We 261 
calculate tidal constituents independently for each year from a 369-day analysis that includes 67 262 
constituents. The 369-day analysis enables estimation of the semiannual and annual constituents, 263 
as well as the seasonal sidelines to M2 (often called MA2 and MB2, but mislabeled H1 and H2 in 264 
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r_t_tide). Since we are interested in the effect of the nodal cycle, no nodal corrections were 265 
applied. r_t_tide also applies nodal corrections based on the astronomic potential, rather than the 266 
empirically measured and slightly smaller correction observed in practice in the Gulf of Maine 267 
(e.g. Ku et al., 1985; Ray & Foster 2016; Ray & Talke, 2019).     268 
 We calculate the skew surge parameter by subtracting maximum predicted water level 269 
from maximum observed water level within each semidiurnal tidal cycle. Following Williams et 270 
al. (2016), we test for statistical independence between predicted high water and the top 1% of 271 
skew surge at all sites using the rank-based Kendall’s Tau correlation test (Kendall, 1938), where 272 
the criteria for significant correlation are |tau| > 0.1 and p < 0.05. We do not find significant 273 
correlation between predicted high water and skew surge at any of the three sites (Tab. S1).  274 
 The final inputs into the joint probability analysis are semidiurnal predicted high waters 275 
(relative to annual MSL) and their associated skew surges over the length of each tide gauge 276 
record. Measured high waters are only used to calculate the declustering coefficient (see equation 277 
6 for calculating the extremal index in section 3.2). Prior to the joint probability analysis, we also 278 
divide tides and skew surges into the winter storm season, defined as 31 October to 30 April, and 279 
the more quiescent summer season, defined as 1 May to 30 October (Wahl and Chambers, 2015; 280 
Thompson et al., 2013). Including 31 October in the winter storm season avoids exclusion of a 281 
1991 hybrid storm (Talke et al., 2018). In all subsequent analyses, we only include seasons 282 
where the set of measured water levels is at least 75% complete (Menéndez and Woodworth, 283 
2010; Wahl and Chambers, 2015).  Table 1 lists the winter and summer seasons omitted at each 284 
tide gauge.  285 

3.2 Quasi-nonstationary joint probability analysis (qn-SSJPM) 286 

 We calculate storm tide exceedance curves for each season, where the expected number 287 
of exceedances (i.e. the number of storm tides exceeding a certain level) is equal to the inverse of 288 
recurrence interval. Each winter or summer-season storm tide exceedance curve is calculated by 289 
convolving probability distributions of that season’s predicted high waters and all winter or 290 
summer skew surges recorded over the length of the tide gauge record. We model winter and 291 
summer extreme skew surge probabilities with a GPD following Batstone et al. (2013). For skew 292 
surges x above a threshold µ, the GPD cumulative distribution function  𝐺𝑠𝑠(𝑥) takes the form  293 

𝐺𝑠𝑠(𝑥)  =  1 −  (1 +  𝜉
𝑥 − 𝜇

𝜎
)

−1
𝜉⁄
                                            (1) 294 

with shape parameter 𝜉 ≠ 0 and scale parameter 𝜎 > 0. To account for uncertainty in the skew 295 
surge GPD, we sample 1,000 pairs of 𝜉 and 𝜎 from the covariance matrix of their maximum 296 
likelihood estimates with Latin hypercube sampling (Buchanan et al., 2016, 2017). We choose 297 
the GPD threshold that defines extreme skew surges by minimizing the root mean square error of 298 
GPD exceedances versus empirically-derived storm tide plotting positions (Arns et al., 2013). 299 
We calculate plotting positions using the Weibull formula  300 

𝐹̃𝑠𝑠(𝑥𝑖)  =  
𝑖

𝑛+1
                           (2) 301 

where xi is the ith-largest skews surge, and n is the total number of skew surges. We find that 302 
setting the threshold as the 99.7th percentile of skew surges for both the winter and summer 303 
seasons minimizes error across all sites, and past studies have used a similarly high threshold 304 
(Menéndez and Woodworth, 2010; Arns et al., 2013). This 99.7th percentile threshold samples an 305 
average of 1.1 events per season. Following Batstone et al. (2013), we assume there are 306 
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sufficient observations to use the empirical distribution 𝐹̃𝑠𝑠(𝑥) (i.e. plotting positions; equation 2) 307 
for skew surges below the threshold, such that the cumulative distribution function of all skew 308 
surges 𝐹𝑠𝑠(𝑥) is  309 

