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Abstract

We present a systematic study of the regularity phenomena for NIP hypergraphs and connections
to the theory of (locally) generically stable measures, providing a model-theoretic hypergraph
version of the results of Alon-Fischer-Newman and Lovász-Szegedy for graphs of bounded VC-
dimension. We also consider the two extremal cases of regularity for stable and distal hypergraphs,
improving and generalizing the corresponding results for graphs in the literature. Finally, we con-
sider a related question of the existence of large (approximately) homogeneous definable subsets of
NIP hypergraphs and provide some positive results and counterexamples, in particular for graphs
definable in the p-adics.

1. Introduction

Szemerédi’s regularity lemma is a fundamental result in (hyper-)graph combinatorics with numer-
ous applications in extremal combinatorics, number theory and computer science (see [29] for a
survey). We recall it in a simplified form. By a graph G= (V,E) we mean a set V with a symmet-
ric subset E⊆V2. For A,B⊆V, we denote by E(A,B) the set of edges between A and B, that is,
E(A,B)=E∩ (A×B). Given M ∈ N, we write [M] to denote the set {1, 2,…,M}.

Fact 1.1 (Szemerédi regularity lemma) For every real ε> 0 there exists some constant M=M(ε) ∈
N satisfying the following. Let G= (V, E) be an arbitrary finite graph. Then there is a partition
V= V1 ∪ ·· · ∪VM into disjoint sets, real numbers δij, i, j∈ [M], and an exceptional set of pairs Σ ⊆
[M]×[M] such that ∑

(i,j)∈Σ

|Vi||Vj| ≤ ε|V|2

and for each (i, j) ∈ [M]×[M] \Σ we have

| |E(A,B)| − δij|A||B| |< ε|Vi||Vj|
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for all A⊆Vi, B⊆Vj.

The bounds on M(ε) are known to be extremely bad: Gowers had demonstrated that it grows as
an exponential tower of height polynomial in ( 1ε ) (see, for example [36]).

Several recent results demonstrate that better bounds and stronger regularity can be obtained
for certain families of hypergraphs satisfying additional combinatorial restrictions. For example, in
[15, 16] it is shown that when the edge relation is semialgebraic, of bounded description complexity,
then the size of the partition can be bounded by a polynomial in terms of 1

ε , all good pairs are actually
homogeneous, and the sets in the partition can be chosen to be semialgebraic, of bounded complex-
ity. Similar polynomial bounds were obtained by Tao [52] for algebraic hypergraphs of bounded
description complexity in large finite fields and by Alon, Fischer, Newman [3] and Lovász, Szegedy
[31] for graphs of bounded VC-dimension.

These results can be naturally viewed as results about hypergraphs with the edge relation defin-
able, in the sense of first-order logic, in certain tame structures, and the restrictions on the complexity
of the edge relation in all of the results above are surprisingly well aligned with generalized stability
and classification in model theory. For example, as demonstrated in [10] (see also [48]), the results
in [15, 16] can be generalized to graphs definable in arbitrary distal structures (see Section 4.2),
and that moreover this strong form of regularity characterizes distality. Here ‘semialgebraic graphs’
correspond to the special case of ‘graphs definable in the field of reals’, but the result also applies to
graphs definable in the p-adics, for example. Similarly, the result in [52] can be viewed as a result
about graphs definable in pseudofinite fields, and admits a natural model-theoretic proof and gener-
alizations [20, 24, 39]. Another very important example is given by the regularity lemma for stable
graphs [33] (model-theoretic stability is the notion of tameness at the core of Shelah’s classifica-
tion [44], see Section 4.1). Similarly, the results in [31] can be interpreted as results about graphs
definable in NIP structures (see below).

Another point of view on the hypergraph regularity phenomenon is through the prism of prob-
ability theory. Namely, the existence of a regular partition can be viewed as a finitary version of
the existence of the conditional expectation. There are several proofs of the hypergraph regular-
ity lemma in the literature making this precise by reducing working with a family of finite graphs
to working with some kind of an analytic ‘limit object’ equipped with a probability measure (see
[14, 30, 51]).

Similarly, regularity for restricted families of graphs can be viewed as the study of (finitely addi-
tive) probability measures on certain restricted families of Boolean algebras. Such measures in the
model-theoretic setting of Boolean algebras of definable sets were introduced by Keisler [27], and
recently the study of Keisler measures has attracted a lot of attention, especially the study of generi-
cally stable measures inNIP structures [8, 25, 26, 50]. The class of NIP structures was introduced by
Shelah in his work on the classification program [44]. It contains all stable and o-minimal structures,
along with other important algebraic examples, and we refer to [2, 47] for an introduction to the area
(see also Section 3.3 for the definition and some examples). The study of Keisler measures in NIP
structures can be viewed as a model-theoretic counterpart of the Vapnik–Chervonenkis theory [54],
and generically stable measure are those Keisler measures that satisfy a form of the VC-theorem for
all uniformly definable families (see Section 3.3).

The connection between the study of generically stable measures in model theory and regularity
lemmas for definable hypergraphs was pointed out in the distal case in [10], and the aim of this article
is to systematically develop these connections for the general (local) NIP setting.
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In Section 2, we give a decomposition result for products of finitely additive probability measures
that are well-approximated by counting measures (which we call finitely approximated measures,
see Section 2.4), with and without the assumption of finite VC-dimension. Namely, assume we are
given some sets V1, . . . ,Vk equipped with Boolean algebras B1, . . . ,Bk of subsets and finitely additive
probability measures µ1, . . . ,µk on them. Let R⊆ V1 × ·· ·×Vk be an edge relation such that all of
its fibers are measurable. It then follows from the finite approximation assumption that there is a
Boolean algebra B of subsets of V1 × ·· ·×Vk extending the product Boolean algebra B1 ⊗ ·· ·⊗Bk
with R ∈ B, and such that B can be equipped with a natural product measure µ satisfying a Fubini
property (Section 2.4). Moreover, relatively to µ, the set R can be approximated by a union of boxes
(that is, sets of the form A1 × ·· ·×Ak with Ai ∈ Bi) up to measure ε, for any real ε> 0, and in the
finite VC-dimension case the number of boxes needed is polynomial in 1

ε (Theorem 2.19). On the
one hand, this can be viewed as a version of the results for graphons from [31] in a setting bet-
ter suited for the model-theoretic applications, and generalized to hypergraphs. On the other hand,
this result can also be viewed as developing elements of the local theory of generically stable mea-
sures, and refining some of the results in [26] for such measures. In our setting, instead of working
with Borel measures on the space of types, we use directly the (equivalent) theory of integration for
finitely additive measures (sometimes called the theory of charges [7]), and we give some details
for the sake of exposition. Note that we are only assuming bounded VC-dimension on R-definable
sets, and our definition of a finitely approximated measure is weaker than the definition of fim
measures in [26] (see Remark 3.7), so we have to redefine the product of finitely approximated
measures.

In Section 3, we apply these results to obtain a definable regularity lemma for hypergraphs of
bounded VC-dimension, in particular for hypergraphs definable in an NIP structure, uniformly over
all generically stable measures. For a general k-ary hypergraph (V,E) with E⊆

(V
k

)
for some k≥ 2,

with V a large finite set, the hypergraph regularity lemma [21, 37, 42] allows to represent the
characteristic function χE :

(V
k

)
→{0,1} of the hyperedge relation in the form

χE = fk−1 + · · ·+ f1 + f⊥

where: f 1 has the form
∑

i1,...,ik
αi1,...,ik

∏
jχVij (xj) for some partition V=

⋃
i≤nVi and some real num-

bers αi1,...,ik (that is, a partition of the vertices with weights αi1,...,ik indicating the density of edges on
Vi1 × ·· ·×Vik); the f j in general are sums of j-ary cylinder sets (for instance, f 2 is, roughly speaking,
the portion of χE which can be described using directed graphs, f 3 using directed 3-hypergraphs,
etc. up to k− 1); and f⊥ is the quasi-random k-ary function (representing the random determination
of which hyperedges of E are actually present). In Theorem 3.3, we show that if E has small VC-
dimension then all summands of this decomposition except for f 1 are small, hence E is approximated
by a union of boxes. More precisely, for each k, d and ε> 0, there is a bound N= Ok,d((

1
ε )

4(k−1)d2)
so that whenever (E,V) is a k-ary hypergraph with VC-dimension at most d, there is a partition of V
into N parts so that E is given, up to symmetric difference of measure < ε, by a union of boxes of the
form Vi1 × ·· ·×Vik . Moreover, each of the sets V i in the partition is E-definable, that is, given by a
Boolean combination of the fibers of E of size bounded in terms of d, k, ε.

In Section 4, we discuss regularity in two extreme opposite special cases of the NIP hypergraphs.
Namely, we generalize and improve the aforementioned stable [33, 34] and distal [10] regularity
lemmas in our setting. The (global) model-theoretic implications of these results can be summarized
as follows.
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Theorem 1.2

(1) (Corollary 3.8) LetM be an NIP structure and k≥ 2. For every definable relation E(x1, . . . , xk)
there is some c= c(E) such that for any ε> 0 and any generically stable Keisler measures µi
on M|xi| there are partitions M|xi| =

⋃
j<KAi,j and a set Σ⊆ {1, . . . ,K}k such that:

(a) K≤
(
1
ε

)c
.

(b) µ
(⋃

(i1,...,ik)∈ΣA1,i1 × ·· ·×Ak,ik
)
≤ ε, where µ= µ1 ⊗ ·· ·⊗µk,

(c) for all i⃗= (i1, . . . , ik) /∈ Σ we have∣∣µ(E∩ (A1,i1 × ·· ·×Ak,ik))− δ⃗iµ(A1,i1 × ·· ·×Ak,ik)
∣∣< εµ(A1,i1 × ·· ·×Ak,ik)

for some δ⃗i ∈ {0,1}.
(d) each Ai,j is defined by an instance of an E-formula depending only on E and ε.

(2) (Corollary 4.14) Assume thatM is stable. Then, in addition:
(a) we can take the µi’s to be arbitrary Keisler measures (as all measures are automatically

generically stable in this case),
(b) we may assume that Σ= ∅, that is, all tuples in the partition are ε-regular.

(3) (Theorem 4.16) Assume thatM is distal. Then in addition we have:
(a) for all (i1, . . . , ik) /∈ Σ, either (A1,i1 × ·· ·×Ak,ik)∩E= ∅ or A1,i1 × ·· ·×Ak,ik ⊆ E,
(b) if the relation E is defined by an instance of a formula θ, then we can take each Ai,j to be

defined by an instance of a formula ψi (xi, zi) which only depends on θ (and not on ε).

Finally, in Section 5, we consider a related question of the existence of large (approximately)
homogeneous definable subsets of definable NIP hypergraphs (that is, the measure theoretic ver-
sions of the results of Erdös, Hajnal and Rödl, see, for example [19]). As a corollary of the
regularity lemma, we show that for every d and α, ε> 0 there is some δ= δ(d,α, ε) > 0 such that
the following holds. Let a hypergraph R⊆ V1 × ·· ·×Vk of VC-dimension at most d be given, and
let µi be measures on V i which are all finitely approximated on R. Assume that the density of R
on V1 × ·· ·×Vk (relatively to the product measure) is at least α. Then it is possible to find R-
definable sets Ai ⊆ Vi such that µi(Ai)≥ δ and such that the density of R on A1 × ·· ·×Ak is at least
1− ε (Theorem 5.1). The situation is quite different in the non-partitioned case. Namely, when
V= V1 = · · ·= Vk, µ= µ1 = · · ·= µk and R is a symmetric relation, we would like to find a defin-
able subset A of V of positive measure, such that the density of R on A is ε-close to 0 or 1 (the result
above applied to this situation would typically produce disjoint sets A1, . . . ,Ak). A classical theorem
of Rödl (see Fact 5.4) implies that this is indeed possible for pseudofinite counting measures, with
all internal sets added to the language. We provide an example of a definable graph in the p-adics
which does not admit uniformly definable sets of positive measure with this property, relatively to
the additive Haar measure (Section 5.2.1) (hence demonstrating that an analogue of Rödl’s theorem
does not hold for finitely approximated measures in general).

