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Abstract We investigate bounds in Ramsey’s theorem for relations definable in NIP structures. Applying

model-theoretic methods to finitary combinatorics, we generalize a theorem of Bukh and Matousek
(Duke Mathematical Journal 163(12) (2014), 2243–2270) from the semialgebraic case to arbitrary

polynomially bounded o-minimal expansions of R, and show that it does not hold in Rexp. This

provides a new combinatorial characterization of polynomial boundedness for o-minimal structures. We
also prove an analog for relations definable in P-minimal structures, in particular for the field of the

p-adics. Generalizing Conlon et al. (Transactions of the American Mathematical Society 366(9) (2014),

5043–5065), we show that in distal structures the upper bound for k-ary definable relations is given by
the exponential tower of height k− 1.
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1. Introduction

We recall a fundamental theorem of Ramsey. Let X be a set and let E ⊆ X k be a k-ary

relation on X . We say that a sequence (ai : 1 6 i 6 m) of elements in X with m > k
is E-indiscernible (also called ‘E-homogeneous’ in the literature) if either E holds on

all k-tuples (ai1 , . . . , aik ) with 1 6 i1 < . . . < ik 6 m, or E does not hold on any k-tuple

(ai1 , . . . , aik ) with 1 6 i1 < . . . < ik 6 m.

Fact 1.1 (Ramsey [41]). For every k, n ∈ N = {0, 1, . . .} there is some number N ∈ N such

that if X is a set and E ⊆ X k is a k-ary relation on X , then every sequence of elements

of X of length N contains an E-indiscernible subsequence of length n.

We denote the smallest such N by Rk(n).
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Establishing exact bounds for the asymptotics of Rk(n) is one of the central open

problems in combinatorics, even in the case k = 2. We summarize briefly some of the

known results.

Fact 1.2. (1) [21, 24] 2
n
2 < R2(n) < 22n for all n > 2.

(2) [22, 23] There are positive constants c and c′ such that 2cn2
< R3(n) < 22c′n

for all

sufficiently large n.

(3) [14, 26] For each k > 3 there are positive constants c, c′ such that twrk−1(cn2) 6
Rk(n) 6 twrk(c′n) for all sufficiently large n, where the tower function twrk(n) is

defined recursively by twr1(n) = n and twri+1(n) = 2twri (n).

Recently, this question was investigated in the context of semialgebraic relations, where

stronger bounds were obtained. Recall that a set A ⊆ Rd is semialgebraic if it is given

by a finite Boolean combination of sets of the form {x ∈ Rd
: f (x) > 0}, where f (x) is a

polynomial in d variables with coefficients in R. We say that a semialgebraic set A has

description complexity at most t if d 6 t and A can be written as a Boolean combination

of such sets involving at most t different polynomials, each of degree at most t .

Definition 1.3. Let E ⊆ (Rd)k be a k-ary semialgebraic relation on Rd . For n ∈ N, we

let RE (n) be the smallest natural number N such that if (ai : 1 6 i 6 m), ai ∈ Rd , is a

sequence of length m > N , then it contains an E-indiscernible subsequence of length n.

Let Rd,t
k (n) be the maximum of RE (n), where E varies over all k-ary semialgebraic

relations on Rd of description complexity at most t .

The case of binary relations (k = 2) is addressed in the following theorem, which shows

that Rd,t
2 (n) can be bounded by a polynomial in n – as opposed to the necessarily

exponential bound in the general case (Fact 1.2(1)). The following is proved in [2,

Theorem 1.2] (it is only stated there for symmetric semialgebraic relations; the result

for arbitrary semialgebraic relations follows easily from the symmetric case using that

the lexicographic ordering on Rd is semialgebraic – see the discussion after Definition 6.4).

Fact 1.4 [2, Theorem 1.2]. For any d, t there is some c = c(d, t) such that Rd,t
2 (n) 6 nc

for all sufficiently large n.

Based on this fact, [13] addresses the case of general k, establishing that Rd,t
k (n) can be

bounded from above by an exponential tower of height k− 1 (as opposed to k for general

relations; Fact 1.2(3)).

Fact 1.5 [13]. For any k > 2 and d, t > 1 there is some c = c(k, d, t) such that Rd,t
k (n) 6

twrk−1(nc) for all sufficiently large n.
In addition, matching lower bounds for semialgebraic relations were obtained in [13]

and subsequently refined in [18].

Fact 1.6. (1) [13] For every k > 4, there exists d = d(k), t = t (k), c′ = c′(k) and a

k-ary semialgebraic relation E on Rd of description complexity 6 t such that

RE (n) > twrk−1(c′n) for all sufficiently large n.

(2) [18] In (1), one can take d = k− 3.
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The dependence of the dimension d on the arity k of the relation E in Fact 1.6 is

unavoidable, due to the following theorem of Bukh and Matousek.

Fact 1.7 [6]. For every k ∈ N and every k-ary semialgebraic relation E on R there is some

c = c(E) such that RE (n) 6 22cn
for all sufficiently large n.

That is, if we restrict to arbitrary k-ary semialgebraic relations on R (as opposed to

Rd for some d > 1), then RE (n) is at most double exponential (rather than a tower of

height k− 1 as in Fact 1.5). The constant c given by the proof in [6] actually depends on

the parameters of E (and not just on its description complexity, as in Fact 1.5); however

this dependence can be eliminated (see Theorem 1.12).

In this paper we investigate a generalization from semialgebraic relations to relations

definable in more general first-order structures, and the connection between Ramsey

growth for relations definable in a structure and the model-theoretic tameness conditions

that this structure satisfies.

Definition 1.8. Let M be a first-order structure in a language L (we denote its underlying

set by M). Let k > 1 be an integer and let ϕ(x1, . . . , xk) be an L(M)-formula (i.e., a

formula with parameters from M) with its free variables partitioned into k groups of

equal size, i.e., |x1| = . . . = |xk | = d. Then ϕ defines a k-ary relation ϕ(M) on Md (a

definable subset of Md in the case k = 1), namely ϕ(M) = {(a1, . . . , ak) ∈ (Md)k :M |H
ϕ(a1, . . . , ak)}. The case |xi | = 1 for all i = 1, . . . , k will be referred to as ‘x1, . . . , xk
singletons’.

We let Rϕ(n) be the smallest natural number N such that any sequence (ai : 1 6 i 6
N ), ai ∈ Md , of length N contains a ϕ(M)-indiscernible subsequence of length n.

Also, given an L-formula ϕ(x1, . . . , xk; z), where |x1| = . . . = |xk | = d and z is an

additional tuple of free variables, we let R∗ϕ(n) := max{Rϕ(x1,...,xk ;b)(n) : b ∈ M |z|} (or∞ if

the maximum does not exist).

Remark 1.9. By Tarski’s quantifier elimination in the field of reals M = (R, <
,+,×, 0, 1), given a formula ϕ(x; y), all sets of the form ϕ(R|x |; b), b ∈ R|y|, are

semialgebraic of description complexity 6 t for some t depending only on ϕ. Conversely,

the family of all semialgebraic subsets of R|x | of description complexity 6 t is of the form

{ϕ(R|x |; b) : b ∈ R|y|} for an appropriate choice of ϕ(x; y). Hence Rd,t
k from Definition 1.3

is given by R∗ϕ for an appropriate ϕ in the case of the field of reals.

We will restrict to the case of NIP structures (see § 2 for the definition; any structure

which is not NIP codes arbitrary finite graphs in a definable way (see e.g., [11, Remark

4.12]), hence bounds in Fact 1.2 are optimal outside of the NIP context). First we give

a brief overview of the relevant results in the model-theoretic literature indicating the

relevance of NIP and its subclasses for the problem at hand.

The infinitary version of the problem of finding indiscernible subsequences was long

known in model theory, under the name of the ‘existence of indiscernibles’ (starting with

the work of Morley in the stable case, and later work of Shelah and others in general NIP

[31, 44, 46, 48]).
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The question of obtaining explicit bounds for Rϕ(n) under some model-theoretic

tameness assumptions on M was first considered, it appears, in [19], where some

quantitive improvements in the stable and NIP cases were obtained. In the case of a

stable formula ϕ, a polynomial upper bound was established in [35].

Fact 1.10 [35]. Let ϕ(x1, . . . , xk; z) be a formula in a stable structure M (or just assume

that ϕ is a stable formula, relative to an arbitrary partition of its variables). Then there

is some c = c(ϕ) such that R∗ϕ(n) 6 nc for all sufficiently large n.

See also [10] for a different proof using the ‘non-standard’ method. Fact 1.4 was

generalized to o-minimal structures (with some additional topological assumptions) in

[4], and to symmetric relations in arbitrary distal structures in the following theorem

(see Definition 6.7 for the definition of distality; examples of distal structures include

arbitrary o-minimal structures and P-minimal structures, e.g., the fields Qp for p prime

– see Definition 5.1).

Fact 1.11 ([11, Theorem 3.6] + Remark 6.6). Let M be a reduct of a distal structure.

Then for any formula ϕ(x1, x2; z) with |x1| = |x2| arbitrary and such that the relation

defined by ϕ(x1, x2; b) is symmetric for any b ∈ M |z|, there is some c = c(ϕ) such that

R∗ϕ(n) 6 nc for all sufficiently large n.

In this paper, we continue investigating the bounds for the functions Rϕ(n) and

R∗ϕ(n) in various NIP structures. First, we consider an analog of the Bukh–Matousek

theorem (Fact 1.7) in o-minimal structures. Recall that a structure M = (M, <, . . .) is

o-minimal if every definable subset of M is a finite union of singletons and intervals

(with endpoints in M ∪ {±∞}). From this assumption one obtains cell decomposition

and other geometric information for definable subsets of Mn , for all n. The theory of

o-minimal structures is rather well developed and has applications in other branches

of mathematics (we refer to [16] for a detailed treatment of o-minimality, or to [43,

§ 3] and references therein for a quick introduction). Examples of o-minimal structures

include R̄ = (R,+,×), Rexp = (R,+,×, ex ), Ran =

(
R,+,×, f �[0,1]k

)
for f ranging over

all functions that are real-analytic on some neighborhood of [0, 1]k , or Ran,exp, the

combination of both these last two examples. An o-minimal structure M is polynomially

bounded if for every definable one-variable function f , there exists N ∈ N such that

| f (x)| 6 x N for all sufficiently large positive x . So for example R̄ and Ran are polynomially

bounded, but Rexp is not. In § 3 we generalize Fact 1.7 to arbitrary polynomially bounded

o-minimal expansions of the field of reals R̄.

