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ABSTRACT

This paper summarizes the current state of reproducibility and replicability in the fields of climate 

and paleoclimate science, including brief histories of their development and applications in climate 

science, new and recent approaches towards improvement of reproducibility and replicability, and 

challenges.  Recommendations for addressing those challenges include: development of searchable, 

auto-updated, interlinked, multi-archive public paleoclimate repositories for raw and processed 

digital datasets; cross-center standardized code base cases, improved data storage techniques, and a 

focus on replicability for climate simulation storage and access; and support of the development and 

community awareness of findable, accessible, interoperable and reusable (FAIR) principles by funding 

agencies and publishers.  This paper is largely based on the May 2018 presentations of a panel of 

researchers to the Committee on Reproducibility and Replicability in Science, part of the National 

Academies of Science, Engineering, and Medicine. The commentary and recommendations made here 

are in alignment with those of its Consensus Study Report on Reproducibility and Replicability in 

Science (2019).

Keywords: data repositories, global climate models, GCMs, proxy archives, replication, 

reproducibility, metadata

1. Introduction

Reproducibility and replicability are considered core tenets of the scientific process and central to the 

creation and testing of scientific theories and models of the way the world works (Goodman et al., 

2016; Stodden et al., 2016; National Academies, 2019; Powers and Hampton, 2019). Our collective 

understanding of the mechanics of Earth’s climate, the history of ancient climates (paleoclimates) on 

Earth, and any predictions we can make of future climates are built from the core principles of the 

scientific method: hypotheses not disproven by empirical observations that are transparently reported 

as studies subject to external review and repeated testing, creating a feedback cycle that accrues 

information and seeks consilience (Wilson, 1999). However, Earth’s climate is tremendously complex, 

meaning that scientific studies of climate and paleoclimate are also increasingly complex. Some recent 

examples of this growing complexity include the work of the Past Global Changes consortium studying 

the most recent 2000 years of Earth’s climate history (PAGES2k), the World Climate Research 

Programme’s Coupled Model Intercomparison Project, now in its 6th phase (CMIP6), the work of the 

MARGO international working group on reconstructions of sea surface temperatures (Kucera et al., 

2006), the International Ocean Discovery Program (IODP), as well as the International Comprehensive 

Ocean-Atmosphere Data Set (ICOADS) and NCEP North American Regional Reanalysis (NARR), both 

hosted by NOAA. Natural systems are also simultaneously dynamic and heterogeneous, such that 

http://pastglobalchanges.org/science/wg/2k-network/intro
https://pcmdi.llnl.gov/CMIP6/
http://www.iodp.org/
https://icoads.noaa.gov/
https://psl.noaa.gov/data/gridded/data.narr.html
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natural phenomena rarely, if  ever, repeat themselves to observational precision (Powers & Hampton, 

2019; Fraser et al., 2020). Furthermore, as computational analyses grow in size and complexity they 

also become more difficult to repeat exactly (Stodden et al., 2016), and scholarly communication 

increasingly relies on access to digital repositories of data and metadata (Konkol et al., 2020; Nüst and 

Pebesma, 2020). Although journals such as Scientific Data and Geoscience Data Journal now exist to 

increase access to natural science datasets, we must consider what it means when a study cannot be 

repeated, as is increasingly the case in paleoclimate and climate sciences.

Paleoclimate studies are rarely strictly reproducible, as they often rely on physically finite and unique 

samples—for example, ice cores from the middle of the Antarctic ice sheet (Petit et al., 1999), seafloor 

sediment cores at 5 km below the ocean surface (Zachos et al., 2001), and cave speleothems (Wang et 

al., 2001). Expeditions to collect samples from remote field location are often expensive, logistically 

challenging, and rarely repeated exactly (for example, see the ongoing work of the IODP), and 

although many projects work on a split core basis—with half going to the researcher and half staying 

in a core repository for future use—sample material is consumed in destructive analyses as a matter of 

routine. In a different way, computer-simulated global climate model (GCM) experiments are difficult 

to reproduce precisely, as their constituent variables have become so complex and achievable 

resolution so high that the required calculations push the limits of current supercomputer capabilities 

(National Research Council, 2012). In addition, they generate a tremendous quantity of data that must 

somehow be labeled, sorted, and made both accessible and usable to others. These issues of 

reproducibility and replicability also relate to the recent call made by UNESCO and other international 

stakeholders for Open Science to solve pressing global challenges.