1.1. Related work

The results of this paper originally appeared in a July 2016 preprint [9]. In a preprint [17] from
October 2017 (which has later appeared as [18]), its authors obtain a stronger bound on the size of the
partition for hypergraph regularity with finite VC-dimension in the case of uniformmeasures on finite
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spaces (corresponding to Corollary 3.6) and demonstrate its optimality. Independently from our work
in the present paper, in a preprint [1] its authors obtain a version of the stable case of Theorem 1.2 for
finite hypergraphs (and more generally, finite relational structures). The NIP hypergraph regularity
lemma is further generalized to n-dependent hypergraphs in [11].

Recall that a partition is equitable if any two sets in it have the same measure (possibly up to a
rounding error). We remark that it is not always possible to choose an E-definable equipartition with
the additional properties discussed above in the NIP, stable and distal cases. However, restricting to
finite hypergraphs with uniform finitely supported measures and giving up definability, this can be
achieved in each of the three cases. See [18] for the finite VC-dimension/NIP hypergraphs; [33] for
stable graphs and [1] for stable hypergraphs and [10, Section 5.3] (along with [48, Section 3]) for
distal hypergraphs (where in fact a definable equitable partition can be chosen in many cases).

1.2. Notation

Given r, s,δ ∈ R with δ≥ 0, we write r≈δ s if |r− s| ≤ δ.

2. Decomposing product measures

In this section, we present some general results on decomposing products of finitely additive
probability measures that can be locally approximated by frequency measures.

2.1. Notation

We will use the following notation:

• For k ∈ N, we will denote by [k] the set {1, . . . , k}.
• For an integer k and I⊆ [k], we will denote by Ic the complement Ic = [k] \ I. For i∈ [k] instead
of {i}c we write ic.

• For sets V1, . . . ,Vk and I⊆ [k], we denote by V I the product VI =
∏

i∈IVi.
• Let R⊆ V1×·· ·×Vk be a k-ary relation and I⊆ [k]. Viewing R as a binary relation on VI×VI c , for
b ∈ VI c we denote by Rb the fiber

Rb = {a ∈ VI : (a,b) ∈ R}.

Definition 2.1 Let V1, . . . ,Vk be sets, R⊆ V1×·· ·×Vk and I⊆ [k].

(1) We say that a subset X⊆V I isR-definable over a set D⊆ VI c if it is a finite Boolean combination
of sets of the form Rb with b∈D, and say that X is R-definable if it is R-definable over VI c .

(2) We say that a set A⊆ V1×·· ·×Vk is R⊗-definable if A can be written as a finite union of sets
of the form X1×·· ·×Xk, such that each Xi ⊆ Vi is R-definable.

(3) In addition, given a tuple D⃗= (D1, . . . ,Dk) with Di ⊆ VI c , we say that A is R⊗-definable
over D⃗ if every Xi above is R-definable over Di. Note that the subsets of V1 × ·· ·×Vk
which are R⊗-definable over D⃗ form a Boolean algebra. For such a tuple D⃗, we define
∥D⃗∥ :=max{|Di| : i ∈ [k]}.

We recall the notion of VC-dimension (see, for example [35, Chapter 10]). Let V be a set, finite
or infinite, and let F be a family of subsets of V. Given A⊆V, we say that it is shattered by F if
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for every A′ ⊆ A there is some S ∈ F such that A∩ S= A′. The VC-dimension of F , that we will
denote by VC(F), is the smallest integer d such that no subset of V of size d+ 1 is shattered by
F . For a set B⊆V, let F ∩B= {A∩B : A ∈ F}. The shatter function of F is defined as πF (n) =
max{|F ∩B| : B⊆ V, |B|= n}.

Fact 2.2 (Sauer–Shelah lemma) If VC(F)≤ d then for n≥ d we have πF (n)≤
∑

i≤d

(n
i

)
= O

(
nd
)
.

Definition 2.3 For sets V1, . . . ,Vk and a set R⊆ V1×·· ·×Vk we say that R has VC-dimension at
most d if for every i∈ [k] the family {Ra : a ∈ V[k]\{i}} of subsets ofV i is a family with VC-dimension
at most d.

The next fact follows from the Sauer–Shelah lemma.

Fact 2.4 For every d ∈ N there is a constant Cd such that for any relation R⊆V×W of VC-
dimension at most d and any finite D⊆V, the number of atoms in the Boolean algebra of subsets of
W which are R-definable over D is at most Cd|D|d.

2.2. Basics on Boolean algebras and measures

Recall that for a set V, a field on V is a Boolean algebra of subsets of V.
For sets V1, . . . ,Vk and fields Bi on V i, i∈ [k], as usual, we denote by B1⊗·· ·⊗Bk the field on

V1×·· ·×Vk generated by the sets X1×·· ·×Xk with Xi ∈ Bi. It is not hard to see that every set in
B1⊗·· ·⊗Bk is a disjoint union of sets of the form X1×·· ·×Xk with Xi ∈ Bi. Given I= {i1, . . . , in} ⊆
[k], we let BI :=

⊗
i∈IBi = Bi1 ⊗ ·· ·⊗Bin .

Finitely additive probability measures

Definition 2.5 Let V be a set and B be a field on V. In this paper, a measure on B is a finitely
additive probability measure on B, that is, a function µ : B → R≥0 such that µ(∅) = 0, µ(V)= 1 and
µ(A∪B) = µ(A)+µ(B)−µ(A∩B) for all A,B ∈ B.

Let V1, . . . ,Vk be sets and Bi be fields on V i, i∈ [k]. Assume we have a measure µi on Bi for each
i∈ [k]. It is not hard to see that there is a unique measure µ on B1⊗·· ·⊗Bk with µ(A1×·· ·×Ak) =∏k

i=1µi(Ai) for all Ai ∈ Bi, i∈ [k]. We will denote this measure µ by µ1×·· ·×µk.

Integration with respect to finitely additive measures
We will need some basic facts about integration relatively to finitely additive measures (we refer to
[7] for a detailed account).

As usual for a set V and a subset X⊆V we will denote by 1X the indicator function of X on V.
We fix a set V and a field B on V.
We say that a function f : V→ R is B-simple if there are X1, . . . ,Xn ∈ B and r1, . . . , rn ∈ R with

f=
∑n

i=1 ri1Xi . Obviously, the set of all B-simple functions forms an R-algebra.
For a measure µ on B and a B-simple function f=

∑n
i=1 ri1Xi we define∫

V
fdµ=

n∑
i=1

riµ(Xi).
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It is easy to see that the above integral does not depend on a representation of f as a simple function.
If a subset A⊆V is in B then we also define

∫
A
fdµ=

∫
V
(1A f)dµ=

n∑
i=1

riµ(A∩Xi).

Remark 2.6 Clearly for A ∈ B we have µ(A) =
∫
V 1A dµ.

We say that a function f : V→ R is B-integrable, or just integrable, if it is in the closure of the set
of B-simple functions with respect to the L∞-norm, that is, for all ε> 0 there is a B-simple function
g with | f(x)− g(x)|< ε for all x∈V. The following claim is obvious.

Claim 2.7 A function f : V→ R is B-integrable if and only if for any ε> 0 there are Y1, . . . ,Yn ∈ B
covering V such that for any i∈ [n] and any c,c′ ∈ Yi we have | f(c)− f(c′)|< ε.

If f is B-integrable and µ is a measure on B then the integral of f with respect to µ is defined as∫
V
fdµ= lim

n→∞

∫
V
gn dµ,

where (gn)n∈N is a sequence of B-simple functions convergent to f. It is easy to see that this integral
does not depend on the choice of a convergent sequence. Also for a B-integrable function f and a set
A ∈ B we define ∫

A
fdµ=

∫
V
(1A f)dµ.

2.3. On ε-nets

Let V be a set, B a field on V and µ a measure on B. Let F be a family of subsets of V with F ⊆ B.
As usual, for ε> 0 we say that a subset T ⊆V is an ε-net for F with respect to µ if for every F ∈ F
we have µ(F)≥ ε=⇒ F∩T ̸= ∅.

The following is a well-known consequence of the classical VC-theorem (see [54, 28] and also
[31]).

Fact 2.8 Let V be a set, B a field on V and µ a measure on B with a finite support (that is, there
exists a finite set A ∈ B with µ(A)= 1). If F ⊆ B is a VC-family with VC-dimension at most d then
for any ε> 0 it admits an ε-net T with |T| ≤ 8d 1

ε log
1
ε .

2.4. Finitely approximated measures

Throughout this section we let V be a set and BV a field on V.

Definition 2.9 Let µ be a measure on BV, and let F ⊆ BV be a family of subsets of V. We say that
µ is finitely approximated on the family F if for every ε> 0 there are p1, . . . ,pn ∈ V (possibly with
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repetitions) with

|µ(F)−Av(p1, . . . ,pn;F)|< ε for every F ∈ F ,

where Av(p1, . . . ,pn;F) = 1
n

∣∣{i ∈ [n] : pi ∈ F}
∣∣. We say that p1, . . . ,pn is an ε-approximation of

µ on F .

Notation
Let F be a family of subsets of V. For m ∈ N, we let Fm be the family of all subsets of V given by
the Boolean combinations of at most m sets from F .

Definition 2.10 Let now W be another set, and let R⊆V ×W be a relation such that Rb ∈ BV for
all b∈W.

(1) Let RV := {Rb : b ∈W}, then RV ⊆ BV by assumption.
(2) We say that a measure µ on BV is finitely approximated on the relation R if it is finitely

approximated on each of the (infinitely many) families of setsRm
V , m ∈ N.

Remark 2.11

(1) In particular, if µ is finitely approximated on the relation R, then it is finitely approximated on
the family of sets R∆

V = {Rb∆Rb′ : b,b′ ∈W}.
(2) Note that µ being finitely approximated on R∆

V does not imply that µ is finitely approximated
on RV. For example, let V= R, let BV be the Boolean algebra generated by all intervals in V,
and let RV be the family of all intervals unbounded from above. Let µ be the 0–1 measure on
BV such that the measure of a set is 1 if and only if it is unbounded from above. Then all sets in
R∆
V have measure 0, so we can take the empty set as an ε-approximation for µ onR∆

V , for any
ε> 0. But there are no finite ε-approximations for µ on RV, for any ε< 1, as any finite set can
be avoided by some unbounded interval of measure 1.
Similarly, if RV is the family of all intervals bounded from above, then µ is trivially finitely
approximated onRV. However, it is not finitely approximated on the family of all complements
of the sets in RV.

See Example 3.11 for many examples of finitely approximated measures.

Claim 2.12 Let R⊆V×W be as in Definition 2.10, µ a measure on BV, and let BW be a Boolean
algebra on W such that Ra ∈ BW for all a∈V.
Assume that µ is finitely approximated on the familyR∆

V . Then for any set A ∈ BV, the function

hR,A :W→ R,given by hR,A(b) = µ(Rb ∩A)

is BW-integrable.
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Proof. Let ε> 0. By assumption we can choose p1, . . . ,pn ∈ V such that

|µ(Rb∆Rb′)−Av(p1, . . . ,pn;Rb∆Rb′)|< ε

for every b,b′ ∈W. For I⊆ [n] let CI⊆W be the set

CI = {b ∈W : pi ∈ Rb ⇔ i ∈ I}.