Theorem 1.12. Let M be a polynomially bounded o-minimal expansion of R. Then for

every k ∈ N and every formula ϕ(x1, . . . , xk; z) with x1, . . . , xk singletons, there is some

c = c(ϕ) such that R∗ϕ(n) 6 22cn
for all sufficiently large n.

In particular this implies that in the semialgebraic case (Fact 1.7) the constant c only

depends on the description complexity of the relation, and not on the magnitude of the

parameters, which does not seem to have been noticed before. Our argument combines

uniform definability of types over finite sets in NIP structures (see Definition 2.4), basic
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properties of invariant types and a combinatorial lemma from [6]. On the other hand, in

§ 4 we show that no analog of Theorem 1.12 can hold in Rexp.

In this paper, ‘log’ always means logarithm with base 2, unless explicitly stated

otherwise.

Theorem 1.13. For every k > 3 there are relations Ek(x1, . . . , xk) definable in Rexp with

x1, . . . , xk singletons, constants Ck > 0 and nk ∈ N such that, for each n > nk , there is

a sequence Ean in R of length n that does not contain an Ek-indiscernible subsequence of

length greater than Ck log log . . . log n, with k− 2 iterations of log.

By a theorem of Miller [37], if an o-minimal expansion of the field of real numbers

is not polynomially bounded, then exponentiation is definable in it (i.e., the graph of

the exponentiation function is a definable relation). Combining this with Theorems 1.12

and 1.13 we obtain a new combinatorial characterization of polynomial boundedness for

o-minimal expansions of R.

Corollary 1.14. Let M be an o-minimal expansion of R. The following are equivalent.

(1) M is polynomially bounded.

(2) For every k ∈ N and every formula ϕ(x1, . . . , xk; z) with x1, . . . , xk singletons, there

is some c = c(ϕ) such that R∗ϕ(n) 6 22cn
for all sufficiently large n.

(3) There is some h ∈ N such that, for every k ∈ N and every formula ϕ(x1, . . . , xk; z)
with x1, . . . , xk singletons, there is some c = c(ϕ) such that R∗ϕ(n) 6 twrh(nc) for all

sufficiently large n.

Using the general method of the proof developed in § 3, in § 5 we apply it to prove

an analog of Fact 1.7 in the fields of the p-adics Qp, for p prime, and many related

structures (see § 5 for the definition of P-minimality and related notions).

Theorem 1.15. Let M be a P-minimal expansion of a field with definable Skolem

functions and the value group Z. Then, for every k ∈ N and every formula ϕ(x1, . . . , xk; z),
with x1, . . . , xk singletons, there is some c = c(ϕ) such that R∗ϕ(n) 6 22cn

for all sufficiently

large n.

This applies to the fields Qp for all primes p, their finite extensions, as well as

expansions by the analytic structure – see § 5 for the details. In fact, there are no known

examples of P-minimal structures with value group Z that do not satisfy Theorem 1.15

(note that the combinatorial conclusion obviously transfers to the reducts).

Problem 1.16. Do Theorems 1.12 and 1.15 hold in polynomially bounded o-minimal

(respectively, P-minimal) theories that do not admit any archimedean models?

In § 6 we consider the growth of R∗ϕ(n) in NIP structures for definable relations of

higher arity. Generalizing Fact 1.5, we show a definable stepping down lemma for NIP

structures which implies the following.
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Theorem 1.17. Let M be an NIP structure, and assume that for all formulas ϕ(x1, x2; z)
we have R∗ϕ(n) 6 nc for some c = c(ϕ) and all n large enough. Then for all k > 3 and all

ϕ(x1, . . . , xk; z) we have R∗ϕ(n) 6 twrk−1(nc) for some c = c(ϕ) and all n large enough.

In Proposition 6.9 we generalize Fact 1.11 from symmetric binary formulas to arbitrary

binary formulas, demonstrating that the assumption of Theorem 1.17 is satisfied in all

reducts of distal structures (and it is satisfied in stable structures by Fact 1.10). We

conjecture that it also holds in arbitrary NIP structures and discuss the connection to

the Erdős–Hajnal conjecture (see e.g., [12]) for graphs definable in NIP structures.

2. Preliminaries on NIP

Vapnik–Chervonenkis dimension, or VC-dimension, is an important notion in

combinatorics and statistical learning theory (see e.g., [36] for an exposition). Let X
be a set, finite or infinite, and let F be a family of subsets of X . Given A ⊆ X , we say

that it is shattered by F if for every A′ ⊆ A there is some S ∈ F such that A∩ S = A′.
A family F is a VC-class if there is some n < ω such that no subset of X of size n is

shattered by F . In this case the VC-dimension of F , that we will denote by V C(F), is

the smallest integer n such that no subset of X of size n+ 1 is shattered by F . For a set

B ⊆ X , let F ∩ B = {A∩ B : A ∈ F} and let πF (n) = max {|F ∩ B| : B ⊆ X, |B| = n}.

Fact 2.1 (Sauer–Shelah lemma [42, 45]). If V C(F) 6 d then for n > d we have πF (n) 6∑
i6d

(n
i

)
= O

(
nd).

The important class of NIP theories was introduced by Shelah in his work on the

classification program [44]. It has attracted a lot of attention recently, both from the

point of view of pure model theory and as a result of its applications in algebra and

geometry (see e.g., [1, 50] for an introduction to the area). Examples of NIP structures

are given by arbitrary stable structures, (weakly or quasi) o-minimal structures, the field

of p-adics for every prime p (along with its analytic expansion), as well as algebraically

closed valued fields. As was observed in [33], the original definition of NIP is equivalent

to the following one (see [3] for a more detailed account).

Definition 2.2. Let T be a complete theory and ϕ(x, y) a formula in T , where x, y are

tuples of variables, possibly of different length. We say that the formula ϕ(x, y) is NIP

if there is a model M of T such that the family of definable sets {ϕ(M, a) : a ∈ M |y|} is a

VC-class. In this case we define the VC-dimension of ϕ(x, y) to be the VC-dimension of

this class. (It is easy to see that by elementarily equivalence the above does not depend

on the model M of T .) A theory T is NIP if all formulas in T are NIP, and a structure

M is NIP if its complete theory T h(M) is NIP. That is, a structure M is NIP if for every

formula ϕ(x, y) the family of ϕ-definable sets Fϕ = {ϕ(M, a) : a ∈ M |y|} is a VC-class.

By a partitioned set of formulas 1(x, y), where x and y are two groups of variables,

we mean a set of formulas all of which are of the form ϕ(x, y) ∈ L, i.e., have the

same free variables partitioned into the same two groups. Given a (partitioned) set

of formulas 1(x, y) and a set B ⊆ M |y|, we say that π(x) is a 1-type over B if
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π(x) ⊆
⋃
ϕ(x,y)∈1,b∈B {ϕ(x, b),¬ϕ(x, b)} and there is some N �M and some a ∈ N |x |

simultaneously satisfying all formulas from π(x). By a complete 1-type over B we mean

a maximal 1-type over B. We will denote by S1(B) the collection of all complete 1-types

over B. If 1 consists of a single formula ϕ(x, y), we simply say ϕ-type and write Sϕ(B),
and if 1 consists of all formulas in the language, then we simply say ‘type’ and write

Sx (B) for the space of complete types over B. In view of the remarks above, the following

is an immediate corollary of the Sauer–Shelah lemma.

Fact 2.3. A structure M is NIP if and only if for any finite set of formulas 1(x, y) there

is some d ∈ N such that |S1(B)| = O(|B|d) for any finite B ⊆ M |y|.

This result can be strengthened. The following definition is from [3, 27].

Definition 2.4. (1) Given a complete ϕ(x, y)-type q ∈ Sϕ(B) for a set B ⊆ M |y|, an

L(M)-formula dϕ(y) is said to define q if for all b ∈ B we have

ϕ(x, b) ∈ q ⇐⇒ M |H dϕ(b).

(2) We say that complete ϕ(x, y)-types are uniformly definable over finite sets, with

m parameters, if there is a finite set of L-formulas 1 = (dϕi (y; y1, . . . , ym) : i < k),
with |y1| = |y| for all i < k, such that for every finite set B ⊆ M |y| and every q ∈
Sϕ(B) there are some b1, . . . , bm ∈ B and some i < k such that dϕi (y; b1, . . . , bm)

defines q. We call the set 1 a uniform definition for ϕ-types over finite sets, with

m parameters.

(3) We say that T satisfies the Uniform Definability of Types over Finite Sets, or

UDTFS, if for some (equivalently, any) M |H T , complete ϕ-types are uniformly

definable over finite sets for all formulas ϕ ∈ L.

Fact 2.5 [8]. Every NIP theory satisfies UDTFS.

This result can be viewed as a model-theoretic version of the Warmuth conjecture on

the existence of compression schemes for VC-families, which was later established in [39].

Special cases of Fact 2.5 were proved earlier for some subclasses of NIP theories including

stable [44], o-minimal [30], and dp-minimal [27] theories. Note that this implies Fact 2.3

since, under UDTFS, for every finite set of formulas 1, every 1-type over a finite set

B is determined by fixing a definition for each ϕ ∈ 1 with parameters from B, of which

there are only polynomially many choices. Explicit bounds on the number of parameters

needed are given in [3] for some cases considered in this article.

Fact 2.6. (1) [3, § 6.1] Let M be a (weakly or quasi) o-minimal structure. Then

ϕ(x, y)-types are uniformly definable over finite sets using |x | parameters, for all

formulas ϕ ∈ L. In particular this applies to Presburger arithmetic (Z,+, <).
(2) [3, § 7.2] Let M be the field of p-adics. Then ϕ(x, y)-types are uniformly definable

over finite sets using 2|x | parameters, for all formulas ϕ ∈ L.

