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Artificial intelligence in COVID-19 drug repurposing

Yadi Zhou*, Fei Wang*, Jian Tang*, Ruth Nussinov, Feixiong Cheng

Drug repurposing or repositioning is a technique whereby existing drugs are used to treat emerging and challenging
diseases, including COVID-19. Drug repurposing has become a promising approach because of the opportunity for
reduced development timelines and overall costs. In the big data era, artificial intelligence (AI) and network medicine
offer cutting-edge application of information science to defining disease, medicine, therapeutics, and identifying
targets with the least error. In this Review, we introduce guidelines on how to use AI for accelerating drug repurposing
or repositioning, for which AI approaches are not just formidable but are also necessary. We discuss how to use Al
models in precision medicine, and as an example, how Al models can accelerate COVID-19 drug repurposing. Rapidly
developing, powerful, and innovative Al and network medicine technologies can expedite therapeutic development.
This Review provides a strong rationale for using Al-based assistive tools for drug repurposing medications for

human disease, including during the COVID-19 pandemic.

Introduction

The artificial intelligence (AI) pioneers of the 1950s
foresaw building machines that could sense, reason, and
think like people—a proof-of-concept known as general
AL The rapid growth in computing power and memory
storage, an unprecedented wealth of data, and the
development of advanced algorithms have led to sub-
stantial breakthroughs in AI. Al applications cover
diverse fields, such as computer vision, voice recognition,
natural language understanding, and digital pathology
data analysis. Similarly, Al has been revolutionising drug
discovery by extracting hidden patterns and evidence
from biomedical data. Pharmaceutical companies and
start-ups have used Al for drug discovery and develop-
ment.? For example, IBM’s Watson Health platform
searches for drugs from vast amounts of textual data,
including laboratory data, clinical reports, and scientific
publications.’

In this Review, we focus on AI technologies for
a specific domain in drug discovery—that of drug repur-
posing—which offers rapid and cost-effective solutions
for therapeutic development. These merits are especially
clear in the COVID-19 global pandemic caused by severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2),
where de-novo drug discovery is almost infeasible
(figure 1). Thus, the pandemic is a good opportunity for
introducing advanced AI algorithms combined with
network medicine for drug repurposing.

Emerging challenges and opportunities in drug
discovery

One study estimated that pharmaceutical companies
spent US$2-6 billion in 2015, up from $802 million in
2003, for the development of a new chemical entity
approved by the US Food and Drug Administration
(FDA).* The increasing cost of drug development is due
to the large volume of compounds to be tested in
preclinical stages and the high proportion of randomised
controlled trials (RCTs) that do not find clinical benefits
or with toxicity issues. Given the high attrition rates,
substantial costs, and low pace of de-novo drug discovery,
exploiting known drugs can help improve their efficacy
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while minimising side-effects in clinical trials. As Nobel
Prize-winning pharmacologist Sir James Black said, “The
most fruitful basis for the discovery of a new drug is to
start with an old drug”.’

Drug repurposing, also termed drug repositioning,
reprofiling or re-tasking, is a strategy for identifying new
indications for approved or investigational (including
clinically failed) drugs that have not been approved
(panel). Because the safety of these drugs has already
been tested in clinical trials for other applications, repur-
posing known drugs can bring medications to patients
much faster and with less cost than that of developing
new drugs. For decades, academic institutions and
science funders have championed the idea that screening
libraries of existing drugs with various tests could
uncover new applications, and have made observations
that have led to medicines designed for one disease
finding uses in another. Well known examples include
sildenafil citrate for erectile dysfunction,® thalidomide for
multiple myeloma,” and remdesivir for treatment of
COVID-19.* Indeed, the increasing number of reposi-
tioned medications led to the idea that a systematic
(hypothesis-free) screen of all known drugs might
uncover additional compatible targets.

The strategy of drug repurposing is a powerful solution
for emerging diseases,” such as COVID-19. Yet, without
foreknowledge of the complete drug-target network,
development of promising and affordable approaches for
effective treatment of complex diseases is challenging.”
Because drug targets do not operate in isolation from the
complex system of proteins that comprise the molecular
machinery of the cells with which they associate, each
drug—target interaction (panel) should be examined in an
integrative context (figure 2)." Therapeutic interventions
need to consider the perturbation of disease system
properties (termed network medicine [panel]), and have
little to do, functionally speaking, with genetic and
genomic events alone.” Observations and advances in
network medicine further indicate that perturbations of
cellular systems and the human interactome (panel)
underlie the disease, which is the essence of drug
discovery and development.” Knowledge of the interplay
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Figure 1: Overview of Al-assisted drug repurposing for COVID-19

Al algorithms can be used for drug repurposing, which is a rapid and cost-effective way to discover new therapy
options for emerging diseases. Reproduced by permission of Cleveland Clinic Center for Medical Art and
Photography. Al=artificial intelligence. PARP1=poly-ADP-ribose polymerase 1. NR3C1l=nuclear receptor
subfamily 3 group C member 1. AAK1=AP2-associated protein kinase 1. MTNR1A=melatonin receptor 1A.
TMPRSS2=transmembrane serine protease 2. ACE2=angiotensin | converting enzyme 2. NRP1=neuropilin 1.
NSP14=non-structural protein 14.
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between drug targets and human diseases can provide
clues for possible drug repurposing because drugs that
target one disease might target another through a shared
functional protein—protein interaction network." For
example, SARS-CoV-2 requires host cellular factors (such
as angiotensin I converting enzyme 2 [ACE2], transmem-
brane serine protease 2 [TMPRSS2], and furin; figure 1)
for successful replication during infection.”* Systematic
targeting of the viral protein and host protein interactions
(the SARS-CoV-2 interactome) offers a novel strategy for
effective drug repurposing for COVID-19. A SARS-CoV-2
virus-host interactome that contains 332 high-confidence
protein—protein interactions between 26 viral proteins
and human proteins was structed using affinity puri-
fication mass spectrometry.® 69 drug candidates were

prioritised that can target the host proteins in the
SARS-CoV-2-host interactome.” Experimental assays
validated the antiviral activities of two sets of agents:
mRNA translation inhibitors (ie, zotatifin) and sigma-1
and sigma-2 receptor regulators (ie, haloperidol).

In another study,® a network-based methodology that
quantifies the interplay between the virus-host inter-
actome and drug targets in the human interactome
network suggested 16 repurposed drug candidates for
potential treatment of COVID-19.” This finding calls for a
detailed approach, including Al and network medicine,
and raises the question of not only which protocols to
consider, but also which factors to scrutinise, and broadly,
how to integrate the disciplines (figure 2).

