A Compiler Infrastructure for Accelerator Generators

Rachit Nigam*
Cornell University
USA

Zhijing Li
Cornell University
USA

ABSTRACT

We present Calyx, a new intermediate language (IL) for compil-
ing high-level programs into hardware designs. Calyx combines
a hardware-like structural language with a software-like control
flow representation with loops and conditionals. This split repre-
sentation enables a new class of hardware-focused optimizations
that require both structural and control flow information which are
crucial for high-level programming models for hardware design.
The Calyx compiler lowers control flow constructs using finite-state
machines and generates synthesizable hardware descriptions.

We have implemented Calyx in an optimizing compiler that
translates high-level programs to hardware. We demonstrate Calyx
using two DSL-to-RTL compilers, a systolic array generator and
one for a recent imperative accelerator language, and compare them
to equivalent designs generated using high-level synthesis (HLS).
The systolic arrays are 4.6X faster and 1.11X larger on average
than HLS implementations, and the HLS-like imperative language
compiler is within a few factors of a highly optimized commercial
HLS toolchain. We also describe three optimizations implemented
in the Calyx compiler.

CCS CONCEPTS

« Hardware — Hardware description languages and compi-
lation.

KEYWORDS

Intermediate Language, Accelerator Design

ACM Reference Format:

Rachit Nigam, Samuel Thomas, Zhijing Li, and Adrian Sampson. 2021. A
Compiler Infrastructure for Accelerator Generators. In Proceedings of the
26th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS ’21), April 19-23, 2021, Virtual,
USA. ACM, New York, NY, USA, 14 pages. https://doi.org/10.1145/3445814.
3446712

“Equally contributing authors.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ASPLOS 21, April 19-23, 2021, Virtual, USA

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8317-2/21/04...$15.00
https://doi.org/10.1145/3445814.3446712

804

Samuel Thomas®
Cornell University
USA

Adrian Sampson
Cornell University
USA

1 INTRODUCTION

Hardware design is a language problem. While custom hardware
accelerators are economically justified in a post Moore’s law era, we
have yet to see widespread adoption. Even though reconfigurable
architectures, such as field programmable gate arrays (FPGAs),
make it easy to deploy accelerators, the tooling and languages
inhibit ubiquitous use. Hardware description languages (HDLs)
operate at the level of gates, wires, and clock cycles; while this
level of abstraction is useful for designing high-end processors, it
is inappropriate for the rapid design of computational accelerators.

To liberate hardware design from these low-level abstractions,
researchers have proposed several compilers for high-level specifi-
cation languages. The traditional approach is high-level synthesis
(HLS): to compile legacy software languages such as C, C++, or
OpenCL to HDLs [3, 14, 24, 44, 45]. However, such languages are
a poor fit for generating hardware—they reflect pointer-based, se-
quential, von Neumann models of computation. The hardware they
seek to generate is pervasively parallel, without a unified address
space, and free from program counters.

The cavernous semantic gap between C++ and HDLs motivates a
more domain-specific approach. A new wave of hardware languages
and compilers focus on a specific application category [30, 40], on a
specific architecture style [8], or on lifting hardware-level concerns
into a restricted imperative language [18, 25]. These narrower lan-
guages sacrifice the familiarity and backwards compatibility of tra-
ditional HLS to simplify compilation, generate better hardware, and
avoid the uncanny valley of inconsistent software-like semantics.
They can focus on providing high-level abstractions that concisely
capture the parallelism of the application domain.

DSL-to-hardware compilers, however, remain substantial feats
of engineering. The compiler developer needs not only to conceive
of a high-level architecture; they must also design a data path and
a control path to implement the execution strategy and perform ar-
chitectural optimizations [8, 18]. Each such compiler re-engineers a
new intermediate language (IL) to encode the high-level semantics
of the input language while exposing architectural information to
perform optimizations. A shared IL, along with a compiler infras-
tructure that implements useful optimizations and analyses, will
let compiler engineers design new hardware DSLs and quickly get
competitive hardware designs.