Finally, we recall global invariant types and their products. We will use some standard

model-theoretic notation, e.g., M �M will be a saturated elementary extension, and,
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given a set A ⊆M, dcl(A) will denote the model-theoretic algebraic closure of A, A will

be called small if its cardinality is smaller than the saturation of M, etc. Given a tuple

of variables x , we call complete types in Sx (M) global, and we say that a global type

p(x) is M-invariant if it is Aut(M/M)-invariant (meaning that, for every automorphism

σ of M fixing M pointwise, for every L(M)-formula ϕ(x, a), we have ϕ(x, a) ∈ p ⇐⇒
ϕ(x, σ (a)) ∈ p).

Definition 2.7. Given a set of formulas 1, d ∈ N, a set of parameters A ⊆M and

an arbitrary linear order I , we say that a sequence (ai : i ∈ I ) of tuples from Md

is 1-indiscernible over A if it is E-indiscernible for every relation E of the form

ϕ(x1, . . . , xn; b) with ϕ(x1, . . . , xn; z) ∈ 1, |xi | = d for all 1 6 i 6 n and b ∈ A|z|.
If 1 consists of all formulas, we simply say that the sequence is indiscernible over A,

and if A = ∅, we say that the sequence is 1-indiscernible.

Fact 2.8 (See e.g., [29, § 2] or [50]). Let p be a global M-invariant type. Let the sequence

(ci : i ∈ N) in M be such that ci |H p|Mc<i (such a sequence is called a Morley sequence

in p over M). Then the sequence (ci : i ∈ N) is indiscernible over M and tp((ci : i ∈
N)/M) does not depend on the choice of (ci ). Call this type p(ω)|M , and let p(n)|M :=
tp(c1, . . . , cn/M).

3. Bukh–Matousek theorem in polynomially bounded o-minimal expansions

of R

First we prove a general lemma about NIP structures, which is a finitary version of

Shelah’s ‘shrinking of indiscernibles’ [47].

Lemma 3.1. Let M be an NIP structure, and let ϕ(x1, . . . , xn; y) be a formula with |x1| =

. . . = |xn| = d. Then there are some k, l ∈ N and a finite set of formulas 1 in the variables

x1, . . . , xl with |xi | = d such that for any finite 1-indiscernible sequence (ai )i<N in Md

and any b ∈ M |y| there are 0 = j0 < j1 < . . . < jk′ = N − 1 with k′ 6 k such that for every

s ∈ {0, . . . , k′− 1} the sequence (ai : js < i < js+1) is ϕ(x1, . . . , xn, b)-indiscernible.

In particular, for any N large enough and any b ∈ M |y|, any finite 1-indiscernible

sequence of elements in Md of length N contains a ϕ(x1, . . . , xn, b)-indiscernible

subsequence of length at least N−(k+1)
k .

Proof. To simplify the notation we assume d = 1.

By UDTFS (Fact 2.5) applied to the formula ϕop(y; x1, . . . , xn) := ϕ(x1, . . . , xn; y),
there is a finite set of formulas 1(x1, . . . , xn; x̄1, . . . , x̄m) with |x̄i | = n such that, for any

finite set A ⊆ M and b ∈ M |y|, the ϕop-type of b over An is definable by an instance of some

ψ ∈ 1 with parameters from An . That is, there are some c̄1, . . . , c̄m ∈ An , such that, for

all a1, . . . , an ∈ A, we have |H ϕ(a1, . . . , an; b) if and only if |H ψ(a1, . . . , an; c̄1, . . . , c̄m).

Writing each n-tuple x̄i , i = 1, . . . ,m, as n single variables in every ψ ∈ 1, we can view

1 as a finite set of formulas in the variables x1, . . . , xl , where l = n+mn.
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Let (ai )i<N be a finite 1-indiscernible sequence, b ∈ M |y|, and A = {ai : i < N }.
We choose ψ ∈ 1 and cn+1, . . . cl ∈ A such that for all c1, . . . cn ∈ A we have

M |H ϕ(c1, . . . , cn; b) if and only if M |H ψ(c1, . . . , cn, cn+1, . . . , cl).

We choose 0 = j0 < j1 < . . . < jk′ = N − 1 with k′ 6 (l − n)+ 2 = mn+ 2 so that

{a js : s = 0, . . . , k′} = {ci : i = n+ 1, . . . , l} ∪ {a0, aN−1}.

Since (ai )i<N is ψ-indiscernible, it follows that for any 0 6 i1 < . . . < in < N the truth

value of ψ(ai1 , . . . , ain ; cn+1, . . . , cl), and so of ϕ(ai1 , . . . , ain ; b), is determined by the

quantifier-free order type of (i1, . . . , in) over { js : s = 0, . . . k′}. The conclusion of the

lemma follows taking k := mn+ 2.

From now on we work in a polynomially bounded o-minimal expansion R = 〈R, <, . . .〉
of the field of real numbers. Let T = T h(R) and let M � R be a big saturated model.

As T has Skolem functions (see e.g., [16]), it follows that for all M ≺M and ā ∈Mn ,

the set

M〈ā〉 = { f (ā) : f (x) is an M-definable function}

is an elementary substructure of M.

Let p̃(x) ∈ S1(M) be the global type of ‘+∞’, i.e., p̃ is the unique complete global type

such that p̃ ` x > m for every m ∈M (uniqueness is by o-minimality). It is invariant over

∅ (as the set of formulas {m < x : m ∈M} is clearly Aut(M/∅)-invariant).

The following fact is obvious.

Fact 3.2. For every M ≺M, an element α ∈M realizes p̃(x)|M if and only if α > m for

every m ∈ M.

Since polynomial boundedness is preserved under elementarily equivalence (see [38,

Theorems A and B]) we have the following fact.

Fact 3.3. If M ≺M and α |H p̃|M , then the set {αn
: n ∈ N} is cofinal in M〈α〉, i.e., for

every m ∈ M〈α〉 there is some n ∈ N such that m < αn.

Lemma 3.4. Let M ≺M and α1, . . . , αn ∈M. Then (α1, . . . αn) realizes p̃(n)|M if and only

if α1 > m for all m ∈ M and αi+1 > αk
i for all k ∈ N and i = 1, . . . , n− 1.

Proof. Let M0 = M , and for i = 1, . . . n− 1 let Mi = Mi−1〈αi 〉.

Obviously for any A ⊂M an element α ∈M realizes p̃|A if and only if it realizes p̃|dcl(A).

Thus (α1, . . . αn) realizes p̃(n)|M if and only if αi+1 realizes p̃|Mi for i = 0, . . . , n− 1, and

the lemma follows from Facts 3.2 and 3.3.

In view of the above lemma, we define ‘finitary’ approximations to a realization of

p̃(n)|R.

Definition 3.5 [6, Definition 2.1]. Let h > 2 be a real number. A sequence Ea = (a1, . . . , an)

in R is called h-growing if a1 > h and ai+1 > ah
i for i = 1, . . . n− 1.

Notice that any subsequence of an h-growing sequence is h-growing as well.
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Lemma 3.6. For any finite set of formulas 1(x1, . . . , xl) with parameters from R there

is some h ∈ R such that any h-growing sequence (ai : i = 1, . . . , N ) of elements in R is

1-indiscernible.

Proof. Consider the (partial) type

Σ(x1, . . . , x2l) =

{
x1 > n ∧

2l−1∧
i=1

(xi+1 > xn
i ) : n ∈ N

}
.

By Fact 2.8, for any N ∈ N, if (a1, . . . , aN ) |H p̃(N )|M , then the sequence (a1, . . . , aN )

is indiscernible. Together with Lemma 3.4 this implies that

Σ(x1, . . . , x2l) ` ψ(x1, . . . , xl)↔ ψ(xi1 , . . . , xil )

for any 1 6 i1 < i2 < . . . < il 6 2l and ψ ∈ 1. By compactness, this holds withΣ replaced

by some finite subset Σ0. But then, if a1, . . . , aN is an h-growing sequence and h is larger

than the largest n appearing in Σ0, then every increasing 2l-tuple from a1, . . . , aN satisfies

Σ0, hence a1, . . . , aN is 1(x1, . . . , xl)-indiscernible.

Combining Lemma 3.6 with Lemma 3.1 we can allow additional parameters in 1.

Corollary 3.7. For any finite set of formulas 1(x1, . . . , xl; y) with parameters from R
there is some h ∈ R and m ∈ N such that, for any h-growing sequence of elements

Ea = (ai : i = 1, . . . , N ) in R with N large enough and for any b ∈ R|y|, Ea contains a

1(x1, . . . , xl; b)-indiscernible subsequence of length N
m .

Proof. For every ϕ(x1, . . . , xl; y) ∈ 1, let kϕ ∈ N and the finite set of formulas 1ϕ be

as given by Lemma 3.1 for ϕ, and let 1′ =
⋃
ϕ∈11ϕ and k = max{kϕ : ϕ ∈ 1}. Now

by Lemma 3.6 there is some h such that every h-growing sequence Ea = (a1, . . . , aN ) of

elements from R is1′-indiscernible. By Lemma 3.1, for any b ∈ R|y| we can find an interval

[i0, i1
] in [1, N ] of length at least N−(k|1|−2)

k|1| such that the sequence (ai : i0 6 i 6 i1) is

1(x1, . . . , xl; c)-indiscernible. We can take m = 2k|1|.

Finally, the following combinatorial lemma is from [6] (namely, Proposition 2.4

combined with Definition 2.3 there).

Fact 3.8. For every n and h > h0, where h0 is a certain absolute constant, there exists

N 6 2h2n
such that for any sequence Ea of length N there is an h-growing sequence Eb of

length n and A, B ∈ R such that one of the following sequences is a subsequence of Ea.

(1) A+ Bbi , i = 1, . . . , n.

(2) A+
B
bi

, i = 1, . . . , n.

(3) A+ Bbi , i = n, . . . , 1.

(4) A+
B
bi

, i = n, . . . , 1.

(Note: the order in (3) and (4) is reversed.)

We are ready to prove the main result of the section, generalizing [6, Proposition 1.6].
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Theorem 3.9. Let R be a polynomially bounded o-minimal expansion of the real field.

Then for any formula ϕ(x1, . . . , xr ; z) with parameters from R, with all xi singletons,

there is a constant C = C(ϕ) such that

R∗ϕ(n) 6 22Cn
,

for all sufficiently large n.

