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We propose and experimentally demonstrate a quantum state tomography protocol that generalizes and
improves upon the Wallentowitz-Vogel-Banaszek-Wédkiewicz point-by-point Wigner function reconstruction.
The full density operator of an arbitrary quantum state is efficiently reconstructed in the Fock basis, using
semidefinite programming, after interference with a small set of calibrated coherent states. This protocol is
resource- and computationally efficient, is robust against noise, does not rely on approximate state displacements,

and ensures the physicality of results.
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Introduction. Since a quantum system is fully characterized
by its density operator [1], the experimental implementation
and investigation of quantum state tomography [2] plays a
crucial role in quantum information (QI). While the dimen-
sion 2V of an N-qubit Hilbert space prohibits full quantum
state tomography for large values of N, except in the particular
case of sparse density operators [3], full state tomography
of single, or few, quantum systems can still be realized
and is essential to characterizing important resource states,
e.g., quantum error correcting codes. Here, we focus on
bosonic quantum modes, a.k.a. qumodes, as implemented
in general by vibrational eigenmodes of quantum harmonic
oscillators and, in particular, by quantum electromagnetic
fields as used in continuous-variable (CV) QI [4,5], the
latter being particularly well suited to the generation of mas-
sively scalable multipartite entanglement, in particular of
the universal quantum computing substrates that are cluster
states [6—12].

In the CVQI context, the Wigner function [13,14] plays a
central role as a quantum state descriptor strictly equivalent to
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the density operator p:

Wig.p) =~ / g —ylplg+ydy. (1)
T J-co
where quantum phase space variables ¢ and p are the eigen-
values of the positionlike amplitude quadrature, Q = (a +a')/
V2, and momentumlike phase quadrature, P = i(a" — a)/
ﬁ, of the electromagnetic field, and where a is the boson
annihilation operator for a given qumode, typically specified
by its wave vector and polarization. The experimental deter-
mination of the Wigner function, first proposed and realized
by way of interferometric, homodyne quadrature measure-
ments [15], thus constitutes another approach to quantum
state tomography. A technical difficulty of the aforementioned
optical homodyne (OHD) tomography approach resides in
the need for computationally intensive reconstruction proce-
dures, using either the inverse Radon transform (whence the
“tomography” moniker) or maximum likelihood (MaxLik)
algorithms [16]. Recently Tiunov et al. proposed a scheme us-
ing machine learning, restricted Boltzmann machine (RBM),
which has significant advantages over MaxLik-based OHD
[17], yet is not provably efficient for arbitrary quantum states
[18].

Such difficulties can be alleviated by replacing field mea-
surements with photon-number ones, using the fact that the
Wigner function at the origin of phase space coincides with
the expectation value of the photon-number parity operator
[19]. This yields an expression of the Wigner function in the
Fock basis which is easy to reconstruct, as was first proposed
by Wallentowitz-Vogel [20] and Banaszek-Wodkiewicz [21]
(WVBW). In this method, a simple phase-space translation,
i.e., displacement, of the quantum state to be characterized,
followed by parity measurements, allows easy determination
of the Wigner function. This was first implemented experi-
mentally on the phononic field of vibration of a single trapped
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FIG. 1. (a) Schematic of the experiment: the field to be mea-
sured, of density operator p, interferes with a calibrated field in
coherent state « at a beamsplitter of field reflectance r € R and
transmittance ¢ = (1 — r2)!/2. PNRD: photon-number-resolving de-
tector. (b) Principle of generalized overlap tomography exemplified
with a two-photon Fock state. (c¢) Limit case of (b), where a highly
unbalanced beamsplitter merely implements a displacement of p

by —pB.

ion [22], as well as on microwave cavity fields [23,24].
More recently, the coming of age of photon-number-resolving
(PNR) detection [25] has opened the door to using the full
WVBW method on traveling optical fields with no prior
knowledge of the measured quantum state [26,27]. While the
WVBW method presents clear advantages in terms of the nu-
merical demands on reconstruction, it requires a phase-space
raster scan involving a large number of optical displacements,
and the pitch of the raster scan is determined by the specific
features of the (unknown) Wigner function to be resolved.
Moreover, the best experimental implementation of phase-
space displacements is intrinsically lossy [28]. Finally, the
method does require, like homodyne tomography, a very high
system detection efficiency in order to prevent the quantum
decoherence caused by vacuum fluctuation contamination.
Additionally, the WVBW protocol mandates a matrix inver-
sion for each experimental data point in order to infer the true
photon-number distribution from the measured loss-degraded
distribution which could be experimentally demanding for
probing the Wigner functions of complicated structures, such
as cat states or Gottesman-Kitaev-Preskill (GKP) states [29].

In this Rapid Communication, we present a generalization
of the WVBW approach which uses a Wigner function over-
lap measurement to reconstruct the density operator, rather
than the Wigner function, using computationally efficient
semidefinite programming. This general method requires con-
siderably less data acquisition, and ensures physical results
which are robust against measurement noise. The effect of
known system losses can also be entirely deconvoluted from
the measured density operator. We present the mathematical
derivation of this generalized overlap quantum state tomog-
raphy and present experimental results for a single-photon
Fock state with performance that far exceeds that of the recent
WVBW demonstration [27]. Furthermore, we can perform
loss compensation in one fell swoop for the entire density ma-
trix p, unlike at each experimental data point in the WVBW
method. The proposed scheme requires significantly fewer
measurements as compared with MaxLik and RBM tomog-
raphy methods and achieves higher fidelity for all the states
considered in Ref. [17].

Theory. We consider the situation depicted in Fig. 1(a): a
field with unknown density operator p and Wigner function

Wi(q1, p1) interferes with a reference field in a coherent state
lae) (| of Wigner function W;(g2, p2). We then simply count
photon statistics at only one beamsplitter output using the
PNR detector; using these, we evaluate the expectation value
of the photon-number parity operator, i.e., the value of the
origin of the Wigner function of this output mode [30,31]

, 1 t ot
W/(0,0;r,1) = r—zf W, (q, p)Wa><a|<;q, ;p)dqdp, )

as illustrated in Fig. 1(b). Setting r = ¢ in the above formula
yields, by virtue of the Wigner function overlap theorem [32],
the overlap O of the unknown p with |&)(«|:

, L1

O =Trlpla) (x|l = 7W, <0, 0; 7 \/§> 3)
Note that O is proportional to the Husimi Q function, Q(«),
which we sample sparsely [33]. Note also that, in the limit
case 7> r, the function W(tg, Lp) in Eq. (2) is a con-
tracted Gaussian that tends toward a Dirac delta function
8(v/2Re[B], v/2Im[B]), where B = ra/t, thereby yielding
Wl(ﬁRe[,B], ﬁlm[ﬁ]), i.e., precisely the WVBW tomog-
raphy protocol, as illustrated in Fig. 1(c). The validity of
this limit case is equivalent to the validity of implementing
a displacement with an unbalanced beamsplitter. Our overlap
approach is free of such considerations.