We propose Calyx, a new intermediate language for compiling
DSLs to hardware. Calyx combines a software-like imperative sub-
language, which explicitly represents the control flow of a design,
with a structural language, which instantiates hardware modules
and describes connections between them. Frontend compilers can
specify architectural details using the structural sub-language and

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3445814.3446712
https://doi.org/10.1145/3445814.3446712
https://doi.org/10.1145/3445814.3446712

ASPLOS 21, April 19-23, 2021, Virtual, USA

Data path
specification

group addo {

seq { m,y
ml.addr = i.out ar |
m2.addr = i.out P addo; add1
ad.1l = ml.out ¥ L
ad.r = m2.out add2;
incr_idx; }}

ro.in = a0.out

}
group addl { .. }

group add2 {

Execution
Schedule

while cmp.out with cond {

Optimization
Change

group add2 {

a2.1l = r0.out .1 = ro.out;
a2.r = rl.out .r = rl.out;
r2.in = a2.out r2.in = .out;

}

}

Rachit Nigam, Samuel Thomas, Zhijing Li, and Adrian Sampson

¥

(a) Calyx program. Groups incr_idx and cond elided.

(b) Initial architecture (groups marked).

;
—{]

(c) Optimized architecture.

Lr |

Figure 1: Calyx describes the reduction tree using its split representation. The execution schedule makes the control flow
explicit while encapsulate connections between hardware modules. Done signals (Section 3.3) elided from group definitions.

rely on the high-level control language to encode a DSL’s semantics.
The Calyx compiler optimizes these programs, generates control
logic, and emits synthesizable RTL.

The contributions of this paper are:

e Calyx, an intermediate language for compiling DSLs to hard-
ware that uses a split representation combining a high-level
control flow language with a hardware-like structural lan-
guage.

e An open-source pass-based compiler for analyzing, optimiz-
ing, and lowering Calyx programs to synthesizable RTL.

o The implementation of two compilers that target Calyx: (1)
a PE-parametric systolic array generator that encodes the
data movement and computation schedule using Calyx’s
control language, and (2) Dahlia [25], a general-purpose
programming language for accelerator design which has a
preexisting backend targeting HLS toolchains.

o Three optimizations implemented within the Calyx compiler:
resource sharing, live-range-based register-sharing, and a
pass to infer cycle latencies.

2 OVERVIEW BY EXAMPLE

This section introduces Calyx by using it to implement a parallel
reduction tree. A reduction tree applies an operator to many inputs
to produce a single output. Figure 1b shows a small summation tree
on four inputs. The operators within a tree level run in parallel to
produce the inputs to the next level. Unlike hardware description
languages (HDLs) or high-level synthesis (HLS), Calyx programs
are meant to be generated by compiler frontends. We show that
with Calyx’s control language, compilers can encode the semantics
of high-level languages while producing programs amenable to
hardware optimization.

805

2.1 Reduction Tree in Calyx

Figure 1a shows a Calyx program fragment that implements a par-
allel reduction tree that computes (mo + m;) + (mz + m3). The
program uses groups to specify the data path (1). Groups encapsu-
late hardware connections that implement an action. For example,
the group addo uses the hardware adder a0 to compute the sum of
the first two inputs and save the result in a register ro. The assign-
ments used inside groups correspond to non-blocking assignments
in RTL languages—updates to the left hand side of an assignment
are immediately propagated to the right hand side. In this way, each
group encapsulates a data flow graph.

To compute the reduction, we need to schedule the execution of
the layers. We want to execute the layers sequentially and to run
the adders inside a tree layer in parallel. The Calyx program speci-
fies the reduction tree’s schedule using a separate control language
(2). The control language uses group names to activate hardware
connections. Unlike groups, control statements have no direct hard-
ware analog—instead, they resemble a small imperative program
with explicit parallelism. The schedule iterates over the memories
using a while statement and sequences the execution of the layers
using the seq operator. The par operator specifies that the adders
in the first layer will be executed in parallel. Finally, the loop body
uses the group incr_idx to increment the index into the memories.

Figure 1b shows the high-level architecture generated from the
Calyx program and marks the connections that correspond to the
groups. The figure elides the control circuitry generated to imple-
ment the schedule.

https://github.com/cucapra/calyx

A Compiler Infrastructure for Accelerator Generators

2.2 Optimizing Accelerator Designs

High-level specifications of accelerators encode a treasure trove of
control flow information that is lost when lowering to a register-
transfer level (RTL) language. Compilers for such programming
models need a stable intermediate language (IL) to capture and use
such information. However, RTL is ill-suited for this task.