Al algorithms and recent advancements

Deep learning architecture

Deep learning is a subfield of machine learning that
refers to the paradigm of exploring the data with layers of
linear and non-linear transformations organised in a
hierarchical way.” The most widely used deep learning
model is artificial neural networks, wherein the basic
building block is an artificial neuron that non-linearly
transforms the weighted sum of input feature variables.

Fully connected feedforward neural network (FNN) is
an architecture in which the artificial neurons are
connected layer-by-layer from input features to output
targets. A weight is associated with each connection and is
optimised by minimising the prediction loss of the output
targets through backpropagation on training samples.®
FNNs are typically used for data samples represented as
vectors. For example, Aliper and colleagues® used FNN to
classify drugs into pharmaceutical therapeutic classes
based on the drugs transcriptomic profile vectors.
Lenselink and colleagues® compared the performance of a
diverse set of algorithms on the prediction of molecule
and target activity with the ChEMBL database.” The
authors showed that the inclusion of target data can lead
to better models. FNN can achieve better performance
than that of conventional machine learning methods,
such as logistic regression.

In the case of images being the input where each pixel
is a feature variable, FNNs become infeasible as the
number of weights becomes far too large. However,
convolutional neural network (CNN; panel) is particularly
suitable for image processing. Instead of fully connecting
neurons in adjacent layers, CNN uses filters (small
matrices of weights) that apply a convolution operation
on local patches of the images, which greatly reduces the
number of weights. CNN has been used to analyse
chemical images to obtain insight into drug therapeutic
functions.” For example, AtomNet predicts the binding
affinity of small molecules to proteins on the basis of the
structural information extracted by CNN.*

Biological sequences are another widely explored type
of data for drug repurposing. However, neither FNN nor
CNN appropriately consider the sequential nature of the
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data. Recurrent neural networks (RNNs) are specifically
designed for sequences in which the main building block
is a recurrent cell appearing at each timestamp or seq-
uence location that retains past information while
learning new information in a sequence. RNN models
have been used for generating focused molecule libraries
for drug discovery, with the molecules represented as
sequences using simplified molecular input line entry
system codes.” Gao and colleagues* developed a hybrid
approach of graph neural network and RNN to predict
drug—target interactions. Beck and colleagues® developed
a hybrid CNN and RNN model called Molecule
Transformer-Drug Target Interaction to predict whether
any commercially available antiviral drugs could work in
SARS-CoV-2.The authors computationally identified
several known antiviral drugs, such as atazanavir, rem-
desivir , efavirenz, ritonavir, and dolutegravir, for the
potential treatment of SARS-CoV-2 infection.

Graph representation learning

A classic way to repurpose drugs is through network
medicine, which includes the construction of medical
knowledge graphs containing relationships between
different kinds of medical entities (eg, diseases, drugs,
and proteins) and predicts new links between existing
approved drugs and diseases (eg, COVID-19). Methods
that are based on graph embedding have been gaining
attention for link prediction in graphs® that represent
nodes and edges as low-dimensional feature vectors.”*
Using the feature vectors of drugs and diseases, we can
easily measure their similarities and therefore identify
effective drugs for a given disease. One challenge for the
graph embedding method is scalability. Real-world
(knowledge) graphs are usually large. The number of
entities in a medical knowledge graph could be as many
as several million. Existing machine learning systems
such as TensorFlow and PyTorch are mainly designed for
data with regular structures but not for large-scale graphs.
Therefore, several systems that are specifically designed
for learning representations from large-scale graphs have
been developed. For example, Zhu and colleagues™ devel-
oped a high-performance system named GraphVite that
could be promising for future drug repurposing because
the system can efficiently process tens or even hundreds
of millions of nodes.

Increasing interest exists in developing graph repre-
sentation learning techniques for drug repurposing. Sosa
and colleagues® constructed a medical knowledge graph
of drugs, diseases, genes, and proteins from the bio-
medical literature and used graph embedding techniques
for predicting the links between drugs and diseases. Gysi
and colleagues® developed a method that was based on
graph neural network and presented a case study on
SARS-CoV-2 with 81 potential repurposing candidates
identified. BenevolentAl’s knowledge graph is a large
repository of structured medical information, including
numerous connections extracted from the scientific
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Panel: Terms and concepts

Drug-target network
A bipartite graph composed of approved drugs and proteins linked by drug-target
binary associations.

Drug repurposing

A strategy for identifying new indications for approved or investigational (including
clinically failed) drugs that have not been originally approved or dedicated (also termed
drug repositioning, reprofiling or re-tasking).

Disease module
Represents a group of nodes (ie, proteins or genes) whose perturbation can be linked
to a particular disease (eg, COVID-19) phenotype.

Systems pharmacology
An inter-discipline that applies systems biology principles and data science techniques
in pharmacology.

Human interactome
The set of physical protein-protein interactions (the interactome) in human cells.

Network medicine

A discipline that seeks to redefine disease and therapeutics from an integrated perspective
using systems biology and network science methodologies, offering important
applications to drug design.

Node or vertex
The basic unit of graphs. Usually visualised as circles (or in other shapes), nodes represent
basic entities, such as drugs and proteins.

Edge or link
A basic unit of graphs that connects two nodes. Usually visualised as lines (with arrows if
directed), edges represent the relationships (eg, protein interaction) between the nodes.

Network proximity

Measures the distances between two modules, such as drug-target and disease-gene
modules. Several proximity measures have been defined, such as shortest, closest,
separation, kernel, and centre measures.*

Artificial intelligence (Al)
The study of building machines or programmes that exhibit human intelligence in doing
specific or general tasks.

Machine learning algorithms
A subset of Al algorithms that can learn from data, therefore removing the need for
explicit instructions on how to do certain tasks.

Deep neural networks
A general term referring to multilayer neural networks.

Convolutional neural networks
Neural network architectures specifically designed for analysing image data, which
generally include multiple layers of convolutional layers and pooling layers.

Graph representation learning
Specific deep learning techniques that are developed for learning feature representations
of graph structure data.

