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Abstract We investigate bounds in Ramsey’s theorem for relations definable in NIP structures. Applying
model-theoretic methods to finitary combinatorics, we generalize a theorem of Bukh and Matousek
(Duke Mathematical Journal 163(12) (2014), 2243-2270) from the semialgebraic case to arbitrary
polynomially bounded o-minimal expansions of R, and show that it does not hold in Rexp. This
provides a new combinatorial characterization of polynomial boundedness for o-minimal structures. We
also prove an analog for relations definable in P-minimal structures, in particular for the field of the
p-adics. Generalizing Conlon et al. (Transactions of the American Mathematical Society 366(9) (2014),
5043-5065), we show that in distal structures the upper bound for k-ary definable relations is given by
the exponential tower of height k — 1.
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1. Introduction

We recall a fundamental theorem of Ramsey. Let X be a set and let E € X* be a k-ary
relation on X. We say that a sequence (aq; : 1 <i < m) of elements in X with m >k
is E-indiscernible (also called ‘E-homogeneous’ in the literature) if either E holds on
all k-tuples (a;,,...,a;) with 1 <ij <... <ix <m, or E does not hold on any k-tuple
@iy, ...,a;) with 1 <ij <... <ix <m.

Fact 1.1 (Ramsey [41]). For every k,n € N={0, 1, ...} there is some number N € N such
that if X is a set and E C X¥ is a k-ary relation on X, then every sequence of elements
of X of length N contains an E-indiscernible subsequence of length n.

We denote the smallest such N by Ry (n).
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Establishing exact bounds for the asymptotics of Ri(n) is one of the central open
problems in combinatorics, even in the case k = 2. We summarize briefly some of the
known results.

Fact 1.2. (1) /21, 24] 27 < Ra(n) < 22" for alln > 2.

(2) [22, 23] There are positive constants ¢ and ¢’ such that pen? R3(n) < 2%" for all
sufficiently large n.

(3) [14, 26] For each k >3 there are positive constants c, ¢’ such that twry_y(cn?) <
Ry (n) < twrr(c'n) for all sufficiently large n, where the tower function twri(n) is
defined recursively by twri(n) = n and twr;y1(n) = 200

Recently, this question was investigated in the context of semialgebraic relations, where

stronger bounds were obtained. Recall that a set A € RY is semialgebraic if it is given
by a finite Boolean combination of sets of the form {x € R? : f(x) > 0}, where f(x) is a
polynomial in d variables with coefficients in R. We say that a semialgebraic set A has
description complexity at most t if d <t and A can be written as a Boolean combination
of such sets involving at most ¢ different polynomials, each of degree at most ¢.

Definition 1.3. Let E € (RY)* be a k-ary semialgebraic relation on R¢. For n € N, we
let Rg(n) be the smallest natural number N such that if (¢; : 1 <i <m),q; € R, is a
sequence of length m > N, then it contains an E-indiscernible subsequence of length n.

Let R,‘:’t(n) be the maximum of Rg(n), where E varies over all k-ary semialgebraic
relations on R? of description complexity at most .

The case of binary relations (k = 2) is addressed in the following theorem, which shows
that Rg’t(n) can be bounded by a polynomial in n — as opposed to the necessarily
exponential bound in the general case (Fact 1.2(1)). The following is proved in [2,
Theorem 1.2] (it is only stated there for symmetric semialgebraic relations; the result
for arbitrary semialgebraic relations follows easily from the symmetric case using that
the lexicographic ordering on R? is semialgebraic — see the discussion after Definition 6.4).

Fact 1.4 [2, Theorem 1.2]. For any d,t there is some ¢ = c(d, t) such that Rg’t(n) < nf
for all sufficiently large n.

Based on this fact, [13] addresses the case of general k, establishing that RZ’t(n) can be
bounded from above by an exponential tower of height k — 1 (as opposed to k for general
relations; Fact 1.2(3)).

Fact 1.5 [13]. For any k > 2 and d,t > 1 there is some ¢ = c(k,d,t) such that R,f’t(n) <
twrg—1 (n€) for all sufficiently large n.

In addition, matching lower bounds for semialgebraic relations were obtained in [13]
and subsequently refined in [18].

Fact 1.6. (1) [13] For every k >4, there exists d =d(k), t =t(k), ¢ =c' (k) and a
k-ary semialgebraic relation E on R of description complexity <t such that
Rg(n) > twrg_1(c'n) for all sufficiently large n.

(2) [18] In (1), one can take d = k — 3.
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The dependence of the dimension d on the arity k of the relation E in Fact 1.6 is
unavoidable, due to the following theorem of Bukh and Matousek.

Fact 1.7 [6]. For every k € N and every k-ary semialgebraic relation E on R there is some
¢ = c(E) such that Rg(n) <2%" for all sufficiently large n.

That is, if we restrict to arbitrary k-ary semialgebraic relations on R (as opposed to
RY for some d > 1), then Rg(n) is at most double exponential (rather than a tower of
height k — 1 as in Fact 1.5). The constant ¢ given by the proof in [6] actually depends on
the parameters of E (and not just on its description complexity, as in Fact 1.5); however
this dependence can be eliminated (see Theorem 1.12).

In this paper we investigate a generalization from semialgebraic relations to relations
definable in more general first-order structures, and the connection between Ramsey
growth for relations definable in a structure and the model-theoretic tameness conditions
that this structure satisfies.

Definition 1.8. Let M be a first-order structure in a language £ (we denote its underlying
set by M). Let k > 1 be an integer and let ¢(xy,...,xt) be an L(M)-formula (i.e., a
formula with parameters from M) with its free variables partitioned into k groups of
equal size, i.e., |x;|=...=|xx| =d. Then ¢ defines a k-ary relation ¢(M) on M? (a
definable subset of M? in the case k = 1), namely ¢(M) = {(ay, ..., a;) € (M)*: M |=
o(ay,...,ax)}. The case |x;|=1 for all i =1,...,k will be referred to as ‘xp,...,xx
singletons’.

We let R,(n) be the smallest natural number N such that any sequence (a; : 1 <i <
N),a; € M?, of length N contains a ¢(M)-indiscernible subsequence of length n.

Also, given an L-formula ¢(xq,...,x;;z), where |[x;|=...=|xx|=d and z is an
additional tuple of free variables, we let R:’p‘(n) :=max{Ry(x,.x:b)() : b € My (or oo if
the maximum does not exist).

Remark 1.9. By Tarski’s quantifier elimination in the field of reals M = (R, <
,+,%,0,1), given a formula ¢(x;y), all sets of the form @®RX!;b), b e RV are
semialgebraic of description complexity < ¢ for some ¢ depending only on ¢. Conversely,
the family of all semialgebraic subsets of RF¥! of description complexity < 7 is of the form
{e(@RX: b) : b € RPN} for an appropriate choice of ¢(x; y). Hence R,’f’t from Definition 1.3
is given by R;j for an appropriate ¢ in the case of the field of reals.

We will restrict to the case of NIP structures (see §2 for the definition; any structure
which is not NIP codes arbitrary finite graphs in a definable way (see e.g., [11, Remark
4.12]), hence bounds in Fact 1.2 are optimal outside of the NIP context). First we give
a brief overview of the relevant results in the model-theoretic literature indicating the
relevance of NIP and its subclasses for the problem at hand.

The infinitary version of the problem of finding indiscernible subsequences was long
known in model theory, under the name of the ‘existence of indiscernibles’ (starting with
the work of Morley in the stable case, and later work of Shelah and others in general NIP
[31, 44, 46, 48]).
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The question of obtaining explicit bounds for Ry,(n) under some model-theoretic
tameness assumptions on M was first considered, it appears, in [19], where some
quantitive improvements in the stable and NIP cases were obtained. In the case of a
stable formula ¢, a polynomial upper bound was established in [35].

Fact 1.10 [35]. Let ¢(x1, ..., xt; 2) be a formula in a stable structure M (or just assume
that ¢ is a stable formula, relative to an arbitrary partition of its variables). Then there
is some ¢ = c(¢) such that Rj(n) < n® for all sufficiently large n.

See also [10] for a different proof using the ‘non-standard’ method. Fact 1.4 was
generalized to o-minimal structures (with some additional topological assumptions) in
[4], and to symmetric relations in arbitrary distal structures in the following theorem
(see Definition 6.7 for the definition of distality; examples of distal structures include
arbitrary o-minimal structures and P-minimal structures, e.g., the fields Q, for p prime
— see Definition 5.1).

Fact 1.11 ([11, Theorem 3.6] + Remark 6.6). Let M be a reduct of a distal structure.
Then for any formula @(x1, x2; z) with |x1| = |x2| arbitrary and such that the relation
defined by ¢(x1, x2; b) is symmetric for any b € M7, there is some ¢ = c(¢) such that
Ry (n) < n® for all sufficiently large n.