From here on, we set r =t for simplicity. We provide a
treatment of the general case of arbitrary r, ¢ in the Supple-
mental Material [31]. Even though this would appear to cause
an irremediable loss of information (the role of the other
output port is examined in the Supplemental Material [31]),
we show that p can nonetheless be accurately and efficiently
retrieved by measuring O; for a series of distinct coherent
states |o;). In the Fock basis, we get

no o

Oj =22 CiuCimbum: O

n=0 m=0

where ¢, = exp(—|aj|2/2)a;”/m and the size of the
Hilbert space is ny + 1. Our superconducting transition-edge
sensor (TES) has high-efficiency PNR capabilities up to five
photons at 1064 nm, leading to our choice of ny = 5 [25,26].

For N = (ng + 1)*> measurements, we can write Eq. (4) in
matrix form in N-dimensional Liouville space

O = CP, )
where O = (Oj)jr, C = (¢},Cjm)jnm> and P = (or)T  [31].

nm
Inverting Eq. (5) yields the unknown Liouville vector P. To
do this, we employ semidefinite programming (SDP) to run a
convex quadratic optimization algorithm that minimizes the £>
norm, ||O — CP||,, subject to physicality constraints in order
to extract P. The procedure is computationally efficient and
yields a unique solution [34]. Note that C does not have to be
a square matrix, so that the number of measured overlaps (the
dimension of Q) can be increased for better data statistics.

A crucial point is the impact of inevitable experimental
fluctuations on the numerical stability of the solution. Indeed,
by nature of its slowly decaying Poissonian coefficients, ma-
trix C necessarily contains both large and small entries and,
therefore, both large and small singular values, which make it
ill conditioned [35] and make its inversion extremely sensitive
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to experimental fluctuations in the measured photon statistics.
In order to suppress these instabilities, we choose to use a
Tikhonov regularization procedure [36], formulated as the
SDP problem

Minimize |0 — CP|, + y|P|l,

Tr[p] =1, (6)

where y is a small regularization parameter set according to
the noise level [37] and the optimization remains quadratic
convex.

Another crucial point is the effect of decoherence on den-
sity matrix reconstruction. Optical losses to the state before
and after interference with |c;), including detector efficiency,
can be modeled by inserting a single fictitious beamsplitter of
transmittivity n in front of a perfect detector that both leaks
light out and couples in vacuum fluctuations as discussed in
detail in the Supplemental Material [31]. This leads to the
resulting, binomial-law density matrix,

Subjectto p >0,

[ee]

P;;m — Z P (n-l&{-k)l/z (mk+k)1/2(1 _ n)kn(n-&-m)/Z’ (7)
k=0

which can be inverted to recover p from p’ [38]. If we only
consider the diagonal elements of p, then this inversion is ex-
actly described by correcting a loss-degraded photon-number
distribution, as has been experimentally demonstrated for state
characterization [39] and the WVBW protocol, but requiring
a matrix inversion for each experimental data point [29]. In
our general case, we can perform such an inversion in one
fell swoop for the whole p, in lieu of entrywise as above.
The same difficulty arises, though, of high sensitivity of the
inversion procedure to small experimental fluctuations in p’
which can lead to unphysically large or negative diagonal
density matrix elements in the reconstructed p [31]. Again,
we solve this problem by SDP:

Ninax
Minimize Y _ [[p"? — M@)o,
i=0
Subjectto  p >0, Trlpl =1, and pu <10 "p,,, (8)

where p denotes the ith diagonal of p (i = 0: main diagonal)
and M (i)(n) is the matrix describing the binomial-law loss
degradation along each diagonal of p. The third constraint
stems from the fact that Eq. (7) yields p;, = 1" p, + €, where
€ is positive. If the value of the loss parameter n is known,
this loss deconvolution method is very efficient and reliable,
as is further detailed in the Supplemental Material where we
provide a side-by-side comparison of the improvement over
an analytical approach in the presence of noise [31].

The case of mode mismatch deserves a separate men-
tion. In contrast to homodyne detection, nonideal-contrast
interference between the coherent-state and signal fields
cannot simply be treated as loss. To account for mode mis-
match, we consider a multimode detection theory where the
coherent state is decomposed into |+ Ma/), which inter-
feres entirely with the signal, and an orthogonal component,
[v/T — Ma/) |, which interferes with vacuum [40]. Parame-
ter M is determined by the degree of overlap, and can be
calculated from a bright-field visibility measurement [41].

;
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FIG. 2. Left, absolute value of the experimentally reconstructed
density matrix elements for the coherent state. Right, associated
Wigner function. The black error bars are obtained from the mea-
surement statistics.

Because the PNR detectors used herein are mode insensitive,
the total measured signal is represented by the sum of detected
modes. This yields a measured photon number distribution
that is a convolution of the individual mode distributions [42].
We measured a mode overlap parameter of M = 0.83(2)
[0.86(2)] when performing the tomography of the coherent
(Fock) state and deconvolve the Poissonian distribution of the
mode-mismatched |+/1 — Ma/), from our measurements. It
is important to note that the O values obtained from the
expectation of parity are now between p and |/ Ma/) for
each coherent state probe, and therefore the coefficient matrix
C must be modified accordingly as further detailed in the
Supplemental Material [31].

Experimental implementation. The experimental setup was
identical to our previous implementation of WVBW tomog-
raphy [27] and is described in detail in the Supplemental
Material [31]. It was based on a very stable CW Nd: YAG laser
which provided all coherent states upon phase and amplitude
modulations by a piezoelectric-actuated mirror and a home-
made RbTiOAsQy, electro-optic modulator, respectively. The
calibrated coherent-state amplitude range was |o| = 0.138(2)
to 0.339(3), in six steps, directly calibrated using a TES. The
coherent-state probe amplitudes were calibrated by comparing
the TES photon statistics to that of a Poisson distribution with
the signal beam blocked as detailed in our previous implemen-
tation [27]. The phase scan was ten discrete steps of 0.58(5)
radians each. The laser was also resonantly frequency doubled
to pump an optical parametric oscillator whose narrowband
pair emission provided heralded single-photon Fock states
[27]. All data acquisition was computer controlled.

Results: Coherent state. We implemented the generalized
overlap tomography protocol for a weak coherent state and
a single-photon state. The rationale for measuring a coherent
state was to display a phase-dependent, i.e., noncylindrically
symmetric structure in phase space. The coherent state |3)
was chosen || = 0.191(3), as calibrated by the TES Poisso-
nian photon statistics. For each of the 60 coherent-state probes
|o;), data was acquired for 3 s to obtain ~10° events from
which to construct the photon-number probability distribu-
tions. The SDP tomography results after correcting for mode
mismatch are displayed in Fig. 2.