Visible neural network
A new generation of visible approaches that aim to guide the structure of machine
learning models with an increasingly extensive knowledge of a biological mechanism.
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Figure 2: Al for drug repurposing in an integrative context

Al approaches can greatly accelerate drug repurposing by incorporating biological knowledge (eg, human
interactome, organelles, tissues, and organs). The cogs indicate computer programs and algorithms. Red and black
circles represent neurons in deep neural networks. Red indicates that this neuron carries important information
from the biological systems. Green and blue people indicate different subgroups that might have different
responses to the treatment. The downward arrows show that Al algorithms can use the information from
multi-level biological systems and drug development pipelines to build more powerful models. The left panel
shows the biological systems and the right panel shows the drug development pipeline Al=artificial intelligence.

literature by machine learning.”* BenevolentAl predicted
that baricitinib, a drug used to treat rheumatoid arthritis,
could be a potential treatment for COVID-19 through the
inhibition of AP2-associated protein kinase 1 (encoded by
AAKZ figure 1). A team constructed a comprehensive
COVID-19 knowledge graph (termed CoV-KGE) that
included 15 million edges across 39 types of relationships
connecting drugs, diseases, proteins, genes, pathways,
and expressions of genes and proteins® from a large
scientific corpus of 24 million PubMed publications.
Using Amazon Web Services’ computing resources and
graph representation learning techniques, the team
identified 41 repurposed drug candidates (including dexa-
methasone and melatonin) for COVID-19 treatment. To
achieve a high prediction performance, the construction
of a high-quality medical knowledge graph is essential,
which itself is a promising direction for future research.

Repurposed drugs for COVID-19 are under
investigation

Several examples exist of repurposed drugs being or
having been tested in clinical trials for COVID-19,
including antiviral drugs and host-targeting therapies
(figure 1). A detailed discussion of repurposed drugs for
COVID-19 can be found in a review by Sanders and
colleagues.*

€670

Antiviral drugs

Remdesivir, a monophosphate prodrug of an active
C-adenosine nucleoside triphosphate analogue, was origi-
nally discovered for the potential treatment of Ebola virus
disease.* Remdesivir has shown promise in the treatment
of COVID-19, prompting emergency use clearance from
the FDA, although indication is limited to severe disease
only. The FDA made this decision on the basis of early
research showing that the drug might help speed up
recovery for hospitalised patients with COVID-19.
Mechanistically, remdesivir was shown to inhibit the viral
RNA-dependent RNA polymerase (figure 1).” A double-
blind, randomised, placebo-controlled trial of intravenous
remdesivir in adults hospitalised with COVID-19 showed
that remdesivir significantly shortens the median recovery
time to 11 days, compared with 15 days in the placebo
group.® These preliminary findings support the use of
remdesivir for patients who are hospitalised with
COVID-19 and require supplemental oxygen therapy.
However, another randomised, open-label, phase 3 trial
involving hospitalised patients not requiring mechanical
ventilation did not show a significant difference between a
5-day course and a 10-day course of remdesivir.*® Further
investigation of the clinical benefits of remdesivir for
patients with COVID-19 in different patient subgroups
with or without mechanical ventilation is needed to iden-
tify the shortest effective duration of therapy. Additionally,
whether remdesivir can shorten the recovery course of
individuals with early COVID-19 is unknown. A study
using machine learning and statistical analysis approaches
discovered that mefuparib (CVL218), a poly-ADP-ribose
polymerase 1 inhibitor (figure 1), blocked SARS-CoV-2 rep-
lication without obvious toxic effects in vitro.” The antiviral
activity of mefuparib is more potent at viral entry and
similar at viral post entry compared with remdesivir,
suggesting the drug to be a potential anti-SARS-CoV-2
drug candidate.

Toremifene, a first-generation selective estrogenic
receptor modulator that is non-steroidal, was approved
for the treatment of breast cancer in 1997° A network
medicine analysis identified toremifene as a top candi-
date for the treatment of COVID-19.° In vitro assays
indicated that toremifene blocked various viral infections
at micromolar concentration, including Middle East
Respiratory Syndrome coronavirus,* severe acute respira-
tory syndrome coronavirus,” and SARS-CoV-2.” A further
computational biophysics study* suggested that
toremifene might block interaction between ACE2 and
the spike protein of SARS-CoV-2 and might inhibit non-
structural protein 14 of SARS-CoV-2 (figure 1), mechanis-
tically supporting the drug’s antiviral activities. The
mean plasma concentration of toremifene during admin-
istration of 60 mg per day was 0-88 mg/L (2-17 M) in
post-menopausal patients with breast cancer® and the
peak plasma concentration (>10 pM) of toremifene
(60 mg per day) was approximately three-times the
antiviral effect on SARS-CoV-2 (half-maximal inhibitory
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concentration of 3-58 pM).” In summary, toremifene,
identified by CoV-KGE® and network medicine® app-
roaches, offers a potential drug candidate to be tested in
COVID-19 clinical trials.

Host-targeting therapy

SARS-CoV-2 causes up-regulation of systemic inflam-
mation,” in some cases culminating in a cytokine storm,
underscoring the high potential for treatment success
by using a drug targeting inflammation and immune res-
ponse (including Dbaricitinib, dexamethasone, and
melatonin; figure 1). By combining findings based on
network medicine and large-scale patient data analysis
from the COVID-19 patient registry at the Cleveland Clinic,
Cleveland, OH, USA, researchers found that melatonin
intake was associated with a 50-60% reduced likelihood of
a positive laboratory test result for SARS-CoV-2.%
Dexamethasone is a glucocorticoid receptor (figure 1)
agonist approved by the US FDA for a variety of
inflammatory and autoimmune conditions.” Dexametha-
sone was identified as a top repurposed drug candidate by
CoV-KGE.” The randomised trial® of COVID-19 therapy
trial showed that dexamethasone reduced death by a third
in patients requiring invasive mechanical ventilation (95
[29%)] of 324 patients vs 283 [41%] of 683 patients; rate ratio
0-64 [95% CI 0-51-0-81]) and by a fifth in individuals
requiring oxygen without invasive mechanical ventilation
(298 [23-3%)] of 1279 patients vs 682 [26-29] of 2604
patients; 0-82 [0-72-0-94]). However, dexamethasone did
not reduce mortality in COVID-19 patients not receiving
respiratory support. Altogether, these data suggest that
targeting excessive host inflaimmation by immune
modulators or anti-inflammatory drugs offers a therapeutic
strategy for severe COVID-19, warranting testing in large-
scale RCTs.

Drug combinations for COVID-19

Monotherapies, including remdesivir**® and hydroxy-
chloroquine,” have shown little or no clinical benefit for
patients with COVID-19. Because the immune system
plays key roles in the worsening health and death of
patients with COVID-19,* combining inflammatory or
immune modulators (ie, boosting host immunity) with
antiviral drugs might offer an effective treatment for
patients with COVID-19. Drug combinations, offering
increased therapeutic efficacy and reduced toxicity, play
an important role in treating infectious diseases, inclu-
ding COVID-19 (eg, remdesivir plus baricitinib
[NCT04401579]). However, our ability to identify and vali-
date effective combinations is limited by a huge increase
in the number of possible drug pairs. Using a network-
based methodology,” scientists identified three potential
drug combinations for COVID-19,* including sirolimus
plus dactinomycin, mercaptopurine plus melatonin, and
toremifene plus emodin. These combinations are based
on theoretical analysis using the interactome and have
not been tested in preclinical or clinical studies. The same
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team further observed that combining melatonin and
toremifene showed potential for use in the treatment of
COVID-19.# The selective estrogen modulation and
melatonin in early COVID-19 (SENTINEL; NCT04531748)
trial is being done at the Cleveland Clinic to test the
clinical efficacy of combining melatonin and toremifene
therapy in patients with early COVID-19.” Using
BenevolentAl's knowledge graph,* baricitinib was identi-
fied as potential treatment for COVID-19. At least two
phase 2 randomised, double-blind trials of baricitinib
alone or as part of combination therapy with antiviral
drugs (eg, remdesivir) are underway for patients with
moderate and severe COVID-19 (NCT04373044 and
NCT04401579).