Clearly each CI ∈ BW, the sets CI , I⊆ [n], cover W and for every I⊆ [n] and b,b′ ∈ CI we have
µ(Rb∆Rb′)< ε. Hence, for any b,b′ ∈ CI we have

|hR,A(b)− hR,A(b
′)| ≤ µ(A∩ (Rb∆Rb′))≤ µ(Rb∆Rb′)< ε.

By Claim 2.7 the function hR,A is BW-integrable. □

2.5. Products of finitely approximated measures

In this section, we let V,W,Z be sets, R⊆V ×W ×Z a relation, and let BV,BW be fields on
V,W, respectively. We assume that RV = {R(b,c) : (b,c) ∈W×Z}⊆ BV and RW = {R(a,c) : (a,c) ∈
V×Z} ⊆ BW. Let µ be a measure on BV and ν a measure on BW.

Under the above assumptions, we will denote by BV×W[R] the field on V ×W generated by BV⊗
BW and the sets Rc, c∈Z. Notice that BV×W[R] contains all R-definable subsets of V ×W.

Given measures µ and ν on BV and BW, respectively, in general there are many different measures
on BV×W[R] extending the product measure µ× ν. In this section, in the case when at least one of µ,
ν is finitely approximated, we construct a certain canonical measure extending µ× ν.

Let, for example, µ be a measure on BV that is finitely approximated on the relation
R⊆V × (W ×Z). By Claim 2.12, if E is an arbitrary R-definable subset of V ×W and A ∈ BV,B ∈
BW, then the function hE,A : B→ R, given by hE,A(b) = µ(A∩Eb) =

∫
A 1E(x,b)dµ, is BW-integrable.

Hence the double integral ∫
B

(∫
A
1E(x,y)dµ

)
dν

is well defined for any A ∈ BV,B ∈ BW.
Similarly, if ν is a measure on BU that is finitely approximated on the relation R viewed as a

relation on W × (V ×Z), then for any A ∈ BV,B ∈ BW the double integral∫
A

(∫
B
1E(x,y)dν

)
dµ

is well defined as well.

Proposition 2.13

(1) Let µ be a measure on BV that is finitely approximated on the relation R⊆V× (W×Z).
There is a unique measure ω on BV×W[R] whose restriction to BV⊗BW is µ×ν and such that
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ω(E∩ (A×B)) =
∫
B

∫
A 1E(x,y)dµdν for every R-definable E⊆V×W, A ∈ BV,B ∈ BW. We

denote this measure by µ⋉ν.
(2) If ν is a measure on BW that is finitely approximated on the relation R⊆W× (V×Z), then

there is a unique measure, denoted by µ⋊ ν, on BV×W[R] such that µ⋊ ν(E∩ (A×B)) =∫
A

∫
B 1E(x,y)dνdµ for every R-definable E⊆V×W, A ∈ BV,B ∈ BW.

(3) Ifµ and ν are measures onBV andBW, respectively, both finitely approximated on the relation R,
then µ⋉ν is also finitely approximated on the relation R⊆ (V×W)×Z and µ⋉ν(E) = ν⋉µ(E)
for any R-definable E⊆U×V.

Proof. (1) It is easy to see that every set Y in BV×W[R] is a finite disjoint union of sets of the form
Ei ∩ (Ai×Bi) where Ei⊆V ×W is R-definable and Ai ∈ BV,Bi ∈ BW. We define

ω(Y) =
∑
i

∫
Bi

∫
Ai

1Ei(x,y)dµdν.

It is easy to check that ω is well defined and is a finitely additive probability measure on BV×W[R]
satisfying the requirements. Uniqueness is straightforward from the definition of ω.

(2) is identical to (1).
(3) Given m ∈ N and viewing R as a binary relation on (V ×W)×Z, we must show that µ⋉ ν

is finitely approximated on the family Rm
V×W (see Definition 2.10). Notice that for any R-definable

E ∈Rm
V×W and a∈V, b∈W, we have Ea ∈Rm

W and Eb ∈Rm
V (for R viewed as the corresponding

binary relation).
Fix an arbitrary ε> 0. Let p1, . . .pn ∈ V be such that µ(F)≈ε Av(p1, . . . ,pn;F) for all F ∈Rm

V ,
and let q1, . . . ,qm ∈W be such that ν (F′)≈ε Av(q1, . . . ,qm;F′) for all F′ ∈Rm

W.
We claim that the set {(pi,qj) : 1≤ i< n,1≤ j< m} gives a 2ε-approximation for µ⋉ ν on

Rm
V×W. Let E ∈Rm

V×W. Using linearity of integration, we have

µ⋉ ν (E) =
∫
W

(∫
V
1E (v,w) dµ

)
dν

≈ε

∫
W

(
1
n

n∑
i=1

1Ew (pi)

)
dν =

1
n

n∑
i=1

(∫
W
1Ew (pi)dν

)

=
1
n

n∑
i=1

(∫
W
1Epi (w)dν

)
≈ε 1

n

n∑
i=1

 1
m

m∑
j=1

1Epi (qj)


=

1
nm

∑
1≤i≤n,1≤j≤m

1E (pi,qj) ,

so µ⋉ ν (E)≈2ε Av({(pi,qj) : 1≤ i≤ n,1≤ j≤ m} ;E).
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The fact that µ⋉ν(E) = ν⋉µ(E) follows since, by the above, for any ε> 0 we have

µ⋉ ν (E)≈2ε 1
n

n∑
i=1

 1
m

m∑
j=1

1Epi (qj)


=

1
m

m∑
j=1

(
1
n

n∑
i=1

1Eqj (pi)

)
≈ε 1

m

m∑
j=1

(∫
V
1Eqj (v) dµ

)

=

∫
V

 1
m

m∑
j=1

1Ev (qj)

dµ≈ε

∫
V

(∫
W
1E (v,w)dν

)
dµ

= ν⋉µ(E) ,

hence µ⋉ν(E)≈4ε ν⋉µ(E) for an arbitrary ε> 0. □

Remark 2.14 If R⊆U×V is a relation, then everything above can be applied to R by viewing it as
R⊆V ×U×Z, where Z is any one-element set.

It is not hard to see that a product of finitely approximated measures satisfies the following weak
Fubini property.

Lemma 2.15 Let R⊆V×U. Let µ be a measure on BV which is finitely approximated on the relation
R⊆V×U, and let ν be a measure onBV. For any ε> 0, if µ(Ra)< ε for all a∈V then (µ⋉ν)(R)< ε.

We extend products of finitely approximated measures to an arbitrary number of sets.

Definition 2.16 Given k ∈ N, we say that (R;Vi,Bi,µi : 1≤ i≤ k) is a compatible finitely approx-
imated system if for all i we have:

(1) R⊆ V1 × . . .Vk,
(2) Bi is a field on V i,
(3) µi is a measure on Bi,
(4) Ra ∈ Bi for each a ∈ Vic ,
(5) µi is finitely approximated on the relation R (viewed as a binary relation on Vi×VI c).

Definition 2.17 Assume that (R;Vi,Bi,µi : 1≤ i≤ k) is a compatible finitely approximated sys-
tem. By induction on 2≤ n≤ k we define the field B1 × ·· ·×Bn on V1 × ·· ·×Vn and the measure
µ1⋉ · · ·⋉µn on B1 × ·· ·×Bn as follows.

On the induction step n+ 1, we set V= V1 × ·· ·×Vn, W =Vn+ 1, Z= Vn+2 × ·· ·×Vk.
Viewing R as R⊆V ×W ×Z, we set B1 × ·· ·×Bn+1 = BU×V[R], and µ1⋉ · · ·⋉µn+1 :=
(µ1⋉ · · ·⋉µn)⋉µn+1.

Note that in particular R ∈ B1 × ·· ·×Bk and E ∈ B1 × ·· ·×Bk for every R⊗-definable E⊆ V1 ×
. . .×Vk.
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2.6. Approximations by rectangular sets

Proposition 2.18 Let V,W be sets, R⊆V×W a subset, µ a measure on V which is finitely approxi-
mated on the relation R. Then for any ε> 0 there are R-definable subsets X1, . . . ,Xm ⊆Wpartitioning
W such that for every i∈ [m] and any a,a′ ∈ Xi we have µ(Ra∆Ra′)< ε.
In addition, if the familyR= {Ra : a ∈W} has VC-dimension at most d then we can choose D⊆V

of size at most 320d
(
1
ε )

2 such that every Xi is an atom in the Boolean algebra of sets R-definable

over D, and m≤ Cd(320d)d
(
1
ε

)2d
for some constant Cd depending only on d.

Proof. LetR∆ = {Ra∆Ra′ : a,a′ ∈W}. Sinceµ is finitely approximated onR, there are p1, . . .pn ∈ V
with |µ(F)−Av(p1, . . . ,pn;F)|< ε for any F ∈R∆.

For each I⊆ [n] let XI = {a ∈W : pi ∈ Ra ⇔ i ∈ I}. It is easy to see that the sets XI , I⊆ [n]
partition W, every XI is R-definable and for every I⊆ [n] and a,a′ ∈ XI we have µ(Ra∆R′

a)< ε.
Assume in addition that R is a VC-family with VC-dimension at most d. As above we choose

p1, . . .pn ∈ V with

|µ(F)−Av(p1, . . . ,pn;F)|< ε/2

for any F ∈R∆.
Let ω be a measure on BV given by ω(X) = Av(p1, . . . ,pn;X). SinceR has VC-dimension at most

d, the familyR∆ had dimension at most 10d (see [31, Lemma 4.5]), and by Fact 2.8 we can choose
an ε/2-net D forR∆ and ω with |D| ≤ 80d 2

ε log
2
ε . Clearly

80d 2
ε log

2
ε ≤ 80d

(
2
ε

)2
= 320d

(
1
ε )

2.

For each I⊆D let XI = {a ∈W : Ra ∩D= I}. It is easy to see that the sets XI , I⊆D, parti-
tion W and every XI is an atom in the Boolean algebra of all sets R-definable over D. Let I⊆D
and a,a′ ∈ XI. Then Ra ∩D= Ra′ ∩D, hence ω(Ra∆Ra′)≤ ε/2, and µ(Ra∆Ra′)< ε. Finally, by

Fact 2.4, the number of different atoms XI’s is at most Cd|D|d ≤ Cd(320d)d
(
1
ε

)2d
. □

Theorem 2.19 Let (R;Vi,Bi,µi : 1≤ i≤ k) be a compatible finitely approximated system. Then for
every ε> 0 there is an R⊗-definable A⊆ V1×·· ·×Vk with

(µ1⋉ · · ·⋉µk)(R∆A)< ε.

In addition, if R has VC-dimension at most d (see Definition 2.3) then we can choose A to be

R⊗-definable over some D⃗ with ∥D⃗∥ ≤ Ck,d
(
1
ε

)2(k−1)d
, where Ck,d is a constant that depends on k

and d only.

Proof. We proceed by induction on k.
The case k= 2. Let V1,V2 and R⊆ V1×V2 be given. Using Proposition 2.18, we can find R-definable
sets X1, . . .Xm partitioning V2 such that for every i∈ [m] and any a,a′ ∈ Xi we have µ1(Ra∆Ra′)< ε.

For each i∈ [m] we pick ai ∈ Xi and let A=
⋃
i∈[m]Rai ×Xi. Obviously A is R⊗-definable.

It is not hard to see that for every a∈V2 we have µ1(Ra∆Aa)< ε, hence, by Lemma 2.15,
(µ1⋉ν2)(R∆A)< ε.
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Assume in addition that R has VC-dimension at most d. Then by Proposition 2.18, we can
assume that for some D2 ⊆ V1 with |D2| ≤ 320d

(
1
ε )

2 every Xi is an R-definable atom over D2 and
m≤ Cd(320d)d( 1ε )

2d. Let D1 = {a1, . . . ,am}, and D⃗= (D1,D2). Obviously A is R⊗-definable over
D⃗ and we can take C2,d = Cd(320d)d.