Therefore this paper seeks to (1) address how the awareness and understanding of reproducibility and 

replication in climate science have evolved over recent years, (2) identify some specific challenges 

regarding reproducibility and replicability in paleoclimate and climate sciences and steps being taken 

to manage those challenges, and (3) make recommendations for better handling of reproducibility and 

replicability issues in paleoclimate and climate sciences going forward for both individual scientists 

and institutions. The paper is structured as follows: Section 1 defines the terminology we will use; 

Section 2 focuses on the unique issues in paleo-climate research; Section 3 focuses on the very 

different challenges faced by researchers using Global Climate Models (GCMs); Section 4 discusses the 

more general intersections of multiple data types in climate science; Section 5 provides some 

suggestions and recommendations for improvements, and Section 6 concludes. This paper is based 

largely on the presentations of a panel of researchers on May 9, 2018, convened by the Committee on 

Reproducibility and Replicability in Science, part of the National Academies of Science, Engineering, 

and Medicine: Michael N. Evans, Gavin A. Schmidt, Rich Loft, and Andrea Dutton. An earlier draft of 

this paper served to inform the National Academies of Sciences, Engineering, and Medicine Consensus 

Study Report on Reproducibility and Replicability in Science (2019).

https://en.unesco.org/science-sustainable-future/open-science


Harvard Data Science Review • Issue 2.4, Fall 2020 Perspectives on Data Reproducibility and Replicability in Paleoclimate and Climate Science

4

1.1. Definitions

As has been noted in other fields (e.g., Goodman et al., 2016; Powers and Hampton, 2019), the terms 

‘reproducibility’ and ‘replicability’ are defined and used differently, sometimes interchangeably 

(Bollen et al., 2015; Konkol et al., 2018). This is due in part to the origins and histories of opposing 

definitions for the terms in experimental versus computational sciences (Drummond, 2009; Plesser, 

2018). Here the terms are defined following the recently published National Academies Report, 

Reproducibility and Replicability in Science (National Academies, 2019). Reproducibility refers to the 

computational ability to duplicate results using the same materials, data, methods, and/or analytical 

conditions. Replicability is broader in scope and refers to the ability to obtain results using new 

materials, data, methods, and/or conditions that are consistent with the original study and 

independently confirm its results. These definitions are at odds with traditional uses of the terms in 

experimental sciences (Plesser, 2018), but the National Academies Report (2019) notes the focus on 

computational analysis because of its large and ever-increasing role in science, including climate and 

paleoclimate research.

Similarly, ‘repository’ and ‘archive’ are both used in lay terms to refer to a storage place for 

knowledge.  For the sake of clarity, here repository refers to a database in which information is 

electronically stored, and archive is used only in the paleoclimate sense of the term, referring to the 

physical materials in which paleoclimate information is in some way imprinted (e.g, drill cores of 

glacial ice or ocean-bottom sediments).

2. Paleoclimate Proxy Data Collection

2.1. Paleoclimate as the Context for Understanding Climate Today

Analyses of archives of geologic materials utilize proxy records of paleoclimate to reconstruct aspects 

of the climate system such as temperature and sea level (e.g., Kopp et al., 2016; Rohling et al., 2019; 

Kaufman et al., 2020). These paleoclimate observations and reconstructions serve multiple purposes, 

providing (1) an important baseline and deep-time historical context for our understanding of climate 

today and natural variations in the climate system, especially pre-industrial climate conditions, (2) a 

natural laboratory to study climate dynamics outside of the historical period of direct instrumental 

measurements, and (3) valuable benchmarks with which to evaluate climate models, allowing 

researchers to test whether the models that are used to project future changes in climate conditions 

can replicate conditions observed or reconstructed from the paleoclimate archives (Schmidt, 2010).

Paleoclimate archives can include any physical, chemical, or biological materials in the geologic record 

from which observations can be made and connected with some environmental parameter in the 

modern world. Much quantitative paleoclimate data comes from physical, chemical, or isotopic 

measurements of a geologic archive. Proxy records require first a calibration model that describes the 



Harvard Data Science Review • Issue 2.4, Fall 2020 Perspectives on Data Reproducibility and Replicability in Paleoclimate and Climate Science

5

relationship between climate parameter and its proxy observation, e.g. water temperature and Mg/Ca 

ratio in planktonic foraminifera (Anand et al., 2003; Jones et al., 2009). This requires also constraining 

some amount of uncertainty inherent in the relationship, which in turn may be propagated through all 

subsequent interpretations, including the reconstruction of any climate parameters from the proxy 

observations. If these proxy system models are not explicitly described, it may be difficult for 

subsequent research to reproduce, revise and improve on the associated reconstructions as additional 

data and improved uncertainty quantification are developed (e.g., Evans et al., 2013). Second, proxy 

reconstructions rely on measurements in geologic archives, which includes uncertainty and issues of 

reproducibility and replicability in the proxy measurements themselves, as well as—and just as 

importantly—uncertainty in the process by which the archive was formed, and the way in which 

chronological information is assigned to the proxy observation. The age model applied to a geologic 

archive can provide not only absolute age estimates but also be used to determine rates of change, 

which is especially critical to understanding climate dynamics through time (Cronin, 2010). However, 

any particular age model may provide limited means for assessing reproducibility and replicability, 

introducing an additional degree of uncertainty to the paleoclimate reconstruction. If only the derived 

ages are presented in a published study, and the original source data on which the assigned chronology 

rests are not published, chronological error can become locked into the interpretation once the study is 

published and persist even after geochronology is revised or altered (Dutton et al., 2017).

2.2. Reproducibility and Replicability in Paleoclimate Studies

A high degree of public scrutiny in recent years has created strong incentives in the climate science 

community for high standards in the awareness and understanding of issues of reproducibility and 

replicability in paleoclimate studies (e.g., National Research Council, 2006). The improvement in the 

state of reproducibility and replicability can be seen in comparing older studies such as Bond et al. 