𝐹𝑠𝑠(𝑥) = { 
𝐹̃𝑠𝑠(𝑥),                                                  𝑥 <  𝜇
(1 − 0.997)  ∗  𝐺𝑠𝑠(𝑥)  +  0.997, 𝑥 ≥  𝜇

                                               (3)  310 

We then calculate the joint cumulative distribution function of storm tides 𝐹𝑆𝑇(𝑧) for 311 
each season following the SSJPM (Batstone et al., 2013), which assumes that there is an equal 312 
probability of a given skew surge occurring at any high tide in a season: 313 

𝐹𝑆𝑇(𝑧)  =  [∏ 𝐹𝑠𝑠(𝑧 − 𝑃𝑡)
𝑁𝐻𝑊
𝑡=1 ]

1 𝑁𝐻𝑊⁄
               (4) 314 

where z is storm tide, 𝑃𝑡 is the predicted high water in tidal cycle 𝑡, and 𝑁𝐻𝑊 is the total number 315 
of high waters in the season. To account for statistical uncertainty in the skew surge GPD 316 
parameters, tides are convolved with all 1,000 skew surge GPDs (𝐹𝑠𝑠). The 50th quantile of the 317 
resulting 1,000 storm tide distributions (𝐹𝑆𝑇) represents the central estimate, and the 5th and 95th 318 
quantiles provide a 90% uncertainty range. We convert storm tide cumulative probabilities to 319 
expected number of exceedances per season N(z) by 320 

𝑁(𝑧)  =  [𝑁𝐻𝑊  ∗  𝜃(𝑧)]  ∗  [1 −  𝐹𝑆𝑇(𝑧)]                 (5) 321 

where 𝜃(𝑧) is the extremal index, which effectively reduces the number of high waters per 322 
season to the number of independent high waters per season to account for events that span 323 
multiple high tides (Leadbetter, 1983; Tawn, 1992). The extremal index is the inverse of mean 324 
cluster size (the mean number of storm tides exceeding a certain height that are associated with a 325 
single event) and calculated as a function of storm tide, following Ferro and Segers (2003): 326 

1

𝜃(𝑧) 
 =  

2[∑ (𝐼(𝑧)𝑖 − 1)
𝐸(𝑧)−1
𝑖=1 ]

2

(𝐸(𝑧) − 1) ∗ ∑ [(𝐼(𝑧)𝑖 − 1) ∗ (𝐼(𝑧)𝑖 − 2)]
𝐸(𝑧)−1
𝑖

               (6) 327 

where E(z) is the number of measured storm tides exceeding z, and I(z) is interexceedance time. 328 
We find that the extremal index reduces storm tide magnitudes in the 1 to 30-year recurrence 329 
interval range; thus, it is likely that these water levels are sometimes exceeded multiple times 330 
during a single storm event, while the most extreme water levels with recurrence intervals longer 331 
than 30 years are generally independent.    332 
 At each site, the final products of the qn-SSJPM calculations include: 333 

1. A storm tide exceedance curve for each summer and winter season in the NOAA record 334 

2. Full-year (i.e. combined winter and summer) storm tide exceedance curves for each year 335 
in the NOAA record, calculated by adding the expected number of summer and winter 336 
exceedances in a given year for each storm tide height  337 

3. Two time-averaged storm tide exceedance curves (one winter, one summer), calculated 338 
using winter or summer tides over the full length of the NOAA record 339 

4. One full-year, time-averaged storm tide exceedance curve    340 
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4 Results and discussion 341 

4.1 qn-SSJPM results  342 

We focus our discussion on winter storm season results because extreme flooding is 343 
primarily a winter hazard in the Gulf of Maine. A comparison of the time-averaged qn-SSJPM 344 
storm tide exceedance curves for winter, summer, and the full year (Fig. 2a) shows that storm 345 
tides from the full-year curves are, at most, 1.5 cm higher than winter curves at frequencies 346 
below 0.1 expected exceedances/year. Thus, when viewing the full-year curve, it is important to 347 
do so with the caveat that summer floods are only a minor contributor to total flood hazard.   348 

Figure 2b shows the winter-season annual and time-averaged storm tide exceedance 349 
curves for Eastport, Portland, and Boston. The spread among annual curves represents 350 
deterministic tidal variability and is thus greatest in Eastport where tide range and nodal cycle 351 
amplitude are the largest. As an example, the winter storm tide with 0.01 expected 352 
exceedances/year ranges 4.20–4.50 meters in Eastport, 2.56–2.74 meters in Portland, and 2.83–353 
2.99 meters in Boston depending on the tidal properties of the calendar year (note that all storm 354 
tides are relative to annual MSL). The 90% uncertainty region (blue shading in Fig. 2b) 355 
encompasses both deterministic tidal variability and statistical uncertainty in the skew surge 356 
GPD parameters.  357 