Inductive step k+ 1. Let V1, . . . ,Vk+1 and R⊆ V1×·· ·×Vk+1 be given.
Viewing V1×·· ·×Vk+1 as V[k]×Vk+1 and using the case of k= 2 we obtain R-definable X1, . . .Xm

partitioning Vk+ 1 and points ai ∈ Xi, i∈ [m], such that for the set A′ =
⋃
i∈[m]Rai ×Xi we have

(µ1⋉ · · ·⋉µk+1)(R∆A′)< ε/2.
For each i∈ [m] let Ri = Rai . It is an R-definable subset of V1×·· ·×Vk. Applying

induction hypothesis to each Ri we obtain Ri⊗-definable sets Ai ⊆ V1×·· ·×Vk such that
(µ1⋉ · · ·⋉µk)(Ri∆Ai)< ε/2. Let A=

⋃
i∈[m]Ai×Xi. It is an R⊗-definable set and using Proposition

2.13 and Lemma 2.15, it is not hard to see that

(µ1⋉ · · ·⋉µk+1)(A
′∆A)< ε/2,

hence (µ1⋉ · · ·⋉µk+1)(R∆A)< ε, as required.
Assume in addition that R has VC-dimension at most d. As in the case k= 2 we can assume that

every Xi is R-definable over Dk+1 ⊆ V1 × ·· ·×Vk with |Dk+1| ≤ 320d( 2ε )
2 and also assume that

m≤ Cd|Dk+1|d ≤ Cd
[
320d

(
2
ε

)2]d
= Cd(1280d)

d
(
1
ε

)2d
.

It is easy to see that each Ri has VC-dimension at most d. Applying induction hypotheses we can
assume that each Ai above is Ri⊗-definable over D⃗

i = (Di
1, . . .D

i
k) with ∥D⃗i∥ ≤ Ck,d( 2ε )

2(k−1)d, where
Di
j ⊆
∏

l∈[k]\{j}Vl.

For each i∈ [m] and j∈ [k] let D̄i
j = {(c,ai) : c ∈ Di

j}, Dj =
⋃
i∈[m] D̄

i
j, and D⃗= (D1, . . . ,Dk+1).

It is not hard to see that A above is R⊗-definable over D⃗ and

∥D⃗∥ ≤ mCk,d
(
2
ε

)2(k−1)d ≤ Cd(1280d)
d
(
1
ε

)2d
Ck,d2

2(k−1)d
(
1
ε

)2(k−1)d
= Ck+1,d(

1
ε )

2kd.

□

3. Definable regularity lemma for hypergraphs of bounded VC dimension

In this section, we apply the product measure decomposition results from Section 2 to regularity of
definable hypergraphs. Our goal is to prove a stronger version of Fact 1.1 for hypergraphs of bounded
VC-dimension.

3.1. Regularity lemmas for hypergraphs

In this paper, a k-hypergraph G= (V1, . . . ,Vk;R) consists of sets V1, . . . ,Vk and a subset R⊆
V1×·· ·×Vk. We do not assume that the sets V i, i∈ [k] are pairwise distinct.
A k-uniform hypergraph G= (V;R) is a set V with a symmetric subset R⊆Vk. Of course, every

k-uniform hypergraph G= (V;R) can be also viewed as a k-hypergraph (V, . . . ,V;R) that we will
denote by G̃.



14 A. CHERNIKOV AND S. STARCHENKO

For a k-hypergraph G= (V1, . . . ,Vk;R) and A1 ⊆ V1, . . . ,Ak ⊆ Vk, we let R(A1, . . . ,Ak) := R∩
A1×·· ·×Ak.

Let G= (V1, . . . ,Vk;R) be a k-hypergraph. By a rectangular partition of G, we mean a k-
tuple P⃗ = (P1, . . . ,Pk) where each Pi is a finite partition of V i. For a rectangular partition P⃗ =

(P1, . . . ,Pk), we define ∥P⃗∥=max{|Pi| : i ∈ [k]}, and for a set X⊆ V1×·· ·×Vk we write X ∈ P⃗ if
X= X1×·· ·×Xk for some Xi ∈ Pi, i ∈ [k]. We will also write Σ⊆ P⃗ to indicate that Σ consists of
subsets X⊆ V1×·· ·×Vk with X ∈ P⃗ .

We say that P⃗ is R-definable if each Pi consists of R-definable sets. For a tuple D⃗= (D1, . . . ,Dk)

as in Definition 2.1 we say that P⃗ is R-definable over D⃗ if for each i∈ [k] every X ∈ Pi is R-definable
over Di.

A k-hypergraph G= (V1, . . . ,Vk;R) has VC-dimension at most d if R has VC-dimension at most
d in the sense of Definition 2.3. A k-uniform hypergraph G= (V;R) has VC-dimension at most d if
the corresponding k-hypergraph G̃ is NIP with VC-dimension at most d.

Definition 3.1 Let (R;Vi,Bi,µi : 1≤ i≤ k) be a compatible finitely approximated system. Let
µ := µ1⋉ · · ·⋉µk. Given ε> 0, we say that an R-definable rectangular partition P⃗ of V1×·· ·×Vk is
ε-regular with 0-1-densities if there is Σ⊆ P⃗ such that∑

X∈Σ

µ(X)≤ ε,

and for every X1×·· ·×Xk ∈ P⃗ \Σ either

µ(X1×·· ·×Xk)−µ(R(X1, . . . ,Xk))< εµ(X1 × ·· ·×Xk)

or

µ(R(X1, . . . ,Xk))< εµ(X1 × ·· ·×Xk).

Remark 3.2 Note that in Fact 1.1 the condition on the density of the edges is stated not just for the
sets of the form Vi×Vj with Vi,Vj from the partition, but also for arbitrary sets of the form A×B
with A⊆ Vi,B⊆ Vj. However, in the case of regular partitions with 0-1-densities this strengthening
follows for free: if, as in Definition 3.1, we have |µ(X1×·· ·×Xk)− δµ(R(X1, . . . ,Xk))|< εµ(X1 ×
·· ·×Xk) for some δ ∈ {0, 1}, then for arbitrary sets Yi ⊆ Xi with Yi ∈ Bi for i∈ [k] we also have
|µ(Y1×·· ·×Yk)− δµ(R(Y1, . . . ,Yk))|< εµ(X1 × ·· ·×Xk).

The next theorem demonstrates how existence of an approximation by rectangular sets for the
product measure proved in Section 2 can be used to obtain a regular partition.

Theorem 3.3 Let (R;Vi,Bi,µi : 1≤ i≤ k) be a compatible finitely approximated system and
µ= µ1⋉ · · ·⋉µk. Then for any ε> 0 there is an R-definable ε-regular partition P⃗ with 0-1-densities.
In addition, if R is NIP with VC dimension at most d we can choose P⃗ with ∥P⃗∥ ≤

Cd(Ck,d)d
(
1
ε

)4(k−1)d2
, where Cd and Ck,d are the constants from Fact 2.4 and Theorem 2.19.

Proof. Using Theorem 2.19, there is a set A which is R⊗-definable over some finite set D⃗=
(D1, . . . ,Dk) and µ(A∆R) < ε2. Say A= ∪j∈[m]A

j
1×·· ·×Ajk where each A

j
i ⊆ Vi is R-definable.
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For each i∈ [k], let Pi be the set of all atoms in the Boolean algebra generated by all R-definable
over Di subsets of V i; so each Pi consists of R-definable sets partitioning V i. We claim that P⃗ is
ε-regular with 0−1-densities.

Let

Σ := {X ∈ P⃗ : µ(X∩ (A∆R))≥ εµ(X)}.

Since µ(A∆R) < ε2 and µ is finitely additive we obtain that∑
X∈Σ

µ(X)≤ ε.

Let X= X1×·· ·×Xk ∈ P⃗ \Σ. We have

µ(X∩ (A∆R))< εµ(X).

By definition of P⃗ , either X⊆A or X∩A= ∅.
Assume first X⊆A, then X∩ (A∆R) = X \R(X1, . . . ,Xk) and

µ(X \R(X1, . . . ,Xk)) = µ(X)−µ(R(X1, . . . ,Xk)),

hence

µ(X1×·· ·×Xk)−µ(R(X1, . . . ,Xk))≤ εµ(X1×·· ·×Xk).

If X∩A= ∅ a similar argument shows that

µ(R(X1, . . . ,Xk))< εµ(X1 × ·· ·×Xk).

Assume in addition that R is NIP with VC-dimension at most d. Then using Theorem 2.19 we can

assume that |Di| ≤ Ck,d
(
1
ε

)4(k−1)d
for i∈ [k], and by Fact 2.4,

|Pi| ≤ Cd|Di|d ≤ Cd
(
Ck,d
(
1
ε

)4(k−1)d
)d

= Cd(Ck,d)
d
(
1
ε

)4(k−1)d2
.

□

Remark 3.4 In the case when each V i is finite the above theorem without the NIP part is trivial,
since we can take Pi to be the set of all atoms in the Boolean algebra of all R-definable subsets of V i.

This immediately gives an analogous theorem for k-uniform hypergraphs. We state it only in the
NIP case.

Theorem 3.5 Let G= (V; R) be a k-uniform hypergraph with VC-dimension at most d, B a Boolean
algebra on V containing all of the fibers of R, and let µ be a measure on B which is finitely approx-
imated on R⊆V×Vk− 1. Then for any ε> 0 there is an R-definable partition P of V such that
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P⃗ = (P , . . . ,P) is an ε-regular partition of the k-hypergraph G̃= (V, . . . ,V;R) with 0-1-densities

relatively to the measure µk = µ⋉ · · ·⋉µ, and |P⃗| ≤ Cd(kCk,d)d
(
1
ε

)4(k−1)d2
.

Proof. By assumption (R;Vi,Bi,µi : 1≤ i≤ k) is a compatible finitely approximated system, with
V i :=V, Bi := B, µi :=µ, and R viewed as a relation R⊆ V1×·· ·×Vk. Let µk = µ1⋉ · · ·⋉µk.

Let P⃗ be an ε-regular partition with 0−1-densities as in the proof of Theorem 3.3, that is,Pi is the
set of all atoms in the Boolean algebra generated by all R-definable over Di ⊆ Vk−1 subsets of V i.

Let D=
⋃
i∈[k]Di. We take P to be the set of all atoms in the Boolean algebra of all R-definable

over D subsets of V. Then (P , . . . ,P) is also a ε-regular partition with 0−1-densities as it refines P⃗ ,
and by Fact 2.4,

|P| ≤ Cd|D|d ≤ Cd
(
kCk,d

(
1
ε

)4(k−1)d
)d

= Cd(kCk,d)
d
(
1
ε

)4(k−1)d2
.

□

Now we give some examples where Theorems 3.3 and 3.5 apply.

3.2. The finite case

Let G= (V1, . . . ,Vk;R) be a finite k-hypergraph. For each i∈ [k] let µi be the uniform counting mea-
sure on V i, that is, µi(X) =

|X|
|Vi| , and let µ be the uniform counting measure on V1×·· ·×Vk. Then

all µi and µ are finitely approximated measures with µ= µ1⋉ · · ·⋉µk. Hence all the results of the
previous section can be applied to finite k-hypergraphs with respect to the counting measures.

Corollary 3.6 Let G= (V; R) be a finite k-uniform hypergraph. Assume that R has VC-dimension
at most d, as a relation on Vk.