(2001) which, while highly-cited, contained very little metadata or mention of data or code availability, 

to more recent studies such as Abram et al. (2016), which has source data and analytical code that was 

stored at NOAA at the time of publication and serves as an example of the direction for best practices 

in reproducibility. Online data storage has become easier and more prevalent, and many journals and 

granting agencies now encourage or require online data storage with publication. There is extensive 

work done on synthesis of data and analyses, including work by the Intergovernmental Panel on 

Climate Change (IPCC) and Past Global Changes (PAGES), two international working groups that 

support international and interdisciplinary climate and environmental change research 

collaborations. Over the past two decades, both of these organizations have developed improved 

strategies to make the inputs to and the products of their synthesis activities available for further 

research, analysis, reproduction and replication. For example, the Program for Climate Model 

Diagnosis and Interpretation (PCMDI) was established in 1989, supports the Earth System Grid 

Federation (ESGF) that hosts CMIP6, which will be the basis for much of the IPCC’s current 6th 
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Assessment Report synthesis of climate change projections. The PAGES community has developed 

global-scale temperature-sensitive paleoclimate proxy databases (PAGES2k Consortium, 2013, 2017; 

Kaufman et al., 2020), for which data and diagnostic tools are provided by the National Center for 

Environmental Information’s (NCEI) World Data Center A for Paleoclimatology, with support from the 

International Science Council (ISC).

In studies of paleoclimate proxies from geologic archive materials, replicability can be tested both 

within and between individual studies. The majority of paleoclimate studies involve the destructive 

analysis of finite natural samples, meaning that collected source material can only be measured a 

finite number of times, which inherently limits the reproducibility of a study. Materials are often sub-

sampled for repeated analyses to validate measurement precision, assess the degree of material 

preservation, and constrain the internal variability of a sample, site and/or proxy observation, 

interpretation and chronological accuracy (Bradley, 2014). External reproducibility is constrained 

through the comparison of community-accepted standards distributed widely among labs, e.g., the 

reporting of stable isotopic composition via standardization to international reference scales 

established by community and the International Atomic Energy Agency (IAEA), through the use of 

standard protocols for acquiring and reporting observations (Coplen et al 2002; de Groot, 2004).

 Because of the inherent heterogeneity of the natural world as well as the difficulty and expense of 

accessing remote field sites, field expeditions often attempt to constrain intra-site reproducibility 

through multiple parallel sample collections, e.g. repeated sediment or ice cores collected from a single 

site and/or multiple similar sites during one field expedition. One example is that of paired ice core 

drilling programs 28 kilometers apart at Summit, Greenland by two international consortia (GISP and 

GRIP) (Johnsen et al., 1992; Cuffey and Clow, 1997), which demonstrated the robustness of much of the 

record, but highlighted discrepancies in the older part of the cores (Alley et al., 1995) that arose from 

differential glacial flow complexities. Paleoclimate proxy analyses may also be replicated via 

comparison of different analytical measurements made on the same material.  For example, DeLong et 

al. (2013) analyzed Sr/Ca ratios of corals through time using three separate sampling transects to 

confirm consistency of results between individual transects and quantify uncertainty in the 

results. The study also counted annual rings in the corals and used U-Th dating to separately estimate 

ages to test the degree of uncertainty in the age model and constrain error across both proxy 

observation amplitude and chronology. Community-accepted standards provide a basis for data 

reproducibility, such that, given the constraints on repeated measurements of finite natural samples 

and the fundamental limitations on the reproducibility of spatially and temporally heterogeneous 

natural systems, researchers can be confident that if  the standard results are similar across different 

laboratories, then sample results could also be reproduced by another laboratory or instrument if it 

were to analyze the same sample. In general, practices of reproducibility in sampling and 
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measurement and inter-laboratory calibration using shared standard materials are well-established 

and are standard operating procedures for most proxy analyses.

Additional efforts to replicate results across paleoclimate studies employ observing networks which 

are expected to demonstrate correlated variability—expanding the number of records, whether to fill 

in gaps in time or space with additional samples or to compare multiple proxies for the same climate 

parameter. For example, Linsley et al. (2015) reconstructed sea surface temperature (SST) anomalies 

from coral Sr/Ca measurements from Fiji, Tonga and Rarotonga, all sites which were expected to 

record the same interdecadal pattern of variation. The proxy-based composite record qualitatively 

increases the fraction of variance explained by direct historical observations of SST anomaly from 

these sites, relative to that observed from any of the three records individually, by averaging across 

random error and emphasizing the regional SST signature. The composite record not only 

demonstrates the reproducibility of the individual data but also smooths some of the errors inherent 

in them. The availability of the dataset through online repositories makes it then possible for other 

scientists to build larger networks, improve composite records, and develop spatially resolved 

reconstructions (PAGES2k Consortium, 2017; Neukom et al., 2019).