In this paper, we continue investigating the bounds for the functions R,(n) and
R;(n) in various NIP structures. First, we consider an analog of the Bukh—Matousek
theorem (Fact 1.7) in o-minimal structures. Recall that a structure M = (M, <,...) is
o-minimal if every definable subset of M is a finite union of singletons and intervals
(with endpoints in M U {zo0o}). From this assumption one obtains cell decomposition
and other geometric information for definable subsets of M", for all n. The theory of
o-minimal structures is rather well developed and has applications in other branches
of mathematics (we refer to [16] for a detailed treatment of o-minimality, or to [43,
§ 3] and references therein for a quick introduction). Examples of o-minimal structures

include R = (R, +, x), Rexp = (R, +, x, €*), Rap = (R, +, %, f [[O’I]k) for f ranging over

all functions that are real-analytic on some neighborhood of [0, 1]¥, or Ran,exp, the
combination of both these last two examples. An o-minimal structure M is polynomially
bounded if for every definable one-variable function f, there exists N € N such that
| £ (x)| < xN for all sufficiently large positive x. So for example R and Ry, are polynomially
bounded, but Rexp is not. In § 3 we generalize Fact 1.7 to arbitrary polynomially bounded
o-minimal expansions of the field of reals R.

Theorem 1.12. Let M be a polynomially bounded o-minimal expansion of R. Then for
every k € N and every formulq o(x1, ..., Xk z) with xq, ..., xx singletons, there is some
¢ = c(¢) such that R(’;(n) < 2% for all sufficiently large n.

In particular this implies that in the semialgebraic case (Fact 1.7) the constant ¢ only
depends on the description complexity of the relation, and not on the magnitude of the
parameters, which does not seem to have been noticed before. Our argument combines
uniform definability of types over finite sets in NIP structures (see Definition 2.4), basic



Ramsey growth in some NIP structures 5

properties of invariant types and a combinatorial lemma from [6]. On the other hand, in
§4 we show that no analog of Theorem 1.12 can hold in Rexp.

In this paper, ‘log’ always means logarithm with base 2, unless explicitly stated
otherwise.

Theorem 1.13. For every k > 3 there are relations Ex(xy, ..., x) definable in Rexp with
X1, ..., X singletons, constants Cy > 0 and ny € N such that, for each n > ny, there is
a sequence a, in R of length n that does not contain an Ej-indiscernible subsequence of
length greater than Cyloglog...logn, with k — 2 iterations of log.

By a theorem of Miller [37], if an o-minimal expansion of the field of real numbers
is not polynomially bounded, then exponentiation is definable in it (i.e., the graph of
the exponentiation function is a definable relation). Combining this with Theorems 1.12
and 1.13 we obtain a new combinatorial characterization of polynomial boundedness for
o-minimal expansions of R.

Corollary 1.14. Let M be an o-minimal expansion of R. The following are equivalent.

(1) M is polynomially bounded.

(2) For every k € N and every formula ¢(x1, ..., xg; z) with x1, ..., x¢ singletons, there
is some ¢ = c(¢) such that Rj(n) < 22" for all sufficiently large n.

(3) There is some h € N such that, for every k € N and every formula ¢(x1, ..., xk; 2)
with x1, . .., X singletons, there is some ¢ = c(¢) such that R; (n) < twry,(n€) for all
sufficiently large n.

Using the general method of the proof developed in §3, in §5 we apply it to prove
an analog of Fact 1.7 in the fields of the p-adics Q,, for p prime, and many related
structures (see §5 for the definition of P-minimality and related notions).

Theorem 1.15. Let M be a P-minimal expansion of a field with definable Skolem

functions and the value group Z. Then, for every k € N and every formula ¢(x1, ..., xk; 2),
with x1, ..., x; singletons, there is some ¢ = c(p) such that R; (n) <22 for all sufficiently
large n.

This applies to the fields Q, for all primes p, their finite extensions, as well as
expansions by the analytic structure — see § 5 for the details. In fact, there are no known
examples of P-minimal structures with value group Z that do not satisfy Theorem 1.15
(note that the combinatorial conclusion obviously transfers to the reducts).

Problem 1.16. Do Theorems 1.12 and 1.15 hold in polynomially bounded o-minimal
(respectively, P-minimal) theories that do not admit any archimedean models?

In §6 we consider the growth of R;(n) in NIP structures for definable relations of
higher arity. Generalizing Fact 1.5, we show a definable stepping down lemma for NIP
structures which implies the following.
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Theorem 1.17. Let M be an NIP structure, and assume that for all formulas ¢(x1, x2; z)
we have R:;(n) < n€ for some ¢ = c(¢) and all n large enough. Then for all k > 3 and all
o(x1, ..., Xk 2) we have R;j(n) < twrg—1 (n€) for some ¢ = c(¢) and all n large enough.

In Proposition 6.9 we generalize Fact 1.11 from symmetric binary formulas to arbitrary
binary formulas, demonstrating that the assumption of Theorem 1.17 is satisfied in all
reducts of distal structures (and it is satisfied in stable structures by Fact 1.10). We
conjecture that it also holds in arbitrary NIP structures and discuss the connection to
the Erdds—Hajnal conjecture (see e.g., [12]) for graphs definable in NIP structures.

2. Preliminaries on NIP

Vapnik—Chervonenkis dimension, or VC-dimension, is an important notion in
combinatorics and statistical learning theory (see e.g., [36] for an exposition). Let X
be a set, finite or infinite, and let F be a family of subsets of X. Given A C X, we say
that it is shattered by F if for every A’ C A there is some S € F such that ANS = A’.
A family F is a VC-class if there is some n < w such that no subset of X of size n is
shattered by F. In this case the VC-dimension of F, that we will denote by VC(F), is
the smallest integer n such that no subset of X of size n 41 is shattered by F. For a set
BC X, let FNB={ANB: A€ F}andlet nr(n) =max{|FNB|:BCX,|B|=n}.

Fact 2.1 (Sauer—Shelah lemma [42, 45]). If VC(F) < d then for n > d we have wr (n) <
Zigd (7) =0 (”d)'

The important class of NIP theories was introduced by Shelah in his work on the
classification program [44]. It has attracted a lot of attention recently, both from the
point of view of pure model theory and as a result of its applications in algebra and
geometry (see e.g., [1, 50] for an introduction to the area). Examples of NIP structures
are given by arbitrary stable structures, (weakly or quasi) o-minimal structures, the field
of p-adics for every prime p (along with its analytic expansion), as well as algebraically
closed valued fields. As was observed in [33], the original definition of NIP is equivalent
to the following one (see [3] for a more detailed account).

Definition 2.2. Let T be a complete theory and ¢(x, y) a formula in T, where x, y are
tuples of variables, possibly of different length. We say that the formula ¢(x,y) is NIP
if there is a model M of T such that the family of definable sets {@(M, a) : a € M7} is a
VC-class. In this case we define the VC-dimension of ¢(x, y) to be the VC-dimension of
this class. (It is easy to see that by elementarily equivalence the above does not depend
on the model M of T.) A theory T is NIP if all formulas in T are NIP, and a structure
M is NIP if its complete theory Th(M) is NIP. That is, a structure M is NIP if for every
formula ¢(x, y) the family of ¢-definable sets Fy, = {¢(M,a) :a € MW is a VC-class.

By a partitioned set of formulas A(x, y), where x and y are two groups of variables,
we mean a set of formulas all of which are of the form ¢(x, y) € £, i.e., have the
same free variables partitioned into the same two groups. Given a (partitioned) set
of formulas A(x,y) and a set B C MP! we say that w(x) is a A-type over B if
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w(x) C U(p(x’y)eA’beB {o(x, b), —p(x,b)} and there is some N > M and some a € NI
simultaneously satisfying all formulas from 7 (x). By a complete A-type over B we mean
a maximal A-type over B. We will denote by Sa (B) the collection of all complete A-types
over B. If A consists of a single formula ¢(x, y), we simply say ¢-type and write S,(B),
and if A consists of all formulas in the language, then we simply say ‘type’ and write
Sx (B) for the space of complete types over B. In view of the remarks above, the following
is an immediate corollary of the Sauer—Shelah lemma.

Fact 2.3. A structure M is NIP if and only if for any finite set of formulas A(x, y) there
is some d € N such that |Sx(B)| = O(|B|?) for any finite B € MW,

This result can be strengthened. The following definition is from [3, 27].

Definition 2.4. (1) Given a complete ¢(x, y)-type g € S,(B) for a set B C MY an
L(M)-formula dg(y) is said to define ¢q if for all b € B we have

p(x,b) e q <= M =doD).

(2) We say that complete ¢(x, y)-types are uniformly definable over finite sets, with
m parameters, if there is a finite set of L-formulas A = (dg; (y; y1, ..., Yym) : 1 < k),
with |yi| = |y| for all i < k, such that for every finite set B € M"*! and every ¢ €
Sy (B) there are some by, ..., b, € B and some i < k such that de;(y; by, ..., by)
defines g. We call the set A a uniform definition for p-types over finite sets, with
m parameters.