Real-world evidence to test drug responsiveness
Another important aspect of using Al for drug repur-
posing is the use of real-world data, such as electronic
health records, in searching for effective repurposed
drug candidates. Electronic health records are patient
clinical data that are routinely collected, such as demo-
graphics, diagnoses, medications, procedures, and lab-
oratory test results, stored in digital form, which can be
exchanged and accessed securely.” Extensive discussions
have taken place on leveraging real-world data for drug
discovery and development.* On the one hand, patients
in real-world data are more representative of patients
who will receive the prescription when the drug is on the
market than patients in RCTs are, who are enrolled on
the basis of strict inclusion and exclusion criteria. On the
other hand, typically treatment and control groups are
required to precisely estimate the treatment effects.
However, for certain scenarios, such as remdesivir trials
for COVID-19, only a single treatment group is possible,
which makes estimating the treatment effect difficult.””
In this case, because of the inclusion of many diverse
patients, real-world data contain rich information for
synthesising a potential control group, which can then be
compared with the treatment group in an RCT to help
estimate the treatment effects.

Despite the promises of real-world data, deriving
insights from real-world data that are similar to those
from RCTs is challenging because real-world data have
higher dimensionality (including confounding factors), a
broader population, and usually lower data quality com-
pared with RCT data. Propensity score, which calculates
the likelihood of the patient receiving the treatment from
a set of potential confounding factors using logistic
regression, is the standard technique to do patient
matching.” However, the calculation of the likelihood of
the patient receiving the treatment from such a set is
much more complicated in real-world data because of the
associated challenges such as high dimensionality, longi-
tudinality, irregularity, and incompleteness. In this case,
the advanced machine learning models can estimate
propensity scores more accurately than traditional log-
istic regression-based propensity score matching
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approaches can.”** Moreover, other types of matching
techniques, such as patient similarity analytics,” also
hold promise in these complicated scenarios.

The initiative to build national or international elec-
tronic health records repositories for COVID-19 research
has been undertaken. One such repository is the
international consortium 4CE, which includes the elec-
tronic health records of patients from 96 hospitals across
five countries. All participants’ electronic health records
are matched to a common data model with Integrating
Biology and the Bedside® or Observational Medical
Outcomes Partnership (OMOP)." A retrospective cohort
study of 1438 patients with laboratory-confirmed
COVID-19 admitted to hospital in metropolitan New York,
USA, revealed that treatment with hydroxychloroquine,
azithromycin, or both, compared with neither treatment,
was not significantly associated with differences in in-
hospital mortality for patients with COVID-19.” From a
COVID-19 registry of nearly 20000 patients with
1600 COVID-19-positive patients from the Cleveland
Clinic Health System electronic health records, and using
a user-active comparator design and propensity score
adjustment for confounding, melatonin usage was shown
to be associated with a reduced likelihood of a positive
SARS-CoV-2 test result by RT-PCR assay.* Mancia and
colleagues” showed that angiotensin-converting enzyme
inhibitors (ACEIs) or angiotensin II receptor blockers
(ARBs) were not associated with the risk of COVID-19. An
independent study revealed that the use of ACEIs or ARBs
were not associated with an increase of the likelihood for a
positive COVID-19 test or an increase in the COVID-19
severity using New York University Langone Health
electronic health records.” RCTs are underway to test the
clinical benefits of melatonin in patients with COVID-19
(NCT04409522 and NCT04353128).

Discussion, perspective, and future directions
For decades, translational science has faced the challenge
of how to translate research findings into new effective
medicines and technologies that rapidly deliver the
medicines. This challenge has encouraged basic and tran-
slational sciences to work together towards this pivotal
aim. Generations of scientists have struggled to make
headway in de novo drug discovery. In principle, a strategy
involving drug repurposing, in which a drug has already
been tested and approved by the US FDA, can overcome
the barriers of de novo drug discovery. However, the
volume of approved or clinically failed drugs is large,
emphasising the difficulty of which drug to select that
would be highly effective for the disease in question.

Challenges in drug repurposing

Despite the enthusiasm for drug repurposing in treating
COVID-19, challenges remain. Cellular or animal assays
might not reflect the host environment of the virus
infection in humans. Also, repurposed drugs might
have been optimised for a particular target, dosing, or

tissue in the original indications. Rapid clinical tests of
existing antiviral, antimalarial, and immunomodulatory
drugs have been done or are underway against
COVID-19. Many trials did not optimise the drug’s
clinical benefits and biological questions because of
their expedient design, lack of clinical endpoints, small
number of patients enrolled (thus lack of statistical
power), and more.* For example, hydroxychloroquine
shows potential anti-SARS-CoV-2 activities in in vitro
assays.” However, hydroxychloroquine has shown very
little or no efficiency in preclinical® and clinical trial
studies.” Few reproducible preclinical animal models
and gold-standard clinical outcome measures in
COVID-19 trials might also result in some failures to
find clinical benefits. Tools and analyses with greater
sensitivity are also required to detect differences between
drugs and placebos, especially as more mildly affected
patients with COVID-19 are included in trials. The
presence of heterogeneous populations with different
genetic backgrounds might also affect outcomes of
clinical results. Possible factors contributing to these
clinical trial findings that should be accounted for in
future trials include targeting the wrong pathobiological
or pathophysiological mechanisms in COVID-19; using
drugs that do not engage with the intended target
(including virus proteins and virus-host and protein—
protein interactome); intervening at the wrong stage of
the disease, including early, mild, moderate, and severe
illnesses; lacking translatable pharmacodynamic and
pharmacokinetic (ie, poor lung penetration) biomarkers;
depending on in vitro antiviral activities and not using
appropriate animal models with poor predictive efficacy;
not addressing the rapid disease progression of
COVID-19 in a short period; and not accurately moni-
toring the complexity of the clinical and biological char-
acteristics to therapeutic intervention.