Examining the magnitude of the density matrix elements,
we clearly see that the diagonal and off-diagonal terms of p
were both successfully reconstructed. The phase and ampli-
tude accuracy is more evident when comparing the associated
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FIG. 3. Generalized overlap tomography of a single-photon Fock state. Top row, (a), (b): SDP with mode mismatch corrected but
no correction for losses. Bottom row, (c), (d): loss-deconvoluting SDP reconstruction. Left column: direct reconstructions. Right column:
reconstructions using phase-averaged measurements. Reconstruction fidelities are 0.85(8) for the bottom left panel and 0.94(6) for the bottom
right panel. Inset: Wigner functions calculated from reconstructed density matrices.

Wigner functions plotted in Fig. 2, right, where the red dashed
lines delineate the zero-axis values. We achieve a fidelity of
F = 0.97(2) between the reconstructed state, p, and the target
pure state, | 8). The slight asymmetry of the Wigner function is
imputable to residual phase noise in our measurements (only
passive noise cancellation techniques were used for the optical
paths).

Single-photon Fock state. The reconstructed density ma-
trices and constructed Wigner functions are shown in Fig. 3.
Due to the nature of our heralded source undergoing an overall
loss, n, we expect to measure a statistical mixture of the one-
photon and vacuum states which has a diagonal density matrix
in the Fock basis and rotationally symmetric Wigner function
[27,43]. Under this assumption, an average over the optical
phases of the coherent probes can be performed, yielding the
results on the right column of Fig. 3. It is, of course, also inter-
esting to examine the unaveraged measurements, left column
of Fig. 3, in order to assess the quality of our tomographic re-
construction. Despite the effects of experimental noise, visible
in the off-diagonal terms, the reconstruction has a fidelity of
F = 0.94(2) with the expected mixture where n = 0.50(1),
as measured by the heralding ratio as in Ref. [27].

Finally, the performance of the loss deconvolution by SDP
is displayed in the bottom row of Fig. 3. Assuming no prior
knowledge about the state other than this calibrated mea-
surement loss, the reconstructed loss-compensated state is
depicted in the bottom left of Fig. 3, where we achieved a
fidelity of 7 = 0.85(8) with a single-photon Fock state. While

the phase noise of the LO does not contribute to the overlap
measurements with a phase-insensitive state such as heralded
single-photon Fock state, the amplitude noise and other ex-
perimental fluctuations might be attributed to the ripples seen
in the reconstructed Wigner function. Adding the assumption
of a phase-invariant state as in Refs. [43—45] and averaging
measurements for each of the ten phases before compensating
for loss yielded the nearly perfect reconstruction shown in
the bottom right panel, where we achieved F = 0.94(6). It
is worth emphasizing that the negativity of the single-photon
Wigner function was fully recovered after compensating for
loss and mode mismatch (Fig. 3, bottom row), even though
the 50% loss level suppressed negativity when no loss decon-
volution was performed (Fig. 3, top row).

Finally, it is important to note that the maximum ampli-
tude probe was |omax| = 0.34, which led to a mean photon
number detection of (N) =~ 0.56, yet our overlap tomography
accurately reconstructed the Wigner function at quadrature
coordinates beyond g or p = 3 (consistent with our truncation
of the Hilbert space to n, = 5). This is in stark contrast to
the WVBW case of Ref. [27], in which the maximum of the
Wigner function, at g or p = 1, could not be reached using
displacements with |oyax| > 0.80 and (N) ~ 1.64. Therefore,
generalized overlap tomography necessitates PNR detection
of significantly lower photon flux while still requiring the
detection of only a single field mode.

Conclusion. We proposed and experimentally demon-
strated generalized overlap quantum state tomography using
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PNR measurements on a single field mode. Our approach
(i) makes no prior assumption on the initial state, (ii)
exploits numerically efficient, noise-robust SDP that en-
forces physicality, (iii) requires only a single PNR detector,
(iv) implements no approximated displacement operations,
(v) uses fewer, lower-amplitude probes than point-by-point
WVBW tomography (see Supplemental Material [31]), and
(vi) compensates for known losses with fewer numerical
instabilities.

Our approach is equally valid for other physical systems
and can be readily applied in circuit quantum electrodynamics
[46,47]. Tt could also be used to directly measure the purity of
a quantum state by measuring the overlap between two copies
of the same system, which allows access to the second-order
Rényi entropy extensively used to quantify the entanglement

of many-body physical systems [48]. Finally, the proposed
scheme can be simply extended to characterize a multimode
quantum system by interfering with a multimode set of coher-
ent states followed by measuring the overall parity of the state
after the interference.
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overlap matrix elements in the case of an arbitrary unbalanced beamsplitter. Section III discusses
the tomographic reconstruction utilizing semidefinite programming (SDP). In Section IV, we com-
pare WVBW scheme with the overlap tomography for a four-component cat state. Section V details
computationally efficient and robust loss compensation scheme using SDP, while Section VI demon-
strates the equivalence of loss to the unknown state before and after interference with coherent-state
probes. Section VII describes the effects of imperfect mode-matching between the signal and probe
fields. We demonstrate robustness against experimental noise in Section VIII. Finally, we discuss
the convergence of reconstruction with respect to the number of overlap measurements for a number
of states in Section IX, and Section X details the experimental implementation.

* rn2hs@virginia.edu

T me3nq@virginia.edu



I. GENERAL WIGNER FUNCTION OVERLAP

Sending an unknown state, p;,, and a probing coherent state, |a;){«;|, through a beamsplitter and measur-
ing the Wigner function at the origin of one output mode directly yields the Wigner function overlap between
pin and a probe. To see this, we adopt the Heisenberg picture and determine the evolved output quadratures
under the beamsplitter interaction to be ¢| = tq; — rqo and p| = tp; — rpy. Likewise, ¢4 = rq1 + tg2 and
py = Tp1 + tpa.

The two-mode input state is written in the Wigner function representation as

Wi 2(x) = Wi(q1, p1)Wal(gz, p2).- (1)

Next, by using the evolved quadratures, one can write the Wigner function of the beamsplitter output as
Wi o(x') =Wi(tqy + ras, tpy + 1p) Wa(—rdy + tas, —rpy + 1p3), (2)
where x and x’ are column vectors consisting of quadratures corresponding to the input and output modes,

respectively. The value of the Wigner function of output mode 1 at the origin can be obtained by setting
¢y = py = 0 and tracing out over mode 2 to yield

[ Wt im0 = [ [ Wit W )i )

%2 / / Wi(q,p)Wa(tq, tp)dqdp. (4)

Setting r =t = % yields the Wigner function overlap between p;,, and |o;) (], i.e., Eq. 3 in the main text.
In the case of an unbalanced beamsplitter where the input probe is still a coherent state, a; = % (qa; +ipa, ),
we now have

Wa(24:79) = Wia, ) (a, (745 7P) = %eXp [~ (ot aw)’ = (o +pa)] (5)
:71Texp{—al2 {(q+%]~)2+(29+pﬂj)2}}» (6)

where 0 = 7 and ; = oa;. The integral overlap from Eq. 4 is then

1
= / Wi(q, p)Wo(q + qs;,p + pp; )dqdp, (7)

where W, (q + qs,,p +ps,) = riQ exp {—712 [(q + q,gj)2 + (p +pﬁj)2} } When o > 1, Eq. (7) gives a scaled
overlap between p;, and a thermal state displaced by 3;. When o < 1, however, the overlap is between p;,
and a mathematical object that approaches a displaced delta function in the limit where o — 0 and || — oo,
which exactly probes the Wigner function of p;,, point-by-point as in the unbalanced homodyne technique of
Refs. [1] and [2].