2.3. Frontiers in Paleoclimate Data Synthesis and Archiving

New practices for replicating and reproducing paleoclimate data include the increasing availability of 

open-access, online databases that facilitate comparison and synthesis. There is also continual 

development of new paleoclimate proxies and refinement of existing proxies, and each proxy has its 

own level of associated uncertainty that is often dependent on setting and analytical 

precision. Interdisciplinary collaborations are also increasing—for example, collaborations between 

geochemists and geophysicists in resolving discrepancies in geochemical proxy-based reconstructions 

of sea level using geophysical models of glacial isostatic adjustments (Potter & Lambeck, 2004; Dutton 

et al., 2015) to create a geophysically synchronized ‘stack’ of multiple proxy records across time that 

can serve as a more robust test case and comparison for climate models, similar previous proxy record 

stacks such as that for benthic oxygen isotopes (Lisiecki & Raymo, 2005). For true replication of a 

study, all its components, including sample materials, chronology and methods of proxy data 

conversion and interpretation, must be stored in repositories and made freely accessible. New 

platforms to support the replication of scientific results from raw and processed data include Linked 

Paleo Data (LiPD), which is a part of the EarthCube-supported Linked Earth (http://linked.earth/) 

project and provides the flexibility to deal with different paleoclimate sensors, archives, and 

observations, divided into four broad categories of data and metadata: georeferencing and spatial 

context, publication record, interpretive proxy system (data) models, and chronology models (McKay 

& Emile-Geay, 2016; PAGES2k Consortium, 2017). Other examples of publicly stored digital data and 

metadata in use by the paleoenvironmental research community include observational databases 
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managed by the Neotoma Paleoecology Database and Pangeo, the National Center for Environmental 

Information,  and the World Data Center for Climate at DRKZ.  Code sharing is becoming more 

common, for instance open-source LiPD-linked tools and PRoxY Systems Modeling (PRYSM) tools are 

available on GitHub (Dee et al., 2015), and code for the calculations in Sherwood et al. (2020) is 

available in a DOI-linked repository at Zenodo.  The NSF Paleoclimate and Paleo Perspectives on 

Climate Change (P2C2) programs fund much of the relevant, ongoing paleoclimate research in the US, 

with its goals of generating proxy datasets that can serve as tests for climate models and synthesizing 

proxy and model data to understand longer-term and higher-magnitude climate system variability not 

captured by the instrumental record.

A frequent challenge in replicating and synthesizing paleoclimate studies is incomplete reporting or 

archiving of data or metadata, due in part to a lack of community-wide standards and awareness of 

the potential utility of metadata for further studies, and a lack of enforcement by reporting journals or 

funding agencies. One measure to address this challenge is the publication and dissemination of data-

reporting standards across the natural sciences (e.g., the National Science Foundation’s Data 

Management Plan requirements within its directorates) and within disciplines. A recent example of 

the latter within radiometric chronology in paleoclimatology is a report on uranium-thorium (U-Th) 

dating measurements (Dutton et al., 2017) that prescribes necessary procedures and the data and 

metadata required for repositories to increase the utility and longevity of study data. Similar 

guidelines have been devised for geochemistry data and for other sub-disciplines (Deines et al., 2003; 

Renne et al., 2009). The NSF Data Infrastructure Building Blocks (DIBBs) program supports the 

development of robust and shared data-centric cyberinfrastructure, such as Whole Tale (Brinckman et 

al., 2019). DIBBs also supports work such as developing the capability to seamlessly upload uranium 

measurement data directly from the analytical instrument to online repositories such as those 

managed by the Interdisciplinary Earth Data Alliance (IEDA) in collaboration with programs such as 

NSF EarthCube for visualization and analysis. Although this type of standardization enhances the 

utility of future work, there remains the challenge of incorporating older work published before 

methods standardization, i.e., “legacy data” (Deevey and Flint, 1959), into relevant online repositories 

(Liu et al., 2019).

In order to address issues associated with enforcement of standards and best practices, there must be 

an increase in awareness of needs and benefits, including broadly disseminated best practice reports 

among journals and agencies, which can then set policies based on those best practices. Additionally, if 

there is a lack of an international standard for analysis, it can be difficult to transition the community 

to a new practice or standard. For example, among laboratories that conduct U-Th dating 

measurements, there is no common standard for Th activity ratios. Many laboratories rely either on 

individually developed gravimetric standards or a standard known as HU-1, that was distributed to 

many labs around the globe, but with increased instrument precision, it has been discovered that 

https://pangeo.io/
https://www.ncdc.noaa.gov/data-access/paleoclimatology-data
https://www.dkrz.de/up/systems/wdcc
https://github.com/sylvia-dee/PRYSM
https://doi.org/10.5281/zenodo.3945276
https://wholetale.readthedocs.io/en/stable/index.html
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different aliquots have measureable differences. In other words, instrumental precision is now 

outstripping the accuracy of the standard being used (Dutton, 2015). Furthermore, there has been 

refinement in U-Th decay constant values, meaning that ages published using different decay 

constants cannot be directly compared with one another (Cheng et al., 2013). This is a challenge 

common to many paleoclimate proxies, for which scientific progress may render age models and 

reconstructions obsolete. Paleoclimate data are often archived with assigned ages and not with the 

underlying geochronological data, which may include radiometric dates by sample sequence, tie-point 

age modeling, inter-date age interpolation, stratigraphic constraints, and dating uncertainty (Cronin, 