Although Al-based drug repurposing is in the develop-
mental stage, several examples have shown encouraging
results, including baricitinib identified by BenevolentAT,*
dexamethasone® predicted by CoV-KGE,*” and melatonin
from network medicine-based findings (figure 1).* The
development of effective and robust in vitro and in vivo
models can reduce the failure rate of drug repurposing
between preclinical studies and clinical trials for
COVID-19.7  Genotype-informed drug repurposing
(termed personalised drug repurposing) might further
improve the success rate of clinical trials.”

Challenges in biological interpretation

Given the highly complex and regulated nature of drug
development, a long-term vision is needed when devel-
oping Al applications in drug repurposing that could
increase efficiency and effectiveness in the various pro-
cesses involved, and reduce the barriers between the
numerous research components in the ecosystem to
create new therapy options. Al technologies, such as vis-
ible neural networks,” incorporate the Al model’s inner

www.thelancet.com/digital-health Vol 2 December 2020


https://www.covidclinical.net
https://www.covidclinical.net

Review

workings into real systems of biomedical sciences (eg,
human and animal). For example, visible machine
learning approaches might guide model structures of
data heterogeneity in the life sciences and translate
patient data to successful therapies.” Biological systems
are complex and hierarchical (figure 2), composed of
multiple levels such as sequences, protein complexes,
cells, tissues, organs, and organisms. Drug discovery is a
complicated process involving multilevel interactions
between chemical compounds and biological systems.
Therefore, a potential way of building an effective and
interpretable model of drug discovery is to enrich the
biologically-inspired visible neural network model” with
drug-related entities such as chemical compounds and
diseases. The biomedical knowledge on how different
entities interact with each other at different levels can be
leveraged to guide the design of the corresponding com-
puting modules.” Compared to current deep learning
models which try to model the entire system with a
complex model at once, this divide-and-conquer scheme
models the different components in the complex system
and how these components interact with each other in
an explicit and transparent way. The model parameters
can be optimised in an end-to-end way as in other deep
learning models.

Challenges in data and model harmonisation

Data harmonisation refers to the process of standardising
and integrating information from disparate sources to
form a unified database. Data harmonisation is a crucial
step for guaranteeing that the machine-learning based
models that are developed are widely applicable in
different scenarios. Establishing a high quality data
model (which is a prerequisite for organising and stan-
dardising the data) is the foundation for the harmon-
isation process. National and international efforts aim to
build common data models such as the national patient-
centered clinical research network™ and the observational
health data science and informatics programme.” Fast
healthcare interoperability resources™ represent another
type of standard, which defines how these data should be
exchanged.

In addition to data harmonisation, model harmon-
isation, which defines a unified standard for storing the
computational models, is also an important aspect to
enhance the generalisability and utility of the compu-
tational drug repurposing tools. The open neural network
exchange (ONNX) is an example of such efforts aiming
to build model exchanging standards that are inter-
operable. ONNX defines implemented models as an
extensible acyclic graph model. Each node on the graph
is a call to built-in operators with inputs and outputs
defined using standard data types.

Challenges in data sharing and security

With the enhanced availability of health-related data (esp-
ecially patient data), concerns have been raised regarding
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data security and privacy” For example, demographics
and DNA sequencing data have an increased risk of
making patients identifiable. Efforts should be made to
scrutinise each stage in the data life cycle. For example,
questions pertaining to what type of data will be collected;
whether the data are necessary; who will collect the data;
how the data will be used, stored, and transferred; what
the rights are of the person whose data are being collected,
and others, should be addressed carefully. Additionally,
regulations and transparency are crucial for appropriate
data collection and use, and so is an increased public
awareness. Towards this goal, federated learning™ could
be a promising direction, which trains algorithms across
decentralised edge devices (eg, individual mobile phones)
or servers hosting different local samples (eg, data owned
by different samples). Data samples are not shared or
centralised and only the trained models are communi-
cated, which might improve data security and privacy of
patient data for drug—disease outcome validation in drug
repurposing.

Personalised drug repurposing

Advances in pharmacogenetics and pharmacogenomics
indicated that disease treatment would be considerably
improved if therapies were guided by individual's genomic
profiles. This hypothesis has garnered initial success in
some diseases, including cancer.” Responsiveness to a
drug is influenced by genetic, epigenetic, and environ-
mental factors. SARS-CoV-2 infection has shown large
inter-individual variabilities, ranging from asymptomatic
to severe and lethal disease. One possible hypothesis is
that human genetics might determine clinical charac-
teristics and drug responses.®” For example, analysis of
approximately 81000 genomes and exomes from the
general population suggested that hydroxychloroquine or
chloroquine might only work for TMPRSS2-absent pat-
ients who are infected by SARS-CoV-2.% An international
team showed that hydroxychloroquine has antiviral
activity in the kidney cells of African green monkeys
without TMPRSS2 expression (VeroE6) but not in the
model of reconstituted human airway epithelium devel-
oped from primary nasal or bronchial cells.” Additionally,
another team showed that chloroquine does not block
SARS-CoV-2 infection of the TMPRSS2-positive lung cell
line Calu-3.* These preliminary findings highlight the
importance of pharmacogenomics studies in improving
clinical benefits and the success rate of drug repurposing.
A COVID-19 host genetics initiative is underway
to generate, share and analyse data in a search for the
genetic determinants of COVID-19 susceptibility, severity,
and outcomes, and personalised treatment. Therefore,
Al techniques could leverage massive genetic and
genomic data to identify human genetic determinants of
SARS-CoV-2 pathogenesis, which presents a unique
opportunity for drug repurposing in precision medicine
and personalised treatment for individuals with COVID-19
(figure 3).

For more on the open neural

network exchange see
https://onnx.ai/

For the COVID-19 host genetics
initiative see https://www.

covid19hg.com
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Figure 3: Al for patient stratification and personalised treatment

Al approaches can accelerate precision medicine by the unique integration of genomic, transcriptomic, proteomic, and phenomic profiles from individuals. The
bottom left panel represents the feature extraction step using deep learning, the arrows represent successive feature extraction from previous layers, and the shades
of grey represent the output (learned features that have high or low values in the output of learned features from previous layers). Al=artificial intelligence.