There is a partition V= V1 ∪̇ · · · ∪̇VM for some M≤ Cd(kCk,d)d
(
1
ε

)4(k−1)d2
, numbers δ⃗i ∈ {0,1}

for i⃗ ∈ [M]k, and an exceptional set Σ⊆[M]k such that∑
(i1,...,ik)∈Σ

|Vi1 | · · · |Vik | ≤ ε|V|k

and for each i⃗= (i1, . . . , ik) ∈ [M]k \Σ we have

| |R(Vi1 , . . . ,Vik)| − δ⃗i|Vi1 | · · · |Vik | |< ε|Vi1 | · · · |Vik |.

So the size of the partition M depends only on ε, k and the VC-dimension d, polynomially in
terms of 1

ε , and not on the size of the graph.

3.3. Hypergraphs definable in NIP structures

Now we discuss the model-theoretic setting, which is the main motivating example for this article.
For a detailed account of this setting, we refer to the introduction in [10] and to [50].
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Let M be a first-order structure. Recall that a Keisler measure on Mn is a finitely additive prob-
ability measure on the Boolean algebra of all definable subsets of Mn. Given a formula ϕ(x) with
parameters from M and a Keisler measure µ on M|x|, we will write µ(ϕ(x)) to denote µ(ϕ(M|x|)).
Let us fix a definable relation E(x1, . . . , xk), let Vi =M|xi| and let Bi be the Boolean algebra of all
definable subsets of M|xi|. Let µi be a Keisler measure on M|xi|, equivalently a measure on Bi.

Recall that a structure M is an NIP structure if for every formula ϕ(x, y) the family of all
ϕ-definable sets Fϕ = {ϕ(M,a) : a ∈M|y|} has finite VC-dimension. In particular, ifM is NIP, then
any definable relation E(x1, . . . , xk)⊆M|x1| × ·· ·×M|xk| has finite VC dimension (in the sense of
Definition 2.3). Recall that, in an NIP structureM, a Keisler measure µ onM|x| is generically stable
if it is finitely approximated on all definable relations ϕ(x,y)⊆M|x| ×M|y|, in particular on E.

Remark 3.7 There are several equivalent characterizations of generically stable measures in NIP
structures. Our definition of finitely approximated measures only requires the existence of an ε-
approximation for every ε. A stronger notion of a fim measure is given in [26] requiring that in fact
for every ε, there is some sufficiently large n such that almost all n-tuples (in the sense of the product
measure µ(n)) give an ε-approximation. While µ is finitely approximated on all formulas if and only
if it is fim on all formulas under the NIP assumption (by the results in [26]), it is not clear if the
equivalence holds in general. It is known that µ is finitely approximated on all formulas if and only
if it is fim on all formulas under the NIP assumption, by the results in [26]. On the other hand,
examples separating the two notions outside of the NIP context were provided in [12].

Now, the semidirect product µ= µ1⋉ · · ·⋉µk corresponds to the non-forking product µ1 ⊗ . . .⊗
µk. Hence Theorem 3.3 translates into the following.

Corollary 3.8 Let M be NIP. For every definable relation E(x1, . . . , xk) there is some c= c(E)
such that: for any ε> 0 and any generically stable Keisler measures µi on M|xi| there are partitions
M|xi| =

⋃
j<KAi,j and a set Σ⊆[K]k such that:

(1) K≤
(
1
ε

)c
.

(2) µ
(⋃

(i1,...,ik)∈ΣA1,i1 × ·· ·×Ak,ik
)
≤ ε, where µ= µ1 ⊗ ·· ·⊗µk,

(3) for all (i1, . . . , ik) /∈ Σ we have

|µ(E∩ (A1,i1 × ·· ·×Ak,ik))− δ⃗iµ(A1,i1 × ·· ·×Ak,ik)|< εµ(A1,i1 × ·· ·×Ak,ik)

for some δ⃗i ∈ {0,1}.
(4) each Ai,j is defined by an instance of an E-formula, with this formula depending only on E and ε.

Theorem 3.3 is more general however as both NIP and finite approximability are only assumed
locally for R, and can be applied outside of the context of NIP structures.

Example 3.9 LetM be a pseudo-finite field, viewed as a structure in the ring language (for example,
an ultraproduct of finite fields modulo some non-principal ultrafilter). Then the ultralimit of the
counting measures gives a measure on the definable sets inM. This measure is finitely approximable
on all quantifier-free definable relations (by Lemma 4.3, as it is well known that all quantifier-free
formulas inM are stable), but not finitely approximable for general definable relations (for example,
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because the random graph is definable). Still, Theorem 3.3 can be applied to any quantifier-free
definable relation in this situation.

We list some specific structures and Keisler measures for which Corollary 3.8 applies to all
definable relations (again, see introduction in [10] for more details).

Example 3.10 Examples of NIP structures:

(1) Abelian groups and modules (see, for example [53]),
(2) (C,+,×,0,1) (see, for example [53]),
(3) differentially closed fields (see, for example [53]),
(4) free groups (in the pure group language

(
·,−1 ,0

)
, see [43]),

(5) planar graphs (in the language with a single binary relation corresponding to the edges, see
[40]),

(6) (weakly) o-minimal structures, for example,M= (R,+,×, ex) (see [10]),
(7) Presburger arithmetic, that is, the ordered group of integers (see [10]),
(8) p-minimal structures with Skolem functions, for example, (Qp,+,×) for each prime p,
(9) the (valued differential) field of transseries ([6, 4]),

(10) algebraically closed valued fields (see, for example [47]).

Example 3.11 Examples of generically stable Keisler measures (see for example, the introduction
in [10] for more details on why these measures are generically stable):

(1) Any Keisler measure concentrated on a finite set (as it is clearly finitely approximable).
(2) Let λn be the Lebesgue measure on the unit cube [0, 1]n inRn. LetM be an o-minimal structure

expanding the field of real numbers. If X⊆ Rn is definable in M, then, by o-minimal cell
decomposition, X ∩ [0, 1]n is Lebesgue measurable, hence λn induces a Keisler measure onMn.

(3) Similarly to (2), for every prime p a (normalized) Haar measure on a compact ball inQp induces
a Keisler measure on Qn

p.

4. Stable and distal cases

Next we consider two extreme opposite special cases of NIP hypergraphs: stable and distal ones.
Stable theories are at the cornerstone of Shelah’s classification theory [44], and we refer to for exam-
ple, [53, 38] for a general exposition of stability. Examples (1)–(5) in Example 3.10 are stable. Distal
theories were introduced more recently in [46] aiming to capture ‘purely unstable’ structures in NIP
theories. Examples (6)–(9) in Example 3.10 are distal. Example (10) gives a combination of these two
cases: it has a stable part (the algebraically closed residue field) and a distal part (the value group),
and the theory developed in [22] demonstrates that the whole structure can be analysed in terms of
these two parts. There are certain generalizations of this decomposition principle for arbitrary NIP
theories [45, 49].

4.1. Stable hypergraph regularity

A regularity lemma for stable graphs was proved in [33] for counting measures. Later, [34] provides
a proof for general measures. However, the proof in [34] does not give any bounds on the size of the
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partition. In this section, we combine these two approaches and prove a regularity lemma for stable
hypergraphs relatively to arbitrary measures, bounding the size of the partition by a polynomial in 1

ε .

Definition 4.1

(1) A binary relation R⊆V ×W is d-stable, d ∈ N, if there is no tree of parameters (bη : η ∈
2<d) in W such that for any η ∈ 2d there is some aη ∈ V such that aη ∈ Rbν ⇐⇒ ν ⌢ 1⊴ η
(where ⊴ is the tree order).

(2) A relation R⊆ V1 × ·· ·×Vk is d-stable if for every I⊆ [k], viewed as a binary relation on
VI×VI c , it is d-stable.

(3) A relation R is stable if it is d-stable for some d.

Note that if R is stable, then it has finite VC-dimension.

Remark 4.2 Alternatively, stability of a relation can be defined in terms of the so called order prop-
erty. Namely, R⊆V ×W has the e-order property, e ∈ N, if there are some elements ai in V and bi
in W, i= 1,…, e, such that ai ∈ Rbj ⇐⇒ i< j for all 1≤ i ̸= j≤ e. It is a standard fact in basic sta-
bility theory that R is stable (in the sense of Definition 4.1) if and only if it does not have the e-order
property for some e (but the relation between the corresponding parameters e and d is exponential,
see, for example [23, Lemma 6.7.9]).

Lemma 4.3 Let R⊆V×W be a stable relation, and BV be a Boolean algebra on V such that Rb ∈ BV
for all b∈W. Then any measure µ on BV is finitely approximable on R.

Proof. Assume that R is d-stable. By Definition 2.10, we must show that µ is finitely approximable
on the familyRm

V of subsets of V, for every m ∈ N. Fix m.

Claim 1. For any ε> 0 there is some t= t(ε, d,m) and some 0−1 measures δ1, . . . ,δt on BV
(possibly with repetitions) such that µ(S)≈ε 1

t

∑t
i=1 δi(S) for all S ∈Rm

V .
Proof. As R is stable, it follows that the family Rm

V has finite VC-dimension, and it depends
only on d,m. Fix ε> 0. By the VC-theorem there is some t= t(ε, d,m) such that for every finite
(or countable) F ⊆Rm

V there are some a1, . . . ,at ∈ V such that µ(S)≈ε 1
t

∑t
i=1 1S(ai) for all S ∈ F .

For 1≤ i≤ t and a finite F , define a 0−1 measure δFi on BV by δFi (S) := 1S(ai) for all S ∈ BV, then
µ(S)≈ε 1

t

∑t
i=1 δ

F
i (S) for all S ∈ F . The claim now follows by compactness of the space of all 0−1

measures on BV (see [25, Lemma 4.8] for a more detailed account).

Claim 2. Every 0−1 measure δ on BV is finitely approximable on Rm
V .

Proof. This is a straightforward consequence of the explicit form of the definability of types in
local stability. Namely, consider a binary relation E⊆ V×Rm

V given by E := {(a, S) : a∈ S}. Then
E is r-stable for some r (as R is stable, and stability is preserved under Boolean combinations). We
can identify our 0−1 measure δ restricted to E with a complete E-type. Then (see, for example, the
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proof of [38, Chapter 1, Lemma 2.2]) for every t ∈ N we can choose some c1, . . . , ct ∈ V such that
for every S ∈Rm

V :

• if |{i : ci ∈ S}|> r, then δ(S)= 1;
• if |{i : ci /∈ S}|> r, then δ(S)= 0.

Hence if t is large enough so that rt < ε, then c1, . . . , ct give an ε-approximation of δ on Rm
V .

Now, let ε> 0 and m be arbitrary, and let δ1, . . . ,δt be as given by Claim 1. By Claim 2, let Ai be a
multiset in V giving an ε-approximation for δi onRm

V . It is straightforward to verify that A=
⋃t
i=1Ai

is a 2ε-approximation for µ on Rm
V . □

From now on we work in the same setting as in Section 2. Throughout the section we let the sets
V1, . . . ,Vk and a stable relation R⊆ V1 × ·· ·×Vk be given, let Bi be a field on V i, and let µi be a
measure on Bi. Assume moreover that for every i∈ [k], Rb ∈ Bi for all b ∈ VI c .

In view of Lemma 4.3, if R⊆ V1 × ·· ·×Vk is a stable relation, then for every I= {i1, . . . , in} ⊆
[k] we have a semi-direct product measure µI = µi1⋉ · · ·⋉µin on BI = Bi1 × ·· ·×Bin (see Defini-
tion 2.17) which is finitely approximable on R (Proposition 2.13).

Definition 4.4 For any I⊆ [k] and ε> 0, a set A ∈ BI is ε-good if for any b ∈ VI c , either
µI(A∩Rb)< εµI(A) or µI(A∩Rb)> (1− ε)µI(A).