Proof. Let 1(x1, . . . , xr ; y1, y2, z) consist of the formulas

ϕ1(x1, . . . , xr ; y1, y2, z) = ϕ(y1+ y2x1, . . . , y1+ y2xr ; z),

ϕ2(x1, . . . , xr ; y1, y2, z) = ϕ
(

y1+
y2

x1
, . . . , y1+

y2

xr
; z
)
,

ϕ3(x1, . . . , xr ; y1, y2, z) = ϕ(y1+ y2xr , . . . , y1+ y2x1; z),

ϕ4(x1, . . . , xr ; y1, y2, z) = ϕ
(

y1+
y2

xr
, . . . , y1+

y2

x1
; z
)
,

and let h and m be as given by Corollary 3.7 for 1. Now assume that Ea is an arbitrary

sequence of singletons of length N = 2h2mn
(which is bounded by 22Cn

for an appropriate

constant C depending just on m, h), and let d ∈ R|z| be an arbitrary tuple of elements.

By Fact 3.8, there is some h-growing sequence Eb = (bi : 1 6 i 6 mn) and some A, B ∈ R
such that one of the corresponding sequences given by (1)–(4) in Fact 3.8 is a subsequence

of Ea. By Corollary 3.7, Eb contains a 1(x1, . . . , xr ; A, B, d)-indiscernible subsequence

of length n. But by the choice of 1, the corresponding subsequence of Ea must be

ϕ(x1, . . . , xr ; d)-indiscernible.

4. Counterexample in Rexp

4.1. Preliminaries

We work in the structure M := Rexp in the language L := (<,+,×, 0, 1, exp(x)), i.e, the

expansion of the field of reals with the exponential function. It is well known to be

o-minimal [51].

Instead of tower notations we use iterated log and exp. By induction on n we define

functions en(x) and ln(x) as

e0(x) = x, en+1(x) = 2en(x); and l0(x) = x, ln+1(x) = log(ln(x)),

where by log we always mean log2. Obviously ln(x) is defined for large enough x and it

is the compositional inverse of en(x).
Our goal is to prove the following theorem.

Theorem 4.1. For every k > 3 there is a relation Ek(x1, . . . xk) definable in Rexp, with

x1, . . . , xk all singletons, and ck > 0 such that REk (n) > ek−2(ckn) for all sufficiently

large n.

The proof of the above theorem closely follows [13, proof of Theorem 1.2] (see also [18,

Theorem 1.3]). In general, the so-called stepping-up lemma of Erdős and Hajnal [14, 26]
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gives a lower bound for (k+ 1)-ary relations which is exponentially larger than the one

for k-ary relations. In [13] it is demonstrated that the stepping-up lemma can be carried

out ‘semialgebraically’ (the k-ary semialgebraic relations that they construct live on Rd ,

and d grows with k, see Fact 1.6). We show that in the structure Rexp the stepping-up

approach can be implemented definably without increasing the dimension (i.e., our k-ary

relations all live on R). But first we discuss some preliminaries.

4.2. Robustness

We will use the notion of robustness from [18] (that was originally called ‘depth’ in [13]).

Definition 4.2. Let ϕ(x1, . . . , xk) be an L-formula and let Ea = (a1, . . . , an) be a sequence

of real numbers. We say that ϕ is robust on Ea if there is ε > 0 such that, for all 1 6 i1 <

· · · < ik 6 n and all real numbers a′1, . . . , a′k with |ai j − a′j | < ε for each j = 1, . . . , k, we

have

|H ϕ(a′1, . . . , a′k)↔ ϕ(ai1 , . . . , aik ).

4.3. logT -transformations

Definition 4.3. Let ϕ(x1, . . . , xr ) be an L-formula. Let T > 0 be a real number. For a

formula ψ(y1, . . . , ys) we say that ψ is a logT -transformation of ϕ if it is obtained from

ϕ by replacing every free variable xi in ϕ by an expression of the form logT (ui − vi ) with

ui , vi ∈ {y1, . . . , ys}.

Definition 4.4. We say that an L-formula ϕ(x1, . . . , xr ) is an rd-formula if it depends only

on the ratios of differences of its variables, i.e., it is equivalent to a formula of the form

ψ

(
xi1 − x j1

x p1 − xq1

, . . . ,
xis − x js

x ps − xqs

)
for some ψ(y1, . . . , ys) ∈ L, where it , jt , pt , qt ∈ {1, . . . , r} for all t = 1, . . . , s (and there

are no other free variables in ψ).

Claim 4.5. Let T > 0. A logT -transformation of an rd-formula ϕ(x1, . . . , xr ), is also an

rd-formula, and it is also a log2-transformation of ϕ.

Proof. In a logT -transformation of ϕ an expression of the form
xi−x j
x p−xq

is replaced by an

expression of the form

logT (ui − vi )− logT (u j − v j )

logT (u p − vp)− logT (uq − vq)
,

which is equivalent to

logT
ui−vi
u j−v j

logT
u p−vp
uq−vq

.
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Since the ratio of two logarithms does not depend on the base, it is also equivalent to

log ui−vi
u j−v j

log u p−vp
uq−vq

.

Thus, a logT -transformation of an rd-formula ϕ is again an rd-formula that is also a

log2-transformation of ϕ.

4.4. Proof of Theorem 4.1

For a formula ϕ(x1, . . . , xk) ∈ L with |x1| = · · · = |xk | = d and an integer n we will denote

by R+ϕ (n) the smallest integer N such that any increasing sequence a1 < · · · < aN contains

a ϕ-indiscernible subsequence of length n.

Obviously for any formula ϕ(x1, . . . , xk) with |xi | = 1 we have R+ϕ (n) 6 Rϕ(n).
Thus Theorem 4.1 follows from the following refined version.

Theorem 4.6. For every k > 3 there are an rd-formula Ek(x1, . . . xk) ∈ L with x1, . . . , xk
all singletons and a constant Ck > 1 such that, for all real 0 < c < 1 and for all large

enough n ∈ N, there is an increasing sequence of natural numbers Ea n of length at least

ek−2(cn) such that Ek is robust on Ea n, and Ea n does not contain an Ek-indiscernible

subsequence of length Ckn.

Proof of Theorem 4.6 ⇒ Theorem 4.1. Fix 0 < c < 1 and set ck =
c

Ck
, for each k > 3,

where Ck is the constant given by 4.6. We then have, for the rd-formula Ek(x1, . . . xk) given

to us by 4.6 and for all large enough n, an increasing sequence of natural numbers Ea n of

length at least ek−2(ckn) such that Ea n does not contain an Ek-indiscernible subsequence of

length n. Thus R+ϕ (n) > ek−2(ckn), and hence Rϕ(n) > ek−2(ckn) by the preceding remark.

Remark 4.7. To prove Theorem 4.6 it is enough to construct formulas Ek(x1, . . . , xk)

whose truth values are well defined only on increasing sequences of real numbers r1 <

· · · < rk . (The formula log(x2− x1) > log(x3− x2) is an example of a formula that we will

use often.)

We proceed by induction on k.

4.5. The base case k = 3

For the following claim see [13, § 3.1].

Claim 4.8. Let E3(x1, x2, x3) be the formula x1+ x3− 2x2 > 0. Then for any n > 1 the

sequence 1, 2, 3, . . . , 2n does not contain an E3-indiscernible subsequence of length n+ 2.

It is not hard to see that E3 is equivalent to an rd-formula. Indeed we can rewrite E3
as x3− x2 > x2− x1, which on increasing sequences is equivalent to x3−x2

x2−x1
> 1.

We also need E3 to be robust on Ea n . It is not hard to see that E3 is not robust on

the sequence 1, 2, . . . , 2n, since 1+ 3− 2 · 2 = 0 and the truth of E3 can change even if
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we perturb the first 3 elements of the sequence by arbitrarily small positive amounts.

It is however also easy to see that E3 is robust on any sequence that does not contain

any terms a < b < c with a+ c− 2b = 0, i.e., it is robust on any sequence that does

not contain a non-trivial 3-term arithmetic progression. To get such a sequence we use

Behrend’s Theorem (see [5]).

Theorem 4.9 (Behrend’s Theorem). There is a constant D > 0 such that for all natural

numbers m there exists a set X ⊆ {1, . . . ,m} with |X | >
m

2D
√

log m
not containing any

non-trivial 3-term arithmetic progressions.

For any 0 < c < 1 and for all n large enough, 2n−D
√

log 2n
> 2cn . Therefore, for all large

enough n, the sequence 1, 2, . . . , 2n contains a subsequence of length 2cn that does not

contain a non-trivial 3-term arithmetic progression.

This finishes the case k = 3, and we can take C3 := 2η, for any η > 0 (as then

C3n > n+ 2 for all large enough n).

4.6. Inductive step

Assume we have an rd-formula Ek(x1, . . . , xk) as in Theorem 4.6. To complete the

inductive step it is enough to construct an rd-formula Ek+1(x1, . . . , xk+1) satisfying the

following for any N ∈ N:

Let Ea be an increasing sequence of natural numbers of length N such that Ek is robust

on Ea, and Ea does not contain an Ek-indiscernible subsequence of length n. Then there is

an increasing sequence of natural numbers Eb of length 2N such that Ek+1 is robust on Eb
and Eb does not contain an Ek+1-indiscernible subsequence of length 2n+ k− 4.

(We are then done taking Ck := 2k−3+η for all k > 3, where η > 0 was fixed in the base

case.)

Let Ea = (a1, . . . , aN ) be an increasing sequence of natural numbers such that Ek is

robust on Ea, and Ea does not contain an Ek-indiscernible sequence of length n.

Let T be a very large integer, specified later (in terms of Ea).

Consider the set

BT =

{ N∑
i=1

βi T ai : βi ∈ {0, 1}

}
.

Since T is large enough, any b ∈ BT can be written uniquely as b =
∑N

i=1 b(i)T ai with

b(i) ∈ {0, 1}. Obviously BT has size 2N and we construct the sequence EbT by taking the

increasing enumeration of BT .