One might also wonder about the outcome of a similar measurement performed on the other port of the
beamsplitter. If we go back to Eq. (2) and now determine the value of the Wigner function of output mode
2 at the origin while tracing out over mode 1, we have

[ Wi radiatgagmo = [ Wieat, ) Wa(orat, —rs)adiars ®)

1
= / Wi(q, p)Wa(—%q, —Fp)dqdp. 9)

This time when we set r = ¢, the measured Wigner function overlap is between p;, and | — a;)(—ay], i.e., the
very same coherent state probe with a phase factor of ¢*”. From this, we can conclude that measuring the
Wigner function at the origin of both beamsplitter outputs would yield the overlap between the signal and



coherent-state probes at opposite phases. When performing the tomographic reconstruction, it is possible to
utilize both outputs to collect overlap measurements and only externally vary the probe phases by half of
the desired range; however, ensuring that both detection channels following the beamsplitter are identical in
losses, detector efficiency, etc., is experimentally challenging, and this also imposes additional requirements
on PNR detection capabilities. Therefore, it is simpler to utilize a single output mode to perform the
tomographic reconstruction and correct for known losses as detailed below and in the main text.

II. DISCUSSION ON INVERTING EQ. 4 FOR A GENERAL BEAMSPLITTER

In this section, we investigate an inversion scheme for an arbitrary beamsplitter with reflection and trans-
mission coefficients of r and ¢, respectively. We start with formally defining the Wigner function of an
operator denoted by T as

1 A n
Wi(q,p) = 5-Tr[T1l(q, p)], (10)
where f[(q, p) is the translated parity operator formally defined as

2T
dq dp o—ilar ) [ i q q

where ﬁ(q,p) is the phase space displacement operator. For a given quantum state T = p, Eq. 11 leads
to the usual Wigner function of the state. However, this definition is general and may be extended to any
arbitrary operator, T'= T'(g,p) in order to calculate the so called Weyl symbol representing the operator 7'.

This is achieved by inverting Eq. 10 which results to the operator T in Weyl symbol form as

- / / dpdqWr(g, p)T1(q, ). (12)

(11)

Here we have used the fact that Tr[f[ (¢,p) I (¢',p")] = 276(q — ¢")d(p — p’). Next, we calculate the matrix
elements of the operator T as

T = (n|T|m) /qup><n\H<qp>\m>dqdp, (13)

where the matrix elements of the displaced parity operator can be determined using Eq. 11 as

q q
0= o+ g )

! !
_t fageietiag, (g1 L m, (g L
Var2mtnplm) ’ 2 ) 2

(n11(p.) [ m) = [ dq<n

q'~>2(_m7ip) q +p m2 m .
= dze” + (¢ —wp))(=1)"Hm(z — (¢ +ip)).  (14)
2”+mn‘m
02
Note that (z|n) = = C;/T::Hn(x) and H,(—z) = (—1)"H,(z). Using these relations, we get

[ R R o e S

N 2(—1 2:”'67‘0" a™” ”Lm"2a2 n<m
(0 Ti(p, ) |m) = { 27Vt el m<m L (16)

2(—1)m [ Zemlo=lol® grn=mn=m(2]|2) m < n




where « := g + ip. For a general beamsplitter, the measured overlap is between the Wigner function of the
unknown state and a Wigner function of the form given as

iy g

Wr(a) = e {10 (a7)

Defining 7 = 1/0 and using Eq. (16), we have that the matrix elements Eq. (13) of the operator given by the
Wigner function above are for m < n:

e 2rml 2 e _ 1 la = BJ?
_ _1\ym |a|®  xn—m 7n—m 2 _ 2
Tom = [m 2(-1) S © a L™ (2|« )702 exp{ s d’a
_ C6772|ﬁ\2 /OO a*nme:Lnfm(2|a‘2)67(72+1)|a\2eTZ(OzB*Jra*B)dZa’ (18)

2=1)™  [anm
o2 2mpl*

where we define C' = Now we we transform Eq. (18) using polar coordinate transformation

a = re? and d?« = rdrdf which leads to the matrix elements

3

o 27 ) .
Ty = Ce™7 191 / dr / oy gm0 o= (e (i (05T e TB) pom (,.2)
—o0 0

S 27 x 2k,.k
_ 06772|ﬁ|2 / dT/O dornferlefi(nfm)Gef(72+1)r2szm (21"2) Z T k'r (ewﬂ* + efieﬂ)k
T k=0 )
21q2 [ 2 2 X r2kk k k 27 )
—Ce " 18] / d n—m+1_—(7°+1)r L™ (2 2 *l gk—1 / do 20(217k7n+m).
e N rr e nm(2r7) kgo o ;6 B 1), e

(19)
The last integral is null for [ # 1(k +n —m) and equals 27 for [ = (k +n — m). Therefore, we can write

k=n—m+2s (k+n—m must be even and 0 <! < k), s =0, 1, ... which implies that I = n —m + s. This
simplification leads to

i — *s+n—m Qs
Tom = 27rC’efT2\B\2 Z <n m + 2$> uTQ(n7m+2s)

—\st+n—m (n —m+ 2s)!
X / dr rz("*m“)ﬂe*(ﬁ“)ﬁszm (27"2) e, (20)

To evaluate the last integral (which we will called T), we use the following identity [3]:

/ x“flef‘mL%"l‘l) (Mzx)--- Lgf:”) (A\x) dx = 2/ r2#*16*07“2L§L01¢1) (Ar?) -+ Lo (Ar®) dr
0 0

o ny +aq ny + ay F(N) (r) . . /\1 /\V
_( - )( n, )WFA u,—m,...,—n,,,oa+1,...,au+1,;,...,? (21)

(Re(p) >0; Re(o)>0; n; eNg; j=1,...,v),

where FX’) denotes the first of the four Lauricella’s hypergeometric functions of v variables defined by

0 k1 k
) , . _ (@ksthy (D), - (o), 200 2B
F [a,bl,...,bl,,cl,...,cl,,zl,...,z,,]—k z}; e (e R
1,--,ku=0 1 v
I'(a +
Izl + 4]zl < 1) and (a), = 2T (o



where I'(a) = (a — 1)! are standard gamma functions. Thus,

1 Zm: n—m+s+k) 2 k
2 (72 + 1)n—mts+1 k:O W —m+k)MkI\m24+1/) "’

I =

and the matrix elements to be calculated take the form
7_2(n7m)