RTL languages do not distinguish between control flow and
data flow because they implement both using the same structural
constructs. For example, in order to sequence two operations, an
RTL program must implement a state machine to track the current
state. Such a state machine is implemented using registers and
adders which are indistinguishable from registers and adders used
to implement the program’s data flow. This conflation means that
a compiler cannot automatically extract and transform the control
flow of an arbitrary RTL program.

Consider an optimization that reuses existing circuitry to per-
form temporally disjoint computations. For example, our reduction
tree uses adders a0 and a2 in two different stages and never over-
laps their execution. Therefore, it would be safe to transform the
program to share a single adder for both the stages. Implementing
this optimization in RTL, however, is difficult because the structural
implementation of a state machine obscures the program’s control
flow. To determine that the two adders run at different times, an
analysis would need to reverse-engineer the execution schedule
from the state machine implementation. Furthermore, transforming
an RTL program would require pervasive changes. Figure 1c shows
the optimized architecture. The transformation requires carefully
rewiring the input and output signals for a0 through multiplexers.

In contrast, a Calyx program makes the control flow explicit
and enables straightforward transformation. Given the execution
schedule of our Calyx program, it is clear that the groups adde and
add2 do not execute simultaneously since they are scheduled using
the seq operator. Figure 1a @ shows the only change required to
implement this optimization. The Calyx program simply renames
the uses of a2 in group add2 with a6 and the compiler correctly
generates the additional multiplexers and control signals to share
the adder.

2.3 Structure and Control

Calyx is neither a software IL nor a hardware IL. Software ILs,
such as LLVM [22], focus on providing a uniform representation of
the control flow and data flow of a program. They do not explic-
itly represent structural facts, such as the mapping of logical adds
onto physical adders. On the other hand, hardware ILs focus on a
purely structural representation with explicit use of gates, wires,
and clocks while conflating data flow with control signals. By mar-
rying structure and control, Calyx provides access to both structural
and control flow facts to enable a new class of optimizations that
cannot be captured by either style of ILs.

3 THE CALYX INTERMEDIATE LANGUAGE

The Calyx infrastructure’s focal point is its program representation.
The Calyx IL aims to represent domain-specific accelerator designs
throughout the entire lifetime of a hardware generation pipeline:
generation from a language frontend, optimization and lowering,

806

ASPLOS 21, April 19-23, 2021, Virtual, USA

and implementation in a hardware description language. This sec-
tion describes the Calyx IL; the following sections show how to
generate, lower and optimize the IL.

3.1 Components

Calyx programs consist of components which encapsulate hardware
structures and define an execution schedule to orchestrate their
behavior:

component name (inputs) -> (outputs) {

cells { ... }
wires { ... }
control { ... }

}

The body includes hardware-like structural listings of cells and
wires (Section 3.2) and software-like control code (Section 3.3). The
input and output ports form the interface to the component and
define their size in bits. For example, a component defining a 32-bit
integer adder uses these ports:

component adder(lhs: 32, rhs: 32) -> (sum: 32)

Ports in Calyx are untyped—they can hold any value of a given
width. Calyx leaves type-based reasoning to the language frontend.

3.2 Cells and Wires

Calyx programs explicitly instantiate components and define the
connections between them in a way that closely resembles RTL
languages. This low-level of detail gives frontends precise control
over fine-grained architectural choices when needed and lets Calyx
lower programs to synthesizable RTL.

The cells section instantiates components:

cells {
a_reg = std_reg(32); // 32-bit register
add = std_add(32); // 32-bit adder
}
This example instantiates a register and an adder that operate on 32-
bit values using the std_reg and std_add components. The wires
section defines assignments between the ports of components:
wires {
add.left = a_reg.out;
add.right = a_reg.out;
}
These assignments connect the out port of the register to the two
input ports of the adder. The connections are non-blocking: updates
to a_reg.out are immediately visible to add.left. This closely
resembles non-blocking assignments in RTL languages.
Wire assignments can specify more complex dataflow policies
by using guarded assignments:

add.left

= cmp.out ? a_reg.out;
add.left =

lcmp.out ? b_reg.out;

The guarded assignments to the left port of the add component
use the value of cmp.out to determine the assignment to activate.
Guards are built with ports and a simple language of boolean con-
nectives.

