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A selection of open problems in the theory of
composites is presented. Particular attention is drawn
to the question of whether two-dimensional, two-
phase composites with general geometries have the
same set of possible effective tensors as those of
hierarchical laminates. Other questions involve the
conductivity and elasticity of composites. Finally,
some future directions for wave and other equations
are mentioned.

This article is part of the theme issue ‘Topics in
mathematical design of complex materials’.

1. Introduction

The theory of composite materials has seen a resurgence
of interest thanks to the discovery of novel properties
and a dramatic rise in our ability to manufacture desired
microgeometries: see, for instance, the review [1] and
references therein. Back in the 1980s and 1990s, there
was also a rapid increase in interest, partly due to
the recognition that the solution of optimal design
problems often requires composite microstructures in
the design. This gave rise to the area of topology
optimization which has had enormous impact, moving
into the mainstream of engineering design: see, for
example, the book [2]. From a mathematics perspective
there were accompanying rapid developments: in our
understanding of homogenization, which underlies
the use of effective moduli to describe macroscopic
responses; in bounds on effective moduli, coupled with
the identification of microstructures that attain them;
in the theory governing microgeometry independent
exact relations satisfied by effective moduli; and in the
discovery of composites with unexpected properties, as
surveyed in the books [3-11].

© 2021 The Author(s) Published by the Royal Society. All rights reserved.
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Given the recent interest, it is perhaps appropriate to draw attention to some of the open
problems generated in the mathematical research that is now mostly over three decades old, as
well as questions generated by more recent investigations. The problems here are by no means
exhaustive. Rather, they are ones I have encountered in my research work and found quite
difficult, usually because I have no idea how to solve them. Some are just of theoretical interest,
while others should be of interest to both experimentalists and theorists alike. The problems
reflect my own research interests, both past and present, and other experts in the field would
undoubtedly choose a different set. Many are old outstanding problems, where it is difficult to
dig in the hard soil, but some address new topics where the soil is more fertile and it is easier to
break ground.

2. Open problems involving quasi-convexification

Here we present a selection of open problems that are related to quasi-convexification. For a
recent survey of selected results pertaining to quasi-convexity, and the closely related topic
of weak lower semicontinuity, see [12,13] and references therein. The focus is largely on two-
phase composites, and the corresponding two-well quasi-convexification problems, since these
are perhaps of greatest interest in the field of composites (though some effects, such as getting
negative or unbounded thermal expansion coefficients from materials having only positive
thermal expansion coefficients, require at least three phases [14,15]). In this age of 3D-printing, it is
now relatively easy to manufacture tailored microstructures of one phase plus void that can then
be infilled to obtain a two-phase material. One is interested in the range the effective tensors can
have as the microgeometry varies over all configurations. This range is known as the G-closure
and provides limits for what one can expect to achieve when one tries to optimize the local
response using relatively simple practical microstructures obtained, for example, by topology
optimization. The question we explore is whether it suffices to consider only hierarchical laminate
geometries rather all conceivable microstructures. Hierarchical laminate geometries have the
advantage that it is relatively easy to calculate their effective properties (for example [16,17], ch. 9
in [7] and references therein).
We start with:

Problem 2.1. Is rank-one convexity equal to quasi-convexity for the two-well problem in two
spatial dimensions?

Given two self-adjoint positive definite mappings L1 and Ly on the space Sy, of real 2 x m
matrices, equipped with the standard inner product

A;- Ay =Tr(A1A)), 2.1)

where Tr denotes the trace, and Aj, Ay € Sy, and given Fy, F € S, and two reals ¢1 and ¢,
consider the two well ‘energy’,

W(F) = min{Wy(F), W2(F)}, FeSn, 2.2)
where the W;(F), j=1,2, are the quadratic wells
Wi(F)=(F—F;)- Li(F - F;) + k;
=F-LF+2V; F+¢, Vi=-LF, c=k+F LF, 2.3)
The quasi-convexification of W(F) is given by
QW(F) = irl}f(W(F + Vu)), (2.4)

where the infimum is over all m-component periodic potentials u(x) and the average (-) is over
the unit cell of periodicity. (We adopt the convention that the elements of Vu are {Vu};; = du;/9x;.)
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An energy Wy(F) is said to be rank-one convex if
Wo(a ®b) < pWo(a ® b) + (1 — p)Wo(a ® b), (2.5)

for all real p € [0, 1], all real 2-component vectors a, and all real m-component vectors b. The rank-
one convexification of W(F), denoted RW(F), is the highest rank-one convex energy that lies equal
or below W(F) for all F. So the question is whether QW(F) = RW(F) for all choices of m, K1, Ky,
F1, Fp, c1, c2? We will see that this can be reduced to the problem with F; =F, =0. Clearly, the
problem does not change if we add the same constant to ¢; and ¢;. So without loss of generality
we can assume that c; and c; are sufficiently large so that

Lyt Vi L, V,
K = K> = . 2.
1 (V} ¢ ) >0 K (V} o]0 2.6)

In terms of these, we have
F F
Wi(F) = (1) -Kj (1) (2.7)

in which the inner product is the obvious generalization of (2.1).
In the field of composites problem 2.1 is equivalent to the following question:

Problem 2.2. For two-phase composites in two spatial dimensions, such that phase 1 occupies
a volume fraction f, is the Gy-closure equal to its lamination closure when the fields on the right
of the constitutive law have n components, each being the sum of a real 2 component vector and
the gradient of a scalar periodic potential, while the fields on the left of the constitutive law also
have n components, each having zero divergence, in which # is an arbitrary positive integer?