(3) We say that T satisfies the Uniform Definability of Types over Finite Sets, or
UDTEFS, if for some (equivalently, any) M = T, complete ¢-types are uniformly
definable over finite sets for all formulas ¢ € L.

Fact 2.5 [8]. Every NIP theory satisfies UDTFS.

This result can be viewed as a model-theoretic version of the Warmuth conjecture on
the existence of compression schemes for VC-families, which was later established in [39].
Special cases of Fact 2.5 were proved earlier for some subclasses of NIP theories including
stable [44], o-minimal [30], and dp-minimal [27] theories. Note that this implies Fact 2.3
since, under UDTFS, for every finite set of formulas A, every A-type over a finite set
B is determined by fixing a definition for each ¢ € A with parameters from B, of which
there are only polynomially many choices. Explicit bounds on the number of parameters
needed are given in [3] for some cases considered in this article.

Fact 2.6. (1) /3, §6.1] Let M be a (weakly or quasi) o-minimal structure. Then
o(x, y)-types are uniformly definable over finite sets using |x| parameters, for all
formulas ¢ € L. In particular this applies to Presburger arithmetic (Z,+, <).

(2) [3, §7.2] Let M be the field of p-adics. Then ¢(x, y)-types are uniformly definable
over finite sets using 2|x| parameters, for all formulas ¢ € L.

Finally, we recall global invariant types and their products. We will use some standard
model-theoretic notation, e.g., M > M will be a saturated elementary extension, and,



8 A. Chernikov, S. Starchenko and M. E. M. Thomas

given a set A C M, dcl(A) will denote the model-theoretic algebraic closure of A, A will
be called small if its cardinality is smaller than the saturation of M, etc. Given a tuple
of variables x, we call complete types in Sy(M) global, and we say that a global type
p(x) is M-invariant if it is Aut(M/M)-invariant (meaning that, for every automorphism
o of M fixing M pointwise, for every L(M)-formula ¢(x, a), we have ¢(x,a) € p <
p(x,0(a)) € p).

Definition 2.7. Given a set of formulas A, d € N, a set of parameters A C M and
an arbitrary linear order I, we say that a sequence (a; :i € I) of tuples from M¢
is A-indiscernible over A if it is E-indiscernible for every relation E of the form
@(x1, ..., X, b) with @(x1,...,x.52) € A, |xi| =d for all 1 <i <n and b e Al

If A consists of all formulas, we simply say that the sequence is indiscernible over A,
and if A =0, we say that the sequence is A-indiscernible.

Fact 2.8 (See e.g., [29, §2] or [50]). Let p be a global M-invariant type. Let the sequence
(ci :i € N) in M be such that ¢; = plyme., (such a sequence is called a Morley sequence
in p over M). Then the sequence (c; :i € N) is indiscernible over M and tp((c; 1 i €
N)/M) does not depend on the choice of (c;). Call this type p |y, and let p™ |y :=
tp(cr, ..y cn/M).

3. Bukh—Matousek theorem in polynomially bounded o-minimal expansions
of R

First we prove a general lemma about NIP structures, which is a finitary version of
Shelah’s ‘shrinking of indiscernibles’ [47].

Lemma 3.1. Let M be an NIP structure, and let ¢(x1, ..., xn;y) be a formula with |x;| =
... = |x,| =d. Then there are some k,l € N and a finite set of formulas A in the variables
X1y ..., X1 with |x;| =d such that for any finite A-indiscernible sequence (a;)i<y in M4
and any b € MY there are 0 = jo < j1 < ... < jiw = N — 1 with k' < k such that for every
s €{0,..., k' — 1} the sequence (a; : js <i < jsa1) 48 ¢(x1, ..., Xn, b)-indiscernible.

In particular, for any N large enough and any b € MP!, any finite A-indiscernible
sequence of elements in M? of length N contains a @(x1,..., X, b)-indiscernible
subsequence of length at least w

Proof. To simplify the notation we assume d = 1.

By UDTFS (Fact 2.5) applied to the formula ¢°P(y;xi,...,x,) := @x1,...,X:; ¥),
there is a finite set of formulas A(xy, ..., x,; X1, ..., Xpn) With |X;| = n such that, for any
finite set A € M and b € M, the ¢°P-type of b over A" is definable by an instance of some
Y € A with parameters from A". That is, there are some ¢y, ..., ¢, € A", such that, for
all ar,...,a, € A, we have = ¢(ay, ..., ay; b) if and only if =Y (ay,...,an;C1,...,Cm)-

Writing each n-tuple x;,i = 1, ..., m, as n single variables in every ¢ € A, we can view
A as a finite set of formulas in the variables xi, ..., x;, where [ = n + mn.



Ramsey growth in some NIP structures 9

Let (a;)i<y be a finite A-indiscernible sequence, b € MP!, and A ={a;: i < N}.
We choose ¥ € A and c¢y41,...c; € A such that for all c¢f,...c, € A we have
M Ep(cr, ..., cp; b) if and only if M =¥ (ct, ..., Cn, Catls---»Cl)-

We choose 0=jo<ji<...<jgw=N-—1 with ¥ <(—n)+2=mn+2 so that
{aj:5=0,... kY={ci:i=n+1,...,1}U{ag, an—1}.

Since (a;); <N is Y-indiscernible, it follows that for any 0 < i; < ... < i, < N the truth

value of ¥ (a;,...,a;Cht1,...,c1), and so of ¢(a;,,...,a;,;b), is determined by the
quantifier-free order type of (i1,...,i,) over {j;:s =0,...k’}). The conclusion of the
lemma follows taking k := mn + 2. O

From now on we work in a polynomially bounded o-minimal expansion R = (R, <, ...)
of the field of real numbers. Let T = Th(R) and let M > R be a big saturated model.
As T has Skolem functions (see e.g., [16]), it follows that for all M <M and a € M",
the set
M{a) ={f(a) : f(x) is an M-definable function}

is an elementary substructure of M.

Let p(x) € S;(M) be the global type of ‘400’ i.e., p is the unique complete global type
such that p - x > m for every m € M (uniqueness is by o-minimality). It is invariant over
@ (as the set of formulas {m < x : m € M} is clearly Aut(M/@)-invariant).

The following fact is obvious.

Fact 3.2. For every M < M, an element o € M realizes p(x)|m if and only if o« > m for
everym € M.

Since polynomial boundedness is preserved under elementarily equivalence (see [38,
Theorems A and B]) we have the following fact.

Fact 3.3. If M <M and @ = p|y, then the set {&" : n € N} is cofinal in M{a), i.e., for
every m € M{a) there is some n € N such that m < o".

Lemma 3.4. Let M <M and «y, ...,a, € M. Then (ay, ...a,) realizes [5(”)|M if and only
ifay > m for allm e M and o4 >(xf forallkeNandi=1,...,n—1.

Proof. Let My =M, and fori =1,...n—11let M; = M;_{«a;).

Obviously for any A C M an element o € M realizes p|4 if and only if it realizes plqci(a)-
Thus (a1, ... a,) realizes p™ |y if and only if o4 realizes plm; fori =0,...,n—1, and
the lemma follows from Facts 3.2 and 3.3. O

In view of the above lemma, we define ‘finitary’ approximations to a realization of
5 ()

PR

Definition 3.5 [6, Definition 2.1]. Let & > 2 be a real number. A sequence d = (ay, ..., a,)
in R is called h-growing if ay > h and a;4+; > af’ fori=1,...n—1.

Notice that any subsequence of an h-growing sequence is h-growing as well.
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Lemma 3.6. For any finite set of formulas A(xy, ..., x;) with parameters from R there
is some h € R such that any h-growing sequence (a; :i = 1,..., N) of elements in R is
A-indiscernible.

Proof. Consider the (partial) type

21—1
X(x1,...,x0)=3x1>nA /\(xi+1 >x,-"):neN}.
i=1

By Fact 2.8, for any N € N, if (ay,...,an) E ﬁ(N)|M, then the sequence (ay, ..., an)
is indiscernible. Together with Lemma 3.4 this implies that
Txr, o) EY e x) < Y, X))
forany 1 <ij <ip <...<i; <2l and ¥ € A. By compactness, this holds with X' replaced
by some finite subset Eo. But then, if ay, ..., ay is an h-growing sequence and & is larger
than the largest n appearing in Xy, then every increasing 2/-tuple from ay, ..., ay satisfies
2, hence ay, ...,ayn is A(xq, ..., x;)-indiscernible. O

Combining Lemma 3.6 with Lemma 3.1 we can allow additional parameters in A.

Corollary 3.7. For any finite set of formulas A(xy,...,x;;y) with parameters from R
there is some h € R and m € N such that, for any h-growing sequence of elements
a=(a:i=1,...,N) in R with N large enough and for any b € RP!, a contains a
A(xy, ..., x7; b)-indiscernible subsequence of length %

Proof. For every ¢(xi,...,x;;y) € A, let k, € N and the finite set of formulas A, be
as given by Lemma 3.1 for ¢, and let A’ = UWGA A, and k = max{k, : ¢ € A}. Now
by Lemma 3.6 there is some /& such that every h-growing sequence d = (ay, ..., ay) of
elements from R is A’-indiscernible. By Lemma 3.1, for any b € R! we can find an interval
[i% i1 in [1, N] of length at least W such that the sequence (q; : i°<i< il) is
A(xy, ..., x;; ¢)-indiscernible. We can take m = 2k|A|. O]

Finally, the following combinatorial lemma is from [6] (namely, Proposition 2.4
combined with Definition 2.3 there).