Remark 4.5 Notice that if a set is ε-good, ε> 0, then it has measure greater than 0.

Lemma 4.6 Assume that µI c is finitely approximable on R. For any ε> 0, consider the set

A= {a ∈ VI : µI c(Ra)< ε}.

Then there is an R-definable set A′ ⊇ A such that µI c(Ra)< 2ε for all a ∈ A′.

Proof. Let b1, . . . ,bn ∈ VI c be such that µI c(Ra)≈
ε
2 Av(b1, . . . ,bn;Ra) for all a∈V I . Let J = {J⊆

[n] : |J|
n <

3
2ε}, and let A′ =

⋃
J∈J

(⋂
j∈JRbj ∩

⋂
j/∈J
(
Rbj
)c)

. It is easy to check that A′ satisfies the

requirements. □

Lemma 4.7 Fix some I⊆ [k] and some J⊆ [k] \ I. Let ε>0 and B ∈ BJ be an ε-good set, and let
A ∈ BI and c ∈ V[k]\(I∪J) be arbitrary, such that A is of positive measure (note that B is of positive
measure by Remark 4.5). Then (by Definition 4.4) A is a disjoint union of the sets

A0
B,c,ε = {a ∈ A : µJ(Ra,c ∩B)< εµJ(B)}

and

A1
B,c,ε = {a ∈ A : µJ(Ra,c ∩B)> (1− ε)µJ(B)}.

Assume that ε < 1
4 . Then A

0
B,c,ε,A

1
B,c,ε ∈ BI.
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Proof. Indeed, let µ′
I be given by conditioning µI on A (that is, µ′

I(X) =
µ(X∩A)
µ(A) for all X) and let

µ′
J be given by conditioning µJ on B. As R is stable, by Lemma 4.3 both µ′

I,µ
′
J are finitely approx-

imable on R. Hence, by Lemma 4.6 we can find some R-definable A′
0 ⊇ A0

B,c,ε,A
′
1 ⊃ A1

B,c,ε such that
µ′
I c(Ra,c)< 2ε for all a ∈ A′

0 and µ
′
I c(Ra,c)> (1− 2ε) for all a ∈ A′

1 (in this case we are applying it
to the complement Rc, which is also stable). As ε < 1

4 , it follows that in fact A
0
B,c,ε = A′

0 ∩A,A1
B,c,ε =

A′
1 ∩A. □

In particular, it makes sense to speak of the µI-measure of A0
B,c,ε,A

1
B,c,ε.

Definition 4.8 Let 0< ε≤ δ < 1
4 be arbitrary, and let I⊆ [k]. We say that a set A ∈ BI is (ε, δ)-

excellent if it is ε-good and for every J⊆ [k] \ I, every δ-good B ∈ BJ and every c ∈ V[k]\(I∪J), either
µI(A0

B,c,δ)< εµI(A) or µI(A1
B,c,δ)< εµI(A) (in the notation from Lemma 4.7).

Remark 4.9 Note that if A is (ε, δ)-excellent, then it is also (ε′,δ′)-excellent for any ε′ > ε and
ε′ ≤ δ′ < δ. However, this need not be true if we take δ′ > δ since δ′-good sets need not be δ-good.

The following lemma is a generalization of [33, Claim 5.4], with an additional observation that
the proof can be performed ‘definably’ and with respect to an arbitrary measure.

Lemma 4.10 Let R⊆ V1 × ·· ·×Vk be d-stable and let 0< ε≤ δ < 1
2d be arbitrary. Let n∈ [k].

Assume that A ∈ Bn and µn(A)> 0. Then there is an (ε, δ)-excellent R-definable set A′ ∈ Bn with
µn(A′ ∩A)≥ εdµn(A).

Proof. We will need the following claim.
Claim. Assume that 0< ε≤ δ < 1

4 and A ∈ Bn is not (ε, δ)-excellent. Then there are disjoint
A0,A1 ⊆ A with Ai ∈ Bn and µ(Ai)≥εµ(A) for i∈ {0, 1}, and such that for any finite S0 ⊆ A0,S1 ⊆ A1

with |S0|+ |S1| ≤ 1
δ there is some c ∈ Vnc such that a∈Rc for all a∈ S1 and a /∈ Rc for all a∈ S0. □

Proof. If A is not ε-good, there is some c ∈ Vnc such that µn(A∩Rc)≥ εµn(A) and µn(A∩ (Rc)c)≥
εµn(A). We let A1 = A∩Rc and A0 = A∩ (Rc)c.

If A is ε-good, as it is not (ε, δ)-excellent, there are some J⊆ [k] \ {n}, some set B ∈ BJ which is
δ-good, and some c′ ∈ V[k]\(n∪J) such that A is a disjoint union of the sets A0 := A0

B,c′,δ ,A
1 := A1

B,c′,δ

(in the notation from Lemma 4.7) and µn(At)≥ εµn(A) for both t∈ {0, 1}. Now given S0,S1 as in
the claim, we have µJ(B∩Ra,c′)≤ δµJ(B) for all a∈ S0 and µJ(B∩ (Ra,c′)c)≤ δµJ(B) for all a∈ S1.
Let

B′ = B∩ (
⋃
a∈S0

Ra,c′ ∪
⋃
a∈S1

(Ra,c′)
c).

As |S0|+ |S1|< 1
δ , it follows that µJ(B

′)< 1
δ δµJ(B) = µJ(B). In particular there is some b′ ∈ B \B′,

and taking c= b′ ⌢ c′ satisfies the claim.
Assume now that the conclusion of the lemma fails. By induction we choose sets (Aη : η ∈ 2≤d)

in Bn such that A∅ = A and given η ∈ 2< d, we take Aη⌢0 := (Aη)
0,Aη⌢1 := (Aη)

1 as given by the
claim applied to Aη. For every η ∈ 2d, pick some aη ∈ Aη (possible as µn(Aη)≥ εdµn(A)> 0). For
every ν ∈ 2< d there is some cν ∈ Vnc such that aη ∈ Rcν if and only if ν ⌢ 1⊴ η – which gives
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contradiction to the d-stability of R. Namely we can take c given by the claim for Aν and S0 = {aη :
η ∈ 2d,ν ⌢ 0⊴ η},S1 = {aη : η ∈ 2d,ν ⌢ 1⊴ η} (note that |S0|+ |S1| ≤ 2d < 1

δ by assumption).□

Lemma 4.11 Let R⊆ V1 × ·· ·×Vk be d-stable, and let 0< ε≤ δ < 1
2d be arbitrary. For any n∈ [k],

there is a partition of Vn into (ε, δ)-excellent sets fromBn, and the size of the partition can be bounded
by a polynomial of degree d+ 1 in 1

ε .

Proof. Repeatedly applying Lemma 4.10, we let Am+ 1 be an ( ε2 ,δ)-excellent subset of Bm :=
Vn \ (

⋃
1≤i≤mAi) with µn(Am+1)≥ ( ε2 )

dµn(Bm). Then µn(Bm+1)≤ µn(Bm)− ( ε2 )
dµn(Bm)≤ (1−

( ε2 )
d)µn(Bm), hence µn(Bm)≤ (1− ( ε2 )

d)m for all m. Hence we have µn(Bm)≤ ε
2µn(A1) assum-

ing (1− ( ε2 )
d)m ≤ ( ε2 )

d+1. In this case, letting A′
1 = A1 ∪Bm, it is easy to check that A′

1 is an
(ε, δ)-excellent set, and A′

1,A2, . . . ,Am is a partition of Vn.

Finally, for the size of the partition, we have
(
1−

(
ε
2

)d)m ≤
(
ε
2

)d+1 ⇐⇒ m ln
(
1−

(
ε
2

)d)≤
(d+ 1) ln ε

2 , and taking Taylor expansion this inequality holds provided −m
(
ε
2

)d ≤−(d+ 1) 1
( ε

2 )
.

Hence we can take m≤ c
(
1
ε

)d+1
, for some c= c(d). □

Finally, we can use the partition in Lemma 4.11 to obtain a regular partition for R⊆ V1×·· ·×Vk.

Lemma 4.12 Let 0< ε≤ δ < 1
2d be arbitrary. If A⊆Vn is (ε, δ)-excellent and B⊆V[n− 1] is δ-good

then B×A is (ε+ δ)-good.

Proof. Let c ∈ V[n]c be arbitrary. As B is δ-good and A is (ε, δ)-excellent, by Definition 4.8 we have
A= A0

B,c,δ ∪A1
B,c,δ and either µn(A

0
B,c,δ)< εµn(A) or µn(A1

B,c,δ)< εµn(A). Assume we are in the first
case. Then, using the definition of µ[n] and Lemma 2.15, we have

µ[n]((B×A)∩Rc) =
∫
A

(
µ[n−1](Ra,c ∩B)

)
dµn

≥
∫
A1
B,c,δ

(
µ[n−1](Ra,c ∩B)

)
dµn ≥

∫
A1
B,c,δ

(1− δ)µ[n−1](B)dµn

≥ (1− ε)µn(A)(1− δ)µ[n−1](B)> (1− (ε+ δ))µ[n](A×B).

Similarly, in the second case we obtain that µ[n]((B×A)∩Rc)≤ (ε+ δ)µ[n](A×B). □

Theorem 4.13 Let R⊆ V1 × ·· ·×Vk be d-stable, and let 0< ε < 1
2d be arbitrary. Then there is an

R-definable ε-regular partition P⃗ of V1 × ·· ·×Vk with 0-1-densities (seeDefinition 3.1) without any
bad k-tuples in the partition (that is, Σ= ∅) and such that the size of the partition ∥P⃗∥ is bounded
by a polynomial of degree d+ 1 in 1

ε .

Proof. For each n≤ k, letPn be a partition of Vn into ( ε
2k+1 , ε2 )-excellent sets as given by Lemma 4.11

(in particular, Pn has size polynomial in 1
ε as k is fixed), and let P := {X1 × ·· ·×Xk : Xn ∈ Pn}.

We claim that P is ε-regular with Σ= ∅. Indeed, let X= X1 × ·· ·×Xk ∈ P be arbitrary, and let
X′ := X1 × ·· ·×Xk−1. Applying Lemma 4.12 k times, the set X′ is ε

2 -good, and Xk is (
ε
2 ,

ε
2 )-excellent
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(by construction and Remark 4.9). Then, by Definition 4.8, Xk is a disjoint union of the sets
X0
k := (Xk)0X′, ε2

,X1
k := (Xk)1X′, ε2

∈ Bk and µk(X t
k)<

ε
2µk(Xk) for one of t∈ {0, 1}. We have

µ[k](R∩X) =
∫
Xk

µ[k−1](Rc ∩X′)dµk(c).

As Xk is a disjoint union of X0
k ,X

1
k and µ(X

t
k)≤ ε

2µk(Xk) for some t∈ {0, 1}, we have∣∣∣∣∣µ[k](R∩X)−
∫
X t
k

µ[k−1](Rc ∩X′)dµk(c)

∣∣∣∣∣≤
ε

2
µk(Xk)µ[k−1](X1 × ·· ·Xk−1)≤

ε

2
µ[k](X1 × ·· ·×Xk)

for some t∈ {0, 1}.
Assume that t= 0. Then for all c ∈ X0

k we have µ[k−1](Rc ∩X′)< ε
2µ[k−1](X′). Hence∫

X 0
k

µ[k−1](Rc ∩X′)dµk(c)≤ µ(X0
k )
ε

2
µ[k−1](X

′)≤ ε

2
µ[k](X1 × ·· ·×Xk),

and so µ[k](R∩X)≤ εµ[k](X).
If t= 1, applying the same argument to the complement Rc we obtain µ[k](Rc ∩X)≤ εµ[k](X),

hence |µ[k](Rc ∩X)−µ[k](X)| ≤ εµ[k](X). □

Similarly to Corollary 3.8, Theorem 4.13 gives the following in the definable case. Recall that a
structureM is stable if every binary relation definable in it is stable.