The constitutive law takes the form

i) eM(x)
P e (x)
. |=Lx . (2.8)
i® B(x)
— N’
J(x) E(x)

where the j @(x), e (x), L(x) all have the same periodicity and satisfy
v.j0=0, eP=el +VV, Le=x(Li+[1-xMIL, (29)

in which the eg ) are constant vectors, the V;(x) are periodic potentials, x (x) is the indicator function

x(x)=1 inphasel,
=0 inphase2, (2.10)

satisfying (x) =f, in which the angular brackets ( ) denote a volume average over the unit cell of
periodicity, and L1 and L; are self-adjoint positive definite mappings on S;;. Thus L1 and L; take
the block matrix form

o‘]('11) 01(12) N o_](ln)
0;21) 01(22) N o_](Zn)

Li=] . . . , =12, 2.11)
a(nl) o_(an) O_(nn)

i j i

(kO) _r(ER)yT
=lo; ]

2 is a 2 x 2 matrix, with o j

in which each ov](. . The linear relation

(J) = L« (E) (212)
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determines the effective tensor L. The Gf—closure, Gf(Ll, L,), is the closure of the set of values
L, takes as x(x) ranges over all possible indicator functions satisfying (x) =f. In other words,
the microstructure varies over all possible configurations in which phase 1 occupies a volume
fraction f. The lamination closure, GL(Ll,Lz) is the closure of the set of values L, takes as
x(x) ranges over the indicator functions of multiple-rank laminate materials satisfying (x) =f.
Multiple-rank laminate materials are hierarchical materials, obtained by an iterative process of
lamination in different directions on larger and larger length scales, ideally with an infinite ratio
between the length scales at each stage of construction. A rank-one laminate is just a simple
laminate of the phases, which can be regarded as rank-zero laminates. A rank m laminate is
obtained by layering together a rank m — 1 laminate with a laminate of rank m — 1 or less.

The G-closure, G(L1,Ly), is the closure of the set of values L, takes as x(x) ranges over all
possible indicator functions, while the associated lamination closure GX(Ly, Ly) is the closure of
the set of values L, takes as x(x) ranges over the indicator functions of multiple-rank laminate
materials. These are the union over f € [0, 1] of Gf(Ll, L,) and G}(Ll, L,), respectively.

Remark 2.3. The equivalence of G¢(L1, L) and G}(Ll, L) in the case n =1 has been established

by Nesi [18] and Grabovsky [19,20], subject to certain assumptions about L; = 0(111) and L, =
0(211). (The n=1 case where L; and L, do not commute, and L; — L, is neither positive nor
negative semidefinite, is unresolved to my knowledge). They built on earlier work of Lurie &
Cherkaev [21] and Murat & Tartar [22], who treated, using a variational approach known as
the translation method, or method of compensated compactness, the case where 0(111) and 0(211)
are both proportional to the identity matrix, corresponding to isotropic materials. For n =2, it
is an open question as to whether they are equivalent. In planar elasticity with two, possibly
anisotropic, phases with fixed orientations, which is a subcase of the n =2 case, existing evidence
points to them being equivalent. In three-dimensional elasticity, one needs microstructures, such
as pentamode materials [23], that are stiff with respect to one loading, yet compliant with respect
to all other loadings (which span a five-dimensional space), and it is by no means clear that their
behaviour can be mimicked by hierarchical laminate structures.

Remark 2.4. In two spatial dimensions, Grabovsky [24] has an example of a manifold M of
tensors L that is stable under lamination but not under homogenization. This suggests that by
picking anisotropic L1, L, € M one might find a x(x) such that L, is not in M, thus establishing
that G(L{,Ly) and GE(Lq,Ly) differ. However, the analysis showing that M is stable under
lamination [25] extends directly to all two-phase composite geometries as can be seen from [26]
once one takes the ‘reference tensor’ Ly equal to L. We conclude that L, € M. The same analysis
applies to any manifold M stable under lamination in any spatial dimension: if L1, L, € M then
also L, € M, for any indicator function x (x), not just those corresponding to laminate geometries.

Remark 2.5. If indeed G(L1,Ly) and GE(L1, L) differ for some # and some L >0 and L, >0,
the next questions become: can one identify the minimum value 7 of n for which they differ for
some L; and L, and given n > 1 can one identify the set of pairs (L1, Ly) for which they differ, or
for which G¢(L1, L) and G}(Ll, L,) differ for fixed f? More generally, if one has a composite with

k phases, what is the smallest value of n for which G(L1, Lo, . .., L) and GE(Ly, Ly, ..., L) differ, or
for which G(K1, Ky, . .., Ky) and GL(Ky, Ko, . . ., Ky) differ, where the K; are defined analogously to
(2.6)? A variant of an example of Sverék [27] shows that G(K1, Ky, . . ., Ky) and GE(Ky, Ko, . . ., K7)
differ when n = 3 (see section 31.9 of [7]).