Fact 3.?. For every n and h > hgy, where hg is a certain absolute constant, there exists
N <2"" such that for any sequence @ of length N there is an h-growing sequence b of
length n and A, B € R such that one of the following sequences is a subsequence of a.

(1) A+Bb,~,i:1,...,n,

2 i=1,...,n.
@ Aty .
(3)A+Bb,, —n,..., L
(4) A+—,l_n , 1.

bi
(Note: the order in (3) and (4) is reversed.)

We are ready to prove the main result of the section, generalizing [6, Proposition 1.6].
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Theorem 3.9. Let R be a polynomially bounded o-minimal expansion of the real field.
Then for any formula ¢(x1,...,x,; z) with parameters from R, with all x; singletons,
there is a constant C = C(¢) such that

Ry(m) <22,
for all sufficiently large n.

Proof. Let A(xy, ..., x,; y1, ¥2, 2) consist of the formulas
PrxX1, e X V1 Y2, 2) = @1+ y2X1, - Y1 Y2Xe 2),
2 »
€02(x1,--.,xr;y1,y2,2)=90<y1+—,---,y1+—;z>,
X1 Xy
©3(X1s -y X5 V1L Y2, 2) = @1+ Y2Xp, o, Y1 Y2X15 2),

P4(X1, . Xr Y1, V2, 2) =<p<y1+2,---,y1+2;z),
Xr X1

and let & and m be as given by Corollary 3.7 for A. Now assume that a is an arbitrary
sequence of singletons of length N = oh" (which is bounded by 22" for an appropriate
constant C depending just on m, k), and let d € Rl be an arbitrary tuple of elements.

By Fact 3.8, there is some h-growing sequence b= (bi : 1 <i <mn)andsome A, BeR
such that one of the corresponding sequences given by (1)—(4) in Fact 3.8 is a subsequence
of a. By Corollary 3.7, b contains a A(x1,...,Xxr; A, B, d)-indiscernible subsequence
of length n. But by the choice of A, the corresponding subsequence of a must be
o(x1, ..., xr; d)-indiscernible. O

4. Counterexample in Ry,

4.1. Preliminaries

We work in the structure M := Rexp in the language £ := (<, +, x, 0, 1, exp(x)), i.e, the
expansion of the field of reals with the exponential function. It is well known to be
o-minimal [51].

Instead of tower notations we use iterated log and exp. By induction on n we define
functions e, (x) and I,,(x) as

eo(x) = x, enp1(x) = 295 and lo(x) = x, Lyt (x) = log(l, (x)),

where by log we always mean log,. Obviously /,(x) is defined for large enough x and it
is the compositional inverse of e, (x).
Our goal is to prove the following theorem.

Theorem 4.1. For every k > 3 there is a relation Ex(xy,...xx) definable in Rexp, with
X1, ..., xk all singletons, and cp > 0 such that Rg,(n) > ex—2(ckn) for all sufficiently
large n.

The proof of the above theorem closely follows [13, proof of Theorem 1.2] (see also [18,
Theorem 1.3]). In general, the so-called stepping-up lemma of Erdés and Hajnal [14, 26|
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gives a lower bound for (k+ 1)-ary relations which is exponentially larger than the one
for k-ary relations. In [13] it is demonstrated that the stepping-up lemma can be carried
out ‘semialgebraically’ (the k-ary semialgebraic relations that they construct live on R?,
and d grows with k, see Fact 1.6). We show that in the structure Rexp the stepping-up
approach can be implemented definably without increasing the dimension (i.e., our k-ary
relations all live on R). But first we discuss some preliminaries.

4.2. Robustness
We will use the notion of robustness from [18] (that was originally called ‘depth’ in [13]).

Definition 4.2. Let ¢(xq, ..., x;) be an L-formula and let @ = (ay, ..., a,) be a sequence
of real numbers. We say that ¢ is robust on a if there is ¢ > 0 such that, for all 1 <i; <

- < ix < n and all real numbers af, ..., a; with |ai; —a;| <egforeach j=1,...,k, we
have

Eelay, ... ap) < @i, ..., ap).

4.3. logr-transformations

Definition 4.3. Let ¢(xy,...,x;) be an L-formula. Let T > 0 be a real number. For a
formula ¥ (y1, ..., ys) we say that ¢ is a logy-transformation of ¢ if it is obtained from
¢ by replacing every free variable x; in ¢ by an expression of the form logy (u; — v;) with
ui, vi € {y1, ..., ysh

Definition 4.4. We say that an L-formula ¢(xq, ..., x,) is an rd-formula if it depends only
on the ratios of differences of its variables, i.e., it is equivalent to a formula of the form
" (xh ~Xi N T >

Xp1 — Xq Xps = Xqs

for some ¥ (y1,...,ys) € L, where iy, j;, pr,qr € {1,...,r} forall 1 =1,...,s (and there
are no other free variables in ).

Claim 4.5. Let T > 0. A logp-transformation of an rd-formula ¢(xy, ..., x,), is also an
rd-formula, and it is also a log,-transformation of ¢.

Proof. In a logp-transformation of ¢ an expression of the form ;;:i;

is replaced by an
expression of the form

logr (u; —v;) —logy(uj —v;)

logy (up —vp) —logr(ug —vg) '

which is equivalent to

logy 4=t

T uj=v;
Up—Up
g —vq

logr
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Since the ratio of two logarithms does not depend on the base, it is also equivalent to

log =2

uj—vj

log 2=t
Ug—Yq

Thus, a logp-transformation of an rd-formula ¢ is again an rd-formula that is also a
log,-transformation of ¢. O

4.4. Proof of Theorem 4.1

For a formula ¢(xq, ..., x;) € £ with |x;| = --- = |x;| = d and an integer n we will denote
by R(j (n) the smallest integer N such that any increasing sequence a; < --- < ay contains
a @-indiscernible subsequence of length n.

Obviously for any formula ¢(xq, ..., xx) with |x;| = 1 we have R;,r(n) < Ry(n).

Thus Theorem 4.1 follows from the following refined version.

Theorem 4.6. For every k > 3 there are an rd-formula Ex(xy,...xx) € L with xy, ..., xx
all singletons and a constant Cy > 1 such that, for all real 0 < ¢ < 1 and for all large
enough n € N, there is an increasing sequence of natural numbers a” of length at least
er—>(cn) such that Ey is robust on a", and a” does not contain an Ey-indiscernible
subsequence of length Cyn.

Proof of Theorem 4.6 = Theorem 4.1. Fix 0 <c < 1 and set ¢y = Cik, for each k > 3,
where Cy is the constant given by 4.6. We then have, for the rd-formula Ey(xy, ... xx) given
to us by 4.6 and for all large enough 7, an increasing sequence of natural numbers a” of
length at least ex_»(cxn) such that a" does not contain an E-indiscernible subsequence of
length n. Thus R(j (n) = ex_2(ckn), and hence Ry(n) > ex_2(ckn) by the preceding remark.

O

Remark 4.7. To prove Theorem 4.6 it is enough to construct formulas Ei(xy, ..., xx)
whose truth values are well defined only on increasing sequences of real numbers r; <
-++ < rg. (The formula log(x; — x1) > log(x3z — x7) is an example of a formula that we will
use often.)

We proceed by induction on k.

4.5. The base case k =3
For the following claim see [13, §3.1].

Claim 4.8. Let E3(xj, x2, x3) be the formula x; +x3 —2x2 > 0. Then for any n > 1 the
sequence 1,2, 3, ...,2" does not contain an E3-indiscernible subsequence of length n + 2.

It is not hard to see that E3 is equivalent to an rd-formula. Indeed we can rewrite Ej3
as x3 — X3 = X — x|, which on increasing sequences is equivalent to % > 1.
We also need E3 to be robust on a”. It is not hard to see that E3 is not robust on

the sequence 1,2,...,2", since 1+3—2-2 =0 and the truth of E3 can change even if
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we perturb the first 3 elements of the sequence by arbitrarily small positive amounts.
It is however also easy to see that E3 is robust on any sequence that does not contain
any terms a < b < ¢ with a4+c¢—2b =0, i.e., it is robust on any sequence that does
not contain a non-trivial 3-term arithmetic progression. To get such a sequence we use
Behrend’s Theorem (see [5]).

Theorem 4.9 (Behrend’s Theorem). There is a constant D > 0 such that for all natural

m
numbers m there exists a set X C{1,...,m} with |X| > W not containing any
2 ogm

non-trivial 3-term arithmetic progressions.