The future of Al-informed drug repurposing

Drug selection among the many approved ones, while
avoiding time-consuming searches, can present uncer-
tainty. To date, AI's potential ability to identify new
candidate therapies that can be made available for clin-
ical trials rapidly and, if approved, merged into health
care is unparalleled, making Al a centrepiece of adv-
anced technologies. Because of this, Al is a promising
method for accelerating drug repurposing for human
diseases, especially emerging diseases, such as

Search strategy and selection criteria

References for this Review were identified through searches
of PubMed, Ovid MEDLINE, Scopus, ProQuest, Google Scholar,
and Web of Science for papers, including peer-reviewed
articles, grey literature, and preprints, published in English
from Jan 1, 2010, to July 22, 2020 with “OR/AND” operators.
Keywords and the English Medical Subject Headings terms

"o

include “drug repurposing”, “drug repositioning”, “network
medicine”, “machine learning”, “artificial intelligence”,
“convolutional neural networks”, “deep neural networks”,
"deep learning”, “COVID-19”, and “SARS-CoV-2". We also
included case reports, case series, and review articles. We
independently reviewed the titles and abstracts for inclusion.
Additional relevant articles were identified from the review

of citations referenced.

COVID-19. With the availability of big data, including
biological, clinical, and open data (scientific publications
and data repositries), novel Al techniques capable of
leveraging these large sets of biomedical data are in
high demand. Pharmaceutical scientists, computer
scientists, statisticians, and physicians are increasingly
involved in developing and adopting Al-based tech-
nologies for the rapid development of therapeutics. Al
approaches, coupled with big data, have the potential to
substantially improve the efficiency and effectiveness of
drug repurposing and aid medical decision making of
therapeutic benefits with real-world evidence for
various complex human diseases, such as COVID-19
(figure 1) and Alzheimer’s disease.” However, chal-
lenges remain in developing these Al tools, such as
data heterogeneity and low quality, and insufficient data
sharing by pharmaceutical companies, as well as the
security and interpretability of the models. We expect
future successful AI models for drug repurposing to be
accurate in terms of the generated outcomes, integrative
of disparate information types and sources, inter-
operable in diverse deployment settings, interpretable
of internal working mechanisms, and robust to noise
and adversarial attacks.

Contributors

FC conceived the study. YZ, FW, JT, and FC, did literature searching

and data analysis. FC, YZ, FW, JT, and RN wrote and critically revised
the manuscript.

www.thelancet.com/digital-health Vol 2 December 2020



Review

Declaration of interests

RN is principle investigator of Leidos Biomedical Research, National
Cancer Institute at Frederick, National Institutes of Health, Frederick,
MD, USA. The content of this publication does not necessarily reflect
the views or policies of the US Department of Health and Human
Services, nor does mention of trade names, commercial products,

or organisations imply endorsement by the US Government. All other
authors declare no competing interests.

Acknowledgments

This work was supported by the National Institute of Aging of the

US National Institutes of Health (NIH; R0OIAG066707 and
3R01AG066707-01S1) and the National Heart, Lung, and Blood Institute
of the NTH (ROOHL138272) to FC. This work was supported by the
VeloSano Pilot Program (Cleveland Clinic Taussig Cancer Institute,
Cleveland, OH, USA) to FC. This work has been also supported with
federal funds from the Frederick National Laboratory for Cancer
Research, NIH (HHSN261200800001E) to RN. This research was
supported by the Intramural Research Program of the NIH, Frederick
National Lab, Center for Cancer Research to RN. This work was
supported by the US National Science Foundation (1750326 and
2027970) and US Office of Naval Research (N00014-18-1-2585) to

FW. We are thankful for all helpful discussions and critical comments
regarding this manuscript from the COVID-19 Research Intervention
Advisory Committee members at the Cleveland Clinic.

References

1 Turing AM. Computing machinery and intelligence. Mind 1950;
49: 433-60.

2 Fleming N. How artificial intelligence is changing drug discovery.
Nature 2018; 557: S55-57.

3 Smalley E. Al-powered drug discovery captures pharma interest.
Nat Biotechnol 2017; 35: 604-05.

4 Avorn J. The $2-6 billion pill- methodologic and policy
considerations. N Engl | Med 2015; 372: 1877-79.

5  Chong CR, Sullivan DJ Jr. New uses for old drugs. Nature 2007;
448: 645—46.

6  Ghofrani HA, Osterloh IH, Grimminger F. Sildenafil: from angina
to erectile dysfunction to pulmonary hypertension and beyond.
Nat Rev Drug Discov 2006; 5: 689-702.

7 Laubach JP, Richardson PG, Anderson KC. Hematology:
thalidomide maintenance in multiple myeloma. Nat Rev Clin Oncol
2009; 6: 565—66.

8  Beigel JH, Tomashek KM, Dodd LE, et al. Remdesivir for the
treatment of Covid-19—Preliminary Report. N Engl ] Med 2020;
2020: 22.

9  Cheng F, Murray JL, Zhao |, Sheng J, Zhao Z, Rubin DH.
Systems biology-based investigation of cellular antiviral drug
targets identified by gene-trap insertional mutagenesis.

PLOS Comput Biol 2016; 12: €1005074.

10 ZengX, Zhu S, Lu W, et al. Target identification among known
drugs by deep learning from heterogeneous networks.
Chem Sci (Camb) 2020; 11: 1775-97.

11 Cheng F, Desai R, Handy DE, et al. Network-based approach to
prediction and population-based validation of in silico drug
repurposing. Nat Commun 2018; 9: 2691.

12 Greene JA, Loscalzo ]. Putting the patient back together—social
medicine, network medicine, and the limits of reductionism.

N Engl ] Med 2017; 377: 2493-99.

13 Hoffmann M, Kleine-Weber H, Pohlmann S. A multibasic cleavage
site in the spike protein of SARS-CoV-2 is essential for infection
of human lung cells. Mol Cell 2020; 78: 779-84.e5.

14 Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2
cell entry depends on ACE2 and TMPRSS2 and is blocked by a
clinically proven protease inhibitor. Cell 2020; 181: 271-80.e8.

15 Gordon DE, Jang GM, Bouhaddou M, et al. A SARS-CoV-2 protein
interaction map reveals targets for drug repurposing. Nature 2020;
583: 459-68.

16 Zhou Y, Hou Y, Shen J, Huang Y, Martin W, Cheng F. Network-based
drug repurposing for novel coronavirus 2019-nCoV/SARS-CoV-2.
Cell Discov 2020; 6: 14.

17 LeCun'Y, Bengio Y, Hinton G. Deep learning. Nature 2015;

521: 436—44.

www.thelancet.com/digital-health Vol 2 December 2020

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

Rumelhart DE, Hinton GE, Williams R]. Learning representations
by back-propagating errors. Nature 1986; 323: 533-36.