For b, c ∈ BT with b 6= c, let 1(b, c) := max{i : b(i) 6= c(i)}. It is easy to see that, when

T is large enough, for b, c ∈ BT with b 6= c and i := 1(b, c) we have b < c⇔ b(i) < c(i).
It follows then that

b < c < d ∈ BT ⇒ 1(b, c) 6= 1(c, d). (4.1)

Finally for b 6= c ∈ BT let δ(b, c) := a1(b,c).
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We will now construct the step-up relation E↑k (x1, . . . , xk+1) (not definable in Rexp) on

increasing (k+ 1)-tuples of elements of BT (we do not care how it is defined on the other

elements).

Let b1 < b2 < . . . < bk+1 be elements of BT and for i = 1, . . . , k let δi := δ(bi+1, bi ).

Notice that δi is an element of Ea.

We define E↑k (b1, . . . , bk+1) to be true if and only if

Ek(δ1, . . . , δk) and δ1 < δ2 < . . . < δk,

or

Ek(δk, . . . , δ1) and δ1 > δ2 > . . . > δk,

or

δ1 < δ2 and δ2 > δ3.

Claim 4.10. The sequence EbT does not contain an E↑k -indiscernible subsequence of length

2n+ k− 4.

Proof. We repeat the Erdős–Hajnal argument (see [13, Lemma 3.1]).

Assume, toward getting a contradiction, that EbT contains an E↑k -indiscernible

subsequence c1 < c2 < · · · < c2n+k−4. Let δ′i := δ(ci+1, ci ).

Assume first that there exists j such that δ′j , δ
′

j+1, . . . , δ
′

j+n−1 is a monotone sequence.

Then by (4.1) this sequence must be strictly monotone. From the definition of E↑k it

follows then that the sequence δ′j , δ
′

j+1, . . . , δ
′

j+n−1 is Ek-indiscernible – a contradiction.

Thus neither of the sequences δ′1, . . . , δ
′
n or δ′n−1, . . . , δ

′

2n−2 is monotone. Hence each of

them contains either a local maximum, i.e., δ′j−1 < δ′j > δ′j+1, or a local minimum, i.e.,

δ′j−1 > δ′j < δ′j+1. Since between two local minima there is a local maximum and vice

versa, the sequence δ′1, . . . , δ
′

2n−2 contains both a local maximum and a local minimum.

But then, by the definition of E↑k , the sequence c1 < c2 < · · · < c2n+k−4 cannot be

E↑k -indiscernible. A contradiction.

4.6.1. Definability. Now, as in [13], for b > c we define

δ̄T (b, c) = logT (b− c).

It is not hard to see that for any fixed ε > 0, if T is large enough, then for all b > c ∈ BT
we have |δ(b, c)− logT (b− c)| < ε.

Since Ek is robust on Ea, choosing a very large integer T and considering the relation

E↑T
k (x1, . . . , xk+1) obtained from E↑k by replacing δi by δ̄T (bi+1, bi ) for all i , we obtain

that for b1, . . . , bk+1 ∈ BT with b1 < . . . < bk+1 we have E↑k (b1, . . . , bk+1) if and only if

E↑T
k (b1, . . . , bk+1). Hence EbT does not contain an E↑T

k -indiscernible subsequence of length

2n+ k− 4.

Notice that E↑T
k is definable in Rexp and for b1 < b2 < . . . < bk+1 we have that

E↑T
k (b1, . . . , bk+1) holds if and only if
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Ek(δ̄T (b2, b1), . . . , δ̄T (bk+1, bk)) and
∧k−1

i=1 δ̄T (bi+1, bi ) < δ̄T (bi+2, bi+1)

or

Ek(δ̄T (bk+1, bk), . . . , δ̄T (b2, b1)) and
∧k−1

i=1 δ̄T (bi+1, bi ) > δ̄T (bi+2, bi+1)

or

δ̄T (b2, b1) < δ̄T (b3, b2) and δ̄T (b3, b2) > δ̄T (b4, b3).

Claim 4.11. E↑T
k is equivalent to an rd-formula and does not depend on T .

Proof. By definition, E↑T
k is a Boolean combination of logT -transformations of Ek and

formulas of the form logT (y− x) > logT (u− v).
By Claim 4.5, a logT -transformation of an rd-formula is an rd-formula that does not

depend on T , and so we only need to check that logT (y− x) > logT (u− v) is equivalent

to an rd-formula that does not depend on T . Indeed, logT (y− x)− logT (u− v) > 0 is

equivalent to y−x
u−v > 1, which is an rd-formula.

Using Claim 4.11, we define Ek+1 to be E↑2
k . We can write a more explicit definition of

Ek+1. It is the disjunction of three formulas ϕ1 ∨ϕ2 ∨ϕ3, where

ϕ1 is Ek

(
log(x2− x1), . . . , log(xk+1− xk)

)
∧

k−1∧
i=1

(
xi+1− xi

xi+2− xi+1
< 1

)
,

ϕ2 is Ek

(
log(xk+1− xk), . . . , log(x2− x1)

)
∧

k−1∧
i=1

(
xi+1− xi

xi+2− xi+1
> 1

)
,

and

ϕ3 is
x2− x1

x3− x2
< 1 ∧

x3− x2

x4− x3
> 1.

It remains to show that for large enough T the relation Ek+1 is robust on EbT .

4.6.2. Robustness. It is not hard to see that since Ek is robust on Ea and

logT is continuous, both Ek(logT (x2− x1), . . . , logT (xk+1− xk)) and Ek(logT (xk+1−

xk), . . . , logT (x2− x1)) are robust on EbT , and we only need to check that all of the formulas

xi+1− xi < xi+2− xi+1 and xi+1− xi > xi+2− xi+1 are robust on EbT , i.e., for b < c < d in

BT we do not have c− b = d − c. It is easy to check that there are no such b, c, d in BT .

5. Bukh–Matousek in expansions of the p-adics

In this section we give an analog of Theorem 3.9 for relations definable in the fields of

the p-adic numbers Qp for p prime and many of their expansions. We begin by recalling

the relevant definitions and facts.

Let Lp be the Macintyre language for the p-adics [34], i.e., Lp consists of

(a) the language of rings: (0, 1,+,−, ·, −1);

(b) a unary predicate V ;

(c) a unary predicate Pn for each n ∈ N;
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with the usual interpretations in Qp: V (Qp) = Zp and Pn(Qp) = {x ∈ Qp : ∃y x = yn
}.

We will denote by Tp the complete theory T h(Qp). Given a ∈ Qp, we will write v(a) to

denote the p-adic valuation of a; note that the relation v(x) < v(y) is definable in Lp.

By a result of Macintyre (see [34]), the theory Tp eliminates quantifiers in the language

Lp. Similarly to the o-minimal case, there is a notion of minimality for expansions of

p-valued fields. Recall that a p-valued field K is a valued field of characteristic 0 with

the residue field of characteristic p, and such that O/pO has finite dimension as a vector

space over Fp, where O is the valuation ring of K.

Definition 5.1. [28] Let K be a p-valued field, viewed as a structure in the language Lp.

An expansion M of K in a language L ⊇ Lp is P-minimal if, in every model of T h(M),

every definable subset in one variable is quantifier-free definable just using the language

Lp.

Example 5.2. Important examples of P-minimal structures are given by:

(1) for each prime p, the field Qp (by Macintyre’s theorem);

(2) any finite extension of Qp [40];

(3) given a finite extension of Qp, the expansion obtained by adding a new function

symbol for every restricted analytic function [17].

Fact 5.3 [28]. Every P-minimal field K is p-adically closed, i.e., it is henselian and its

value group is elementarily equivalent to Z as an ordered group.

In particular, if the value group is Z, then K is a finite extension of Qp, hence the

residue field is finite.

In this section we will prove the following.

Theorem 5.4. Let M be a P-minimal expansion of a field, and assume that M has

definable Skolem functions and the value group of M (i.e., the value group of the

underlying p-adically closed field) is Z. Then for any formula ϕ(x1, . . . , xr ; z) ∈ L(M),

with all xi singletons, there is a constant C = C(ϕ) such that

R∗ϕ(n) 6 22Cn

for all sufficiently large n ∈ N.

It is well known that all of the structures in Example 5.2 satisfy the assumptions of

the theorem.

Given a P-minimal expansion of a field M, we will write 0M to denote its value group.

It is well known that 0M is interpretable in M.

Definition 5.5 [32, Definition 4.4]. A P-minimal structure M is uniformly polynomially

bounded if, for all definable sets X,W and every definable family of functions f : X ×W →
M , there is some n ∈ N and a definable function a : W → 0M such that for each w ∈ W
we have v( fw(x)) > nv(x) for all x ∈ X with v(x) < a(w).
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The next fact is immediate from [15, Lemma 4.3] (as their ‘Extreme Value Property’

holds in every P-minimal expansion of a field elementarily equivalent to one with the

value group Z; see the discussion in [15, p. 123]) and compactness.

Fact 5.6. Let M be a P-minimal expansion of a field elementarily equivalent to a structure

with the value group Z. Then M is uniformly polynomially bounded.

From now on, we fix a P-minimal expansion M0 of a field with the value group 0M0 =

Z and definable Skolem functions in a language L. We will denote by T the complete

theory of M0, and we also fix a large sufficiently saturated and homogeneous model

M of T . We are following the same strategy as in § 3. First we isolate some sufficiently

representative global invariant types (in the o-minimal case, working with a single type

of ‘+∞’ was sufficient).

Proposition 5.7. Let M ≺M be a small model of T and let α1, α2 ∈M be singletons with

α1 ≡∅ α2 and v(αl) > v(m) for l = 1, 2 and every m ∈ M. Then α1 ≡M α2.

Proof. Since α1 and α2 are singletons, by P-minimality, we need to show the following:

(1) p(α1) = 0 if and only if p(α2) = 0 for any polynomial p(x) ∈ M[x];

(2) |H V (p(α1)/q(α1)) if and only if |H V (p(α2)/q(α2)), for any p(x), q(x) ∈ M[x];

(3) |H Pn(p(α1)/q(α1)) if and only if |H Pn(p(α2)/q(α2)), for any n > 2 and p(x), q(x) ∈
M[x].