For any 0 < ¢ < 1 and for all n large enough, 2"~Pv102" 5 2¢n Therefore, for all large
enough n, the sequence 1,2, ...,2" contains a subsequence of length 2 that does not
contain a non-trivial 3-term arithmetic progression.

This finishes the case k =3, and we can take C3:=2" for any n >0 (as then
Czn > n+2 for all large enough n).

4.6. Inductive step

Assume we have an rd-formula Ej(xj,...,x;) as in Theorem 4.6. To complete the
inductive step it is enough to construct an rd-formula Ejy1(xq, ..., xg+1) satisfying the
following for any N € N:

Let a be an increasing sequence of natural numbers of length N such that Ej is robust
on a, and a does not contain an Ej-indiscernible subsequence of length n. Then there is
an increasing sequence of natural numbers b of length 2V such that Ex,; is robust on b
and b does not contain an E1-indiscernible subsequence of length 2n 4+ k — 4.

(We are then done taking Cy := 2K=3+1 for all k > 3, where n > 0 was fixed in the base
case.)

Let a = (ay, ...,an) be an increasing sequence of natural numbers such that Ej is
robust on a, and d does not contain an Ej-indiscernible sequence of length n.

Let T be a very large integer, specified later (in terms of @).

Consider the set

N

Br = {ZM‘“: Bief0.1}.
i=1

Since T is large enough, any b € By can be written uniquely as b = ZlN: 1 b()TY with

b(i) € {0, 1}. Obviously Br has size 2V and we construct the sequence br by taking the
increasing enumeration of Br.

For b, ¢ € Br with b # ¢, let A(b, c) := max{i: b(i) # c(i)}. It is easy to see that, when
T is large enough, for b, ¢ € By with b # c and i := A(b, c) we have b < ¢ & b(i) < c(i).
It follows then that

b<c<deBr = Ab,c)# A, d). (4.1)

Finally for b # ¢ € Br let (b, ¢) := aaw,¢)-
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We will now construct the step-up relation E kT (x1, ..., X%41) (not definable in Reyxp) on
increasing (k + 1)-tuples of elements of Br (we do not care how it is defined on the other
elements).

Let by < by < ... < bg41 be elements of By and for i =1,...,k let § := 8(bi+1, b;).
Notice that §; is an element of a.
We define E,I (b1, ..., bg+1) to be true if and only if

Er(51,...,8;r) and 8 <& < ... <6,

or
Er(6r,...,81) and 81 > 6 > ... > &,
or
81 < & and 8y > 83.

Claim 4.10. The sequence by does not contain an E ,I -indiscernible subsequence of length
2n+k—4.

Proof. We repeat the Erdés-Hajnal argument (see [13, Lemma 3.1]).
Assume, toward getting a contradiction, that ET contains an EkT -indiscernible
subsequence ¢; < ¢z < -+ < Coptk—a. Let 8; = 6(Cit1,Ci)-
Assume first that there exists j such that §’;, 3;.“, e S}Jr

Then by (4.1) this sequence must be strictly monotone. From the definition of E,j it
follows then that the sequence 8}, 8//.+1, e 8}+n_1 is Ex-indiscernible — a contradiction.
Thus neither of the sequences 8/, ...,8, or 8,_,,.

them contains either a local maximum, i.e., 8}71 < 8} )

,—1 1s a monotone sequence.

e 8§n72 is monotone. Hence each of

;'+1’ or a local minimum, i.e.,

8;_1 > 8;. < 8} 41 Since between two local minima there is a local maximum and vice

versa, the sequence 8/, ..., 8& ._p contains both a local maximum and a local minimum.

But then, by the definition of E;, the sequence cl <€) < - - < Cuak—4 cannot be
, DY ko q +

E ,I -indiscernible. A contradiction. O

4.6.1. Definability. Now, as in [13], for b > ¢ we define
87(b, ¢) = logy (b —c).

It is not hard to see that for any fixed ¢ > 0, if T' is large enough, then for all b > ¢ € Br
we have [§(b, ¢) —logy (b —c¢)| < e.

Since Ej is robust on d, choosing a very large integer T and considering the relation
E,IT(xl, ..., X;+1) obtained from E,j by replacing 8; by 87 (b;11, b;) for all i, we obtain
that for by, ..., bxr1 € By with by < ... < b1 we have E] (b1, ..., byy1) if and only if
E ,j T(bl, ..., brs1). Hence l;T does not contain an E ,I T_indiscernible subsequence of length
2n+k—4.

Notice that E,IT is definable in Rexp and for by < by <... < bry we have that
E} (b, ..., bry1) holds if and only if
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Ex(S7 (b2, b1), ..., 87 (brs1, br)) and ASZ! Sp(biy1, bi) < Sr(biya, bis1)

or
Ex 7 (big1, br), - .. 87 (b2, b1)) and ASZ! Sp(biy1, bi) > S (biya, bis1)
or
81 (b, by) < 87(b3, b) and 81 (b3, b2) > 87 (ba, b3).

Claim 4.11. E,I Tis equivalent to an rd-formula and does not depend on T'.

Proof. By definition, E]I T is a Boolean combination of log-transformations of E; and
formulas of the form logy(y —x) > logy (1 — v).

By Claim 4.5, a logp-transformation of an rd-formula is an rd-formula that does not
depend on T, and so we only need to check that logy(y —x) > logy (¢ — v) is equivalent
to an rd-formula that does not depend on 7. Indeed, logy(y —x) —logy(u —v) > 0 is

equivalent to 2= > 1, which is an rd-formula. O

Using Claim 4.11, we define Ex1| to be E,IZ. We can write a more explicit definition of
Exy1. It is the disjunction of three formulas ¢ V ¢ Vv @3, where

k—1
. Xitl —
@1 is Ek<10g(x2—X1),-..,log(XkH—Xk)) /\( = e ]<1),
i+

iz Xi+2 —
k—1
. Xi+1 —
] Ek<1og(xk+1 —Xk), ..., log(xo —xl)) A ( > 1),
iz Xi+2 — Xi+1
and
. X2 — X1 X3 —X2
@3 is <1lA > 1
X3 — X2 X4 — X3

It remains to show that for large enough 7T the relation Ejx4; is robust on BT.

4.6.2. Robustness. It is not hard to see that since Ej; is robust on a and
logy is continuous, both Ei(logy(x2 —x1),...,logr(xk+1 —xk)) and Ex(logy (xk41 —
Xk), ..., logy(x2 — x1)) are robust on l;T, and we only need to check that all of the formulas
Xit1 —Xi < Xj42 —Xj+1 and Xj 41 — Xj > X;j42 — Xj4+] are robust on I;T, ie,forb<c<din
Bt we do not have ¢ —b = d — c. It is easy to check that there are no such b, c,d in Br.

5. Bukh—Matousek in expansions of the p-adics

In this section we give an analog of Theorem 3.9 for relations definable in the fields of
the p-adic numbers @, for p prime and many of their expansions. We begin by recalling
the relevant definitions and facts.

Let £, be the Macintyre language for the p-adics [34], i.e., £, consists of

(a) the language of rings: (0, 1, 4+, —, -, ~1);

(b) a unary predicate V;

(¢) a unary predicate P, for each n € N;
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with the usual interpretations in Q,: V(Q,) =Z, and P,(Q,) ={x € Q,: Iyx = y"}.
We will denote by T, the complete theory Th(Q,). Given a € Q,, we will write v(a) to
denote the p-adic valuation of a; note that the relation v(x) < v(y) is definable in £,.

By a result of Macintyre (see [34]), the theory T}, eliminates quantifiers in the language
Lp. Similarly to the o-minimal case, there is a notion of minimality for expansions of
p-valued fields. Recall that a p-valued field K is a valued field of characteristic 0 with
the residue field of characteristic p, and such that O/pO has finite dimension as a vector
space over IF,, where O is the valuation ring of K.

Definition 5.1. [28] Let KC be a p-valued field, viewed as a structure in the language £,.
An expansion M of K in a language £ 2 L, is P-minimal if, in every model of Th(M),
every definable subset in one variable is quantifier-free definable just using the language
Lp.

Example 5.2. Important examples of P-minimal structures are given by:

(1) for each prime p, the field Q, (by Macintyre’s theorem);
(2) any finite extension of Q, [40];

(3) given a finite extension of Q,, the expansion obtained by adding a new function
symbol for every restricted analytic function [17].

Fact 5.3 [28]. Every P-minimal field K is p-adically closed, i.e., it is henselian and its
value group is elementarily equivalent to Z as an ordered group.

In particular, if the value group is Z, then K is a finite extension of Q,, hence the
residue field is finite.

In this section we will prove the following.

Theorem 5.4. Let M be a P-minimal expansion of a field, and assume that M has
definable Skolem functions and the value group of M (i.e., the value group of the
underlying p-adically closed field) is Z. Then for any formula ¢(x1, ..., x,;2) € LIM),
with all x; singletons, there is a constant C = C(¢) such that

Ri(n) <22
for all sufficiently large n € N.

It is well known that all of the structures in Example 5.2 satisfy the assumptions of
the theorem.