Like its RTL counterparts, Calyx requires that each port have a
unique driver—activating multiple assignments in the same cycle
results in undefined behavior. This requirement also differentiates
Calyx’s guarded assignments from Bluespec’s atomic rules [26].
While Bluespec resolves conflicting assignments by generating

ASPLOS 21, April 19-23, 2021, Virtual, USA

scheduling logic to dynamically abort them, Calyx does not. Being
an intermediate language, Calyx trades-off the convenient program-
ming abstraction for predictable compilation.

Guarded assignments in Calyx correspond exactly to assign-
ments in RTL languages. By themselves, they can encode arbitrary
hardware designs, but are less amenable to analysis and transforma-
tion. The next section describes Calyx’s two novel constructs that
simplify the specification of a program’s structural connections and
its execution schedule.

3.3 Groups and Control

Calyx uses groups to encapsulate assignments. Inside a group, as-
signments must obey the same constraints as RTL—unique drivers
for ports, no combinational loops, etc. However, multiple groups
can use the same port:

5

group assign_one { x_reg.in 1; }
25}

group assign_two { x_reg.in

Both groups unconditionally assign to the same port. However,
since the groups encapsulate the assignments, they are not active
by default and do not violate the unique driver requirement. In
contrast, RTL languages require programmers to reason about all
assignments to a port and weave in control signals to define a
unique driver.

The control program determines when groups run:

control { seq { assign_one; assign_two } }

The control block uses the seq (sequence) statement to specify that
assign_one executes first, followed by assign_two. Since the two
groups execute at different times, the two assignments to the port
x_reg.in do not conflict and Calyx can generate valid RTL.
While control statements like seq can pass the control flow of a
program to a group, they have no way to know when to return—
groups can encode arbitrary computations that don’t have an ob-
vious done condition. To signal when it has finished executing, a
group use a done signal:
group assign_one {
x_reg.in = 1;

assign_one[done] =

}

x_reg.done;

In the above group, we are writing a value to a stateful element
x_reg, and must wait for the element to signal that the write was
committed. The group uses the x_reg.done port to signal that the
group’s computations has finished.

Interface signals, such as a group’s done signal, are used by
Calyx to define a calling convention (Section 4.1). A control program
passes control flow to a group by setting a group’s go to 1 and
the group returns control by setting its done signal to 1. Similarly,
components use go and done interface signals to define a consistent
calling convention. Calyx’s interface is latency-insensitive; it does
not not reason about the number of cycles needed to execute a
computation. Section 4.4 shows how enriching Calyx programs
with latency information enables efficient compilation.

3.4 Control Statements

Calyx provides several primitives to encode the schedule of compo-
nents. We designed these primitives to capture high-level properties

807

Rachit Nigam, Samuel Thomas, Zhijing Li, and Adrian Sampson

such as branching and looping, freeing frontends from the need to
realize them in control circuitry.

enable. Naming a group inside a control statement passes control
to the group.

par. List of control statements that execute once in parallel.

par { group_a; seq { group_b; group_c; }; group_d; }

seq. List of control statements executed in order.

seq { group_a; par { group_b; group_c; }; group_d; }

if. Conditionally executes one of the branches. Specifies a port
to use as the 1-bit conditional value (port_name) and a group
(cond_group) to compute the value on the port.

if port_name with cond_group {
true_stmt

1} else {
false_stmt

}

while. The loop statement is similar to the conditional. It enables
cond_group and uses port_name as the conditional value. When the
value is high, it executes body_stmt and recomputes the conditional
using cond_group.

while port_name with cond_group {
body_stmt
}

3.5 Attributes

Calyx programs can use attributes to encode frontend and pass-
specific information such as the latency of a group. Attributes
are key-value pairs. For example, the following group defines an
attribute “latency” and associates the value 1 to it.

group foo<"latency"=1> { ... }

3.6 Synopsis

Components are the building blocks of Calyx programs. Each com-
ponent instantiates subcomponents (cells) and defines the connec-
tions between them (wires). The control program defines the execu-
tion schedule by enabling groups.

The design principle behind Calyx is thus: in general, frontends
generate small groups to perform simple actions, such as incre-
menting a register or comparing values, and use the control flow
program to schedule them. However, when frontends have domain-
specific knowledge, they can instantiate complex architectures and
encapsulate them using groups.