Remark 2.6. In three spatial dimensions, it seems quite likely that there are two-phase
geometries such that G(L1, L) and GE(Ly, Ly) differ. To obtain a candidate example, one considers
the conductivity equations in the presence of a small magnetic field h = (111, 2, h3). In a two-phase
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medium where phase 1 is isotropic while phase 2 is void, these take the form

0 —hs  hy
i0=x00p e, V.j=0, e=eg+VV, p=pl+R7|n 0 |, @13
—hy I 0

where RH is the Hall coefficient of phase 1, and p is its resistivity tensor. Assuming that the
microstructure is isotropic or has cubic symmetry, the effective resistivity tensor p, = o1 (if it
exists) to first order in h takes the form

0 —h3 h
pe=pd+RI h3 0 —n . (2.14)
—h2 hl 0

Numerical results [28,29] and corresponding physical experiments [30] show that in certain
microstructures of interlinked tori, arranged to have cubic symmetry, R and RH can have
opposite signs. While it was commonly believed that the sign of Hall coefficient corresponds
to the sign of the charge carrier, these composites provide a counterexample as they show the
macroscopic Hall coefficient can be opposite in sign to the Hall coefficients of the constituent
materials, assuming their Hall coefficients are zero or share a common sign. The argument that
the Hall coefficient corresponds to the sign of the charge carrier assumes that the electrons, or
holes, travel in straight lines, which of course is not the case in these composite materials. The
microstructures were motivated by a three-phase example [31] having cubic symmetry, where it
was rigorously shown that the Hall coefficients R{I , RIZ'I and Rg of all three isotropic phases can be
non-negative, while at the same time R is negative. One can explain this [29,31] in terms of the
‘matrix valued’ electric field E(x) whose three column vectors e (x), ex2(x), and e3(x) each solve the
conductivity equations, with zero magnetic field (i.e. the same x (x) and p = pI). Assuming (E) =1,
a perturbation argument [31,32] shows that the sign change of the Hall coefficient is related to the
fact that the trace of the cofactor matrix of E(x) changes sign, at least in certain regions in the
unit cell of periodicity. On the other hand, in any multiple rank laminates (with (E) =I) Briane
and Nesi show that the determinant of E(x) remains positive [33], whereas it does take negative
values in certain regions in the interlinked tori geometries [34]. While they show that the trace of
the cofactor matrix of E(x) can change sign in three-phase multiple rank laminates, it is an open
question as to whether it can change sign in two-phase multiple rank laminates. If it cannot, then
the path is clear to establishing that there are three-dimensional two-phase geometries such that
G(L1,Lp) and GE(Ly, Ly) differ. We add that while in (2.13) the conductivity tensor o (x) = x x)p~1
is not symmetric, one can perturb the problem slightly so that phase 2 is slightly conducting,
and then, using ideas of Cherkaev & Gibiansky [35], make a transformation to an equivalent
problem where the tensor entering the constitutive law is real, symmetric and positive definite
(see [36] and section 12.11 of [7]). Also one can introduce a periodic vector potential v for j — (j)
in (2.13) so that j — (j) is expressed in terms of the antisymmetric part of Vv using the completely
antisymmetric Levi—Civita tensor giving j — (j) = V x v, while on the other hand the Levi—Civita

tensor applied to VV gives an antisymmetric field that has zero divergence. Then the equations
can be manipulated into the same form as (2.8)-(2.11) with real a](kg) = a](.ek).

(a) Equivalence between problems (2.1) and (2.2)

The connection between problems (2.1) and (2.2) is implicit in existing results. To see this, we first
consider a problem associated with, and in fact equivalent to, problem (2.2). This is to characterize
the G-closure associated with the equations

(i 8) =K(x) (E(g")> K0 =[x (K1 + (1 - x(x)Kz], (215

S 5 S i s
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in which J(x) and E(x) satisfy the same constraints as in problem 2.2, K; and Kj are positive
definite and given by (2.6), the indicator function x(x) is again given by (2.10), but not subject to
the constraint that (x) =f, 6 is a constant scalar, and s(x) is an arbitrary scalar valued function
having the same periodicity as x (x). The effective tensor K is defined by the linear relation

M\ _ (E)
(9)-x. (%) -

Now when 6 =0 (2.15) when solved for J(x) is exactly the same as (2.8). This implies that K,

takes the form
(L. V.
K. = (VI . ) . (2.17)

where L, is the exactly the same effective tensor associated with problem 2.2, defined by (2.12).
Furthermore, if we assume that L; — L is non-singular (by, if necessary, perturbing the problem)
then we can find constant fields J(x) = J; and E(x) = Eg that solve (2.15), and thus obtain formulae
for V, and c,. This is a standard technique in the theory of composites (see, for example, ch. 5 and
in particular section 5.4 in [7] and references therein). Specifically, (2.15) and (2.16) imply

(2.18)

Jo=L1Eo + V10 =LsEy + V20 =L.Ep + V.0,
and (8) =[fVi+ 1 —f)Va]"Eg + [fe1 + (1 — f)e2]6 = V. Eg +c.0,

and these have the solutions

Eo=(L1 — L) '(V2 = V1)§, V,=Vi+ (L1 — L)L — L) (Vo — V), 21
and Co=for + (1 =fea + [FV1 + (1 = )Vy = VT (Ly — Ly) " L(Va — V). '

So ¢, and V,, are determined entirely in terms of Ly, f, and the elements of K; and K. Conversely,
if we know K, then from (2.17) we know Ly, V, and ¢, and the last equation in (2.19) allows us
to determine f. Thus solving problem 2.2 is equivalent to solving this problem.