2009). In the absence of these geochronological metadata, it is difficult to use new information, study 

replicates, and observing networks to revise age models, degrading the potential utility of earlier 

results. As a means of addressing this issue for the particular example at hand in U-Th dating, 

a cyberinfrastructure project was supported by NSF DIBBs, building upon the success of software 

developed for the U-Pb community through the EarthTime initiative such that the open-source 

software to which measurements are uploaded will make calculations based on the new decay 

constants (Dutton et al., 2017). There is also an effort to distribute new analytical standard material to 

labs around the world. However, database development that brings together multiple proxies remains 

difficult, and incentives are misaligned where data uploading archiving remains a challenge and a 

burden to the producer of the data, while it is a benefit to others. Furthermore, there remains the 

challenge that current data repositories freeze in place ‘as-published’ data that rapidly become 

obsolete and are not automatically machine-readable.

New initiatives such as the LiPD project are addressing some of these challenges by setting standards 

and building structures for putting more complete metadata into paleoclimate databases and 

repositories so that they can be continuously accessed, reassessed and updated. There are also a 

number of efforts to produce ‘intelligent’ repositories that could update age models, account for 

uncertainties in age and interpretation, and recalculate syntheses interactively. For example, the new 

Phantastic project, led by the Smithsonian Institution, aims to build a temperature record for the 

entire Phanerozoic Eon, 500 million years long, taking into account the considerations listed above. An 

NSF-funded Research Coordination Network, Improving Reconstructions of Cenozoic pCO2 and 

Temperature Change, led by Baerbel Hoenisch and Pratigya Polissar, aims to achieve similar objectives 

for the Cenozoic history of atmospheric CO2 concentrations. Last, stacked paleoclimate records such as 

that generated by Lisiecki and Raymo (2005) or Snyder (2016) can successfully synthesize multiple 

proxy records for a single time interval. All of these initiatives would not be possible without publicly 

available data and metadata.

3. Global Climate Models
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3.1. Reproducibility and Replicability in Climate Modeling

For global climate models (GCMs), computational reproducibility refers to the ability to re-run a model 

with a given set of initial conditions and produce the same results with subsequent runs. This is 

achievable within the short time spans and individual locations and is essential for model testing and 

software debugging, but the dominance of this definition as a paradigm in the field is giving way to a 

more statistical way of understanding model output. Historically, climate modelers felt that they 

needed the more rigid definition of bitwise reproduction because the non-linear equations governing 

Earth systems are chaotic and sensitive to initial conditions.  However, this numerical reproducibility 

is difficult to achieve with the computing arrays required by modern GCMs. Global climate models also 

have a long history of occurrences in the models that have caused random errors and have never been 

reproduced, including possible cosmic ray strikes (Hansen et al., 1984) and other reported events in 

uncontrolled model runs that may or may not be the result of internal model variability or software 

problems (e.g., Hall & Stouffer, 2001; Rind et al., 2018). Reproducing the conditions that cause these 

random events is difficult, and our lack of understanding of their effects undermines the scientific 

conclusions of the model. Features of computer architecture that undermine the ability to achieve 

bitwise reproducibility include fused multiply-add, which cannot preserve order of operations, 

memory details, and issues of parallelism when a calculation is divided across multiple 

processors. Some of these features, e.g., parallelism, are testable and the resulting irreproducibility 

reduced with additional care.  Moreover, the environment in which GCMs are run is fragile and 

ephemeral on the scale of months to years, as compilers, libraries, and operating systems are 

continually updated, such that revisiting a 10 year-old study would require an impractical museum of 

supercomputers or the additional framework of an environment emulator. Retaining bitwise 

reproducibility will become even more difficult in the near future as nondeterministic machine-

learning algorithms and neural networks are introduced (e.g., Chadwick et al., 2011). There is also 

interest in representing stochasticity in the physical models by harnessing noise inherent within the 

electronics, and some current devices have mixed or variable bit precision. Last, cosmic ray strikes are 

a real source of undetected error, where a high-energy particle strikes and alters a single bit in what is 

known as single-event upset, a phenomenon that is increasingly likely with altitude and is well-

studied at Los Alamos, elevation 2230 m (Normand et al., 2010; Sridharan et al., 2013). Therefore, the 

focus of the discipline has not been on model run reproducibility, but rather on replication of model 

phenomena observed and their magnitudes, which is performed mostly in organized multi-model 

ensembles.