We also compare qn-SSJPM storm tide exceedance distributions to a GPD fit to the top 358 
0.3% of storm tides in each record (Fig. 2b). This is a common approach for deriving storm tide 359 
exceedances (see section 2.2), hereafter referred to as GPDST. We fit GPDST following the same 360 
methods described in section 3.2 for fitting the skew surge GPD, using the 99.7th percentile of 361 
measured storm tides as the GPD threshold. Uncertainty ranges are larger for the GPDST 362 
distributions than the qn-SSJPM distributions (gray versus blue shaded regions in Fig. 2b). 363 
Although both incorporate GPD parameter uncertainty, for the qn-SSJPM, the deterministic 364 
predicted high water distribution reduces overall uncertainty. In Boston, the GPDST method 365 
estimates significantly higher winter storm tides at exceedance levels < 0.1 compared to the qn-366 
SSJPM. Given the disagreement, we 1) use Monte Carlo simulations to validate the two 367 
statistical approaches, 2) compare the Boston qn-SSJPM and GPDST exceedance curves to a 368 
GPDST exceedance curve fit to an extended, 200-year long record of Boston storm tides (Talke et 369 
al., 2018), and 3) test for sensitivity to GPD threshold selection for in each method. 370 

4.2 Monte Carlo validation  371 

We compare the validity of the qn-SSJPM and GPDST methods using Monte Carlo 372 
simulations. We create a synthetic 10,000-year time series of winter-season high waters by 373 
splicing together the 1921-2018 Boston winter-season predicted high waters 102 times (102 374 
times the 98-year record ≈ 10,000 years) and combining each predicted high water with a skew 375 
surge randomly sampled from the cumulative distribution function of Boston winter skew surges. 376 
We treat empirical storm tide exceedances calculated from the synthetic 10,000-year record 377 
(equation 2) as the “truth.” We then run 1,000 trials of randomly selecting 100 of the 10,000 378 
years and calculating storm tide exceedance distributions based on those 100 years using both the 379 
qn-SSJPM and GPDST methods. We use the 99.7th percentile storm tide and skew surge as GPD 380 
thresholds, and for the qn-SSJPM calculation, we only generate a single time-averaged storm 381 
tide exceedance distribution for the 100 years (i.e. we do not calculate annual distributions). 382 
These simulations test how reliably the two statistical methods can represent flooding conditions 383 
over 10,000 years based on a limited “observational” period of 100 years. 384 
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In analyzing the results, “estimate” refers to the storm tide-exceedance relationship 385 
calculated from a 100-year subsample using the qn-SSJPM or GPDST methods. “Truth” refers to 386 
the empirical storm tide-exceedance relationship calculated from the synthetic 10,000-year 387 
record. For each of the 1,000 trials, we determine 1) whether or not the truth  falls within the 388 
central 67% ranges of storm tide estimates at the 0.1, 0.01, and 0.002 exceedances/year levels for 389 
the two methods, and 2) the bias of the estimates, calculated as the difference between the truth 390 
and the central (50th quantile) qn-SSJPM and GPDST storm tide estimates at the 0.1, 0.01, and 391 
0.002 exceedances/year levels.  392 

We find that the truth falls within the central 67% range of estimates 55–65% of the time 393 
for the qn-SSJPM and 59–67% of the time for GPDST (Fig. 3a). Both methods’ overlap with the 394 
truth generally increases at lower exceedance levels because uncertainty range also increases 395 
with decreasing expected exceedances. The lower coverage of qn-SSJPM error ranges indicates 396 
that the method’s estimate errors are more overconfident than GPDST estimate errors; however, 397 
both the qn-SSJPM and GPDST have reasonable coverage.   398 