One is often concerned with the quadratic form associated with K, that sometimes may
correspond to the energy stored or dissipated in the material. For constant fields Eg and 6 (with
Eg not restricted to be given by (2.19)) standard variational principles [37] show that

Eg Ep\ . Ep + Vu Ep + Vu
el

If we are interested in the lowest value of this over all K, € G(Ky, K3), normalized with say 6 =1,
and use an idea of Kohn [38], we get

inf Eo K, Eo
K,eG(K Ko) \ 1 1

_ infinf<(E0 “; V“) XKy + (1 — x(x)Kz] (EO J; V“>>

X u
= inf <11X1f (EO “; V“) XKy + (1 — x(x)Kz] (EO J; V“>>
. . Eyp + Vu Eg + Vu
(17
= inf(W(Eo + Vu)), 2.21)

where W(F) is given by (2.2) and (2.3). So we arrive back at the quasi-convexification of W(F) as
in problem 2.1, with m = n. If x is restricted to multiple rank laminate geometries we arrive back
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at the rank-one convexification of W(F) (see [39] and section 31.6 of [7]). So problem 2.1 is solved
according to whether or not

. Eg Ep . Ep Eg
inf -K = inf -K . 2.22
K.eG(K; Ks) ( 1 > : ( 1 ) K. €G- (K1 K>) < 1) T\ (2-22)

To have equality it is sufficient, but not necessary, to have G(K1,K) = GL(Kl, K»).

On the other hand, we know the sets G(L1, L) and Gf(L1, L2) have sufficient convexity (as
guaranteed by their stability under lamination) to be completely characterized by their “W-
transforms’. These generalize the idea of the Legendre transform for characterizing convex sets.
First note that a linear operator A on S, has elements Ajj, such that if the matrix C € S, has
elements Cj, then AC has elements

2 n
{ACY; =D AjjkeCre. (2.23)
k=1 ¢=1
Introducing the inner product
2 n
A:B=) > AjjeBije, (224)
ik=1j,0=1

between two linear operators A and B on S;;, the W-transform of G(L1, Ly) is

; . 71
W(N,N,)= L*Eclv'l(’l[i,Lz){N L+ N L7, (2.25)
where N and N, range over all real, positive semidefinite, and symmetric operators such that
NN, =N N=0. When N; =0and N is not restricted to be positive semidefinite, this is just the
standard Legendre transform. That G(L1, L) may be characterized in this way is suggested by
results of Cherkaev & Gibiansky [40,41] for particular examples and proved, in general, in [42]
(also [43] and section 30.3 of [7], and references therein). Writing

h n

N=>E®E, Ni=)Y L&l (2.26)
k=1 k=h+1

where some of the Ej or J; could be zero and, without loss of generality, assuming

E.-E/ =0, J.-J,=0, J.-E=0, forallk#¢, (2.27)
we obtain
h n
N:L+ N L =) B LB+ Y T L' (2.28)
k=1 k=h+1

Each of the terms in the first sum can be expressed in variational form, similar to (2.20),
Ei - LiEy = ilrllkf([Ek + Vug] - LO[Ex + Vug]), (2.29)
while the remaining terms in the second sum can be expressed in the dual variational form,
Ji o L T = inf(g + RVl - (LT i + RuVvl)
=inf([RJ + Vvil - [RILOORT] TR Ji + Vvil), (2.30)

where the infimum is over all periodic functions v, and

R, = (2 _01) (2.31)
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is the matrix for a 90° rotation. Let us introduce a constant superfield E, and supertensors L; and
L, given by

E; L ... 0 0 0
E; 0 ... L 0 0
E, = , L= J 2.32
R ) =710 0 [RLRT]! 0 (2.32)
RTJ, 0 ... 0 0 . [RLR]]!
Then (2.29) and (2.30) imply
(N, N) = inf(min{(E, + Vu) - Li(E, + Vu)}), (2.33)
u =1,
in which the infimum is over all periodic potentials
u
u=| " . (2.34)
Vi1
Vn

Thus finding G(L1, L) is reduced to a set of two-well quasi-convexification problems, each
indexed by the value of h=0,1,...,n and with m= n2. The problem of finding Gg(L1, L) can
be handled in a similar way [42]. Instead of (2.25) one considers

W(N,N,,c)=inf inf {N:L,+N, :L! , 235
(N,N_,0) lf} L*Eclfr(thLz){ « +N1L:L7 +cf) (2.35)

where the constant c acts as a Lagrange multiplier for the volume fraction f = (x). One easily sees
that this again reduces to a two-well quasi-convexification problem.

3. Some open problems related to the effective conductivity as a function of the
component conductivities

The lamination closure and the Gf-closure coincide when the block entries of L1 and L, are all
proportional to the 2 x 2 identity matrix I,

a](k“ = g],("‘f)l, i=1,2. (3.1)

To see this, we start by following Straley [44] and Milgrom & Shtrikman [45] (see also ch. 6 in [7]
and references therein) and introduce a non-singular matrix W having block entries proportional
tol,

wIDp 121 . ]
w1 w1 . @]
w=| . . , , . (3.2)
WL DT g
Now we rewrite (2.8) in the form
W) = | x() WILiW +(1 — x(x)) WIL,W | WlE(x). (3.3)
—— N — —— | ———

V() L L E'(x)
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By choosing W=L, 1 2Q with QTQ =1 we get L), =1, and then Q can be chosen so that L} =