One of the main multi-model ensembles is the Coupled Model Intercomparison Project (CMIP), which 

has evolved through several iterations and is currently at CMIP6. The projects in CMIP are community-

driven standardized simulations with common, publicly available outputs, especially via the Earth 

System Grid Federation (ESGF), headquartered at the US Department of Energy. CMIP has enjoyed 
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complete buy-in from all global modeling groups for over a decade, and has set the standard by which 

all models are tested and diagnostics produced. One of the major challenges of CMIP is that it exists 

via an unfunded mandate and relies heavily on donated time and work from modeling 

groups. Furthermore, the CMIP projects have become increasingly massive and complex, with CMIP6 

estimated to generate ~100 PB (petabytes, or ~100 million Megabytes) of data. Across the CMIP 

ensemble, it is easy to test the replicability and robustness of results and identify common elements 

across models, but more difficult to interpret those results, e.g., changes in precipitation 

patterns. Similarly, the resulting data is stored and accessible online, but the capacity to analyze that 

data remains limited as the ability to perform complex multivariate analyses is limited by 

bandwidth. There is also no support for archiving derived or intermediate data or analysis code, which 

limits reproducibility, and as yet little in the way of server-side analytics. New projects, such as 

Pangeo, which promises scalable sharing of PB-scale datasets, may provide solutions to these 

problems.

To track and combat error sources, the Community Earth System Model (CESM) at UCAR has in place a 

series of elements to the climate model pipeline, one of the most central of which is the model ‘case,’ 

which is a standard piece of metadata that describes source code versions and tags a model output 

with the input datasets and other settings. There are also considerations of the run-time configuration 

and levels of parallelism in distributed components across processors. The compiler and libraries in 

the computer architecture may be ephemeral, but researchers can process the model output with 

standard diagnostics to produce very similar results.  CESM cases can be thought of as experimental 

sandboxes, and they can be documented within a database. These calculations and database 

information need to be shared more widely and made publicly available, but standard diagnostic 

packages can be attached to a case so that its workflow is also reproducible.

Most GCMs require bit-for-bit reproducibility for restart purposes to maintain functionality of model 

simulations. However, threading and MPI tasks are different forms of parallelism and component 

layout, and these can introduce reproducibility issues to various parts of the climate model. In moving 

towards a statistical approach in dealing with issues of reproducibility, groups such as CESM and the 

Met Office Hadley Centre for Climate Change in the UK assesses whether data that is changed from the 

original data due to ephemeral errors during run time is statistically distinguishable from the original. 

As part of this, CESM has developed an Ensemble Consistency Test (ECM), which begins with an 

accepted ensemble of data coming from a model that is considered ‘correct.’ The variability in that 

model data is quantified, typically involving principal component analysis. New climate simulations 

may then be created, and the comparison between the leading principal components with those from 

the ‘correct’ simulations allows for a statistical discrimination between results that do or do not belong 

with the original ensemble. Downstream of the model output, users are interested in generating 

derived products with the simulations, and issues of reproducibility similar to those described above 

https://pangeo.io/
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are propagated. This is an area of high need for development of tools, procedures, and repositories to 

better connect a published artifact to the conditions that produced it.

3.2. Preservation and Analysis of GCM Results

Archiving the very large datasets generated by climate models is necessary but comes with a high cost 

associated with the maintenance of petabytes of data and storing them in such a way that they are 

both accessible and usable. Data is rarely deleted, and as computing power increases, future models 

will only generate more data more quickly. Lossy data compression, in which replication but not 

reproducibility is preserved, can potentially serve as a means of reducing the cost of preservation and 

making data more easily accessible. However, it must be determined which information can be safely 

lost and which must be preserved so that results and scientific progress are not negatively impacted.  

NCAR has experimented with a tool, known as fpzip, that gives an average 5x compression factor 

across climate variables, but with favorable statistical similarity scores to the ‘true’ output. Some of 

the complications with lossy compression involve the fact that not all variables are equally 

compressible and not all variables respond in the same way to compression, and so it may be necessary 

to apply a very complex algorithmic filter such that the correct compression algorithm is applied to 

each climate variable. Furthermore, it remains unclear how this process can be documented and made 

reproducible. This is an area of active investigation developing compression metrics to compare 

compressed and uncompressed data products and assessing differences both visually and 

quantitatively. Ultimately, the goal of this endeavor is to make the maintenance of these repositories 

more affordable via the application of statistics and effective emphasis on replication, overriding the 

much more expensive strong form of reproducibility, i.e., its original, more rigid definition as bitwise 

reproducibility.

 The analytics of reproducibility requires improvement. This must begin with making datasets and 

associated parameters not just accessible but also easily discoverable in active, intelligent public 

repositories where data (both raw and derived), tools, and code can be linked and updated. Making 

data and tools citable, tagging them with DOIs, and referencing them in publications—steps that are 

easily actionable for many studies—certainly also helps with accessibility (Stodden et al., 2016). There 

are many standard toolkits, including netCDF Operators (NCO), Community Data Analysis Tools 

(CDAT), and libraries for code in Python, R, Matlab, and IDL languages that have code repositories as 

well places like GitHub, as well as example efforts to share open data science tools (Lowndes et al., 

2017). However, archiving of analysis code is haphazard and difficult to search, often being associated 

variously with publication journals, institutions, or with individual researchers as opposed to being 

stored in a permanent DOI-linked facility. Peer review can also be extended to tools such as Jupyter 

notebooks, although journal publications alone are not sufficient to capture peer review of modern big 

data studies and the current developments in the field of big data science. Most GCMs have public 
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releases of frozen codes or snapshots of code, e.g. from CMIP, NCAR, and others, but no GCM is truly 

open-source and experimental and developmental versions of model code are not always made 

available, which makes the benefit of publicly known tags for non-public model versions 

unclear. There is also no standardized repository for specific model versions, although this is an option 

currently being explored by the NASA Goddard Institute for Space Sciences (GISS).