(1 + 7.2)"—m+1

Xi n—m+2s (T48%)" n f: kn—m+s+k)! 2 \"
Z\n—m+s)(n—m+2s)|( ].-|-7' s = (m— k W —m+k)MK\m2+1/)

Tn,m = 2W0€7T2|ﬁ|2ﬁ*(ﬂ*m)

where the expression above can be rewritten as

k
ain  BEmm) g 2\ mTm M - )k( 22+1)

Ty = 20 Ce=" 187 1P

nym = &€ ! 1+72 \1+72 2} M(n—m+k)!

k
= [ 748)? n—m+s+k
() 5 ()

s=0

Using Vandermonde’s identity, we may write the last binomial term as
(nm+s+k> _Zk: <5> (nerk)
K 2 G\ k=
which gives us
nym = ETLE 1+72 \1+72 = \m—k 7'2—1—1 =
S (TR
o \1+ 72 ) sl\j
*(n—m 2 n-— m k
= 27]'06_7-2‘5‘2 B ( ) T
14+72 \1+4 72 k:O m — 72—1—1
E
n—m+k\ (B’ 4W2
2 () () e

72|5|2 5*(n—m) 72 n—m m n _9 k T4|5|2
=2 — — ) L™
WCexp( 1+7'2) 1472 <1+72> Z(m—k) (7’2—|—1> k (1—|—7’2)7

k=0
where we have used the additional identities
25 s _Ooxs s _J:jex
X_%S,@ —X_;S,(]) !

and the definitions of the generalized Laguerre’s polynomials

k .
n—m+k\ a’ ne—m
I G

=0



Finally, we can use the multiplication theorem of the generalized Laguerre’s polynomials,

) =Y (’" * A) L)t — 2y, (32)

m—k
k=0

written as

- (F2) =30 (L1 ) (53)

k=0

to derive a closed form for the photon-number basis matrix elements of the operator described by the general
Gaussian Wigner function (17) as

T = 21" 2nm!5*("7m) ( & >”‘m (72 T 1>m522,m <2T4|ﬁ|2) : (34)

24+ 72 | 2mpl 1472 241 T4 -1

This expression allows us to explicitly write down the overlap integral, even in the case of unbalanced
beamsplitter, as

0= Z Z Tn,mpm,na (35)

n=0m=0

where T, ,,’s are calculated in Eq. (34) and p,, ,’s are matrix elements of the unknown state.

III. TOMOGRAPHIC RECONSTRUCTION WITH SDP

We now use the formalism discussed above to perform the complete state tomography of an arbitrary
quantum state. For a given single-mode quantum state, one can write the density matrix in the photon-
number basis as

p=5 puwln)(wl. (36)
n,n’=0

Complete characterization of p requires determining p,,, for all n,m. To do that, we choose a set of distinct
coherent states, |a;). Using Eq. (4), we obtain the fidelity between |a;) and p, formulated as

O7 = Trllag)(ejlp) = {alpley)- (37)
Using Eq. (37) and the coherent state represented in the photon-number basis, |a;) = > 7 ¢jn|n), we get

O =3 G| Y paw ) (0] Y cjmlm). (38)
m'=0 0

n,n’= n'=0

Further simplification leads to
O'= > emCiupum: (39)
n,m=0

Ideally, the sum over n, m goes to infinity but for practical purposes one needs to truncate it at, say ng, such
that any terms n,m > ng do not significantly contribute to the sum. As a result, we have

no
I = Z cjmc;fnpmn7 (40)

n,m=0



YRy
o =y @) ()
where ¢, ¢}, =€ -

Furthermore, by using N, = (ng + 1)? coherent states, Eq. (40) can be written in the matrix form as

0 0 0% 0 0% 0 Ox
©00) c(l)c? cgc% e c,lwc,f0 00,0
* * *
o €5CoH c5C1 c+ CryCng P01
N, Npx N, Npx N, N,x
ON» ¢y’ cpfer” ... CngCng Png,no

We can rewrite the above matrix equation in compact form as
O =CP, (41)

where O € R(o+D? P e C(no+1)* apd € € Co+1)*x(mo+1)”  Next, we can invert Eq. (41) to reconstruct P.
This can be achieved by solving the following semidefinite program.

Min})mize [|O — CP||2
Subject to p >0 and Tr[p] =1, (42)

where ||.||2 is the Iy norm defined as ||V||2 = \/>_, |vi|?. Note that this kind of quadratic convex techniques
have been extensively discussed in the the context of quantum detector tomography [4-7]. The optimization
problem is convex and can be efficiently solved for a guaranteed unique P, and hence for the unknown state,
p, using open source Python module CVXPY [8]. Although this method holds for general quantum states,
we restrict our simulations to real-valued density matrices for numerical ease. However, we do show the
reconstruction for complex-valued density matrices in Sec. IITA.

All numerical simulations were performed in QuTip [9] where the Hilbert space for each optical mode was
constructed in the Fock basis with a high enough dimensionality to ensure state probability amplitudes de-
cayed to less than 10~7 before truncation. Under these parameters, the numerically efficient SDP algorithms
converged on the order of 1072 seconds on a 3GHz Intel i5 quad core processor with 16Gb RAM.

Our method is demonstrated in Fig. 1 for the example cases of the small amplitude cat state, |¢)) o
|a) + | — a) where a = +/3, and a Gottesman-Kitaev-Preskill (GKP) state of mean photon number 5. These
states were reconstructed using 400 different probing coherent states of 20 amplitude increments from 8 =0
to 8 = v/6 and 20 phase increments from 0 to 27, to achieve fidelities with the target states greater than
0.999 for the cat state, and a fidelity of 0.985 for the GKP state. Because the observer is assumed to have
no prior knowledge of the state to be characterized, it is important to scan the entirety of phase space in
question with different coherent states so as to have sufficient overlap between all portions of the state under
test. If some prior knowledge of the state is obtained, then the probing coherent states can be restricted to
a localized region of phase space near the unknown quantum state.

A. Complex Reconstruction

We demonstrate the tomography protocol for complex-valued density matrices displayed in Fig. 2. We
perform the tomography with coherent state probes that range in amplitude in 20 steps from |3] € [0, /3]
and 20 phases ¢ € [0, 27], for a coherent state denoted by complex variable, o = v/2(i+1) and a superposition
of photon-number states with the complex probability amplitude. The Wigner functions are shown along
with separate plots for the real and imaginary elements of the respective reconstructed density matrices,
including an inset fidelity with the ideal states.
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FIG. 1: Tomographic reconstruction using 400 coherent state probes for (a) a cat state of amplitude V3,
and (b) a GKP state with a mean photon number of 5. The top row displays the density matrix for the
ideal theoretical state, and the bottom shows the reconstructions. Insets display the plotted Wigner
function for each state.