4 COMPILING CALYX TO HARDWARE

The Calyx compiler optimizes (Section 5) and lowers Calyx pro-
grams into synthesizable RTL. Compilation passes use interface
signals, which define a calling convention, to realize a component’s
execution schedule. The result is a Calyx program with a flat list
of guarded assignments and no control statements or groups. The
compiler can then directly translate this flattened form into RTL.
The primary compilation passes are:

o GoOINSERTION: Guards all assignments in a group with the
group’s go interface signal.

A Compiler Infrastructure for Accelerator Generators ASPLOS 21, April 19-23, 2021, Virtual, USA

group one { group one { group one { .. } wires {
Xx.in = 1; x.in = one[go] ? 1; group two { .. } x.in = fsm.out == 0 ? 1;
one[done] = x.done; one[done] = x.done; group seq0 { x.in = fsm.out == 1 ? 2;
}
group two { group two { one[go] = fsm.out == 0 ? 1; fsm.in =
x.in = 2; x.in = two[go] ? 2; two[go] = fsm.out == 1 ? 1; fsm.out == 0 & x.done ? 1;
two[done] = x.done; two[done] = x.done; fsm.in =
} } fsm.in = fsm.out == 1 & x.done ? 1;
fsm.out == 0 & one[done] ? 1;
fsm.in =
fsm.out == 1 & two[done] ? 2; done = fsm.out == 2 ? 1;
control { control { seq0[done] fsm.out == 2 ? 1; }
seq { one; two } seq { one; two } }
} } control { seqo } control { }
(a) Original program (b) GolInsertion (c) CompileControl (d) RemoveGroups

Figure 2: Calyx realizes the execution schedule by encoding it with structural components. After the CoMPILECONTROL pass
(c), the fsm register encodes the current state for the seq statement.

o ComPILECONTROL: Generates latency-insensitive finite state
machines to structurally realize control operators.

o REMOVEGROUPS: Inlines uses of interface signals and elimi-
nates all groups.

e Lower: Translates control-free Calyx to RTL.

e SENSITIVE: Opportunistically compiles control statements
into groups using latency-sensitive FSMs. Only affects groups
with "static" attribute.

Figure 2 illustrates the main steps. This section describes the com-
plete compilation process.

4.1 Calling Convention

To realize a Calyx program’s execution schedule, the compiler needs
a mechanism to pass control flow in purely structural programs. We
use a pair of interface signals to define this interface: when a group
sets another group’s go signal high, control is passed to that group
and it can enable assignments within it; when a group sets its own
done signal high, it passes control back. This interface resembles
traditional latency-insensitive hardware design [4].

Most passes treat interface signals like any other 1-bit port. The
main compilation passes treat them specially—using them to wire
up the control signals. The final compilation pass eliminates inter-
face signals by inlining them.

4.2 Compilation Workflow

We describe the compilation pipeline by compiling the example
Calyx program in Figure 2a.

Inserting go interface signals. Calyx’s semantics requires that assign-
ments within a group are only enabled when the group executes.
To enforce this requirement, the GOINSERTION pass inserts the
group’s go signal into the guards of the contained assignments.
Figure 2b shows the resulting program: one[go] guards assign-
ments in group one while two[go] guards assignments in group
two. When all groups are eventually removed, these guards will
ensure that the correct set of assignments are active at a given time.

Compiling control using interface signals. The next step in the com-
pilation process is realizing the control program using a structural
implementation. Compilation relies on two important properties
of Calyx: (1) groups can encode arbitrary computations, and (2) all

808

groups are treated uniformly, regardless of the computation they
perform—a group that increments a register is compiled the same
way as a group that runs a systolic array.

The ComPILECONTROL pass performs a bottom-up traversal of
the control program and does the following: (1) for each control
statement, such as seq or wh1ile, instantiate a new group, called the
compilation group, to contain all the structure needed to realize the
control statement, (2) implement the schedule by setting the con-
stituent groups’ go and done signals, and (3) replace the statement
in the control program with the corresponding compilation group.
After this pass, every component’s control program is reduced to a
single group enable.

Figure 2c shows these transformations. The pass defines a new
group seq0 to encapsulate the structure required to realize the seq
statement as well as a new register fsm to track the current state.
Next, the pass enables the groups contained in the seq by writing
to their go interface signals and updates the FSM state when the
groups set their done signal high. The done condition for seqo is
when the FSM reaches its final state. Finally, the pass replaces the
seq control statement with the group seqo.