Downstream analyses of these extremely large model datasets will themselves require parallel 

computing, which means that all of the challenges in maintaining reproducibility in parallel computing 

of the original models may be recapitulated to some degree in parallel analyses of model 

results. Analytic tools must also be made more accessible, and platforms that may be able to assist in 

this include PanGeo. Last, while operational bitwise reproducibility is necessary for code development, 

long-term reproducibility is not, and it will be necessary to revisit the paradigm of bitwise 

reproducibility and why that should be expected from complex computer models of chaotic natural 

systems, given that experimental studies of other natural systems (e.g., in chemistry) do not expect 

exact, bit-for-bit reproducibility of their results and rely on statistical estimates for making inference.

4. Interfacing Paleoclimate Proxies and Modern Climate Science

4.1. Climate Science Data Repositories, Their Use for GCMs, and Associated 
Challenges

Climate science currently has three massive data streams: 1) remote sensing from satellites operated 

by NASA, NOAA, ESA, Japan, etc., which produce continuous streams of global, multivariate data; 2) 

weather forecast and hindcast analyses and re-analyses, where highly detailed forecasts are generated 

every six hours; and 3) coupled GCMs, which are producing as much data as the current 

supercomputers will allow. Almost all of the raw data from these data streams is available publicly in 

some form, but there do not exist joint repositories or storage of derived data. This gap in the ability to 

combine data is major and is hampering the rate of scientific progress in the field, for example in bias 

estimation, model initialization, and forecast improvement.

An example of operational data products, GISS Surface Temperatures (GISTEMP) was originally 

developed in 1981 and has undergone continual expansion and improvement since that time. GISTEMP 

only uses publicly available data, and its analysis code has been available online since 2007. The 

analysis code was re-coded in a more modern language by an external company after its release by 

GISS, which demonstrates the benefit of citizen science when code is made available to the public and 

illustrates practical reproducibility and replicability of its results. GISTEMP recalculates the 

homogenization every month based on new data; thus as the input data grows and methods change 

with time, this generates a resulting historical change in the product with time. When examining 

global mean temperature over time from 1880 to present, there is an increase in noise and uncertainty 
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with increasing age (Lenssen et al., 2019), but our understanding of the progression of global mean 

temperature over the history of instrumental records is quite robust. That replication is confirmed via 

comparisons with independently calculated datasets, including reanalyses (Kalnay et al., 1996; Kistler 

et al., 2001; Compo et al., 2011) and satellite products (Susskind, Schmidt, Lee, & Iredell, 2019).

4.2. Climate Sensitivity from Paleoclimate Records to GCMs

The example considered here is the study of equilibrium climate sensitivity, which estimates the 

climate temperature response to external radiative forcing after allowing the global climate system to 

come to equilibrium. Recent research has found that estimates of the equilibrium climate sensitivity 

vary between consideration of fast feedbacks only (on the order of minutes to months) and of fast as 

well as slow feedbacks, on the order of years to millennia and including factors such as ocean 

circulation (Hansen et al., 1985; Rohling et al., 2012). Most studies of recent paleoclimate provide only 

low-CO2 climates, but Rohling et al. (2012) examined paleoclimate studies from deeper time that 

included high-CO2 climates and found that inclusion of slow feedback mechanisms significantly raised 

the temperature response of the climate system. With the addition of multiple studies of the same 

phenomenon, i.e. study replication, the authors also demonstrated the robustness of the 

results. Equilibrium climate sensitivity estimates are a useful test of climate models, as paleoclimate 

proxy records provide evidence of climate systems that have not and cannot be directly observed; 

verified estimates can then applied to model forecasts of future climate.

5. Major Recommendations

5.1. Paleoclimate Data

We support the development of interactive, intelligent, multi-proxy paleoclimate data repositories 

that are publicly accessible, where datasets are linked to other relevant information (e.g., geospatial 

information and chronology models) and all datasets are updatable as models change and 

improvements are made. Data repositories should include native observations and derived estimates, 

enriched metadata, and the ability to ingest legacy formats, emerging data structures, and analytic 

code. Repositories should be designed to enable large-scale data synthesis, building on the work of 

initiatives such as Linked Paleo Data (LiPD), Linked Earth , PRYSM (Dee et al., 2015), and Neotoma 

Paleoecology. The inclusion of raw as well as derived chronological data is important for updating 

assigned chronologies as the underlying databases are improved. Repositories should be institutionally 

supported and may be best arranged along major themes such as specific events or periods (e.g., the 

Paleocene-Eocene Thermal Maximum, Last Glacial Maximum, Quaternary, or Pliocene) or recurring 

phenomena (e.g., orbital cycles, Dansgaard-Oeschger variability, or patterns such as El Niño-Southern 