QTL; 1 2L1 L, 1 2Q is diagonal, of the form

oW1 0 ... 0
/ 0 o@1 ... 0
Li=] . . . . (3.4)
0 0 ... oL

Thus we have reduced the problem down to a set of uncoupled conductivity problems and the
associated effective tensor L, = WL, W is given by

0. (cM) 0 ... 0
/ 0 o.(0®) ... 0
L,= . . . : , (3.5)
0 0 e Ox(c™)

where 0 ,(0) is the effective conductivity tensor associated with the equations
j)=[x®o + 1 - x(x)]e(x), V-j=0, e=e+VV, (3.6)
in which V(x) is a periodic potential, and

(j)=04(0)(e) (3.7)

defines the function o«(c). Allowing for complex values of o, the properties of this function
have been studied in [46-48]. We remark that complex values of o and hence o, or, equivalently,
complex values of the dielectric constants of the phases and hence the effective dielectric constant
€, have a physical significance for electromagnetic waves propagating through the structure when
the wavelengths and attenuation lengths of the waves in each phase are much larger than the
microstructure. This is called the quasi-static regime. In particular, Im €, is related to the energy
absorption in the composite, and hence is positive semidefinite when the dielectric constants of
the phases are non-negative. Reflecting this, the function ¢ (o) satisfies the Nevanlinna-Herglotz
type property

Imoy(0c)>0 when Imo > 0. 3.8)

Additionally, the function is analytic in o except along the negative real o-axis, satisfies the
constraints that

o (1)=1,

do (o)
d

=fI, 04(0)>0 when o isreal and positive, 3.9
o=1

and, in two dimensions, the Keller—-Dykhne-Mendelson relationship [49-51]
1
o (—) —R.[0.(0)] 'R, (3.10)
o

where R, with transpose R is the matrix for a 90° rotation given by (2.31). Conversely, any
function satisfying these properties can be approximated arbitrarily well by a rational function
that corresponds to the effective conductivity function ai(o) of a hierarchical laminate geometry
[52] (see also Section 18.5 in [7]). Roughly speaking, given this rational function one can retrieve
information about the last two layerings in the corresponding laminate by either setting o =0 or
o = 00. One strips this last layering away, and accordingly modifies the associated conductivity
function. Then one makes the opposite choice 0 =oco or o =0, respectively, and proceeds by
induction, until one is left with purely phase 1 or purely phase 2. This establishes that the
lamination closure and the Gf—closure coincide when the block entries of L1 and L, are all
proportional to the 2 x 2 identity matrix I. Explicit expressions for the Gs-closure were given in
the case n =1 by Lurie & Cherkaev [21] and Murat & Tartar [22] (extended to the three dimensions
in [22,53]), in the case n =2 by Cherkaev & Gibiansky [40], and for general 1, using the analytic
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properties of o.(0), by Clark & Milton [54]. It is an open question as to whether the G¢-closure
for general  can be obtained via the translation method. One can speculate that there should be
some sort of inductive procedure using the translation method, but it is difficult to see how to
formulate this.

In three dimensions, one would like to address the analogous question, and focusing on
isotropic composites this becomes:

Problem 3.1. For three-dimensional isotropic composites, each having an effective conductivity
oxI and being built from two isotropic materials having conductivities oI and I, can one
characterize all possible conductivity functions oy(c)?

The conductivity function o (o) = o4 (0)I still satisfies (3.8) and (3.9), but in place of (3.10) it
has been established [46,55] that

d20.(0) 2f(1—f)
? —_ _#, (3.11)
o=1
and, additionally [48,56-59], that the inequality
— <l> L @) +ool/o) (3.12)
o o+1

holds for all real positive o (and is satisfied as an equality for multicoated sphere assemblages).
The question is whether there exist additional constraints satisfied by o4(0), and, if so, to identify
them. An associated problem is:

Problem 3.2. For three-dimensional isotropic composites of two isotropic phases, are all
possible conductivity functions oy (o) achievable by multiple rank laminate microstructures and,
if so, does it suffice to consider laminate microstructures where one laminates only in mutually
orthogonal directions?

We remark that it does not suffice (even in two dimensions) to consider laminate
microstructures where one laminates in mutually orthogonal directions if one considers
anisotropic composites of two isotropic phases since if o is complex the real and imaginary
parts of 6+(0) do not necessarily commute, while they do commute if one laminates in mutually
orthogonal directions.

These results motivate one to consider periodic composites of two anisotropic phases where
the conductivity tensor takes the form

o(x)=x(x)o1+[1—x()]o2, (8.13)

where the indicator function x(x) is given by (2.10) and o1 and o, are the 2 x 2 matrix-valued
conductivity tensors of the two phases. The associated effective conductivity tensor is found by
looking for current fields j(x) and electric fields e(x), with the same periodicity of the composite,
that solve

jx)=0(x)e(x), V-j=0, e=-VV(x). (3.14)

In these equations, V(x) is the electric potential, and the volume average, (e), of the electric field
e(x) is prescribed. The average current field (j) depends linearly on (e), and it is this linear relation,

(j)=0x(e) (3.15)

that determines the effective tensor o,.. We arrive at problem 3.3, again closely related to
problems (2.1) and (2.2):

Problem 3.3. For two-dimensional anisotropic composites of two anisotropic phases, are all
possible conductivity functions ¢ (01, 02) achievable by multiple rank laminate microstructures?