Inlining interface signals. The REMOVEGROUPS pass inlines all uses
of interface signals and removes all groups. It performs three trans-
formations:

(1) Add new go and done ports to each component definition
and wire them up to the single group enable in the control
program.

(2) Collect all writes to a group’s go and done signals and inline
them into all uses of the signals. If there are multiple writes to
a signal, replace the corresponding reads with a disjunction
of the written expressions. This step eliminates all interface
signals from the component.

(3) Remove all groups. Since all assignments are guarded by
expressions that encode the schedule, it is safe to remove
the groups and place them in the top-level wires section.

Figure 2d shows the resulting program that contains no groups,
interface signals, or control statements.

Code generation. Each component now contains a flat list of guarded
assignments. The LOWER pass generates SystemVerilog programs

ASPLOS 21, April 19-23, 2021, Virtual, USA

by mapping each component to a module, generating wires for all
the ports, and threading a clock signal through the design.

4.3 Compiling Control Statements

The CompPILECONTROL pass performs a bottom-up traversal of the
control program, encodes the control flow of each control statement
using structural components, and replaces its use with correspond-
ing compilation group. This example illustrates the timeline of
bottom-up elimination of control statements:

control { par {
seq { one; two; }
seq { foo; bar; } seql;

1} 1}
We sketch the CompILECONTROL pass’s strategies for implementing

each control statement in Calyx.

control { par {

control
seqO; {

paro;
}

par. A par control block enables all groups inside it and finishes
executing when all groups have signaled done once. Since groups
may finish executing at different times, the pass generates a 1-bit
register to save each child group’s done signal. The go signal for
each child group is set to high when the value in this register is 0.
The done signal for the compilation group is 1 when all the 1-bit
registers output 1.

if. Calyx’s semantics dictate that an 1 f statement executes a group
cond before reading the value from a port and deciding which
branch to execute. cond is supposed to update the value on the port.
The pass generates two 1-bit registers: cc which tracks if cond has
been executed, and cs to store the value of the port generated after
executing cond to ensure that the value of the port is available
through the execution of the branches. The compilation group
enables either branch using the value in cs and finishes executing
when the branch’s done signal is high.

while. The loop compilation strategy resembles the one for if. The
group runs the condition group, saves the value from the condition
port to a register, and uses it to either enable the group in the body.
The compilation group finishes executing when the value of the
conditional port is 0.

Resetting compilation groups. Compilation groups reset their in-
ternal state to operate correctly within loops. The pass generates
assignments that reset the value of internal state elements when a
compilation group sets its done signal high.

4.4 Latency-Sensitive Compilation

The default compilation pass, COoMPILECONTROL, generates latency-
insensitive finite-state machines (FSMs) when realizing a compo-
nent’s schedule. Such latency-insensitive designs allow the execu-
tion schedule to uniformly reason about multi-cycle components
and groups. The cost of this approach, however, is the additional
hardware and additional execution cycles required to coordinate
with the interface signals. Frontend compilers can often provide
latency information that the compiler can exploit to build smaller
and faster hardware.

We implemented a pass that can opportunistically generate
latency-sensitive FSMs when latency information is available. This
pass is best-effort: it only attempts to generate such FSMs when

809

Rachit Nigam, Samuel Thomas, Zhijing Li, and Adrian Sampson

latency information is available and gracefully falls back to Com-
PILECONTROL. The encapsulation property of groups enables these
kinds of best-effort passes—the compilation pipeline does not have
to reason about what is inside a group to compile it.

The key benefits to this approach are: (1) frontends can quickly
build a functioning end-to-end flow and incrementally add latency
information to generated programs, and (2) latency-sensitive com-
pilation is just an optimization—it can be disabled, debugged, and
interacted with separately from the compilation pipeline. To the best
of our knowledge, Calyx’s ability to fluidly mix latency-sensitive
and latency-insensitive compilation is unique. Prior systems in-
tertwine latency information through the compilation process, so
either everything is statically timed [44] or nothing is [16].

Section 6.2 shows how a frontend can generate latency informa-
tion, Section 7.2 demonstrates that the pass speeds up designs by
1.43% without an area penalty, and Section 5.3 demonstrates how
latency information can be automatically inferred in certain cases.