Oscillation).

http://lipd.net/
http://linked.earth/
https://www.neotomadb.org/
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5.2. Global Climate Model (GCM) Simulations

We believe development of community standards and archives for GCM simulations should be focused 

on issues of replicability of model results under similar experimental conditions, building on the best 

practices established by groups such as the Coupled Model Intercomparison Project 

(CMIP). Accordingly, GCM groups should organize database entries around “cases”, in which the 

experimental conditions (source code, compilation environment, model configuration, input data 

sources, etc.) that give rise to specific simulation ensembles are documented, versioned and made 

publicly available via established repositories. GCM groups, including NCAR, CESM, and GISS, already 

keep track of specific code bases and configurations for any specific production run using local ‘cases’ 

that allow for reproducibility of output in the short term, but there are no cross-center standards for 

this. Because of the sheer magnitude of storage required for these efforts, further work to develop 

improved data storage, such as lossy compression and loss diagnostics, should be pursued. This will 

involve further testing and standardization around questions of what data and metadata should be 

preserved and for how long. Storage costs for large datasets are not negligible (currently around 

$12K/PB/yr) and the increase in model data output is growing much faster than costs of storage are 

falling (for example, see the IPCC Task Group on Data Support for Climate Change).

5.3. Incentives and Awareness

Supporting organized, intelligent repositories requires sufficient and long-term funding, as well as the 

alignment of incentives regarding who does the work and who benefits from it. Replicability carries a 

cost to individual researchers who would not be conducting de novo experiments while replicating 

existing work. Organization and standardization of repositories should be designed to present the 

lowest possible barriers to dataset submission for both observations and simulations (Konkol et al., 

2020). They should also provide additional and immediate benefits to the contributor by providing 

digital object identifiers (DOIs) for datasets, code, cases, replication exercises, discussion papers and 

comments on publications during and following review (Stodden et al., 2016). Journals and funding 

agencies can improve awareness and adherence by encouraging best practices in which these 

recommendations reside (Stodden et al., 2018), such as the findable, accessible, interoperable and 

reusable (FAIR) principles. In fact, this recommendation was recently made in the community decadal 

survey report for Earth Sciences at the National Science Foundation (NASEM, 2020), and journals 

published by the American Geophysical Union (AGU), including Paleoceanography and Paleoclimatology, 

have adopted FAIR guidelines.

Standardization and oversight of the application of paleoclimate proxy standards is also important 

and in different stages of development for different proxies. This requires the dissemination of new 

standards and information, methods and best practices for applying them, and incentivizing the use 

and acceptance of globally applied standards and methods. To address issues associated with 

https://www.ipcc.ch/data/
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enforcement of standards and best practices, there must be an increase in awareness, including 

broadly disseminated best practice reports among journals and agencies, which can then set policies 

based on those best practices.

6. Conclusions

Paleoclimate records serve multiple purposes in contextualizing, calibrating, and testing modern 

climate observations and models. Different paleoclimate proxies are at different stages of 

development, which entails different degrees of error propagation from modern calibration studies, 

proxy measurements, and timescale measurements, and different stages of standardization among 

the sub-disciplines. In paleoclimate proxy studies, practices of reproducibility in sample measurement 

and calibration against accepted standard materials are generally well-established. Observational 

reproduction within and across paleoclimate sites improves our estimation of amplitude and 

chronological uncertainties. Practices of error propagation and uncertainty estimation are crucial for 

determining replication and will continue to benefit from international standardization and 

development of public repositories that support synthesis activities and meta-

analyses. Reproducibility of analyses of large multivariate databases is improving as databases, 

metadata and analysis codes are being made publicly available. These enriched databases will 

accelerate progress, for instance in geochronology, as legacy data are refined, geochronometric 

methods improve, and new, more precise and accurate data are added.

In global climate models, bitwise or computational reproducibility may be relatively straightforward 

to demonstrate for short simulations and within computing centers. However, distributed computing 

makes reproducibility difficult, as do subsequent parallel analytics of model results, and may be 

difficult or impossible for complex models and as analytical methods such as machine learning are 

introduced. Consequently, global climate modeling groups have de-emphasized bitwise reproducibility 

in favor of replicability across ensembles generated from similar and analog experimental 

conditions. As computing speeds and dataset sizes increase, methods of data storage and access will 

require novel storage algorithms, such as lossy data compression, which must be tested for 

reproducibility but ultimately will support detection of replicability. Replication is feasible within 

multi-model ensembles such as are produced by the CMIP initiative. Replication of equilibrium 

climate sensitivity estimates is an important test of climate projection-based estimates because 

paleoclimate data may reflect climate system processes operating over long time scales. The limits of 

code-sharing (Greene and Thirumalai, 2019) and inclusion of innovative new tools and access platforms 

(Yin et al., 2019) are worth further consideration, but the state of both paleoclimate and climate 

science would benefit greatly from the development of active repositories of linked data, tools, and 

code that are easily accessible and searchable, as well as an alignment of incentives for participation in 

and maintenance of those repositories.
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