Comparing biases in qn-SSJPM and GPDST estimates of storm tides at the 0.1, 0.01, and 399 
0.002 exceedances/year levels reveals that qn-SSJPM estimates are more precise and stable (i.e. 400 
consistently closer to the truth). Box plots in Figure 3b show each method’s biases for all 1,000 401 
trials. The interquartile ranges increasing (i.e. the boxes getting larger) at lower exceedance 402 
levels reflects the expected trend of increasing instability (i.e. variability) in estimated 403 
exceedances at lower exceedance levels for a given record length (e.g. Haigh et al., 2010). Mean 404 
bias is close to zero for both methods at all three exceedance levels; however, for storm tides at 405 
the 0.01 and 0.002 exceedances/year levels, both the interquartile range and total range in biases 406 
are significantly narrower for qn-SSJPM estimates than for GPDST estimates. This result 407 
indicates that for a 100-year observational record, both methods will, on average, provide 408 
accurate storm tide estimates between the 0.1 and 0.002 exceedances/year levels; however, 409 
GPDST estimates of storm tides with recurrence intervals nearing the record length (e.g. the storm 410 
tide with a 100-year recurrence interval or 0.01 expected exceedances/year for a 100-year-long 411 
record), are more susceptible to being biased by the largest few events within the observational 412 
period. This finding is consistent with past studies that have shown GPD and GEV fits to 413 
observed storm tides (often called “direct methods” of estimation) are more unstable to historical 414 
outlier events than joint probability distributions that incorporate large historical storm surges not 415 
necessarily coinciding with high tides (e.g. Tawn and Vassie, 1989; Tawn, 1992; Haigh et al., 416 
2010).  417 

This instability to historical outliers partially explains the disagreement between the qn-418 
SSJPM and GPDST curves for Boston (Fig. 2b). Boston’s highest three recorded flood events all 419 
occurred in years with unusually large tides (Talke et al., 2018). For example, the Blizzard of 420 
1978 (the storm tide of record), happened to coincide with the year that, on average, had the 421 
largest-magnitude high waters over the past century (represented by the right-most blue curve in 422 
Fig. 2b and highlighted with a red arrow in Fig. 5). Thus, the GPDST method in part 423 
overestimates Boston flood hazard because it does not account the Blizzard of 1978’s 3.05-meter 424 
flood having had a lower probability of occurrence during any of the other 97 winters of record.425 

4.3 Extended Boston record and GPD threshold sensitivity   426 

Comparing the Boston qn-SSJPM and GPDST winter storm tide exceedance curves (Fig. 427 
2b) to exceedance curves fit to the Talke et al. (2018) extended 200-year storm tide record also 428 
highlights the stability of the qn-SSJPM relative to the GPDST method. Gray curves in Figure 4 429 
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show five GPDST fits to the 1921–2018 NOAA record using five different GPD thresholds, 430 
ranging 2.25 to 2.44 meters (the 99.5th to 99.9th percentiles of measured winter storm tides; Tab. 431 
S2). For the 100-year NOAA record, the five exceedance curves begin to diverge below the 0.03 432 
exceedances/year level, demonstrating the sensitivity of the GPDST method to threshold 433 
selection. The red shaded region in Figure 4 shows GPDST curves fit to the extended 1825–2018 434 
Boston record (un-bias corrected Data Set S3 from Talke et al., 2018) using both a 2.40-meter 435 
threshold (the value used by Talke et al., 2018) and a 2.31-meter threshold (the value used in Fig. 436 
2b that provides the best match to empirical exceedances). In contrast to the NOAA-record 437 
curves, the narrowness of the red shaded region indicates that the longer, 200-year dataset makes 438 
the GPDST method stable down through the 0.002 exceedances/year level.  439 

The blue shaded region in Figure 4 shows the qn-SSJPM fit to the NOAA record using 440 
five different thresholds for the GPD fit to skew surges (99.5th through 99.9th percentiles; Tab. 441 
S2). The small variability among the five curves (i.e. the narrowness of the blue shaded region) 442 
shows that with the shorter NOAA record, the qn-SSJPM can achieve the same stability with 443 
respect to GPD threshold selection as the GPDST fit to the 200-year record. Finally, the 444 
agreement at low exceedance levels between the qn-SSJPM and 200-year exceedance curves is 445 
further evidence that the qn-SSJPM provides a more reliable characterization of extreme storm 446 
tide frequencies than the GPDST method based on the 100-year NOAA record.   447 

4.4 Interannual variation in storm tide frequency 448 

Interannual variation in tides forces changes in flood hazard on annual-to-decadal 449 
timescales that should be considered in coastal management practices tied to storm tide 450 
frequency estimates. We quantify the tidal modulation of flood hazard over the past century in 451 
Eastport, Portland, and Boston using the annual time series of winter storm season storm tides at 452 
the 0.01 exceedances/year level (hereafter referred to as ST0.01) taken from the qn-SSJPM curves 453 
(Fig. 5). To represent the three dominant sources of interannual tidal variability in the region (see 454 
Ray & Foster, 2016), we fit a harmonic function to the time series with an 18.6-year period, a 455 
4.4-year period, and a linear trend, where ST0.01 values are relative to annual MSL, so the linear 456 
trend is the increase in tides above SLR. The ranges (twice the amplitudes) of the 18.6 and 4.4-457 
year harmonics represent the magnitudes of the tidal cycles’ forcing of flood hazard.  458 