Compiling seq. The latency-sensitive compilation pass, SENSITIVE,
traverses the control program bottom-up and opportunistically
compiles control statements when all of the nested groups specify
their latency using the static attribute (Section 3.5):

group one<"static"=1> { ... }

group two<"static"=2> { ... }

control { seq { one; two } }
It generates an FSM with a self-incrementing counter and enables
each group for the specified number of cycles, and ignores the done
signal from the groups:

group static_seqO<"static"=3> {

one[go] = fsm.out >= 0 && fsm.out < 1 ? 1;

two[go] = fsm.out >= 1 && fsm.out < 3 ? 1;

static_seq@[done] = fsm.out == 3 ? 1;

// Increment the FSM.

fsm.in = fsm < 3 ? fsm.out + 1;

static_seq@[done] = fsm.out == 3;

}
When compiling seq, par, or if statements, the pass uses the la-
tency information of the contained groups to generate a static
attribute for generated compilation group.

The pass demonstrates how Calyx enables development of small,
modular passes that interact with the broader infrastructure. It is
feasible because the IL has a well-defined semantics that lets passes
reason independently about the preservation of program semantics.

5 OPTIMIZING CALYX PROGRAMS

We describe the design and implementation of three optimizations
that demonstrate Calyx’s ability to support control-flow-sensitive
optimizations.

5.1 Resource Sharing

Resource sharing is an optimization that reuses existing circuits
to perform temporally disjoint computations. For example, if an
accelerator needs to perform two add operations that are never
executed in parallel, it can map them to the same physical adder.
Calyx is uniquely suited to implement such optimizations which
require both control flow facts (if two computations run in parallel)
and structural facts (which physical adder performs an add).

A Compiler Infrastructure for Accelerator Generators

group let_r0 { r0.in = 0 } seq {

group let_rl { rl.in = 0 } par {

group incr_ro { let_ro;
a0.1 = r0.out; ad.r = 1; let_ri1;

r0.in = ad.out; } }

group incr_rl { incr_ro;
al.l = rl.out; al.r = 1; incr_ril;
rl.in = al.out; } }

(a) Defined groups. ro and r1 are reg- (b) Schedule with resource
isters; a0 and a1 are adders. sharing opportunities.

Figure 3: Resource sharing example. Since incr_ro and
incr_r1 do not run in parallel, they can share their adders.

Calyx implements a group-level resource sharing optimization:
if two groups are guaranteed to never execute in parallel, they can
share components. This pass does not attempt to share stateful
components because state is visible across groups. Frontends use
the "share" attribute (Section 3.5) to denote that a component is
safe to share.

component adder<"share"=1> { ... }

The pass uses the execution schedule of a component to calcu-
late which groups may run in parallel and uses the encapsulation
property of groups to implement sharing. It proceeds in three steps:

Building a conflict graph. A conflict graph summarizes potential
conflicts—nodes denote groups and edges denote that the groups
may run in parallel. The pass traverses the control program and
adds edges between all children of a par block. For example, in
Figure 3b, the groups let_ro0 and let_r1 conflict with each other
while incr_ro and incr_r1 do not. If the children of the par block
are themselves control programs, the pass adds edges between the
groups contained within each child.

Greedy coloring. The pass performs a greedy coloring over the
conflict graph to allocate shareable components to each group. If
two groups have an edge between them, they cannot have the same
components. The result of this step is a mapping from the names
of old components to new components. For example, in Figure 3a,
incr_r1 gets the mapping: al +— a0.

Group rewriting. In the final step, the pass applies local rewrites
to groups based on the mapping. The simplicity of this step comes
from the encapsulation property of groups—a rewriter does not
have to reason about uses of a component outside the group.

Resource sharing demonstrates Calyx’s flexibility in analysis and
transformation—passes can recover control flow information from
the schedule and use groups to perform local reasoning.

5.2 Register Sharing via Live-Range Analysis

Group-local reasoning is insufficient for sharing stateful elements
such as registers; writes to a register in one group are visible in
other groups. To enable register sharing, we implement a live-range
analysis that, for each register, determines the last group in the
execution schedule to read from it. Since the register is guaranteed
to never be used afterwards, subsequent groups can reuse the reg-
ister. Live-range analysis is common in software compilers but is

810

ASPLOS 21, April 19-23, 2021, Virtual, USA

seq {
A
if cond.out with G {
B;
} else {
par {
seq { x0; x1; }
seq { yo; yl; }}}

€3 :‘
} .