Now (1) holds since the assumption implies that both α1 and α2 are transcendental

over M : if p(αl) = 0 for some p(x) ∈ M[x], then, as M is a model and p(x) = 0 is

an M-definable algebraic set, necessarily αl ∈ M , but v(αl) 6> v(αl), contradicting the

assumption. And (2) is equivalent to:

v(p(α1)) > v(q(α1)) if and only if v(p(α2)) > v(q(α2)),

for any non-zero p(x), q(x) ∈ M[x]. Let p(x) = a0+ a1x + . . .+ ak xk and q(x) = b0+

b1x + . . .+ bs x s . Let i be minimal with ai 6= 0 and j be minimal with b j 6= 0. Then, for l =
1, 2 we have v(p(αl)) = v(aiα

i
l ) = v(ai )+ iv(αl), and v(q(αl)) = v(b jα

j
l ) = v(b j )+ jv(αl).

Thus v(p(αl)) > v(q(αl)) if and only if i > j , or i = j and v(ai ) > v(b j ). The latter

condition is independent of l.
Finally, we demonstrate (3). It is easy to see that |H Pn(p(αl)/q(αl)) if and only if

|H Pn(p(αl)qn−1(αl)). Thus we need to show that |H Pn(p(α1)) if and only if |H Pn(p(α2)),

for any p(x) ∈ M[x].
We will need the following fact that follows easily from henselianity of M (which holds

by Fact 5.3).

Fact 5.8. If ε ∈M satisfies v(ε) > k for all k ∈ N then for any n ∈ N the element 1+ ε
has n-th root.

Let p(x) = a0+ a1x + . . . ak xk be a non-zero polynomial over M and choose minimal

i such that ai 6= 0. Then, for l = 1, 2 we have p(αl) = aiα
i
l (1+ εl) with v(εl) > k for all
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k ∈ N, and p(αl) has n-th root if and only if aiα
i
l had n-th root. We can find bi ∈ M and

c ∈ Z such that ai = bnc. Hence aiα
i
l has n-th root if and only if cαi

l does. Since Z is in

the definable closure of ∅, we have α1 ≡Z α2 and Pn(cα1) if and only if Pn(cα2).

Lemma 5.9. Let M be a small model of T and let α ∈M satisfy v(α) > v(m) for every

m ∈ M. Then the sequence {nv(α) : n ∈ N} is cofinal in the value group of M〈α〉, where

M〈α〉 is a prime model over M ∪ {α} (i.e., M〈α〉 = dcl(M ∪ {α})).

Proof. Let γ ∈ 0M〈α〉 be arbitrary. As γ ∈ dcl(M ∪ {α}), we have that γ = v ( fm(α)) for

some ∅-definable family of functions f and some tuple m in M . Consider the ∅-definable

family of functions g : X ×M→M with X =M \ {0} given by gm(x) := 1
fm

(
1
x

) .

Let n ∈ N and the definable map a : M → 0M be given by Definition 5.5 for the family

g using Fact 5.6. Then −a(m) ∈ 0M , and so v(α) > −a(m) by assumption. Hence v
(

1
α

)
=

−v(α) < a(m) and so we have

−v( fm(α)) = v

(
1

fm(α)

)
= v

(
gm

(
1
α

))
> nv

(
1
α

)
= −nv(α).

Hence γ = v( fm(α)) < nv(α), as wanted.

Lemma 5.10. Let p ∈ S1(∅) be arbitrary.

(1) There is at most one global type p̃ ∈ S1(M) such that p̃ ⊇ p∪ {v(x) > v(m) : m ∈
M}, and p̃ is ∅-invariant.

(2) Assume p̃ as in (1) exists. Let M ≺M and α1, . . . , αn ∈M. Then (α1, . . . αn)

realizes p̃(n)|M if and only if each αi realizes p, v(α1) > v(m) for all m ∈ M and

v(αi+1) > kv(αi ) for all k ∈ N and i = 1, . . . , n− 1.

Proof. Part (1) follows from Proposition 5.7 and P-minimality.

Part (2) follows by the same argument as in Lemma 3.4 using Lemma 5.9.

Definition 5.11. For an integer n > 0 ∈ N, we say that a sequence ai , i = 1, . . . , L, of

elements of M0 is linearly n-growing if v(a0) > n and v(ai+1) > nv(ai ) for all i .

Notice that a subsequence of a linearly n-growing sequence is also linearly n-growing.

Lemma 5.12. For any finite set of formulas 1(x1, . . . , xk) with parameters from M0 there

are n ∈ N and d0 ∈ N such that any linearly n-growing sequence of elements ai ∈M0 of

length N contains a 1-indiscernible subsequence of length at least N
d0

.

Proof. Let Σ(x1, . . . , x2k) be the partial type that is the union of

Σ1 =

 ∧
16i< j62k

ϕ(xi )↔ ϕ(x j ) : ϕ(x) is an L-formula over ∅


and

Σ2 =

{
(x1 > n)∧

2k−1∧
i=1

v(xi+1) > nv(xi ) : n ∈ N

}
.
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Let (ai : 1 6 i 6 N ) be any sequence of elements in M such that all of the ai ’s have

the same type over the empty set. Assume that v(a0) > N and v(ai+1) > nv(ai ) for every

i = 1, . . . , N − 1 and n ∈ N. Then, by Lemma 5.10, the sequence (ai : 1 6 i 6 N ) realizes

p̃(N )|M0 for p = tp(a1/∅), and so is indiscernible over M0 by Fact 2.8. It follows that

Σ(x1, . . . , x2k) ` ψ(x1, . . . , xk)↔ ψ(xi1 , . . . , xik )

for any 1 6 i1 < i2 < . . . < ik 6 2k and ψ ∈ 1.

By compactness, there are finite subsets Σ0
1 ⊆ Σ1 and Σ0

2 ⊆ Σ2 such that

Σ0
1 ∪Σ

0
2 ` ψ(x1, . . . , xk)↔ ψ(xi1 , . . . , xik )

for any 1 6 i1 < i2 < . . . < ik 6 2k and ψ ∈ 1.

Let ϕ1, . . . , ϕs be all L-formulas over ∅ appearing in Σ0
1 , and let n ∈ N be maximal

such that the condition v(xi+1) > nv(xi ) appears in Σ0
2 .

Let d0 = 2s . Now any linearly n-growing sequence of length N contains a subsequence of

length at least N
d0

satisfying the same ϕ1, . . . , ϕs , and this subsequence is 1-indiscernible.

As in the o-minimal case, combining Lemma 3.1 with Lemma 5.12 we can also allow

additional parameters in 1.

Corollary 5.13. For any finite set of L-formulas 1(x1, . . . , xk; y) with parameters from

M0 there are n ∈ N and d ∈ N such that for all sufficiently large N , for any c ∈M|y|
0 ,

any linearly n-growing sequence Ea = (a1, a2, . . . , aN ) of elements from M0 contains a

1(x1, . . . , xk; c)-indiscernible subsequence of length at least N
d .

It remains to establish an analog of Fact 3.8 in the p-adic case, demonstrating that

there are ‘enough’ linearly n-growing sequences.

For elements α ∈M0 and r in the value group of M0, we will denote by B(α, r) the

closed ball in M0 of (valuational) radius r centered at α, i.e.,

B(α, r) = {a ∈M0 : v(a−α) > r}.

Remark 5.14. Since the value group 0M0 = Z is discrete by assumption, and the residue

field is Fq with q = pt for some prime p and t ∈ N by Fact 5.3, it is easy to see that

every ball B(α, r) is given by a disjoint union of q balls B(αi , r + 1), i = 0, . . . , q − 1 with

αi = α+ iβ, where β ∈M0 is arbitrary with v(β) = r .

Lemma 5.15. Let A ⊆M0 be a finite non-empty set with |A| > 2 and A ⊆ B(α, r) for

some α ∈M0 and r ∈ Z. Then there is α′ ∈ B(α, r) and r ′ > r such that 1
q |A| 6 |A∩

B(α′, r ′)| < |A|.

Proof. Let r1 ∈ Z be maximal such that some ball B(α1, r1) with α1 ∈ B(α, r) contains

A (so r1 > r). As remarked above, the ball B(α1, r1) is the union of q balls of radius

r ′ = r1+ 1. Hence for at least one of these q balls, say B(α′, r ′) with α′ ∈ B(α1, r1), we
have 1

q |A| 6 |A∩ B(α′, r ′)| < |A| (the last inequality is by maximality of r1).
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Proposition 5.16. Let k ∈ N be positive. For every finite A ⊆M0 with |A| > 2qk−1 there

is α ∈M0 and elements a1, . . . ak ∈ A such that the valuations of α− ai , i = 1, . . . , k, are

pairwise distinct.

Proof. Let A ⊆M0 be a finite set with |A| > 2qk−1. We set A0 = A, and also choose

α0 ∈M0 and r0 ∈ Z so that A ⊆ B(α0, r0).

Using Lemma 5.15, by induction on i = 1, . . . , k we construct finite sets A0 % A1 %
· · · % Ak , elements α1, . . . , αk ∈M0 and integers r1 < r2 < . . . < rk such that:

• Ai = B(αi , ri )∩ A;

• |Ai | >
1
q i |A|;

• αi ∈ B(αi−1, ri−1) for i = 1, . . . , k.

We take α = αk , and for i = 1, . . . , k we let ai ∈ Ai−1 \ Ai be arbitrary. Then ai ∈

B(α, ri−1) \ B(α, ri ), hence ri−1 6 v(α− ai ) < ri .

We will use the following combinatorial facts.

Fact 5.17 (Erdős–Szekeres Theorem [20]). For any r, s ∈ N, any sequence of pairwise

distinct real numbers of length at least (r − 1)(s− 1)+ 1 contains an increasing

subsequence of length r or a decreasing subsequence of length s.

Fact 5.18 [6, Lemma 4.1]. Given n ∈ N, every strictly increasing sequence of real numbers

of length 4n contains a subsequence (b1, . . . , bn) of length n such that either b2− b1 > 2
and bi+1− b1 > 2(bi − b1) for all i = 2, . . . , n− 1, or bn − bn−1 > 2 and bn − bn−(i+1) >
2(bn − bn−i ) for all i = 1, . . . , n− 2.