Table 2 compares 18.6 and 4.4-year modulations of ST0.01 and of the highest predicted 459 
tide (the highest tide in a 6-month interval), which are computed directly from harmonic 460 
constants at the gauges. The 18.6 and 4.4-year cycles’ forcing of ST0.01 is perhaps smaller than 461 
that of the highest predicted tide because ST0.01 is calculated from observations rather than 462 
predictions. Observed water level data include atmospheric effects, which introduce variability 463 
that could interfere with tidal modulations. The exclusion of summer-season tides in the winter 464 
ST0.01 values also likely reduces 4.4-year periodicity in predicted water levels (e.g. Talke et al., 465 
2018). Finally, Peng et al. (2019) showed that the 18.6-year modulation of tides is greater for 466 
more extreme high waters (for example, the modulation of monthly maximum high waters is 467 
greater than that of monthly 99the percentile high waters). Similarly, modulation of ST0.01 468 
potentially reflects less extreme tidal levels than what would be obtained using the 6-month 469 
maximum.  470 

The secular increase in tides observed in the M2 tidal constituent (e.g. Ray & Talke, 471 
2019) has driven roughly a 0.6 mm/y increase in ST0.01 in Eastport and Portland. In Boston, 472 
however, there is a slight negative linear trend in ST0.01 of -0.08 mm/y. Thus, the increase in tides 473 
has had a minimal decadal-timescale impact on ST0.01 compared to other forcings; however, in 474 
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Eastport and Portland, the total secular increase in ST0.01 over the length of the tide gauge record 475 
is comparable to decadal nodal variability. There is likely to be a future increase in high water 476 
levels with SLR (Greenburg et al., 2012; Pelling & Green, 2013; Schindelegger et al., 2018) and 477 
increasing tidal range (Greenberg et al., 2012), but there are no detailed projections for Gulf of 478 
Maine tides that consider additional forcing mechanisms, such as changes in stratification and 479 
flooding (Haigh et al., 2020). 480 

The significance of the 4.4 and 18.6-year tidal modulations of ST0.01 can best be 481 
illustrated by converting the tidal cycle forcing ranges to rates and comparing them to rates of 482 
SLR.  In Eastport, for example, the average range in 18.6-year forcing of ST0.01 is 126 mm (Fig. 483 
5). The 18.6-year forcing can be positive or negative, so over any half nodal period in Eastport, 484 
the average rate of nodal forcing of ST0.01 is ±126 mm per 9.3 years, or ±13.5 mm/year. Applying 485 
the same calculation to Portland and Boston, the average 18.6-year tidal forcing rates are ±4.0 486 
mm/year and ±5.9 mm/year, respectively. 4.4-year tidal forcing rates are a slower ±3.0 mm/year 487 
in Eastport and Boston and ±4.0 mm/year in Portland. In practice, however, interannual variation 488 
in winter MSL (which has historically been on the order of tens of mm) would drown out this 489 
shorter-period 4.4-year tidal modulation.  490 

Figure 6 provides a visualization of the impact of 18.6-year forcing in the context of 491 
SLR. On decadal timescales, the natural variability in ST0.01 (and therefore flood hazard) driven 492 
by the nodal cycle at the three Gulf of Maine sites has historically been larger than non-493 
stationarity driven by the ~100-year average rate of SLR (black triangles versus asterisks in Fig. 494 
6). In the future, even as SLR accelerates to equal or exceed rates of ST0.01 nodal forcing, the 495 
nodal cycle will continue to force significant decadal-scale variability in the rate that flood 496 
hazard will increase. We illustrate this effect through 2100 by adding the ST0.01 nodal forcing 497 
rate to the projected mean rate of SLR over 9.3-year periods when nodal forcing will be trending 498 
positively (i.e. moving from a minimum toward a maximum). Over 9.3-year periods when the 499 
nodal cycle will be trending negatively, we subtract nodal forcing from projected SLR. We use 500 
Kopp et al. (2014) probabilistic local SLR projections, but we modify the ice sheet contributions 501 
by replacing the Church et al. (2013) likely ranges with Oppenheimer et al. (2019) likely ranges.  502 