Aliper A, Plis S, Artemov A, Ulloa A, Mamoshina P,

Zhavoronkov A. Deep learning applications for predicting
pharmacological properties of drugs and drug repurposing

using transcriptomic data. Mol Pharm 2016; 13: 2524-30.
Lenselink EB, Ten Dijke N, Bongers B, et al. Beyond the hype:
deep neural networks outperform established methods using a
ChEMBL bioactivity benchmark set. | Cheminform 2017; 9: 45.
Meyer ]G, Liu S, Miller IJ, Coon JJ, Gitter A. Learning drug
functions from chemical structures with convolutional neural
networks and random forests. ] Chem Inf Model 2019; 59: 4438—49.
Wallach I, Dzamba M, Heifets A. AtomNet: a deep convolutional
neural network for bioactivity prediction in structure-based drug
discovery. arXiv 2015; published online Oct 10. https://arxiv.org/
abs/1510.02855 (preprint).

Segler MHS, Kogej T, Tyrchan C, Waller MP. Generating focused
molecule libraries for drug discovery with recurrent neural
networks. ACS Cent Sci 2018; 4: 120-31.

Gao KY, Fokoue A, Luo H, Iyengar A, Dey S, Zhang P. Interpretable
drug target prediction using deep neural representation.

IJCAI 2018; 3371-77.

Beck BR, Shin B, Choi Y, Park S, Kang K. Predicting commercially
available antiviral drugs that may act on the novel coronavirus
(SARS-CoV-2) through a drug-target interaction deep learning
model. Comput Struct Biotechnol J 2020; 18: 784-90.

Tang ], Qu M, Wang M, Zhang M, Yan ], Mei Q. LINE: large-scale
information network embedding. Proceedings of the 24th
International Conference on World Wide Web; Florence, Italy:
May 2015 (pp 1067-77).

Bordes A, Usunier N, Garcia-Durdn A, Weston J, Yakhnenko O.
Translating embeddings for modeling multi-relational data.

26th International Conference on Neural Information Processing
Systems; Lake Tahoe, NV: Dec 2013 (pp 1-9).

Trouillon T, Welbl |, Riedel S, Gaussier E, Bouchard G. Complex
embeddings for simple link prediction. In: Maria Florina B,

Kilian QW, eds. Proceedings of the 33rd International Conference
on Machine Learning. New York, NY, USA: Proceedings of Machine
Learning Research, 2016: 2071-80.

Dettmers T, Minervini P, Stenetorp P, Riedel S. Convolutional 2D
knowledge graph embeddings. arXiv 2017; published online July 5.
https://arxiv.org/abs/1707.01476 (preprint).

Sun Z, Deng Z-H, Nie J-Y, Tang J. RotatE: knowledge graph
embedding by relational rotation in complex space. arXiv 2019;
published online Feb 26. https://arxiv.org/abs/1902.10197
(preprint).

Zhu Z, Xu S, Qu M, Tang J. GraphVite: a high-performance
CPU-GPU hybrid system for node embedding. arXiv 2019;
published online March 2. https://arxiv.org/abs/1903.00757
(preprint).

Sosa DN, Derry A, Guo M, Wei E, Brinton C, Altman RB.

A literature-based knowledge graph embedding method for
identifying drug repurposing opportunities in rare diseases.

Pac Symp Biocomput 2020; 25: 463-74.

Gysi DM, Do Valle I, Zitnik M, et al. Network medicine framework
for identifying drug repurposing opportunities for COVID-19. arXiv
2020; published online April 15. https://arxiv.org/abs/2004.07229
(preprint).

Richardson P, Griffin I, Tucker C, et al. Baricitinib as potential
treatment for 2019-nCoV acute respiratory disease. Lancet 2020;
395: e30-31.

Zeng X, Song X, Ma T, et al. Repurpose open data to discover
therapeutics for COVID-19 using deep learning. ] Proteome Res
2020; published online July 12. https://doi.org/10.1021/acs.
jproteome.0c00316.

Sanders JM, Monogue ML, Jodlowski TZ, Cutrell JB. Pharmacologic
treatments for coronavirus disease 2019 (COVID-19): A Review.
JAMA 2020; 323: 1824-36.

Yin W, Mao C, Luan X, et al. Structural basis for inhibition of the
RNA-dependent RNA polymerase from SARS-CoV-2 by remdesivir.
Science 2020; 368: 1499-504.

Goldman JD, Lye DCB, Hui DS, et al. Remdesivir for 5 or 10 days
in patients with severe Covid-19. N Engl | Med 2020; publish online
May 27, https://doi.org/10.1056/NEJMo0a2015301.



Review

39

41

42

43

45

47

49

50

51

52

53

54

55

56

57

58

59

e676

Ge Y, Tian T, Huang S, et al. A data-driven drug repositioning
framework discovered a potential therapeutic agent targeting
COVID-19. bioRxiv 2020; published online March 12. https://doi.
0rg/10.1101/2020.03.11.986836 (preprint).

Wiseman LR, Goa KL. Toremifene. A review of its pharmacological
properties and clinical efficacy in the management of advanced
breast cancer. Drugs 1997; 54: 141-60.

Cong Y, Hart BJ, Gross R, et al. MERS-CoV pathogenesis and
antiviral efficacy of licensed drugs in human monocyte-derived
antigen-presenting cells. PLoS One 2018; 13: €0194868.

Dyall ], Coleman CM, Hart BJ, et al. Repurposing of clinically
developed drugs for treatment of Middle East respiratory syndrome
coronavirus infection. Antimicrob Agents Chemother 2014;

58: 4885-93.

Jeon S, Ko M, Lee J, et al. Identification of antiviral drug
candidates against SARS-CoV-2 from FDA-approved drugs.
Antimicrob Agents Chemother 2020; 64: €00819-20.

Martin W, Cheng F. Repurposing of FDA-approved toremifene

to treat COVID-19 by blocking the spike glycoprotein and NSP14
of SARS-CoV-2. | Proteome Res 2020; published online Sept 9.
https://doi.org/10.1021/acs.jproteome.0c00397.

Gupta A, Madhavan MV, Sehgal K, et al. Extrapulmonary
manifestations of COVID-19. Nat Med 2020; 26: 1017-32.

Zhou Y, Hou Y, Shen J, et al. A network medicine approach

to prediction and patient-based validation of disease manifestations
and drug repurposing for COVID-19. ChemRxiv 2020; published
online July 2. https://dx.doi.org/10.26434/chemrxiv.12579137
(preprint).

Ramamoorthy S, Cidlowski JA. Corticosteroids: mechanisms

of action in health and disease. Rheum Dis Clin North Am 2016;
42:15-31, vii.

Group RC, Horby P, Lim WS, et al. Dexamethasone in hospitalised
patients with Covid-19—preliminary report. N Engl | Med 2020;
published online July 17. https://doi.org/10.1056/NEJM0a2021436.
Rosenberg ES, Dufort EM, Udo T, et al. Association of treatment
with hydroxychloroquine or azithromycin with in-hospital mortality
in patients with COVID-19 in new york state. JAMA 2020;

323: 2493-502.