Given a P-minimal expansion of a field M, we will write I" o4 to denote its value group.
It is well known that "z is interpretable in M.

Definition 5.5 [32, Definition 4.4]. A P-minimal structure M is uniformly polynomially
bounded if, for all definable sets X, W and every definable family of functions f : X x W —
M, there is some n € N and a definable function a : W — I"p¢ such that for each w € W
we have v(fy (x)) > nv(x) for all x € X with v(x) < a(w).
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The next fact is immediate from [15, Lemma 4.3] (as their ‘Extreme Value Property’
holds in every P-minimal expansion of a field elementarily equivalent to one with the
value group Z; see the discussion in [15, p. 123]) and compactness.

Fact 5.6. Let M be a P-minimal expansion of a field elementarily equivalent to a structure
with the value group Z. Then M is uniformly polynomially bounded.

From now on, we fix a P-minimal expansion M of a field with the value group I'pq, =
Z and definable Skolem functions in a language £. We will denote by T the complete
theory of My, and we also fix a large sufficiently saturated and homogeneous model
M of T. We are following the same strategy as in §3. First we isolate some sufficiently
representative global invariant types (in the o-minimal case, working with a single type
of ‘400’ was sufficient).

Proposition 5.7. Let M < M be a small model of T and let a1, ap € M be singletons with
o) =g ay and v(ag) > v(m) forl = 1,2 and everym € M. Then a) =y ay.

Proof. Since o) and ay are singletons, by P-minimality, we need to show the following:
(1) p(a1) =0 if and only if p(a) = 0 for any polynomial p(x) € M[x];
(2) E V(p(e1)/gq (1)) if and only if = V(p(a2)/q(2)), for any p(x), g(x) € M[x];

(3) | Pu(p(a1)/q(ap)) if and only if = Py(p(a2)/q(a2)), for any n > 2 and p(x), g(x) €
M(x].

Now (1) holds since the assumption implies that both «; and o, are transcendental
over M: if p(a;) =0 for some p(x) € M[x], then, as M is a model and p(x) =0 is
an M-definable algebraic set, necessarily o € M, but v(oy) # v(oy), contradicting the
assumption. And (2) is equivalent to:

v(p(a1)) = v(g(a)) if and only if v(p(a2)) = v(g(a2)),

for any non-zero p(x),q(x) € M[x]. Let p(x) =ao+aix +...+ax* and ¢(x) = by +
bix+...4+bgx’®. Let i be minimal with ¢; # 0 and j be minimal with b; # 0. Then, for/ =
1,2 we have v(p(og)) = v(a,-otl") =v(a;) +iv(ey), and v(g(ay)) = v(bjoel]) =v(b;)+ ju(ay).
Thus v(p(ey)) > v(q(ey)) if and only if i > j, or i = j and v(a;) > v(b;). The latter
condition is independent of /.

Finally, we demonstrate (3). It is easy to see that = P,(p(oq)/q(ey)) if and only if
= Pu(p()g" (). Thus we need to show that = P,(p(a1)) if and only if = P, (p(a2)),
for any p(x) € M|[x].

We will need the following fact that follows easily from henselianity of M (which holds
by Fact 5.3).

Fact 5.8. If ¢ € M satisfies v(e) > k for all k € N then for any n € N the element 1+¢
has n-th root.

Let p(x) = ag+aix +...axx* be a non-zero polynomial over M and choose minimal
i such that a; # 0. Then, for [ = 1,2 we have p(a;) = a;o; (1 + ;) with v(g) > k for all
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k € N, and p(oy) has n-th root if and only if a,-al" had n-th root. We can find b; € M and
¢ € Z such that a; = b"c. Hence a;a; has n-th root if and only if ca; does. Since Z is in
the definable closure of @, we have o) =z ap and P,(cay) if and only if P,(can). O

Lemma 5.9. Let M be a small model of T and let o € M satisfy v(a) > v(m) for every
m € M. Then the sequence {nv(a) : n € N} is cofinal in the value group of M{a), where
M({a) is a prime model over MU {a} (i.e., M{a) = dcl(M U{a})).
Proof. Let y € I'ya) be arbitrary. As y € del(M U {a}), we have that y = v (fin(«)) for
some @-definable family of functions f and some tuple m in M. Consider the @-definable
family of functions g : X x Ml - M with X = M\ {0} given by g (x) := —-
Let n € N and the definable map a : M — I'js be given by Definition 5.5 for the family
g using Fact 5.6. Then —a(m) € 'y, and so v(a) > —a(m) by assumption. Hence v (é) =

—v(a) < a(m) and so we have

(@) = v <fm1(a)) . (gm (é)) o G) — (@),

Hence y = v(fin(2)) < nv(a), as wanted. ]

Lemma 5.10. Let p € S1(9) be arbitrary.

(1) There is at most one global type p € S;(M) such that p 2 pU{v(x) > v(m) :m €
M3}, and p is B-invariant.

(2) Assume p as in (1) exists. Let M <M and a1, ...,0, € M. Then (ay,...q,)
realizes pU|M if and only if each o realizes p, v(ay) > v(m) for allm € M and
v(ejy1) > kv(a;) forallk e Nandi=1,...,n—1.

Proof. Part (1) follows from Proposition 5.7 and P-minimality.
Part (2) follows by the same argument as in Lemma 3.4 using Lemma 5.9. O

Definition 5.11. For an integer n > 0 € N, we say that a sequence a;,i =1,...,L, of
elements of M is linearly n-growing if v(ag) > n and v(a;+1) > nv(a;) for all i.

Notice that a subsequence of a linearly n-growing sequence is also linearly n-growing.
Lemma 5.12. For any finite set of formulas A(xy, ..., xx) with parameters from Mg there

are n € N and dy € N such that any linearly n-growing sequence of elements a; € Mo of
length N contains a A-indiscernible subsequence of length at least d%‘

Proof. Let X(xy, ..., xor) be the partial type that is the union of
X = /\ @(x;) < @(x;): p(x) is an L-formula over ¢
1<i<j<2k
and

2k—1
Iy =13(x1>n)A /\ v(xi41) > nv(x;):n € N} .

i=1
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Let (a; : 1 <i < N) be any sequence of elements in M such that all of the a;’s have
the same type over the empty set. Assume that v(ap) > N and v(a;+1) > nv(a;) for every
i=1,...,N—1andn € N. Then, by Lemma 5.10, the sequence (g; : 1 <i < N) realizes
PN My for p = tp(a;/9), and so is indiscernible over Mg by Fact 2.8. It follows that

2()61,...,)62]()|—'(ﬂ(xl,...,xk)<—>‘(ﬁ(xi|,...,x,'k)

forany 1 <ij <ip <...<iy <2kand ¢ € A.
By compactness, there are finite subsets 2? C X and Eg C X5 such that

E?Uzgl—lﬁ(xl,...,xk)<—>1p(x,-1,...,xik)

forany 1 <ij <ip <...<iy <2k and ¢ € A.
Let ¢1, ..., ¢s be all L-formulas over # appearing in Z‘?, and let n € N be maximal
such that the condition v(x;+1) > nv(x;) appears in Z‘g.
Let dp = 2°. Now any linearly n-growing sequence of length N contains a subsequence of
length at least % satisfying the same ¢, ..., ¢, and this subsequence is A-indiscernible.
O

As in the o-minimal case, combining Lemma 3.1 with Lemma 5.12 we can also allow
additional parameters in A.

Corollary 5.13. For any finite set of L-formulas A(xy, ..., Xxg; y) with parameters from
My there are n € N and d € N such that for all sufficiently large N, for any c € ./\/llyl,
any linearly n-growing sequence a = (ay, aa, ...,ay) of elements from Mg contains a
A(xy, ..., xg; c)-indiscernible subsequence of length at least %.

It remains to establish an analog of Fact 3.8 in the p-adic case, demonstrating that
there are ‘enough’ linearly n-growing sequences.

For elements o € My and r in the value group of My, we will denote by B(w, r) the
closed ball in My of (valuational) radius r centered at «, i.e.,

B(a,r) ={a e Mpy: via—a) >r}.

Remark 5.14. Since the value group '\, = Z is discrete by assumption, and the residue
field is F, with ¢ = p' for some prime p and t € N by Fact 5.3, it is easy to see that
every ball B(a, r) is given by a disjoint union of ¢ balls B(«;, r+1),i =0, ...,qg — 1 with
o = a+iff, where 8 € My is arbitrary with v(8) =r.

Lemma 5.15. Let A € My be a finite non-empty set with |A| > 2 and A C B(a,r) for
some a € Mo and r € Z. Then there is o’ € B(a,r) and r' > r such that $|A| < AN
B/, )| < |A].