The nodal cycle is currently in its negative phase in the Gulf, and until it reaches its 503 
minimum in 2025, negative nodal forcing will counteract the SLR-induced increase in flood 504 
hazard. Between 2025 and 2034 (and in all decades when the nodal cycle is moving from a 505 
minimum to a maximum), however, positive nodal forcing will accelerate the flood hazard 506 
increase. Thus, it is critical to consider SLR and nodal cycle forcing together in planning for the 507 
transition to chronic flooding that will be driven by SLR in many coastal regions over the next 508 
century (e.g. Ray & Foster, 2016; Buchanan et al., 2017; Kopp et al., 2017; Talke et al., 2018; 509 
Oppenheimer et al., 2019). 510 

4.5 Limitations 511 

We demonstrate that the qn-SSJPM provides more precise and stable storm tide 512 
exceedance estimates than the commonly used GPD fit to measured storm tides. However, there 513 
are sources of uncertainty in the method, and there are additional forcings of interannual storm 514 
tide variation that we do not account for. The skew surge GPD is a significant source of 515 
uncertainty, as GPD parameters are sensitive to both the choice of threshold (e.g. Coles, 2001; 516 
Arns et al., 2013) and the largest observed skew surge values (e.g. Tawn and Vassie, 1989; 517 
Tawn, 1992; Haigh et al., 2010). We show that the qn-SSJPM is stable against a range of skew 518 
surge GPD thresholds for Boston through the 0.002 exceedances/year level (Fig. 4), and this 519 
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should always be tested. Furthermore, the accuracy of skew surge values depends on the 520 
accuracy of tidal predictions. The r_t_tide software does not include minor constituents (for 521 
example, our Boston r_t_tide predictions use 67 constituents, compared to the 108 used by Ray 522 
and Foster, 2016), and our calculations do not include tide prediction errors. The errors, 523 
however, are small; for example, M2 amplitude errors are on the order of 0.1% (~0.001–0.003 524 
meters).   525 

The qn-SSJPM also does not incorporate climatic variability that may impact storm tide 526 
hazard relative to annual MSL. For example, the North Atlantic Oscillation drives interannual 527 
variation in New England sea levels via northeasterly wind stress anomalies on the upper ocean 528 
(Goddard et al., 2015). In the future, increasing sea surface temperatures and changing 529 
atmospheric circulation patterns may also drive changes in storm intensity and frequency, but 530 
there is low confidence in site-specific projections of future storm behavior (e.g. Knutson et al., 531 
2010; Emanuel et al., 2013), making it difficult to incorporate storm non-stationarity into flood 532 
hazard assessment.  533 

Finally, the qn-SSJPM does not consider the impact of wave processes on flood hazard 534 
and is therefore most suitable for wave-sheltered harbors and embayments. During flood events, 535 
wave set-up elevates the time-averaged water level, and wave run-up periodically further raises 536 
water level (Stockdon et al., 2006; O’Grady et al., 2019). These processes must be included for 537 
hazard analyses to be reliable at wave-exposed coastlines; for example, Lambert et al. (2020) 538 
demonstrate that neglecting waves can lead to overestimating the time it will take for sea-level 539 
rise to double the frequency of a given extreme water level. Furthermore, our analysis does not 540 
explicitly account for water level oscillations just below wind-wave frequencies in the 541 
infragravity spectrum, generally defined between 0.04 and 0.004 Hz (Bertin et al., 2018). 542 
Infragravity waves are not only an important component of wave-induced run-up along open 543 
coasts (Stockdon et al., 2006), but can also contribute to flooding in harbors, particularly when 544 
amplified by resonance (e.g. Rabinovich, 2010; Bertin et al., 2015).  545 

5 Conclusions 546 

We present a new quasi-nonstationary skew surge joint probability method for 547 
calculating storm tide exceedances and apply it along the Gulf of Maine coast, where tides are 548 
large and vary year-to-year. In addition to providing separate statistical treatment of tides and 549 
surge, the qn-SSJPM calculates distinct annual storm tide exceedance curves that account for 550 
interannual variation in tides. Each year’s curve is a convolution of 1) predicted high water 551 
probabilities, which are known based on that year’s tide predictions, and 2) skew surge 552 
probabilities determined from a GPD fit to all skew surges recorded over the length of a tide 553 
gauge record.   554 