Corollary 4.14 LetM= (M, . . .) be a stable structure and k≥ 2. For every definable E(x1, . . . , xk)
there is some c= c(E) such that: for any ε> 0 and any Keisler measures µi on M|xi| there are
partitions M|xi| =

⋃
j<KAi,j satisfying:

(1) K≤
(
1
ε

)c
;

(2) for all i⃗= (i1, . . . , ik) ∈ [K]k we have

|µ(E∩ (A1,i1 × ·· ·×Ak,ik))− δ⃗iµ(A1,i1 × ·· ·×Ak,ik)|< εµ(A1,i1 × ·· ·×Ak,ik)

for some δ⃗i ∈ {0,1} (where µ= µ1 ⊗ . . .⊗µk);
(3) each Ai,j is defined by an instance of an E-formula, with this formula depending only on E and ε.

4.2. Distal case

The class of distal theories is defined and studied in [46], with the aim to isolate the class of purely
unstable NIP theories (as opposed to the class of stable theories, see also [47]). For completeness
of the exposition, we recall the distal regularity lemma established in [10], pointing out a stronger



24 A. CHERNIKOV AND S. STARCHENKO

form of definability for the regular partition than the one stated there. First we recall the definition
of distality (and refer to the introduction in [10] for more details).

Definition 4.15 [10] An NIP structure M is distal if and only if for every definable family{
ϕ(x,b) : b ∈Md

}
of subsets ofM|x| there is some t ∈ N and a definable family

{
ψ (x,c) : c ∈Mtd

}
such that for every a∈M and every finite set B⊂Md there is some c∈Bt such that a ∈ ψ (x,c) and
for every a′ ∈ ψ (x,c) we have a′ ∈ ϕ(x,b)⇔ a ∈ ϕ(x,b), for all b∈B.

Theorem 4.16 LetM be distal and k≥ 2. For every definable E(x1, . . . , xk), defined by an instance
of some formula θ(x1, . . . , xk;z), there is some c= c(θ) such that: for any ε> 0 and any generically
stable Keisler measures µi on M|xi| there are partitions M|xi| =

⋃
j<KAi,j and a set Σ⊆ {1, . . . ,K}k

such that

(1) K≤
(
1
ε

)c
.

(2) µ
(⋃

(i1,...,ik)∈ΣA1,i1 × ·· ·×Ak,ik
)
≤ ε, where µ= µ1 ⊗ . . .⊗µk.

(3) for all (i1, . . . , ik) /∈ Σ, either (A1,i1 × ·· ·×Ak,ik)∩E= ∅ or A1,i1 × ·· ·×Ak,ik ⊆ E.
(4) Each Ai,j is defined by an instance of a formula ψi (xi, zi) which only depends on θ

(and not on ε!).

Proof. This is proved in [10, Section 5.2], except for the fact that in (4) the formulas ψi (xi, zi)
can be chosen independently of ε—and we explain how to modify the proof there to obtain it.
Namely, the proof of [10, Proposition 5.3] shows that, under the assumptions of the lemma, for each
i= 1,…, kwe can find a finite set of formulas∆i and a constant c ∈ N depending only on θ (in view of
[10, Corollary 4.6]), a finite set of parameters AN depending on θ and ε with |AN| ≤

(
1
ε

)c
, and par-

titions Pi = {Ai,j : j< K} of M|xi| satisfying the conclusion of the lemma, except for the bold font
part, such that each Ai,j is ∆i-definable over AN .

LetQi be a partition ofM|xi| into the sets of realizations of complete∆i-types overAN . By distality
of M, let ∆′

i be a finite set of formulas such that for every ϕ∈∆i it contains a formula ψ as in
Definition 4.15. Let ψi(xi, zi) be a conjunction of all formulas in ∆′

i . Then for every a ∈M|xi| there
is a single instance ψi(xi, e) such that its parameters e are all from AN and such that ψi(xi, e) isolates
the complete ∆i-type of a over AN . Using this, we can choose a partition Q′

i of M
|xi| which refines

Qi (and so also refines Pi) and such that every set in Q′
i is defined by an instance of ϕi(xi, zi) over

AN . Then the size of Q′
i is bounded by |AN||zi| ≤

(
1
ε

)c′
where c′ = c|zi| only depends on θ. Hence

Q′
i , i= 1, . . . , k give the desired partition. □

5. Definable variants of the Erdös–Hajnal and Rödl theorems

In this section, we are concerned with the question of finding a ‘large’ ‘approximately homogeneous’
definable subset of a definable hypergraph. ‘Large’ here refers to positive measure, relatively to a
finitely approximablemeasure, and ‘approximately homogeneous’means that the edge density on the
set is close to 0 or 1 (see below for precise definitions). We consider two very different situations—
(k-partite) k-hypergraphs and k-uniform hypergraphs (in the sense of Section 3.1).
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5.1. Partitioned hypergraphs

First we consider the ‘partite’ situation. We are working in the same setting as in Section 3.1.

Theorem 5.1 Let E⊆ V1 × ·· ·×Vk be a k-hypergraph of VC-dimension at most d. Then for every
α, ε> 0 there is some δ= δ(k, d,α, ε)> 0 such that the following holds.
Let Bi be a field on Vi, and let µi be a measure on Bi which is finitely approximable on E,

for i= 1,…, k. Let µ= µ1⋉ · · ·⋉µk. Assume that µ(E)≥α. Then there are some E-definable sets
Ai ⊆ Vi such that µi(Ai)> δ for all i= 1,…, k and dE(A1, . . . ,Ak)> 1− ε (where dE(A1, . . . ,Ak) =
µ(E∩(A1×...×Ak))
µ1(A1)·...·µk(Ak)

denotes the E-density).

Proof. This follows from the regularity lemma for NIP hypergraphs (Theorem 3.3). Let α, ε> 0 and
d ∈ N be given. Let ε′ = min{α,ε}

4 > 0. By Theorem 3.3 there exist c1, c2 ∈ R depending only on k, d,
E-definable partitions Vi =

⋃
j=1,...,nAi,j for each i= 1,…, k with n≤ c1( 1

ε′ )
c2 , δ⃗j ∈ {0,1} for each

j⃗ ∈ [n]k and Σ⊆[n]k such that
∑

( j1,...,jk)∈Σµ1(A1,j1) · . . . ·µk(Ak,jk)< ε′ and

∣∣∣µ(E∩ (A1,j1 × ·· ·×Ak,jk))− δ⃗jµ(A1,j1 × ·· ·×Ak,jk))
∣∣∣

< ε′µ(A1,j1 × ·· ·×Ak,jk)

for all j⃗= ( j1, . . . , jk) ∈ [n]k \Σ. In particular, if j⃗ ∈ [n]k \Σ, δ⃗j = 1 and µ(A1,j1 × ·· ·×Ak,jk)> 0 then
dE(A1,j1 , . . . ,Ak,jk)> 1− ε′ > 1− ε.

Let δ := ε′

ck1(
1
ε′ )

kc2
> 0, it only depends on k, d,α, ε. To prove the theorem, it is thus sufficient to

show that there exists j⃗ ∈ [n]k \Σ so that δ⃗j = 1 and µ(A1,j1 × ·· ·×Ak,jk)> δ (which automatically
implies µi(Ai,ji)> δ for all i∈ [k] as each µi takes values in [0, 1]). Assume that this fails. Then we
have:

µ(E) =
∑
j⃗∈[n]k

µ(E∩ (A1,j1 × ·· ·×Ak,jk))

≤
∑
j⃗∈Σ

µ(A1,j1 × ·· ·×Ak,jk)

+
∑

j⃗∈[n]k\Σ, µ(A1,j1×...×Ak,jk )≤δ

µ(A1,j1 × ·· ·×Ak,jk)

+
∑

j⃗∈[n]k\Σ, µ(A1,j1×...×Ak,jk )>δ

µ(A1,j1 × ·· ·×Ak,jk)ε
′

≤ ε′ + nkδ+ ε′ ≤ 2ε′ +

(
c1

(
1
ε′

)c2)k

δ,

which by the choice of δ is at most 3ε′ (in order to bound the third summand by ε′ we use that µ
is a probability measure and the sets in the sum come from a partition of V1 × ·· ·×Vk). But this
contradicts the assumption that µ(E)≥ α≥ 4ε′. □
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Remark 5.2 In the special case when µ is an ultraproduct of counting measures concentrated on
finite sets, this gives a density version of thewell-known lemma of Erdös andHajnal, see, for example
[19, Lemma 2.1]

In particular, the result holds when E is a definable relation in an NIP structure (see Section 3.3),
giving uniform definability of the sets Ai in terms of E,α, ε.

In the case when E is definable in a distal structure we have the following strengthening proved
in [10, Corollary 4.6].

Fact 5.3 LetM be a distal structure and θ(x1, . . . , xk, y) a formula. Given α> 0 there is δ > 0 such
that: for any relation E(x1, . . . , xk) defined by an instance of θ and any generically stable measures µi
onM|xi|, ifµ(R)≥α (whereµ= µ1 ⊗ . . .⊗µk), then there are definable sets Ai ⊆M|xi| withµi(Ai)≥ δ

for all i= 1,…, k and
∏k

i=1Ai ⊆ R. Moreover, each Ai can be defined by an instance of a formula
ψi(xi, zi) that depends only on θ and α.

5.2. Non-partitioned case

In the non-partite case, however, it is much harder to find a large homogeneous subset (that is, a
clique or an anti-clique), as it is well known in combinatorics, and we give some examples in the
definable setting illustrating it.

The following is a classical result of Rödl.

Fact 5.4 ([41], see also [19, Theorem 1.1]) For each ε ∈ (0, 12 ) and finite graph H there is some
δ= δ(H, ε)> 0 such that every H-free graph on n vertices contains an induced subgraph on at least
δn vertices with edge density either at most ε or at least 1− ε.

We consider a generalization of this property to finitely approximable measures.

Definition 5.5 LetM be a structure and letM be a class of Keisler measures. Let E be a collection
of definable (symmetric) (hyper-)graphs in (some powers of)M.

(1) We will say that E satisfies the Rödl property with respect to M if for every E⊆ (Mn)k in
E and every ε> 0 there is some δ > 0 such that for every µ ∈M, a Keisler measure on Mn

which is finitely approximable on E, there is some definable A⊆Mn such that µ(A)≥δ and the
µ(k)-density of E on A is either < ε or > 1− ε.

(2) If in addition such an A can be defined by an instance of some formula that depends only on E,
and not on ε, then we say that E satisfies the uniform Rödl property with respect toM.

(3) We will say that E satisfies the strong Rödl property with respect to M if in (1) we can find a
definable E-homogeneous subset of positive µ-measure.

Fact 5.4 implies that if E is a family of pseudofinite hypergraphs of bounded VC-dimension, then
it satisfies the Rödl property with respect to the class M of pseudofinite counting measures, in the
language of set theory. We give some examples showing that there is little hope in generalizing this
to arbitrary generically stable measures.
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Example 5.6 The strong Rödl property does not hold for graphs definable in the field of reals,
with respect to the Lebesgue measure. To see this, consider the relation E⊆ R2 ×R2 defined by
(a,b)E(a′b′) ⇐⇒ |a− a′|< |b− b′|, and let µ be the generically stable measure on R2 given by
restricting the Lebesgue measure on [0, 1]2 to the definable sets. We claim that there is no definable
E-homogeneous subset of R2 of positive measure. Indeed, any such set A⊆ [0, 1]2 would have to
contain an E-homogeneous square, and it is easy to see that this is impossible by the definition of E
(one can check, however, that the uniform Rödl property is satisfied as for any ε> 0 we can choose
a sufficiently thin vertical stripe of positive measure such that the E-density on it is ε-close to 1).