Proposition 5.19. There are finitely many functions F1(x, ȳ), . . . , Fs(x, ȳ) definable with

parameters from M0 such that for any n ∈ N there is a constant C > 0 such that for any

k ∈ N the following holds. For any K > 22Ck
and any sequence Ea = (a1, . . . , aK ) in M0

there are a linearly n-growing sequence Eb = (b1, . . . , bk) of elements in M0, c̄ ∈M|ȳ|
0 and

i ∈ {1, . . . , s} such that one of the sequences

Fi (Eb, c̄) := (Fi (b1, c̄), Fi (b2, c̄), . . . , Fi (bk, c̄))

or

Fi ( Eb, c̄) := (Fi (bk, c̄), Fi (bk−1, c̄), . . . , Fi (b1, c̄))

is a subsequence of Ea.

Proof. As usual, for a real number R we will denote by dRe the smallest integer N
satisfying N > R.

First, notice that it is sufficient to prove the proposition for n = 2. Indeed if a1, a2, . . . ,

is a linearly 2-growing sequence of length N , then for a given n, taking l = dlog2 ne, the

sequence al , a2l , . . . is a linearly n-growing sequence of length at least N
l .

Assume k is given and K > 22Ck
, where a suitable constant C will be determined in the

proof. Let a1, . . . aK be a sequence of elements of M0.
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Case 1. The sequence a1, . . . aK contains at least
√

K equal elements.

Let us call this repeated element a′. Then the conclusion of the proposition holds as

we can map any linearly 2-growing sequence of length d
√

K e onto a subsequence Ea using

the constant map F(x, a′) := a′.
Case 2. The sequence a1, . . . aK does not contain d

√
K e equal elements. Then it contains

at least K1 :=
√

K pairwise distinct elements.

Using Proposition 5.16 we can find an element α ∈M0 and a subsequence Ea1
=

(a1
1, . . . a

1
K2
) of Ea with K2 := dlogq(

1
2 K1)+ 1e such that the valuations v(α− a1

i ) are

pairwise distinct for all 1 6 i 6 K2.

Thus, using the map F(x, α) = x +α we can find a sequence Eb = (b1, . . . bK2) such that

F(Eb, α) =
(
F(b1, α), . . . , F(bK2 , α)

)
is a subsequence of Ea and all of the valuations v(bi )

are pairwise distinct.

By the Erdős–Szekeres Theorem (Fact 5.17), the sequence Eb contains a subsequence
Eb1
= (b1

1, . . . , b1
K3
) with K3 := d

√
K2e such that the corresponding sequence of valuations

(v(b1
1), . . . , v(b

1
K3
)) is either increasing or decreasing. Using the function F(x) = x−1 if

needed, we can assume that the sequence is increasing.

By Fact 5.18, there is a subsequence Eb2
= (b2

1, . . . , b2
K4
) of Eb1 with K4 := d

1
2 log2 K3e

such that either for the sequence

Ev =
(
v(b2

2)− v(b
2
1), v(b

2
3)− v(b

2
1), . . . , v(b

2
K4
)− v(b2

1)
)

we have v1 > 2, vi+1 > 2vi , or for the sequence

Ev′ =
(
v(b2

K4
)− v(b2

K4−1), v(b
2
K4
)− v(b2

K4−2), . . . , v(b
2
K4
)− v(b2

1)
)

we have v1 > 2, vi+1 > 2vi .

In the first case, the sequence Eb3
= (b2

2/b
2
1, . . . , b2

K4
/b2

1) is linearly 2-growing and can

be embedded into Eb2 via the transformation x 7→ b2
1x .

In the second case, the sequence Eb4
= (b2

K4
/b2

K4−1, . . . , b2
K4
/b2

1) is linearly 2-growing, and

its reverse sequence Eb4 can be embedded into Eb2 via the transformation x 7→ x−1/b2
K4

.

Hence we have demonstrated that every sequence of length K contains a subsequence

of length min{d
√

K e, K4} with the desired property. Going backwards through the proof

we have K3 6 4K4 , K2 6 K 2
3 , K1 6 2q K2−1 and K 6 K 2

1 . As q is fixed, an easy calculation

shows that for any sufficiently large C ∈ R, we have K 6 22C K4 for all sufficiently large

K4 ∈ N, and taking K4 = k we can conclude the result.

Combining Corollary 5.13 and Proposition 5.19 exactly as in the o-minimal case (see

Theorem 3.9), we obtain Theorem 5.4.

6. Ramsey growth in NIP

In this section we consider Ramsey numbers for definable relations of higher arity. We

fix a structure M in a language L, and by a ‘formula’ we always mean an L-formula.

Following the method of [13] for the semialgebraic case, we obtain the following recursive

bound for higher arity Ramsey numbers in arbitrary NIP structures.
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Theorem 6.1. Let M be an NIP structure, k > 3 and ϕ(x1, . . . , xk; z) a formula with

|x1| = · · · = |xk | = d. Then, defining the formula ψ(x1, . . . , xk−1; z′) := ϕ(x1, . . . , xk−1;

xk, z) and taking m := R∗ψ (n− 1), for all large enough n we have

R∗ϕ(n) 6 2Cm log m

for some constant C = C(ϕ).

Proof. We are generalizing the argument from [13, Theorem 2.2].

Let e ∈ M |z| be arbitrary, ψ(x1, . . . , xk−1; z′) = ϕ(x1, . . . , xk−1; xk, z), n ∈ N large

enough (to be determined in the proof), and m = R∗ψ (n− 1). Let Ea = (a1, . . . , aN ) be

a sequence of elements in Md with N > 2Cm log m , where C = C(ϕ) is a constant to

be specified later. We need to find a ϕ(x1, . . . , xk; e)-indiscernible subsequence of Ea of

length n.

Let E ⊆ (Md)k be the k-ary relation on Md defined by ϕ(x1, . . . , xk; e), i.e., E =
{(t1, . . . , tk) ∈ (Md)k :M |H ϕ(t1, . . . , tk; e)}.

The idea is to find a subsequence Eb = (b1, . . . , bm+1) of Ea such that for all 1 6 i1 < . . . <

ik−1 6 m, either (bi1 , . . . , bik−1 , bi ) ∈ E for all ik−1 < i 6 m+ 1 or (bi1 , . . . , bik−1 , bi ) 6∈ E
for all ik−1 < i 6 m+ 1.

To build a sequence Eb as above, we recursively choose elements br in Ea and also

subsequences Ecr of Ea for r = k− 2, k− 1, . . . ,m+ 1 with Ecr+1 ⊂ Ecr so that the following

holds.

(1) For every (k− 1)-subsequence (bi1 , . . . , bik−1) of (b1, . . . , br−1) with i1 <

. . . < ik−1, either (bi1 , . . . , bik−1 , b) ∈ E for every b ∈ {b j : ik−1 < j 6 r} ∪ Ecr or

(bi1 , . . . , bik−1 , b) /∈ E for every b ∈ {b j : ik−1 < j 6 r} ∪ Ecr .

(2) |Ecr | >
N

Cr
1rC2·r

, where C1,C2 are some constants depending just on ϕ.

(3) The subsequence (b1, . . . , br ) appears in Ea in front of the subsequence Ecr , i.e.,

(b1, . . . , br )ˆEcr is a subsequence of Ea.

We start with r = k− 2 by taking (b1, . . . , bk−2) = (a1, . . . , ak−2) and Eck−2 =

(ak−1, . . . , aN ). Assume we have obtained (b1, . . . , br ) and Ecr satisfying (1)–(3) above,

and we define br+1 and Ecr+1 as follows.

Let br+1 be the first element in Ecr and let Ec ∗r be the sequence Ecr with the first element

removed. Let θ(xk; u) be the partitioned formula obtained from ϕ(x1 . . . , xk−1, xk, z) by

partitioning its variables into two groups xk and u = x1, . . . , xk−1, z. As the formula θ is

NIP, by Fact 2.3 the number of complete θ(xk; u)-types over an arbitrary finite set D ⊆
M |z|+(k−1)d of parameters is bounded by C3|D|C4 for some constants C3,C4 depending

just on ϕ.

Let D = {(bi1 , . . . , bik−1 , e) : 1 6 i1 < . . . < ik−1 6 r + 1}. Obviously |D| 6 (r + 1)k−1.

It follows by the pigeonhole principle that there is some complete θ -type p(xk) ∈ Sθ (D)
such that the number of elements in Ec ∗r realizing p(x) is at least

|Ec ∗r |
C3|D|C4

> |Ecr |−1
C3|(r+1)|(k−1)C4

>
|Ecr |

2C3|(r+1)|(k−1)C4
, provided |Ecr | > 2.
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We take Ecr+1 to be the subsequence of elements of Ecr realizing p. For C1 = 2C3 and

C2 = (k− 1)C4 (again, both C1 and C2 only depend on ϕ), using the inductive lower

bound for the length of Ecr and calculating, we obtain |Ecr+1| >
N

C(r+1)
1 (r+1)rC2·(r+1) , i.e., (2)

is satisfied.

Now for any subsequence (bi1 , . . . , bik−1) of (b1, . . . , br+1), we have that either

(bi1 , . . . , bik−1 , b) ∈ E for all b ∈ Ecr+1 or (bi1 , . . . , bik−1 , b) /∈ E for all b ∈ Ecr+1. Together

with the inductive assumption this implies that (1) is satisfied by (b1, . . . , br+1) and Ecr+1.

Finally, (3) is clear from the construction.

For Ecm to be non-empty (in which case we would have constructed our sequence

(b1, . . . , bm+1)), by (2) we need N
Cm

1 mC2·m
> 1, i.e., N > Cm

1 mC2·m . It is not hard to find a

constant C , depending on C1,C2 only, so that the condition N > 2Cm log m is sufficient.

Remark 6.2. The constant C4 in the above proof depends just on the VC-density of ϕ

(with a corresponding partition of the variables). By Fact 2.6, in the case of o-minimal

theories we can take C4 = d.

By a repeated application of Theorem 6.1 we have an improved bound on Ramsey

numbers for relations of higher arities.

Theorem 6.3. Let M be an NIP structure, and assume that for all ψ(x1, x2; z) we have

R∗ϕ(n) 6 nc for some c = c(ψ) and all n large enough. Then for all ϕ(x1, . . . , xk; z′) we

have R∗ϕ(n) 6 twrk−1(nc) for some c = c(ϕ) and all n large enough.