We use a Monte Carlo validation and a GPD threshold sensitivity test to compare the qn-555 
SSJPM to the commonly used method of fitting a GPD to times series of measured storm tides. 556 
We find that the qn-SSJPM provides more precise and stable storm tide frequency estimates 557 
because it is less susceptible to being biased by the largest few events within the observational 558 
period, and it is more stable with respect to GPD threshold selection. We also show that in 559 
Boston, qn-SSJPM-derived storm tide frequency estimates based on the 100-year NOAA record 560 
match those based on the extended, 200-year Talke et al. (2018) record.  561 

At all three Gulf of Maine sites, we find that interannual variation in tides significantly 562 
impacts design-relevant flood levels, such as winter storm tides at the 0.01 exceedances/year 563 
level (ST0.01). The 18.6-year nodal cycle forces decadal oscillations in ST0.01 at a rate of 13.5 564 
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mm/year in Eastport, 4.0 mm/year in Portland, and 5.9 mm/year in Boston. In comparison, the 565 
average historical rate of local SLR over the past century has been between 1.89 and 2.86 566 
mm/year at the three sites. Nodal forcing is currently counteracting the SLR-induced increase in 567 
flood hazard; however, in 2025, the nodal cycle will reach a minimum and then begin 568 
accelerating flood hazard increase as it moves toward its maximum phase over the subsequent 569 
decade.  570 

SLR is driving a transition to severe chronic flooding in many coastal regions (e.g. 571 
Oppenheimer et al., 2019). Flooding becomes severe when water elevations cross thresholds 572 
defined by local topography and flood defense structures, and the nodal cycle entering a positive 573 
phase may drive flood heights above these thresholds sooner than SLR would alone. Thus, 574 
considering tidal non-stationarity and SLR together is key to long-term municipal planning and 575 
emergency management along meso-to-macrotidal coastlines. 576 

Acknowledgments and Data 577 

H.E.B. was supported by the National Aeronautics and Space Administration (Award 578 
NNX16AO24H). We thank two anonymous reviewers whose comments improved the 579 
manuscript. Datasets for this research are available in these in-text citation references: Caldwell 580 
et al. (2010), Talke et al. (2018), and https://tidesandcurrents.noaa.gov. All of the code we used 581 
to produce results is available at https://doi.org/10.5281/zenodo.3898657 with a Creative 582 
Commons Attribution 4.0 International license.   583 

https://tidesandcurrents.noaa.gov/
https://doi.org/10.5281/zenodo.3898657


Confidential manuscript submitted to JGR: Oceans 

 

Table 1. Gulf of Maine NOAA tide gauge station info. The two right-most columns show winter 584 
and summer seasons omitted from the qn-SSJPM statistical analysis due to missing more than 585 
25% of water level measurements. Two years are listed for each omitted winter season because 586 
we define the season as 31 October through 30 April of the following year. Note that all records 587 
extend to the present, but we only use data through 2019 in our calculations.  588 

Station;  
NOAA 
station no.  

Approx. 
location 

Mean 
higher high 
water (m)a  

Great 
diurnal 
range 
(m)a  

Timespan 
Omitted winter 
seasons (< 75% 
complete) 

Omitted summer 
seasons (< 75% 
complete) 

Eastport, ME; 
8410140 

44°54.2’N 
66°59.1’W 

2.916 5.874 1929–2019  

1957/1958, 1962/1963, 
1970/1971, 1971/1972, 
1974/1975, 1975/1976, 
1976/1977, 1977/1978, 
1995/1996, 1998/1999 

1929, 1957, 1958, 
1963, 1971, 1974, 
1976, 1978, 1980 

Portland, ME; 
8418150 

43°39.3’N 
70°14.8’W 

1.513 3.019 1910–2019 
1910/1911, 1911/1912, 
1933/1934, 1945/1946, 
1960/1961 

1910, 1911, 1956, 
1961, 1970, 1971, 
1990 

Boston, MA; 
8443970 

42°21.2’N 
71°3.0’W 

1.545 3.131 1921–2019 1944/1945 1921 

a Tidal datums are relative to 1983-2001 mean sea level  589 
 590 

Table 2. Ranges of 18.6 and 4.4-year tidal cycle modulations of the storm tides at the 0.01 591 
exceedances/year level (ST0.01) and the highest predicted tide. 592 

 18.6-year modulation range 
(mm) 

Quasi 4.4-year modulation 
range (mm) 