It may be tempting to use the NIP regularity lemma as in the partitioned case (Theorem 5.1)
to establish the Rödl property (applying it for a symmetric relation R⊆ V1 ×V2 with V= V1 = V2,
µ= µ1 = µ2). However, it does not work. The reason is that, given an ε-regular partitionA1, . . . ,An of
V, it is perfectly possible that all of the pairs on the diagonal (Ai,Ai),1≤ i≤ n are bad simultaneously.
Namely, if Σ is the collection of all bad pairs, we have that

∑
(i,j)∈Σµ(Ai)µ(Aj)< ε. On the other

hand, if let us say (Ai : 1≤ i≤ n) is an equipartition, we have
∑

1≤i≤nµ(Ai)
2 ≤ n 1

n2 ≤
1
n , which can

be smaller than ε when n is sufficiently large. In fact, this observation suggests an idea of a counter-
example to the uniform Rödl property, which we present in the next subsection.

A counterexample to the uniform Rödl property
Throughout this section we are working in the field of 2-adics Q2, viewed as a first-order structure

M=
(
Q2,0,1,+, ·, v(x)≤ v(y),(Pn(x))n∈N≥2

)
with the universe M=Q2 in the Macintyre language (so v(x)≤v(y) is a binary predicate comparing
the 2-adic valuations of x and y, and Pn(x) ⇐⇒ ∃y(x= yn)). Let µ be the Haar measure on Q2

normalized on the compact ball Z2 (restricted to definable sets). Then Q2 is a distal structure, and µ
is a generically stable measure (for example, see the introduction in [10]). We think of elements in
Q2 as branches of a binary tree and define E⊆M2 by saying that E(x, y) holds if and only if v(x− y)
is odd (that is, if the branches x and y split at an odd level). This is a symmetric relation definable in
the Macintyre’s language. We estimate the µ(2)-density of E on certain definable sets.

Lemma 5.7 Assume that A is a (valuational) ball, then the density dE(A) is either 1
3 or

2
3 (depending

on the radius of the ball).

Proof. Let A= {b ∈Q2 : v(c− b)≥ r} be a (clopen) ball with center c of radius r, for some r ∈ Z.
We think of the elements of Q2 as bi-infinite binary sequences (with the set of non-zero entries con-
taining the least element). Then we can write A= {τ0 ⌢ τ : τ ∈ 2ω} for some τ0 ∈ 2Z≤r , where ‘⌢’
denotes the concatenation of sequences. For each n∈ω, consider the partition A=

⋃
σ∈2n Aσ, where

Aσ = {τ0 ⌢σ⌢ τ : τ ∈ 2ω}. By translation-invariance of the Haar measure we have µ(Aσ) =
1
2nµ(A) for all σ ∈ 2n, n∈ω.

Wewould like to calculate the density dE(A) =
µ(2)(E∩A2)

µ(A)2 . For n ∈ N≥1, we consider the definable
set

Fn :=

(a,a′) ∈ A2 :
∨

σ∈2n−1

∨
t∈{0,1}

(
a ∈ Aσ⌢t ∧ a′ ∈ Aσ⌢(t−1)

) .
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From the definition we have:

• if (a,a′) ∈ Fn then v(a− a′) = r+ n− 1;
• in particular, if r+ n is even then Fn ⊆ (E∩A2);
• if r+ n is odd then Fn ⊆ (A2 \E);
• Fn ∩Fn′ = ∅ for any n ̸= n′ ∈ N≥1;
• µ(2)(Fn) = 1

2nµ(A)
2.

(Indeed, µ(2)(Fn) =
∑

σ∈2n−1

(
µ(2) ((Aσ⌢0 ×Aσ⌢1)∪ (Aσ⌢1 ×Aσ⌢0))

)
, and using that

(Aσ)σ∈2n is a partition, = 2n−1 · 2 ·
(

1
2nµ(A)

)2
= 1

2nµ(A)
2.)

Using these observations we obtain the following estimates.

(1) If r is odd, then

∑
n≥1 odd

µ(2)(Fn)≤ µ(2)(E∩A) = dE(A)µ(A)
2 ≤ µ(A)2 −

 ∑
n≥1 even

µ(2)(Fn)

 .

We have:

∑
n≥1 odd

µ(2)(Fn) =
∑

n≥1 odd

1
2n
µ(A)2 = µ(A)2

∑
m≥0

1
22m+1

= µ(A)2
∑
m≥0

1
2

1
4m

= µ(A)2
1/2

1− 1/4
=

2
3
µ(A)2,

∑
n≥1 even

µ(2)(Fn) =
∑

n≥1 even

1
2n
µ(A)2 = µ(A)2

∑
m≥1

1
22m

= µ(A)2

∑
m≥0

1
4m

− 1

=

(
1

1− 1/4
− 1

)
µ(A)2 =

1
3
µ(A)2.

Combining we get dE(A) = 2
3 .

(2) If r is even, then

∑
n≥1 even

µ(2)(Fn)≤ µ(2)(E∩A) = dE(A)µ(A)
2 ≤ µ(A)2 −

 ∑
n≥1 odd

µ(2)(Fn)

 ,

and a similar computation shows that dE(A) = 1
3 .

□

Lemma 5.8 Fix a formula ϕ(x, y). Then there is some γ ∈ (0, 1) such that: for any tuple of parameters
b ∈M|y|, if µ(ϕ(x, b))> 0, then ϕ(x, b) contains some ball B with µ(B)≥γµ(ϕ(x, b)).
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Proof. If µ(ϕ(x, b)) > 0, then ϕ(x, b) has to be infinite. As demonstrated in the original paper of
Macintyre [32, Theorem 2], every infinite definable subset ofM in the 2-adics has non-empty interior.
In particular, it must contain some open ball of positive Haar measure.

However, to prove the claim we need a slightly more careful analysis. We recall a couple of facts
about the 2-adic cell decomposition (see, for example, [5, Section 7]). Let ϕ(x, y) be fixed. Then there
is some N ∈ N, definable functions fi,gi and elements λi ∈ M for i≤N such that for every b ∈M|y|,
the set ϕ(M, b) is a union of at most N cells of the form

Ui(b) = {x ∈M;v( fi(b))≤ v(x− ci(b))< v(gi(b))∧Pni(λi(x− ci(b)))}.

Besides, we have the following fact.

Fact 5.9 (see, for example, [5, Lemma 7.4]) Suppose n> 1, and let x, y, a∈M be such that
v(y− x)> 2v(n)+ v(y− a). Then x− a and y− a are in the same coset of Pn.

Assume now that µ(ϕ(x, b)) > 0. Then for at least one i≤N, the corresponding cellUi(b)⊆ϕ(M, b)
satisfies µ(Ui(b))≥ 1

Nµ(ϕ(x,b)). Let U(b) := Ui(b), f := fi,g := gi,n := ni, c := ci,λ := λi.
We claim that there is some element a∈U(b) with v(a− c(b))≤v(f (b))+n. First, as the valuation

group of Q2 is Z, there must exist some β ∈ Z such that v(f (b))≤β≤ v(f (b))+n and v(λ)+β= nα
for some α ∈ Z. Let e∈M be arbitrary with v(e)=α, and let a := en

λ + c(b) ∈M. Then:

(1) λ(a− c(b))= en (in particular Pn(λ(a− c(b))) holds),
(2) v(a− c(b)) = v( e

n

λ ) = v(en)− v(λ) = nv(e)− v(λ) = nα− v(λ) = β.

Now either β < v(g(b)), in which case a∈U(b), or β≥ v(g(b)), in which case any element in U(b)
satisfies the claim.

Nowwe consider the ball B := B≥m(a) form := 2v(n)+ v( f(b))+ n+ 1. We claim that B⊆U(b).
Indeed, for any x∈B we have v(a− x)> 2v(n)+ v(a− c(b)), hence by Fact 5.9, x− c(b) and
a− c(b) are in the same coset of Pn, and of course v(x− c(b)) = v(a− c(b)), so x∈U(b).

Finally, as all balls of a given positive radius have the same Haar measure, we have µ(B)≥
1

22v(n)+n+1µ(B≥v( f(b))(c(b))) and, as U(b)⊆ B≥v( f(b))(c(b)), we have µ(U(b))≤ µ(B≥v( f(b))(c(b))).
Hence

µ(B)≥ 1
22v(n)+n+1

µ(U(b))≥
(

1
22v(n)+n+1

· 1
N

)
µ(ϕ(M,b)).

Note that the coefficient only depends on ϕ(x, y), and not on the choice of the parameter b. □
We show that the uniform Rödl property fails for E. Assume toward contradiction that we can find

some ϕ(x, y) such that for every ε> 0 there is some set A⊆M definable by an instance of ϕ(x, y) and
satisfying µ(A) > 0 and dE(A)∈[0, ε)∪(1− ε, 1]. Let us say dE(A) > 1− ε (if dE(A) < ε, we work with
the complement of E instead). Let γ > 0 be as given by Lemma 5.8 for ϕ(x, y), and fix some ε<< γ.
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Now A contains some ball B with µ(B)= δµ(A) for some 0 < γ≤ δ≤ 1, and we estimate the
number of edges on A using Lemma 5.7.

µ(2)(E∩A2) = µ(2)(E∩B2)+µ(2)(E∩ (A \B)2)+ 2µ(2)(E(A \B,B))

≤ 2
3
µ(B)2 +µ(A \B)2 + 2µ(A \B)µ(B)

=
2
3
δ2µ(A)2 +(1− δ)2µ(A)2 + 2(1− δ)δµ(A)2

=

(
2
3
δ2 + 1−−2δ+ δ2 + 2δ− 2δ2

)
µ(A)2

=

(
1− 1

3
δ2
)
µ(A)2 ≤

(
1− 1

3
γ2
)
µ(A)2.

But as we have assumed ε<< γ ∈ (0, 1), this contradicts the assumption that dE(A) > 1− ε.

Uniform Rödl property fails for semialgebraic hypergraphs
It is well known that Fact 5.4 fails for hypergraphs (see the example at the very end of [41]). We
observe that the uniformRödl property fails already in the case of 3-hypergraphs in the semialgebraic
setting.

For this, let E(x1, x2, x3)⊆ R3 be the relation given by (x1 < x2 < x3)∧ (x1 + x3 − 2x2 ≥ 0), it
is definable in the field of reals (it is considered in [13, Section 3.1]). We claim that it does not
satisfy the uniform Rödl property relatively to the class of measures concentrated on finite sets.
If we assume that it holds, then by o-minimality for every ε> 0 there is some δ > 0 such that for
any finite set A⊆ R there is some interval B⊆ R such that for C=A∩B we have dE(C) > 1− ε or
dE(C) < ε. We observe that in fact the E-density tends to be 1

2 . Let arbitrary ε <
1
2 and δ > 0 be fixed.

Let us take A= {1, 2, 3,…,N} for some N ∈ N large enough (such that δN is also large), and let
C⊆ A,C= {p1, . . . ,pn} be an arbitrary interval of integers in A, p1 < · · ·< pn, |C| ≥ δN.

Assume that E(pi,pj,pk) does not hold for some p1 < i< j< k< pn. Let us define qi :=
pn− pn−i+1 + p1. Then we have p1 < qi < qj < qk < pn, and qi,qj,qk are all in C since C is an inter-
val. Moreover it’s easy to see that E(qi,qj,qk) holds. This establishes a bijection between edges and
non-edges in C, showing that the density on C is arbitrary close to 1/2 for N large enough.
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