Some progress in characterizing the possible conductivity functions o (o1, 02) has been made
by finding suitable representations of the underlying operators so that they satisfy the required
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algebraic properties [60]. Once one has these representations one can, in principle, determine
not only ¢4(01,02) but also L.(L1,Ly) for all real positive definite L; and L, taking the block
matrix form (2.11). Thus if one could show a direct correspondence between the operator
representations for an arbitrary x(x) and the operator representations for multiple rank laminate
microstructures, one would have resolved problem 2.2, establishing that the Gy-closure equals its
lamination closure. Such a correspondence between operator representations was used in [61,62]
to establish that in two dimensions the effective conductivity function o (o) of any polycrystal
with conductivity of the form

o(x) =R(x)ooRT(x) and RxRT(x)=I, (3.16)

and o, given by (3.14) and (3.15), corresponds to the conductivity function of a laminate
microstructure.

A question of obvious importance is to identify those two-phase microstructures that absorb
as much electromagnetic energy as possible, no matter what the direction of the incident
radiation. In the quasi-static limit, where the wavelength of the radiation is much larger than
the size of the unit cell of periodicity, the electromagnetic equations decouple into separate
electric equations and magnetic equations involving complex fields and complex electrical
permittivities and complex magnetic permeabilities, respectively. Each decoupled equation is
equivalent to a conductivity equation, with complex conductivities. Four decades ago bounds
were derived on the effective complex electrical permittivity (or equivalently the complex
magnetic permeability, or complex conductivity) of isotropic composites of two isotropic phases,
mixed in fixed proportions [63,64]. The bounds confine the effective electrical permittivity to a
lens-shaped region of the complex plane bounded by two circular arcs. The problem becomes
one of identifying microstructures that have the maximum imaginary part of the effective
complex electrical permittivity. In two dimensions, these are assemblages of doubly coated discs
(corresponding to the transverse electrical permittivity of doubly coated cylinders) as they attain
the bounds [48]. In three dimensions, new bounds [65] show that assemblages of doubly coated
spheres provide one bounding circular arc. The previously known second bounding arc [63,64]
corresponds to conductivity functions oy(c) that have just one pole at a finite negative real
value of o. Originally just five microgeometries were identified that correspond to five points
on the circular arc [48]. Depending on the material moduli, these can have the maximum possible
absorption. Now an extra three additional multiple rank laminate geometries have been identified
with effective electrical permittivities lying on the arc, and which can have the maximum possible
absorption [65]. This leads to the following question:

Problem 3.4. Are there other geometries with isotropic effective permittivities that lie on the
arc?

There is also a close connection with finding isotropic geometries that attain bounds on the
complex effective bulk modulus [66], and which can provide the maximum possible absorption
under oscillatory hydrostatic loadings, and that attain bounds coupling the real effective moduli
of two conductivity type problems that may separately correspond to say, magnetic, thermal,
particle diffusion or fluid permeability problems [46,67]

Another question is the following one:

Problem 3.5. Can any of these discovered geometries, having maximum absorption, be
replaced by simpler ones?

In particular, can the assemblages of doubly coated discs or coated spheres be replaced by
periodic ones with only one inclusion per unit cell? In the case of assemblages of coated spheres
(isotropic composites having the minimum and maximum conductivities for given real positive
conductivities of the two phases, mixed in given proportions) equivalent periodic geometries
having only one inclusion per unit cell are known [68-70].
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4. Bounds on the elastic moduli of an elastic material with voids, and the
ultimate auxetic material in this class of materials

Characterizing the possible elasticity tensors of anisotropic composites is a daunting task.
Elasticity tensors have 18 invariants in three-dimensional space and five invariants in two
dimensions, and correspondingly the set of all possible elasticity tensors built from two isotropic
phases in prescribed volume fractions is represented by a set in an 18 or 5, dimensional space,
or 21 and 9 if we include the bulk and shear moduli of both phases. The difficulty of this is
indicated by the observation that a distorted hypercube in 18 dimensions has 2!8 & 26 000 vertices
and 18 numbers are needed to specify the coordinates of each, bringing the total to about 4.7
million numbers, just to specify an 18-dimensional distorted cube. The G-closure has only been
completely characterized, and consists of all positive definite elasticity tensors, in the limit as one
phase becomes arbitrarily compliant while the other phase becomes arbitrarily stiff [23]. A lot of
progress has been made in the case where one phase is void, while the other is isotropic with fixed
positive elastic moduli, [43] (or when a rigid material replaces the void phase [71]). Still, there are
parts of the G-closure that have not been mapped. We arrive at

Problem 4.1. Can one complete the characterization of the G-closure for a void (or rigid) phase
mixed with an isotropic elastic phase?

It may be the case that the necessary insight for progressing further, at least in the case that one
phase is void, comes from a consideration of the possible pairs of the effective bulk modulus, «.,
and effective shear modulus p., of isotropic composites of an elastic material, having bulk and
shear moduli ¥ and p, and void. One has the elementary bounds [37]:

O0<ks<k, 0=<ps=<pu. 4.1)

Naturally the void has minimum effective bulk and shear moduli, both being zero, and
the pure elastic phase has maximum effective bulk and shear moduli. Also one can construct
composites with (k, u«) arbitrarily close to (x4, 0) for all positive ky <, and arbitrarily close
to (k, ux) for all positive ky < u [43,72,73]. On the other hand, the question remains as to what
microstructures have high effective shear modulus and low effective bulk modulus. We are led to

Problem 4.2. The bounds (4.1) imply us — cky < p forall ¢ > 0. Can this inequality be improved,
in two and/or three dimensions, for a range of ¢ > 0? Alternatively, can one construct composites
of an elastic phase with void with (x, 1«) arbitrarily close to (0, 1t)?