Tay MZ, Poh CM, Rénia L, MacAry PA, Ng LFP. The trinity

of COVID-19: immunity, inflammation and intervention.

Nat Rev Immunol 2020; 20: 363-74.

Cheng F, Kovacs IA, Barabasi AL. Network-based prediction of
drug combinations. Nat Commun 2019; 10: 1197.

Cheng F, Rao S, Mehra R. COVID-19 treatment: combining
anti-inflammatory and antiviral therapeutics using a network-based
approach. Cleve Clin | Med 2020; published online June 30.
https://doi.org/10.3949/ccjm.87a.ccc037.

Hiyrinen K, Saranto K, Nykinen P. Definition, structure, content,
use and impacts of electronic health records: a review of the
research literature. Int | Med Inform 2008; 77: 291-304.

Sherman RE, Anderson SA, Dal Pan GJ, et al. Real-world
evidence—what is it and what can it tell us® N Engl | Med 2016;
375:2293-97.

Bauchner H, Fontanarosa PB. Randomized clinical trials and
COVID-19: managing expectations. JAMA 2020; 2020: 4.
Rosenbaum PR, Rubin DB. The central role of the propensity score
in observational studies for causal effects. Biometrika 1983;

70: 41-55.

Lee BK, Lessler ], Stuart EA. Improving propensity score weighting
using machine learning. Stat Med 2010; 29: 337—46.

Linden A, Yarnold PR. Combining machine learning and
propensity score weighting to estimate causal effects in
multivalued treatments. | Eval Clin Pract 2016; 22: 871-81.

Sun ], Wang F, Hu |, Edabollahi S. Supervised patient similarity
measure of heterogeneous patient records. SIGKDD Explor 2012;
14: 16-24.

60

61

62

63

64

65

66

67

68

69

70

72

73

74

75

76

77

78

79

Murphy SN, Weber G, Mendis M, et al. Serving the enterprise

and beyond with informatics for integrating biology and the bedside
(i2b2). ] Am Med Inform Assoc 2010; 17: 124-30.

Stang PE, Ryan PB, Racoosin JA, et al. Advancing the science for
active surveillance: rationale and design for the Observational
Medical Outcomes Partnership. Ann Intern Med 2010;

153: 600-06.

Mancia G, Rea F, Ludergnani M, Apolone G, Corrao G.
Renin-angiotensin-aldosterone system blockers and the risk

of Covid-19. N Engl | Med 2020; 382: 2431-40.

Reynolds HR, Adhikari S, Pulgarin C, et al. Renin-angiotensin-
aldosterone system inhibitors and risk of Covid-19. N Engl | Med
2020; 382: 2441-48.

Mehta HB, Ehrhardt S, Moore TJ, Segal ] B, Alexander GC.
Characteristics of registered clinical trials assessing treatments for
COVID-19: a cross-sectional analysis. BMJ Open 2020; 10: e039978.
Liu J, Cao R, Xu M, et al. Hydroxychloroquine, a less toxic derivative
of chloroquine, is effective in inhibiting SARS-CoV-2 infection

in vitro. Cell Discov 2020; 6: 16.

Park SJ, Yu KM, Kim YI, et al. Antiviral efficacies of FDA-approved
drugs against SARS-CoV-2 infection in ferrets. MBio 2020;

11: e01114-20.

Maisonnasse P, Guedj J, Contreras V, et al. Hydroxychloroquine
use against SARS-CoV-2 infection in non-human primates. Nature
2020; 2020: 22.

Hoffmann M, Mésbauer K, Hofmann-Winkler H, et al.
Chloroquine does not inhibit infection of human lung cells with
SARS-CoV-2. Nature 2020; published online July 22. https://doi.
0rg/10.1038/s41586-020-2575-3.

Hou Y, Zhao ], Martin W, et al. New insights into genetic
susceptibility of COVID-19: an ACE2 and TMPRSS2
polymorphism analysis. BMC Med 2020; 18: 216.

Ma J, Yu MK, Fong S, et al. Using deep learning to model the
hierarchical structure and function of a cell. Nat Methods 2018;

15: 290-98.

Yu MK, Ma J, Fisher J, Kreisberg JF, Raphael BJ, Ideker T.

Visible machine learning for biomedicine. Cell 2018; 173: 1562-65.
Fleurence RL, Curtis LH, Califf RM, Platt R, Selby JV, Brown JS.
Launching PCORnet, a national patient-centered clinical research
network. | Am Med Inform Assoc 2014; 21: 578-82.

Hripcsak G, Duke JD, Shah NH, et al. Observational health data
sciences and informatics (OHDSI): Opportunities for observational
researchers. Stud Health Technol Inform 2015; 216: 574-78.
Braunstein ML. Healthcare in the age of interoperability: the
promise of fast healthcare interoperability resources. IEEE Pulse
2018; 9: 24-27.

Mello MM, Wang CJ. Ethics and governance for digital disease
surveillance. Science 2020; 368: 951-54.

Xu ], Glicksberg SB, Su C, Walker P, Bian ], Wang W. Federated
learning for healthcare informatics. arXiv 2019; published online
Nov 13 2019. https://arxiv.org/abs/1911.06270 (preprint).

Nussinov R, Jang H, Tsai CJ, Cheng F. Review: Precision medicine
and driver mutations: Computational methods, functional assays
and conformational principles for interpreting cancer drivers.
PLOS Comput Biol 2019; 15: €1006658.

Ellinghaus D, Degenhardt F, Bujanda L. Genomewide association
study of severe Covid-19 with respiratory failure. N Engl ] Med
2020; published online June 17. ht--tps://doi.org/10.1056/
NEJMo0a2020283.

Fang ], Pieper AA, Nussinov R, et al. Harnessing endophenotypes
and network medicine for Alzheimer’s drug repurposing.

Med Res Rev 2020; published online July 13. https://doi.org/10.1002/
med.21709.

© 2020 The Author(s). Published by Elsevier Ltd. This is an Open
Access article under the CC BY-NC-ND 4.0 license.

www.thelancet.com/digital-health Vol 2 December 2020



	Artificial intelligence in COVID-19 drug repurposing
	Introduction
	Emerging challenges and opportunities in drug discovery
	AI algorithms and recent advancements

	Repurposed drugs for COVID-19 are under investigation
	Antiviral drugs
	Host-targeting therapy
	Drug combinations for COVID-19

	Real-world evidence to test drug responsiveness
	Discussion, perspective, and future directions
	Challenges in drug repurposing
	Challenges in biological interpretation
	Challenges in data and model harmonisation
	Challenges in data sharing and security
	Personalised drug repurposing
	The future of AI-informed drug repurposing

	Acknowledgments
	References