IV. IMPROVED RESOLUTION

The WVBW method of tomography reconstructs the Wigner function of a quantum state by directly
probing specific values of the function in question. For unknown quantum states with potentially complex
structure (e.g. cat or GKP states), it may be necessary to densely probe a large region of phase space in
order to resolve fine details in the Wigner function which will be experimentally demanding. To explore a
specific example, consider the four-component cat state (a.k.a compass state), given by

[) o a) + | —a) + |ia) + | —ia) (43)
with photon-number distribution
2la n mod 4 =0
P(n) = { nl(coshlal*+cos[a]?) (44)
0 otherwise

The Wigner function in Eq. 43 consists of Gaussians from each of the four classical coherent-state | o) (o |
components located at corners of a square in phase-space, interference terms perpendicular to each edge of the
square that resemble cat-state fringes, and interference terms between the Guassians along the diagonals of
the square resulting in a checkerboard pattern. The checkerboard interference is governed by the oscillatory
term

cos(Pq) + cos Lp = 2 cos (%(Pq + Lp)) cos (%(Pq — Lp)) (45)



(i) (i) (i)

(a) W(Q,P) Re[y] Im(p]

FIG. 2: Reconstruction of states with complex-valued density matrices for (a) the coherent state, |a), with
o =/2(i+ 1) and (b) the superposition \/L§(|2> —4|3)). The inset fidelity is calculated between the

reconstructed state and the ideal target state. (i) Reconstructed Wigner functions. (i) Real elements of the
density matrices. (iii) Imaginary elements of the density matrices.

where L = P = 2v/2|a/ is the the phase-space separation between opposite gaussian peaks. The interference
term in general gives rise to sub-Planck scale features in the Wigner function [17]. If we wish to measure the
Wigner function out to where it decays to an arbitrarily chosen value of 1072, then we will need to measure
to a phase-space radius of

dmaz = \/§|C¥| + 27 (46)

which is the point at which the four Gaussian terms have decayed sufficiently. This value comes from the
fact that each Gaussian is centered at distance of v/2 |a] with o = 1, and the state is normalized so that each
of the four peaks has a maximum value of ﬁ.

Consider the specific case of a compass state where |a| = 3.5, which can safely be truncated to a maxi-
mum photon number of N = 24 in the Fock basis. Using our generalized overlap tomography method with
only the information about the maximum photon number, the complete construction of the density matrix
requires 252 measurements, which in turn can be used to calculate the analytic form of the Wigner function.
Additionally, the probing coherent states need only reach a maximum amplitude of 8 ~ « for the wings of
the probes to sufficiently overlap with the state to the desired phase-space accuracy, of which the total energy
measured by the PNR detector is further reduced by half through the use of the balanced beamsplitter. How-
ever, if we were to use the WVBW method with no additional a priori information, then the displacements
must be equally spaced throughout the region of interest in phase-space. Not only is the resolution vastly
reduced for the same number of measurements, but the measured state must be displaced by the g,q: given
in Eq. 46 (more than double the energy of the maximum probe in the overlap method), and the energy of this
entire displaced state must be resolvable by the PNR detector leading to a substantially larger experimental
burden.

The comparison between the WVBW and overlap methods for the same number of measurements is
displayed in Fig. 3, where the Wigner function at top left is the ideal compass state Wigner function recon-
structed from (N + 1)? overlap measurements, with N = 24 and |a| = 3.5. The Wigner function plotted at
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top right of the figure shows the results of the WVBW tomography method with the same number of mea-
surements, where the Wigner function is sampled at 25 equally spaced amplitudes each at 25 phase values.
The maximum amplitude to use was determine from Eq. 46 using the Fock-basis truncation of N = 24. The
lower half of the figure show the same plots as above but zoomed in to see the central interference pattern.
It is clear that although WVBW successfully catches the negativity and general features of the distribution,
it fails to display the finer features and at times misses local extrema. The WVBW method would require
1002 measurements to achieve the same quality resolution as the left panel of Fig. 3.
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FIG. 3: (a) Wigner function of compass state in the ideal case using overlap tomography. (b) Wigner
function of the same state using WVBW tomography with the same number of measurements (252) as in
(a). To achieve the same crisp resolution as depicted at left, the WVBW method would required 1002
measurements. (c) and (d) zoom in on the central interference fringes with (d) showing the actual
measurement coordinates as black points.

V. LOSS COMPENSATION
1. Complete density matriz correction

‘We now wish to correct an arbitrary density matrix given a known loss. In this case, we have experimentally
measured p’, but our goal is to reconstruct the density matrix before the loss, p. As shown in Fig. 4, this can
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be modeled by sending p through a fictitious ‘loss beamsplitter’ with reflection and transmission coefficients
of r = /1 —nand t = /i, where 7 is the overall transmission efficiency.

10){0]

v
p——N—/p

7

FIG. 4: Lossy channel.

The general quantum state density matrix before the loss can be written as

Z pnn|n

n,n/=

Z a0 (0] (47)

nln

If this state enters into the loss beamsplitter in mode a with vacuum in mode 3, then the mode operators
transform in the Heisenberg picture according to @ — ta + rb and b — —ra + tb to yield an output density
matrix

= (tal + rbt)" (ta +rb)™
out — nn'ioa() 0 Oai. 48
o= 3 e L 00001, 2T (49

n,n’=0
Tracing out over mode b yields the final state after loss, which is given by
P = TTb pout Z Pn,n’ Z Z An n’ k, k:’|n - ><n/ - k/|<k‘k/>5k,k/7 (49)
k=0 k'=

where

A(mn’, k’, kl) — (Z) (k/> k)+k/tTL+TL —k— k: (50)

Substituting n — k and n’ — k with m and m’ allows us to rearrange the expression and write a sum over the
Fock components in order, which can be written as

oo

P= D Pensrmi Alm + km 4 ko k, k)lm) (m'], (51)

m,m’ k=0

where it is easy to see that each element of the density matrix after loss is related to the original state by

oo
m+k\ (m' +k b
Prnms = Zp(mm’(m%)\/( k )( k )TZkt M (52)
k=0
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This can be viewed as a generalized Bernoulli distribution [12], so can be inverted to read

> m-+k\ /m' +k N2k _
Pm,m? :Zp?m+k>,<m'+k>\/( k )< k )(_1)k(t) e (53)
k=0

In practice, the sum over k can be truncated to some value, N,,.., beyond which the entries in the initial
density matrix are negligible. We can then reformulate Eq. 52 as a series of N,,q, linear maps from the t"
diagonal of p’ to the i" diagonal of p, where the main diagonal is given by i = 0. Each of these linear maps,
M(i)7 is an upper triangular matrix of dimension N4 — @ X Nypgr — ¢ with elements

0 j>k

(@) () — . i
MO0 =TT -t s oo Y

Since each M(i)(n) is triangular with nonzero diagonal elements, the inverse mappings can be found by
inverting the generalized Bernoulli transformation and are given by [12]

Iny[M® ()] = MY (7). (55)

The existence of this inversion is due to the known well defined statistical nature of loss channel, which
makes it possible to perfectly reconstruct any p within a finite-dimensional Hilbert space when n and p’ are
precisely known [12]. However, the presence of any small deviations in an experimentally measured p’ can
lead to unphysically large or non-positive diagonal density matrix elements in the reconstruction of p, even
while p remains normalized, which is similar to the possible numerical instabilities that arise when using
pattern-functions [13]. These errors become pronounced for low detector efficiencies at high photon-numbers
as seen Fig. ba for the specific case of a loss-compensated cat state. Therefore, it becomes extremely crucial
to have a priori information about the energy of the quantum states under consideration.