A related question is

Problem 4.3. Identify, for given c¢>0, in two and/or three dimensions, isotropic
microstructures of an elastic phase with void that have the largest possible value of p. — cky
(or a sequence of isotropic microstructures with moduli such that u, — ck, converges to its largest
possible value).

When c is extremely large, this amounts to identifying isotropic microstructures that have the
largest possible value of 11, subject to the constraint that «, is arbitrarily close to zero. This is what
one may call the ultimate auxetic material within the class of materials built from an isotropic
elastic phase with voids. Auxetic composites have a negative Poisson’s ratio, so that they fatten
when they are pulled, corresponding to a ratio «/u« < 2/3. When one seeks materials built from
an isotropic elastic phase with void, that have Poisson’s ratios close to the limiting value of —1
and thus with «,/u. close to zero, it is generally the case that both «, and p, are very small, not
just k. This is a feature of auxetic composites built from rotating elements [74-76] and is less than
ideal as one wants to retain shear stiffness.

In two dimensions, one can construct a candidate for the title of the ultimate auxetic material
as follows. One first takes the elastic phase and slices it into slabs of uniform thickness with the
interfaces perpendicular to the xj-axis. The slabs are separated by microstructured layers, very
thin compared to the slab thickness. The microstructured layers are such that their only easy
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mode of deformation is compression of the layer in the direction x7. The thin microstructured
layers may, for example, contain the third rank laminate material with a herringbone structure
depicted in fig. 13 of [75] or in the second subfigure of fig. 8 in [43]. The macroscopic constitutive
relation of the sliced material separated by these microstructured layers, is

o11 C1111 €122 0 €11
on | =|c122 cox 0 en |, (4.2)
o12 0 0 21012/ \e12

where the ojj are the Cartesian components of the average stress, while the €jj are the Cartesian
components of the average strain. The effective elastic moduli are
rqn

C1111 =&, Cl122=CE, €200~ =E, copu, (4.3)
K+ 1

where ¢ is a small parameter, reflecting the easyness of the easy mode of compression in the
x1-direction, and the appearance of E =4« u/(k + n) reflects the fact that the effective Young’s
modulus for compression in the x;-direction is approximately the same as the pure elastic phase,
namely E. We now treat this material as a crystal and construct from it the polycrystal with
the largest possible effective shear modulus p. and smallest possible effective bulk modulus .
According to the bounds and laminate constructions in [77], these are

2
C1111€2222 — Cp1p

Ky = ,
* 7 c1111 + c2220 — 2c1012
c111162022 — €5 “4)
and L = 1212 '
201212 — 202000 + 2,/ coom[c1111 + €2200 — 201212 + (€1111€2222 — €25q5)/C1212]
Substituting (4.3) in these, and taking the limit ¢ — 0 gives
1 5 1
Ky = O, —_ =4 —. 4.5
- me  Ap Ak *3)

The formula for i, has the required invariance property that if 1/ and —1/« are shifted by the
same constant, then 1/, is shifted by this constant too [78,79]. Owing to this invariance we may
assume, without loss of generality, that the initial elastic phase is incompressible (1/« = 0) so that
(4.5) implies p, =4 /5. The question is then:

Problem 4.4. Is 4u/5 the largest possible value of u, for a two-dimensional elastic material
with voids, given that x, =1/xk =07

From a practical standpoint the answer to this question is moot, as not only are such multiple
rank laminates impossible to build and subject to buckling, but also the linear elastic moduli are
largely irrelevant under finite but small deformations as the microstructured layers will undergo
large deformations relative to their thickness. Ideally one wants to address

Problem 4.5. Can one obtain bounds that correlate the possible compressive and shear
deformations of composites when these deformations are not infinitesimal?

Returning back to the theoretical problem of finding the ultimate auxetic material, one could
use in principle a similar construction in three dimensions. However the barrier is that the
polycrystals having the largest u, with «,, = 0 have not yet been identified. Thus one arrives at

Problem 4.6. What are the possible (ky, u«)-pairs for three-dimensional isotropic elastic
polycrystals (composites built from a single crystal in various orientations)? The bounds of Hill
[37] are optimal for «, [80], but improved bounds for p. or (k., us) pairs are lacking. Hashin &
Shtrikman obtained improved bounds on . [81], but only under additional assumptions about
crystal orientations, that are not generally valid.
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For conductivity the analogous problem has been solved [56,82,83], but the G-closure
containing all possible effective conductivity tensors of anisotropic polycrystals has not yet been
fully mapped.

More generally, moving back to isotropic composites of two isotropic elastic phases, one
possibly rigid or void, the tightest known bounds on the possible (ky, u«)-pairs are those of
Cherkaev & Gibiansky [41], in two dimensions, and those of Berryman & Milton [84], in three
dimensions. Its seems highly likely that these bounds are not optimal. Gal Shmuel and myself
are progressing on a non-trivial route for improving the three-dimensional bounds using the
‘translation method’ approach (see ch. 24 and 25 of [7] and references therein) used by Cherkaev
and Gibiansky, but even so these improved bounds are unlikely to be optimal. Thus we come to

Problem 4.7. Can one obtain improved bounds on the elastic moduli pairs of isotropic
composites of two isotropic elastic phases, and ultimately find the optimal ones?