Now we discuss the connection of the assumption of Theorem 6.3 with the (strong)

Erdős–Hajnal property for graphs definable in M.

Definition 6.4 [25].

(1) Let G be a class of finite graphs (i.e., the edge relation is assumed to be symmetric

and irreflexive). We say that G has the Erdős–Hajnal property, or the EH property,

if there is δ > 0 such that every G = (V, E) ∈ G has a homogeneous subset V0 of size

|V0| > |V |δ (i.e., either (a, b) ∈ E for all a 6= b ∈ V0, or (a, b) /∈ E for all a 6= b ∈ V0).

(2) Let G be a class of finite binary relations, i.e., every member of G is of the form

(E, V1, V2), where E ⊆ V1× V2 with V1, V2 finite sets (not necessarily disjoint).

We say that G has the strong EH property if there is δ > 0 such that for every

(E, V1, V2) ∈ G there are subsets V ′i ⊆ Vi with |V ′i | > δ|Vi | for i = 1, 2 such that the

pair of sets V ′1, V ′2 is homogeneous (i.e., either V ′1× V ′2 ⊆ E or V ′1× V ′2 ∩ E = ∅).

(3) A family of finite graphs G has the strong EH property if the family of finite binary

relations {(E, V, V ) : (E, V ) ∈ G} has the strong EH property.

We recall that a famous conjecture of Erdős and Hajnal [12] says that for every finite

graph H , the family of all finite graphs not containing an induced copy of H has the EH

property.
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Definition 6.5. Let M be a first-order structure, and ϕ(x1, x2; z) a formula with |x1| =

|x2| = d. Let Gϕ be the family of all finite binary relations (E, V1, V2) with V1, V2 ⊆ Md

finite and E = (V1× V2)∩ϕ(M, b) for some b ∈ M |z|. Let Gsym
ϕ be the family of all finite

graphs (V, E) with V ⊆ Md and E = (V × V )∩ϕ(M, b) \1 for some b ∈ M z such that E
is symmetric (where 1 = {(v, v) : v ∈ V } is the diagonal). We say that ϕ satisfies the EH

property (respectively strong EH property) if the family Gsym
ϕ (respectively Gϕ) does.

If this holds for all formulas ϕ in M, we say that M satisfies the (strong) EH property.

Remark 6.6. It is shown in [2] that if a family of finite graphs G has the strong EH

property and is closed under taking induced subgraphs then it has the EH property. In

particular, this applies to every family of the form Gsym
ϕ as in Definition 6.5.

Hence, M satisfies the EH property precisely when the assumption of Theorem 6.3

holds for all symmetric definable relations. By the results in [11] we know that this

property holds in arbitrary reducts of distal structures.

Definition 6.7. A structure M is distal if the following holds.

For every formula ϕ(x, y) there is a formula θ(x, y1, . . . , yn) with |y1| = · · · = |yn| = |y|
such that: for any finite B ⊆ M |y| with |B| > 2 and any a ∈ M |x |, there are b1, . . . , bn ∈ B
such that M |H θ(a, b1, . . . , bn) and for any b ∈ B, either ϕ(M, b) ⊆ θ(M, b1, . . . , bn) or

ϕ(M, b)∩ θ(M, b1, . . . , bn) = ∅.

Distality was introduced in [49], the equivalence of the original definition and the

combinatorial definition above is from [8], and the connection to combinatorics is from

[11] (see also [7]). Important examples of distal structures are given by arbitrary (weakly)

o-minimal and P-minimal structures. We refer to the introduction of [11] for a detailed

discussion of distality.

Fact 6.8 [8]. If M is a reduct of a distal structure then it satisfies the strong EH property

(and so the EH property as well, by Remark 6.6).

In the next proposition, we demonstrate that in any structure satisfying the strong

EH property, all (not necessarily symmetric) definable binary relations also satisfy a

polynomial Ramsey bound.

Proposition 6.9. Let M be a structure satisfying the strong EH property. Then for all

ϕ(x, y; z) with |x | = |y| we have R∗ϕ(n) 6 nc for some c = c(ϕ) and all n large enough.

Proof. Let d := |x | = |y|, and let E(x, y) ⊆ Md
×Md be a definable relation given by

ϕ(x, y; b) for some parameter b ∈ M |z|. We want to show that there is some real c =
c(ϕ) > 0 such that every finite sequence from Md of length n contains an E-indiscernible

subsequence of length nc. By Fact 6.8 we know that it is true in the case when E is

symmetric.

Let Ea = (a1, . . . , an) be a sequence in Md . For simplicity we will assume that all of the
ai ’s are pairwise distinct. We can always achieve it by taking a subsequence of length

√
n.
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We will also assume that |H ¬E(x, x), i.e., E is irreflexive (replacing E(x, y) by E ′(x, y) :=
E(x, y)∧ x 6= y, any E ′-indiscernible subsequence of Ea is also E-indiscernible).

Consider the relation E0(x, y) = E(x, y)∨ E(y, x). It is symmetric. Hence Ea contains

an E0-indiscernible subsequence of length nc1 , with c1 = c1(ϕ) > 0. If ¬E0(x, y) holds

on every increasing pair of elements in this subsequence then we are done. Otherwise,

replacing Ea with this subsequence, we may assume that E0(x, y) holds on Ea.

Now consider the relation E1(x, y) = E(x, y)∧ E(y, x). Again it is symmetric, so Ea
contains an E1-indiscernible subsequence of polynomial length. If E1(x, y) holds on this

subsequence then we are done. Assume otherwise, then again replacing Ea with this

subsequence we may assume that ¬E1(x, y) holds on Ea.

Let A = {ai : i ∈ {1, . . . , n}}. We have that for a 6= b ∈ A exactly one of E(a, b) or

E(b, a) holds, and we also have that ¬E(a, a) holds for all a ∈ A. Hence E is a tournament

on A.

Our goal is to show that for some A0 ⊆ A of size nc2 , with c2 = c2(ϕ) > 0, E restricted

to A0 defines a linear order. Then, by the Erdős–Szekeres Theorem (Fact 5.17), a

subsequence corresponding to A0 would contain an E-monotone subsequence of length
√
|A0| and we would be done.

For an integer m 6 n, let us denote by f (m) the maximal k such that every subset

A′ ⊆ A of size m contains a linearly ordered subset of size k. Obviously, we have f (m) > 1
for all m > 1.

Now we use the strong EH property. We know that there is 0 < α < 1, with α = α(ϕ),

such that for any B ⊆ A there are disjoint subsets B0, B1 ⊆ B with |B0|, |B1| > α|B|
that are E-homogeneous. If C0 ⊆ B0,C1 ⊆ B1 are subsets linearly ordered by E , then by

E-homogeneity C0 ∪C1 is also linearly ordered by E .

This implies that f (m) > 2 f (αm) and for any s ∈ N we get f (m) > 2s f (αsm).
Recall that |A| = n. We choose the maximal s such that αsn > 1. Up to taking the

integer part, we have

s log(α)+ log(n) > 0, i.e., we have s >
− log n
logα

.

Then we get

f (n) > 2
− log n
logα = n−

1
logα ,

and taking c := − 1
2 logα > 0 we can conclude the result.

Hence the assumption of Theorem 6.3 is satisfied in reducts of distal structures by Fact

1.11 and Proposition 6.9. As every distal structure is NIP, and every reduct of an NIP

structure is NIP, applying Theorem 6.1 we get the following.

Corollary 6.10. Let M be a reduct of a distal structure. Then for any ϕ(x1, . . . , xk; z) we

have R∗ϕ(n) 6 twrk−1(nc) for some c = c(ϕ) and all n large enough.

Note that the assumption of Theorem 6.3 is also trivially satisfied in stable structures

by Fact 1.10. We conjecture that it holds in arbitrary NIP structures.

Conjecture 6.11. If M is an NIP structure and ϕ(x1, x2; z) is a formula, then R∗ϕ(n) 6 nc

for some c = c(ϕ,M) and all sufficiently large n.
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This conjecture, in the case of a symmetric formula, is equivalent to saying that all

graphs definable in NIP structures satisfy the Erdős–Hajnal property. We refer the reader

to [9, 11] for further discussion.
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52, pp. 111–165 (Soc. Math. France, Paris, 2017).

44. S. Shelah, Classification theory and the number of nonisomorphic models, in Studies in
Logic and the Foundations of Mathematics vol. 92, 2nd edn (North-Holland Publishing
Co., Amsterdam, 1990).

45. S. Shelah, A combinatorial problem; stability and order for models and theories in
infinitary languages, Pacific J. Math. 41(1) (1972), 247–261.

46. S. Shelah, Around Classification Theory of Models, Lecture Notes in Mathematics,
Volume 1182 (Springer, Berlin, 1986). viii+279 pp.

47. S. Shelah, Classification theory for elementary classes with the dependence property—a
modest beginning, Sci. Math. Jpn. 59(2) (2004), 265–316. Special issue on set theory and
algebraic model theory.

48. S. Shelah, Strongly dependent theories, Israel J. Math. 204(1) (2014), 1–83.
49. P. Simon, Distal and non-distal NIP theories, Ann. Pure Appl. Logic 164(3) (2013),

294–318.
50. P. Simon, A Guide to NIP Theories, Lecture Notes in Logic, Volume 44 (Association

for Symbolic Logic, Chicago, IL; Cambridge Scientific Publishers, Cambridge, 2015).
vii+156 pp.

51. A. J. Wilkie, Model completeness results for expansions of the ordered field of real
numbers by restricted Pfaffian functions and the exponential function, J. Amer. Math.
Soc. 9(4) (1996), 1051–1094.


	RAMSEY GROWTH IN SOME NIP STRUCTURES
	Introduction
	Preliminaries on NIP
	Bukh–Matousek theorem in polynomially bounded o-minimal expansions of R
	Counterexample in Rexp
	Preliminaries
	Robustness
	logT-transformations
	Proof of Theorem 4.1
	The base case k=3
	Inductive step

	Bukh–Matousek in expansions of the p-adics
	Ramsey growth in NIP
	References