ST0.01 
Highest 

predicted tide ST0.01 Highest 
predicted tide 

Eastport 126 196 28 78 
Portland 37 66 37 68 
Boston 55 72 28 62 

 593 
 594 

Figure 1. Gulf of Maine site map, including gauge locations mentioned in the text.  595 

 596 

Figure 2. Gulf of Maine storm tide exceedance curves. (a) Seasonality of flood hazard. 597 
Historical time-averaged qn-SSJPM storm tide exceedance curves are compared for the full year 598 
(thick solid line), summer season (dashed line), and winter season (thin solid line). (b) 599 
Comparison of winter-season storm tide exceedance curves for the qn-SSJPM and a GPD fit to 600 
measured storm tides (GPDST). Thin blue curves show qn-SSJPM-derived curves for each winter 601 
storm season in the tide gauge record, and bold blue curves are the time-averaged qn-SSJPM 602 
curves based on the entire tide gauge record. Black curves are a GPDST fit to the top 0.3% of 603 
storm tides in each tide gauge record, and + signs are empirical exceedances (see equation 2). 604 
Lines represent central estimates (50th quantile), and filled regions show the 90% uncertainty 605 
range (5th–95th quantiles) for each method. 606 
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 607 
Figure 3. Validation results. (a) Percent of the 1,000 validation trials that contain the truth 608 
(empirical value) within the central 67% range of storm tide estimates at the 0.1, 0.01, and 0.002 609 
exceedances/year levels for the qn-SSJPM method (blue) and the GPDST method (gray). (b) Box 610 
plot showing the distribution of qn-SSJPM and GPDST biases for the 1,000 validation trials at the 611 
0.1, 0.01, and 0.002 exceedances/year levels. Biases are calculated as the difference between the 612 
truth (based on the empirical distribution calculated from the 10,000-year synthetic record) and 613 
the central qn-SSJPM estimates (blue) or GPDST estimates (gray). Central marker is the median 614 
(with the * symbol showing the mean), and bottom and top box edges are the 25th and 75th 615 
quartiles. Values plotted as outliers (+ markers) fall outside the central 99.3% range. 616 
 617 
Figure 4. Sensitivity of Boston winter storm tide exceedance curves to GPD threshold selection 618 
and comparison to the extended, 200-year Talke et al. (2018) record. The five gray storm tide 619 
exceedance curves are calculated using a GPD fit to measure storm tides in the 100-year NOAA 620 
record (GPDST method) with the threshold set as the 99.5th, 99.6th, 99.7th, 99.8th, and 99.9th 621 
percentile of measured storm tides. The red shaded region shows GPDST exceedance curves fit to 622 
the 200-year Talke et al. (2018) record using a 2.31-meter threshold (same as Fig. 2b) and a 2.4-623 
meter threshold (value used by Talke et al.). The blue shaded region shows five qn-SSJPM 624 
exceedance curves fit to the 100-year NOAA record, with the skew surge GPD threshold set as 625 
the same five percentiles of skew surges (99.5th–99.9th percentiles). 626 
 627 
Figure 5. Interannual variation in the winter storm tides at the 0.01 exceedances/year level 628 
(ST0.01). Time series of qn-SSJPM-derived annual ST0.01 values (black line) with a least squares 629 
best-fit harmonic function that represents the region’s dominant tidal forcings (gray curve), 630 
which includes an 18.6-year period, a 4.4-year period, and a linear trend. Legends show the 631 
ranges (i.e. double the amplitude) of the best-fit sinusoids and the slopes of the linear trends. 632 
Note the gap in the Eastport ST0.01 time series where winter seasons were omitted due to less than 633 
75% data completeness (see Tab. 1). 634 
 635 

Figure 6. Joint impact of tidal forcing and sea-level rise on future flood hazard increase. (Top 636 
panel) 18.6 and 4.4-year components of the best-fit harmonic function to the winter ST0.01 time 637 
series from Fig. 5. (Bottom panel) Gray curves show projected rates of local RCP8.5 SLR 638 
modified from Kopp et al. (2014) (line = 50th quantile of samples, shading = central 90% range). 639 
Over 9.3-year-intervals where the nodal cycle is moving from a minimum to a maximum 640 
(indicated by red shading), the average nodal forcing rate (black triangle on y-axis) is added to 641 
the average projected rate of SLR over the same 9.3 years (red circles, with bars representing 642 
SLR uncertainty). Over intervals when the nodal cycle is trending negatively, nodal forcing is 643 
subtracted from the rate of SLR (blue circles and bars). The historical rate of SLR over the past 644 
century is also shown for reference (black asterisk on the y-axis).   645 
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