Proof. Let r; € Z be maximal such that some ball B(«ag, r;) with o1 € B(«, r) contains
A (so r; = r). As remarked above, the ball B(ai,r) is the union of g balls of radius
r’ =r;+ 1. Hence for at least one of these g balls, say B(a', r’) with o’ € B(ay, r1), we
have ql|A| < |ANB(,r")| < |A]| (the last inequality is by maximality of rp). O
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Proposition 5.16. Let k € N be positive. For every finite A € Mg with |A| > 2¢*~! there
is @ € Mo and elements ay, ...ax € A such that the valuations of « —a;,i = 1,...,k, are
pairwise distinct.

Proof. Let A C My be a finite set with |A| > qu_l. We set Ag = A, and also choose
g € Mg and rg € Z so that A C B(ag, rg).

Using Lemma 5.15, by induction on i =1, ...,k we construct finite sets Ag 2 Al 2
2 Ay, elements a1, ..., ar € Mg and integers r| < rp < ... < rg such that:
o A = B(wj, ri)NA;
o |Ail > AL
ew; € B(aj_1,ri_q1) fori=1,...,k.

We take a = a, and for i =1,...,k we let a; € A;_1\ A; be arbitrary. Then a; €
B(a,ri—1)\ B(x, ri), hence ri_1 < vl —a;) < r;. O

We will use the following combinatorial facts.

Fact 5.17 (Erdés—Szekeres Theorem [20]). For any r,s € N, any sequence of pairwise
distinct real numbers of length at least (r —1)(s —1)+1 contains an increasing
subsequence of length r or a decreasing subsequence of length s.

Fact 5.18 [6, Lemma 4.1]. Given n € N, every strictly increasing sequence of real numbers
of length 4" contains a subsequence (by, ..., b,) of length n such that either by —by > 2
and biy1 —by 2 2(b; —by) foralli=2,...,n—1, or by —by—1 =22 and by, —by—i+1) =
2(by, —by—;) foralli=1,...,n—2.

Proposition 5.19. There are finitely many functions F(x,y), ..., Fs(x,y) definable with
parameters from Mg such that for any n € N there is a constant C > 0 such that for any

k € N the following holds. For any K > 22Ck and any sequence d = (aj, ..., ax) in My
there are a linearly n-growing sequence b = (by, ..., bg) of elements in My, ¢ € ./\/ll)y| and
i €f{l,...,s} such that one of the sequences

F;i(b, &) := (Fi(b1,8), Fi(b2,0), ..., Fi(b, ©))

or
Fi(b, €) := (Fi(bk, &), F;(bx—1,0), ..., Fi(b1, )

18 a subsequence of a.

Proof. As usual, for a real number R we will denote by [R] the smallest integer N
satisfying N > R.

First, notice that it is sufficient to prove the proposition for n = 2. Indeed if ay, as, .. .,
is a linearly 2-growing sequence of length N, then for a given n, taking [ = [log, n], the
sequence aj, dyj, ... is a linearly n-growing sequence of length at least %

Assume k is given and K > 22Ck, where a suitable constant C will be determined in the
proof. Let ay, ...ag be a sequence of elements of M.
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Case 1. The sequence aj, ...ag contains at least ~/K equal elements.

Let us call this repeated element a’. Then the conclusion of the proposition holds as
we can map any linearly 2-growing sequence of length [+/K] onto a subsequence a using
the constant map F(x,a’) :=d'.

Case 2. The sequence ay, ...ag does not contain |\/E 1 equal elements. Then it contains
at least K1 := /K pairwise distinct elements.

Using Proposition 5.16 we can find an element a € M and a subsequence a
(all,...a}(z) of a with Kj := flogq(%Kl)—i—l] such that the valuations v(a—a}) are
pairwise distinct for all 1 <i < K».

Thus, using the map F(x, «) = x +« we can find a sequence b= (b1, ...bk,) such that
F(l;, o) = (F(b],ot), ..., F(bg,, oz)) is a subsequence of a and all of the valuations v(b;)
are pairwise distinct.

By the Erdés—Szekeres Theorem (Fact 5.17), the sequence b contains a subsequence

= !, .. b1 ) with K3 := [+/K>] such that the corresponding sequence of valuations

1:

(v(bl), ..., vl 3)) is either increasing or decreasing. Using the function F(x) =x""! if
needed, we can assume that the sequence is increasing.

By Fact 5.18, there is a subsequence b? = B2, ..., b%ﬁ) of b! with K4 := [% log, K31
such that either for the sequence

b= (v - v®D, B3 — VD), ... VR, — (b))
we have v > 2, vi41 = 2v;, or for the sequence
7 = (u(b§<4) — (b, ), (b)) — (B, o) v(bY,) — u(b%))

we have v; > 2, vi11 = 2v;.

In the first case, the sequence b3 = (b2 /b%, ..., b%Q /b%) is linearly 2-growing and can
be embedded into b via the transformatlon X = b%x.

In the second case, the sequence bt = / b? Ky—10 " b%ﬁ /b%) is linearly 2-growing, and
its reverse sequence b* can be embedded into b2 via the transformation x > x~! /b%(4

Hence we have demonstrated that every sequence of length K contains a subsequence
of length min{[v/K ], K4} with the desired property. Going backwards through the proof
we have K3 < 4K47 K> < K%, K| < ZqKZ_l and K < K12 As ¢ is fixed, an easy calculation
shows that for any sufficiently large C € R, we have K < 22" for all sufficiently large
K4 € N, and taking K4 = k we can conclude the result. O

Combining Corollary 5.13 and Proposition 5.19 exactly as in the o-minimal case (see
Theorem 3.9), we obtain Theorem 5.4.

6. Ramsey growth in NIP

In this section we consider Ramsey numbers for definable relations of higher arity. We
fix a structure M in a language £, and by a ‘formula’ we always mean an L-formula.
Following the method of [13] for the semialgebraic case, we obtain the following recursive
bound for higher arity Ramsey numbers in arbitrary NIP structures.
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Theorem 6.1. Let M be an NIP structure, k >3 and @(x1,...,xr;2) a formula with
|xi| = -+ = |xx| =d. Then, defining the formula ¥(x1,...,xk—1;2) = @(x1, ..., Xk_1;
Xk, z2) and taking m = R:Z(n — 1), for all large enough n we have

R;(n) < 2Cm logm

for some constant C = C(¢).

Proof. We are generalizing the argument from [13, Theorem 2.2].

Let e € M1 be arbitrary, ¥ (x1,...,xk—1;2) = @(x1, ..., Xk_1; Xk, 2), n €N large
enough (to be determined in the proof), and m = R;Z (n—1). Let a = (ay,...,ay) be
a sequence of elements in M4 with N >2¢7m1¢m  where C = C(¢) is a constant to
be specified later. We need to find a @(x1, ..., xx; e)-indiscernible subsequence of a of
length n.

Let E C (M%)* be the k-ary relation on M? defined by ¢(x1,...,x;e), ie., E =
(.)€ UMD M@, 1 e)).

The idea is to find a subsequence b = (b1, ..., by11) of a such that forall 1 <ij < ... <
ix—1 < m, either (b;,...,b;_,,b;) € E for all ix_1 <i <m+1or (by,...,bj_,b;)) ¢ E
forall ip_; <i <m+1.

To build a sequence b as above, we recursively choose elements b, in @ and also

subsequences ¢, of d@ for r =k—2,k—1,...,m+1 with ¢,41 C & so that the following
holds.
(1) For every (k—1)-subsequence (bi,...,b;_,) of (b1,...,b—1) with i <
. < ik—1, either (bj,...,bj_,,b) € E for every be{bj:ix_1 <j<rUc or
(biys ... by ,,b) ¢ E for every b € {bj :ix_1 < j <r}Ucr.
(2) 1¢r] > %, where Cq, Cy are some constants depending just on ¢.
1
(3) The subsequence (by,...,b,) appears in a in front of the subsequence ¢, i.e.,
(b1, ...,b)'¢, is a subsequence of a.

We start with r =k—2 by taking (by,...,bx_2) =(ay,...,ak—2) and Cy_o =
(ag—1,--.,an). Assume we have obtained (by, ..., b,) and ¢, satisfying (1)—(3) above,
and we define b, 11 and ¢,y as follows.

Let b,41 be the first element in ¢, and let ¢ be the sequence ¢, with the first element
removed. Let 6(xg; u) be the partitioned formula obtained from ¢(xy ..., xx—1, Xk, 2) by
partitioning its variables into two groups xx and u = xy, ..., Xx—1, 2. As the formula 6 is
NIP, by Fact 2.3 the number of complete 6 (xy; u)-types over an arbitrary finite set D C
MIHE=D of parameters is bounded by C3|D|¢ for some constants C3, C4 depending
just on .

Let D = {(bi,,...,bi,_,,e): 1 <ij <...<ig_1 <r+1}. Obviously |D| < (r + DF1.

It follows by the pigeonhole principle that there is some complete 8-type P({k) € Sy(D)

1G] |Er|—1 S
C3|DI 7 C3|(r+D)| kDG =

such that the number of elements in ¢, realizing p(x) is at least
ler]

W, provided |Cr| = 2.
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We take ¢,41 to be the subsequence of elements of ¢, realizing p. For C; = 2C3 and
Cp = (k—1)Cs4 (again, both C; and Cp only depend on ¢), using the inductive lower

> . .o N .
bound for the length of ¢, and calculating, we obtain |¢,41| > W, e, (2)

is satisfied.