Here, we are able to relax this issue by inverting each M(i)(n) using semidefinite programming, where the
optimization problem is defined as

N")’LG(E
.. 1) ap(@) (8
MlIlllelZG ;:O 1Pdiag = MY Pgiagll2 (56)

Subject to  p >0, Trlp] =1, and prm <1 " Prym>
sz)a g denotes the i'" diagonal of p and the third constraint is obtained by noting that each element
in the sum in Eq. (53) is positive for m = m/, leading to the inequality when the sum is truncated after the
first term. Additionally, it is only necessary to sum over the upper diagonals of p in the minimization (hence
the sum starting at ¢ = 0), due to the enforced hermiticity of p.

The application of these constraints enforces physicality and avoids the numerically unstable reconstruction

where p

that would result by using an exact expression for M) (77)71. We demonstrate in Fig. 5 how small errors on
density matrix elements from performing the tomographic procedure on a loss degraded cat state and single-
photon Fock state give rise to an unphysical loss-compensated state using the analytical matrix inversion
from Ref. [12], whereas inversion using SDPs successfully reconstructs the state prior to loss. Although all
errors in the tomographed density matrix elements prior to loss compensation are on the order of 10~2 (not
depicted), the analytical matrix inversion drastically magnifies these slight deviations. In particular, Fig. 5¢
and Fig. 5d show that the validity of the loss-compensation can heavily depend on both the overall loss and
on the choice of Hilbert dimension cutoff. When comparing the reconstructed state, p, to the ideal state
without loss, o, using the trace distance defined by T'(p, o) = 3||p — o||1, we see that the deviation of p from
o grows quickly as 7 shrinks and d increases in the case of analytic inversion. However, T'(p, o) is both small
and relatively independent of either 1 or d when using SDP. As a result, our method is significantly more
robust to experimental noise.

VI. EQUIVALENCE OF PHOTON-NUMBER DISTRIBUTIONS

To show the equivalence of the photon-number distributions measured in each configuration in Fig. 6, we
adapt the approach originally introduced in [1]. The signal and LO modes are described by annihilation
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FIG. 5: Loss-compensation for tomographed cat state of amplitude v/3 after transmission of 77 = 0.70 and
Hilbert space cut-off of d = 20, with (a) inversion using the generalized Bernoulli transformation and (b)
inversion using SDP. The logarithm of the trace-distance between the reconstructed state, p, and the target
state, o, is plotted against i [d] in (c) [(d)]. We note that T'(p, o) > 1 occurs due to the unphysical
reconstruction of p and large non-positive diagonal elements. The figure insets show the Wigner function
for each state.

operators a and b respectively, and ¢, and d, are vacuum modes. For a perfect PNR detector, the probability
of measuring n photons is given by [14]

P(N =n) = < Ak >p (57)

where N = dfd is the photon-number operator of the detection mode and the expectation value is calculated
over the initial states, and :: is the normal ordering. By employing the Heisenberg picture, we first determine
the detection mode in terms of input modes for the network on the left of Fig. 6. The input mode denoted
by annihilation operator, a, evolves to

S

j= 3

+
V2

o+ b
After second beamsplitter: /7 (a + ) + /1 —né,

After first beamsplitter: a — (58)

(59)
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FIG. 6: Schematic of the loss model. Left and right networks produce the same photon-number distribution.

m‘ll'_'

Since the input states for mode b and &, are coherent and vacuum states respectively, the normal ordering
allows to treat them as complex numbers. As a result, the effective photon-number operator is given by

NE =dtd, (60)

where the detection mode is

. a+p
d* = 61
(") oy
Likewise, for the right network, we have
After left beamsplitter: @ — \/fa + /1 — nb, (62)
After top beamsplitter: b — /b + /1 — 1é, (63)

~ 1 ~ ~
After balanced beamsplitter: d = ﬁ(\/ﬁd + /1 —=nby, +/nb++/1—né,),

where ¢,, BU are vacuum modes and b is a coherent state. We again utilize the fact that normal ordering
allows coherent states to be represented by a complex number and the vacuum state can also be considered
as a coherent state with zero amplitude. Thus, the detection mode can be further simplified as

dF = \/ﬁ(&:;; ) (64)

From Eq. 61 and Eq. 64, one can see that both networks have the same detection mode, therefore would
produce the same photon-number distribution for a given quantum state under investigation.

VII. MODE MISMATCH CORRECTION

In this section, we consider the effects of mode mismatch on the measured photon-number distributions.
In contrast to balanced HD (BHD), the imperfect modematching between the coherent probes and the
signal field cannot simply be treated as losses. This can be understood as follows: In BHD, the measured
photocurrent difference is proportional to only the interference term, i.e, I_ o afaro + aaj o, which implies
that only the overlapping portion of the signal field gets amplified by the strong LO and the non-overlapping
portion is considered as losses. Here, we show that this will no longer be the case with the proposed method.
As displayed in Fig 7, the interference between the local oscillator (LO) and the signal mode, denoted by a,
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FIG. 7: Model for mode mismatch analysis.

and aro, respectively, can be decomposed into two orthogonal modes that each reach the PNR detector. The

LO can be seen as interfering with vacuum mode a, to be split into a component that overlaps (interferes)

entirely with the signal field, dgo, and an orthogonal component, &i‘o, that proceeds to the detector without

interacting with the signal. Defining the mode-mismatch parameter, M, as the transmission of the fictitious
beamsplitter decomposing the components of the LO and making use of the Heisenberg picture, we get

ato =V1— Maro +VMa,. (65)
all )= —vVMaro + V1= Ma,. (66)
Likewise, the signal mode after interfering with dgo at the balanced (50:50) beamsplitter evolves to

ts — Upsa Ul = H# (67)
where Upg is the unitary operator of the balanced beamsplitter.
n1 = (ato)fato (68)
iy = <“S T/g%)*(as ;‘;LO) = Upsala,Ul g (69)
As a result, the total number operator is
N =ny + g = (o) aro + Upsala Ul (70)

By employing Eq. 71, one can further determine the probability of detecting total n = n; + ny photons by
both the detectors in Fig. 7 as

P(n=mny +ny) = < P~ >,, (71)

where N = Ay + fip is the two-mode photon-number operator. We then use the fact that in the normal
ordering formulation, the annihilation operators denoting coherent states can be simply treated as complex

variables, afo and alo. Therefore, we have

N = (1 - M)|ato* + Upsala, U (72)
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Using Eq. (71) and Eq. (72) results in

R R 1 2 T At Pt "
P(n) = < o~ [=M)latoP+Ussala. 0] (1 = M)|ago| JF'UBSalasUBs] : >
n:
Pin

After further simplification, we get

A~ N A~ l _
P(N = n) = < o~ [(1=M)latoP+Ussala, 0k ] Zn (TL) (UpsalaU}yg) [(1' — M)|agol*" : > (74)
l n!
=0 Pin

_fj CeUmsalaclhs (Upgafa,Uhg)' \  e”l0-Mlotol’l[(1 — M)|at,[2]"~!
=AY l! /, (n—1)!