Numerical explorations of the possible (k, («)-pairs have been made, for example in [73,85].
From a practical viewpoint, such numerical explorations are probably more useful than the
theoretical developments. On the other hand, it is difficult to numerically explore multiscale
structures that may be necessary to obtain desired extreme responses, such as in resolving
Problem 4.4.

5. Some future directions for wave and other equations

An impressive body of research addresses the problem of bounding the response of bodies to
electromagnetic or other waves, and addressing limitations to how one can manipulate these
waves. A few examples include the results in [86-90] and references therein. There are many
problems to be addressed and new approaches are needed to improve existing bounds, or to
reveal novel ones. A framework suited to most linear equations in physics [91-94], including
wave and diffusion equations, is to express them in the form

J6)=LXEX) —s(x), JeJ, Ee€g, (5.1)

where the first equation is the constitutive law, with the tensor L(x) representing the local material
properties, s(x) is the source term, while £ and 7 are orthogonal spaces embodying the differential
constraints on the fields. Here x represents a point in space, or space time with x representing
time. Scattering problems can also be expressed in this form [95] by incorporating the fields ‘at
infinity” appropriately. The analogue for quadratic forms of quasi-convexity is then Q*-convexity:
a quadratic form f(P) is Q*-convex if f(E) >0 for all E € £. Q*-convex functions allow one to
place bounds on the spectrum of the operator relevant to the problem [96,97]. The subject of
Q*-convexity remains to be explored, and simple examples of Q*-convex functions need to be
found for the various equations, beyond quasi-convex functions and those discovered for the
Schrédinger equation (sections 13.6 and 13.7 of [8]). For wave and diffusion equations, it seems
likely that they will provide a powerful tool for addressing other bounding problems, and this
provides an avenue for future work. In connection with this, variational principles have been
developed for acoustic, elastic, and electromagnetic equations at constant frequency in lossy
materials [98,99]. These are the direct analogues of those of Cherkaev & Gibiansky [35] that
have proved very powerful, in conjunction with the use of quasi-convex functions, for obtaining
bounds on the quasi-static response of composites: examples include bounds on effective complex
electrical permittivities (section 22.6 of [7,65]) and bounds on complex bulk moduli [66]. So
one expects there should be useful bounds resulting from these variational principles for wave
equations in lossy media.

Recently it has been discovered that associated with exact relations for composites, as reviewed
in ch. 17 of [7] and the book [6], are exact relations satisfied by the infinite body Green’s function
in certain inhomogeneous media, and boundary field equalities [100]. Boundary field equalities
are exact identities satisfied by the fields at the boundary of the body, given that the fields in the
interior of the body satisfy some constraints that do not uniquely determine the interior fields
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in terms of their boundary values. A classical example is that a field with zero divergence has
zero net flux through the boundary. The theory of these exact relations for Green’s function and
boundary field equalities extends to wave and diffusion equations [100], or more generally to
equations expressible in the form (5.1), but examples, and in particular useful examples, need to
be generated.

Another topic to be explored is that of neutral inclusions for wave equations. For static and
quasi-static problems, there are many studies of neutral inclusions (see, for example, section 7.11
of [7], the review [101], and references therein). These are inclusions that one can insert in a
homogeneous medium without disturbing the surrounding fields, provided these fields fall into
an appropriate class. Thus, for example, one may obtain neutrality for a single applied uniform
fields, for any uniform field, or for any applied field satisfying the underlying equations. For
conductivity, or equivalently for the dielectric problem, coated ellipsoids can be neutral and
invisible to any uniform field [102]. In two dimensions, there are other shaped inclusions that
can be neutral to a uniform field in a specified direction [103]. Coated dielectric cylinders, where
the core, coating, and surrounding medium have dielectric constants of 1, —1 + i, and 1 become
neutral and hence invisible to large classes of fields in the limit § — 0 [104], and can cloak sources
and objects [105,106]. Transformations allow one to obtain other inclusions that are neutral and
thus invisible to any exterior field, and also cloak objects [107]. The transformation approach also
yields neutral inclusions that are invisible to constant frequency electromagnetic waves [108].
Even appropriately coated spheres can be invisible in the far field when the incident is planar
[109]. Quite simple inclusions have been found that are neutral and hence invisible to a single
incident planar electromagnetic wave [110,111]. One, possibly difficult, research direction, is to
explore whether there are other simple geometries, not obtained from a transformation approach,
that are invisible to one or more incident plane waves.

Most analysis of wave equations in lossy media has been done at constant frequency, which
makes sense as this avoids convolutions in time. However, recent work on bounds in the time
domain [112,113] show that it is possible for the temporal response of a two-phase mixture to be
untangled at specific times when the applied field has an appropriately tailored dependence on
time. This shows it may be productive to depart from focusing on bounds at constant frequency,
and to consider bounding responses as a function of time. Beyond the analytic approach used in
these papers, the variational approach of Carini & Mattei [114], may be helpful if one can modify
it to obtain bounds at each instant in time, rather than to bounding the response over at interval
of time.
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