Now for any subsequence (b;,...,b;_,) of (b1,...,br41), we have that either
(biys ..., bi,_,,b) € E for all b € ¢4y or (biy,...,bi,_,,b) ¢ E for all b € ¢,4;. Together
with the inductive assumption this implies that (1) is satisfied by (b1, ..., by+1) and ¢,41.
Finally, (3) is clear from the construction.

For ¢, to be non-empty (in which case we would have constructed our sequence
(®1, ..., bmy1)), by (2) we need C’l”m+2”’ > 1, ie, N> C'm®™. It is not hard to find a

pCmlogm g qufficient. [

constant C, depending on Cy, C; only, so that the condition N >
Remark 6.2. The constant C4 in the above proof depends just on the VC-density of ¢
(with a corresponding partition of the variables). By Fact 2.6, in the case of o-minimal
theories we can take C4 = d.

By a repeated application of Theorem 6.1 we have an improved bound on Ramsey
numbers for relations of higher arities.

Theorem 6.3. Let M be an NIP structure, and assume that for all Y (x1, x2; 7) we have
Ry (n) < n for some ¢ = c(¥) and all n large enough. Then for all ¢(x1, ..., xk; 7)) we
have Ry (n) < twrg—1(n®) for some ¢ = c(p) and all n large enough.

Now we discuss the connection of the assumption of Theorem 6.3 with the (strong)
Erdés—-Hajnal property for graphs definable in M.

Definition 6.4 [25].

(1) Let G be a class of finite graphs (i.e., the edge relation is assumed to be symmetric
and irreflexive). We say that G has the Erdds—Hagnal property, or the EH property,
if there is § > 0 such that every G = (V, E) € G has a homogeneous subset Vj of size
[Vol = |V|® (i.e., either (a,b) € E foralla # b € Vy, or (a, b) ¢ E foralla # b € V).

(2) Let G be a class of finite binary relations, i.e., every member of G is of the form
(E, Vi, Va), where E C V| x V, with Vi, V, finite sets (not necessarily disjoint).
We say that G has the strong FH property if there is § > 0 such that for every
(E, V1, V2) € G there are subsets V/ C V; with |V/| > §|V;| for i = 1, 2 such that the
pair of sets V/, V; is homogeneous (i.e., either V] x V) C E or V{ x VJNE = ).

(3) A family of finite graphs G has the strong EH property if the family of finite binary
relations {(E, V, V) : (E, V) € G} has the strong EH property.

We recall that a famous conjecture of Erdés and Hajnal [12] says that for every finite
graph H, the family of all finite graphs not containing an induced copy of H has the EH

property.
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Definition 6.5. Let M be a first-order structure, and ¢(xy, x3; z) a formula with |x| =
|x2| = d. Let G, be the family of all finite binary relations (E, Vi, V») with Vi, V, C M4
finite and E = (V| x V») N@(M, b) for some b € M. Let g;ym be the family of all finite
graphs (V, E) with V C M? and E = (V x V)N (M, b) \ A for some b € M? such that E
is symmetric (where A = {(v, v) : v € V} is the diagonal). We say that ¢ satisfies the EH
property (respectively strong EH property) if the family sz ™ (respectively Gy) does.

If this holds for all formulas ¢ in M, we say that M satisfies the (strong) EH property.

Remark 6.6. It is shown in [2] that if a family of finite graphs G has the strong EH
property and is closed under taking induced subgraphs then it has the EH property. In
particular, this applies to every family of the form g;ym as in Definition 6.5.

Hence, M satisfies the EH property precisely when the assumption of Theorem 6.3
holds for all symmetric definable relations. By the results in [11] we know that this

property holds in arbitrary reducts of distal structures.

Definition 6.7. A structure M is distal if the following holds.

For every formula ¢(x, y) there is a formula 6 (x, yi, ..., y,) with |yi| = -+ = |yu| = ||
such that: for any finite B € MP! with |B| > 2 and any a € M™!, there are by, ..., b, € B
such that M = 6(a, by, ..., b,) and for any b € B, either ¢(M,b) C 6(M, by, ..., by,) or

oM, b)NO(M, by, ...,by) =0.

Distality was introduced in [49], the equivalence of the original definition and the
combinatorial definition above is from [8], and the connection to combinatorics is from
[11] (see also [7]). Important examples of distal structures are given by arbitrary (weakly)
o-minimal and P-minimal structures. We refer to the introduction of [11] for a detailed
discussion of distality.

Fact 6.8 [8]. If M is a reduct of a distal structure then it satisfies the strong EH property
(and so the EH property as well, by Remark 6.6).

In the next proposition, we demonstrate that in any structure satisfying the strong
EH property, all (not necessarily symmetric) definable binary relations also satisfy a
polynomial Ramsey bound.

Proposition 6.9. Let M be a structure satisfying the strong EH property. Then for all
o(x, y;2) with |x| = |y| we have R;Z(n) < n€ for some ¢ = c(¢) and all n large enough.

Proof. Let d := |x| = |y|, and let E(x, y) € M? x M¢ be a definable relation given by
@(x, y; b) for some parameter b € M?l. We want to show that there is some real ¢ =
c(¢) > 0 such that every finite sequence from M? of length n contains an E-indiscernible
subsequence of length n¢. By Fact 6.8 we know that it is true in the case when E is
symmetric.

Let @ = (ay, ..., ay) be a sequence in M?. For simplicity we will assume that all of the
a;’s are pairwise distinct. We can always achieve it by taking a subsequence of length /.
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We will also assume that = —E(x, x), i.e., E is irreflexive (replacing E(x, y) by E'(x, y) :=
E(x,y) Ax # y, any E’-indiscernible subsequence of a is also E-indiscernible).

Consider the relation Eg(x, y) = E(x, y) V E(y, x). It is symmetric. Hence a contains
an Eg-indiscernible subsequence of length n¢', with ¢y = ¢1(¢) > 0. If =Eg(x, y) holds
on every increasing pair of elements in this subsequence then we are done. Otherwise,
replacing @ with this subsequence, we may assume that Eg(x, y) holds on a.

Now consider the relation Ej(x,y) = E(x,y) A E(y, x). Again it is symmetric, so d
contains an E|-indiscernible subsequence of polynomial length. If E{(x, y) holds on this
subsequence then we are done. Assume otherwise, then again replacing a with this
subsequence we may assume that —=E;(x, y) holds on a.

Let A={a;:ie€{l,...,n}}. We have that for a # b € A exactly one of E(a,b) or
E (b, a) holds, and we also have that —E (a, a) holds for alla € A. Hence E is a tournament
on A.

Our goal is to show that for some Ay C A of size n2, with ¢; = c2(p) > 0, E restricted
to Ao defines a linear order. Then, by the Erd8s—Szekeres Theorem (Fact 5.17), a
subsequence corresponding to Ag would contain an E-monotone subsequence of length
/1Ap] and we would be done.

For an integer m < n, let us denote by f(m) the maximal k£ such that every subset
A’ C A of size m contains a linearly ordered subset of size k. Obviously, we have f(m) > 1
for all m > 1.

Now we use the strong EH property. We know that there is 0 < o < 1, with a = a(¢),
such that for any B C A there are disjoint subsets By, Bj € B with |By|, |B1| > «a|B]|
that are E-homogeneous. If Co € By, C1 € B are subsets linearly ordered by E, then by
E-homogeneity CoU C is also linearly ordered by E.

This implies that f(m) > 2 f(am) and for any s € N we get f(m) > 2° f(a«m).

Recall that |A] = n. We choose the maximal s such that a®n > 1. Up to taking the
integer part, we have

. —logn
slog(a) +1log(n) > 0, i.e., we have s > .
log o
Then we get
—logn 1
f(n) > 2 loga —p loga’
and taking ¢ := —@ > 0 we can conclude the result. O

Hence the assumption of Theorem 6.3 is satisfied in reducts of distal structures by Fact
1.11 and Proposition 6.9. As every distal structure is NIP, and every reduct of an NIP
structure is NIP, applying Theorem 6.1 we get the following.

Corollary 6.10. Let M be a reduct of a distal structure. Then for any ¢(xy, ..., Xk; 2) we
have Ry (n) < twrg—1(n®) for some ¢ = c(p) and all n large enough.

Note that the assumption of Theorem 6.3 is also trivially satisfied in stable structures
by Fact 1.10. We conjecture that it holds in arbitrary NIP structures.

Conjecture 6.11. If M is an NIP structure and ¢(x1, x2; z) is a formula, then R;‘j (n) < nf
for some ¢ = ¢(¢, M) and all sufficiently large n.
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This conjecture, in the case of a symmetric formula, is equivalent to saying that all
graphs definable in NIP structures satisfy the Erdés—Hajnal property. We refer the reader
to [9, 11] for further discussion.
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