(75)

in

From Eq. (75), one can see that the probability of detecting n photons is the convolution of two probability
distributions. The first term in the normal ordering form corresponds to detecting | photons in the signal
mode after the interference with dlgo while the Poissonian distribution is the probability of (n — ) photons

being detected in the orthogonal LO mode, at,. We can further rewrite Eq. (75) in a compact way as
P(N =n) =Y Pl)P+(n-1). (76)
1=0

Note that P-(n —[) can be determined by knowing the overlap parameter, M, which is experimentally
measured from a bright-field visibility measurement [15]. Next, one can simply invert Eq. (76) in order to
reconstruct the true photon-number distribution in the interfered field of unknown state and the modematched

part of LO field, i.e, |V Moz!o>.

VIII. EXPERIMENTAL NOISE

We now turn to test the robustness to inevitable experimental noise. We model our noise in the same spirit
as [4, 6] by introducing artificial fluctuations in the amplitude and phase of the coherent states, |a/). The
amplitude noise is sampled using a Gaussian distribution of zero mean and standard deviation of o = 2%|a; |,
and likewise the phase noise is sampled from o € [—1, 1] degrees using a Gaussian distribution with zero mean.
To demonstrate the effect of experimental fluctuations, we performed the state tomography of an ideal 4-
photon Fock state in the presence of 50% losses, where the varying probe coherent states now have both phase
and amplitude noise. Numerical results are displayed in Fig. 8. We are able to identify the Wigner functions;
however, we now see the appearance of noise-induced ripples as shown in Fig. 8. In order to suppress the
fluctuation effects, we repeat the experiment N = 30 times and used the averaged overlap measurements in
order to obtain smooth Wigner functions as evident from Fig. 8b. We can clearly see the ripples become
diminished, which demonstrates the rather intuitive result that performing multiple measurements in the
presence of noise can improve resolution. This is in agreement with our experimental reconstruction of a
single-photon Fock state. We note that the added noise in these numerical simulations is larger than the
typical noise present in the well stabilized lasers with built-in noise eater servos.

IX. RECONSTRUCTION CONVERGENCE

In this section, we demonstrate the efficacy of the reconstruction with respect to the number of overlap
measurements for a cat state with a = 4, a vacuum state squeezed by 12 dB and then displaced by 5 = 0.5,
and a random superposition of Fock components up to a Fock-basis truncation of d = 31 as in Ref. [16]. We
find out that as the number of overlap measurements increases, the fidelity of the reconstruction increases
as expected. Furthermore, with an excess number of measurements beyond d?, where d is the Hilbert space
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FIG. 8: Reconstructions of an ideal four-photon Fock state with 50% loss in the presence of noise. (a) The
coherent state probes have noisy fluctuations of 2% intensity and 1 degree in phase. (b) Averaging noisy
measurement outcomes produces a smoothing effect on the reconstructed states.

1.00 O e e -
-
1 f
0.98 - "
I
50.96* I
Q I
T I —_— _
T 0.94 {! la) + | — a)
! == D(a)S(r)|0)
0.92 - == Random State
0.90 T T T T r T T :
200 300 400 500 600 700 800 900 10001100

measurements

FIG. 9: Reconstruction fidelities of a cat state, squeezed-displaced state, and a random superposition state.

dimension, the SDP based estimator returns the same consistent result for the reconstruction as evident
in Fig. 9. We can clearly see that the number of required overlap measurements is significantly lesser
than in Ref. [16], and yet the fidelities are higher. This shows that with informationally incomplete data,
the proposed method provides a better estimate of the unknown state than the Maximum-likelihood based
estimators and recently discovered state tomography using machine learning. It is worth emphasizing that
the total computation time of the SDP solver is &~ 5 seconds.

X. EXPERIMENTAL SET-UP

The tomography of a quantum states is performed by interfering a mode-matched local oscillator (LO)
with the signal state, p, at a balanced beamsplitter followed by detection of one output mode using a photon-
number resolving transition-edge sensor (TES) as shown in Fig. 10. A portion of the LO is split and strongly
attenuated by neutral density (ND) filters to be used as a coherent state, |3), for the signal when the flip
mirror is engaged. When the flip mirror is not in place, the signal is a single-photon source based on heralded,
cavity-enhanced type-II spontaneous-parametric downconversion from a periodically poled potassium titanyl
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phosphate (ppKTP) crystal. Spectral and spatial filtering was achieved by the optical parametric oscillator
created by placing the crystal in a resonant cavity and an additional Fabry-Perot filter cavity on the heralding
arm as shown in Fig. 10. The cavities were Pound-Drever-Hall-locked [10] using a portion of the LO in
an “on/off” configuration as described in Ref. [11]. The coherent-state probes derived from the LO were
amplitude modulated with a combination of polarizer and electro-optic modulator (EOM) and were phase
controlled with a mirror-mounted piezoelectric actuator (PZT). Imperfections in phase control and stability
resulted in approximately 0.05 radians of phase-error on probe calibrations that contribute to the slight
asymmetry in the experimentally constructed Wigner functions of the coherent state in the main text. Note
that the phase-error of the LO does not contribute to the imperfections in the reconstruction of phase-
insensitive states, i.e., states with diagonal density matrices in the photon-number basis. Therefore, the
ripples in the reconstructed Wigner function of the heralded single-photon Fock state are attributed to the
amplitude noise of the LO and some other experimental fluctuations. Extensive details on the single-photon
source, mode filtering, and the LO amplitude calibration using the TES can also be found in Ref. [11].
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FIG. 10: Experimental setup. The tomography protocol is contained in the pink box where the
mode-matched LO is interfered with the state p. When the FM is in position, tomography for the coherent
state, [, is performed; otherwise, p is the single-photon state generated in the blue box. EOM, electro-optic

modulator; FC, filter cavity; FM, flip mirror; HWP, half-wave plate; IF, interference filter; LO, local
oscillator; ND, neutral-density filter; OPO, optical parametric oscillator; PBS, polarizing beamsplitter;
POL, polarizer; PZT, piezoelectric transducer.
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