(a) Calyx program.

(b) A visual representation of a pCFG.

Figure 4: A Calyx program along with the corresponding par-
allel control flow graph (pCFG).

infeasible in RTL languages since the control flow of the program
is not explicit.

The live-range analysis has to contend with two problems: (1)
coping with the par blocks in the control program, and (2) inferring
which groups read and write to registers.

Parallel control flow graphs. We handle par blocks using parallel
control flow graphs (pCFGs) based on the work of Srinivasan and
Wolfe [38]. Most control operators in Calyx map directly to a tradi-
tional CFG. However, par statements need special handling since,
unlike an 1 f statement which executes one of its two branches, a
par statement executes all its children. While writes to a register in
a conditional branch may be visible after the if statement, writes
within children of par blocks are always visible after the par block.

Parallel CFGs introduce a new kind of node—called a p-node—to
handle par blocks (p0 in Figure 4b). A p-node represents an entire
par block and recursively contains a set of pCFGs representing its
children. In Figure 4b the p-node has two children.

Calculating read and write sets. Calyx implements a conservative
analysis pass to determine the registers that groups and p-nodes
read from and write to. Both groups and p-nodes can, in gen-
eral, contain complex logic, so the pass must conservatively over-
approximate these sets. The read set is the set of registers a group
or p-node may read from and the write set is the set of registers
they must write to. The data-flow analysis uses this information to
determine the range each register is alive.

Computing liveness. The pass uses a standard data-flow formulation
to compute the live ranges. The only aspect that needs special
handling is the children of p-nodes. For these, we set the live sets
at the end of each child to be the set of live registers coming out of
the p-node.

Sharing registers. The pass uses the liveness information to build a
conflict graph where nodes are registers and edges denote overlap-
ping live ranges. The pass performs greedy coloring over this graph
using registers as colors and rewrites groups in a similar manner
to resource sharing.

ASPLOS 21, April 19-23, 2021, Virtual, USA

5.3 Inferring Latencies

The final optimization pass in the Calyx compiler attempts to con-
servatively infer the latencies of groups and components. This
enables the downstream SENSITIVE pass (Section 4.4) to lower Ca-
lyx programs using more efficient, latency-sensitive finite state
machines. Consider the following group:
component foo<"static"=1> { ... }
group incr {
f.in = add.out; // f is an instance of foo.
f.go = 1'd1;
incr[done] =

}

f.done;

The Calyx program specifies that the latency of the foo component
is 1 using the "stat+ic" attribute. Given this information, this pass
infers that latency of incr to be 1 as well. It follows a simple rule:
if a group’s done signal is equal to a components go signal, and if
the component’s go signal is set to 1 within the group, the latency
of the group is inferred to the same as the component. Such uses of
components occur in groups that simply activate one component
and end their execution.

This pass is conservative and only works for simple groups.
Given Calyx’s design principle—that most of the time frontends
generate simple groups—such passes can be extremely powerful.
Furthermore, such passes can be incrementally improved by adding
new rules that enables the pass to infer latencies for more groups
and transparently speed up programs. Section 7.1 shows that this
pass transparently improves the performance of frontend code.

6 CASE STUDIES

We built two compilers that target Calyx for our case studies. The
first generates systolic arrays [19] for linear algebra computations.
The second compiles Dahlia [25], an imperative programming lan-
guage that uses a substructural type system to enable predictable
hardware design. Our goal in both case studies is to demonstrate
how Calyx makes it possible to quickly bring up good compiler
implementations for specialized languages. We do not aim to beat
existing commercial HLS compilers which represent decades of
engineering effort.

6.1 Systolic Array Generator

Systolic arrays [19] are a class of architectures that exploit data
reuse. They power the recent wave of state-of-the-art linear alge-
bra accelerators for machine learning [10, 17]. Figure 5 shows an
example systolic array. In every time step, data moves from left-to-
right and top-to-bottom, while the processing elements (PEs) in the
grid perform computations on the data streams. Systolic arrays can
maintain a high throughput because data is reused between PEs.

However, generating a custom systolic array implementation is
challenging: producing RTL directly requires generating complex
custom control hardware, and systolic arrays’ unique parallelism
pattern can be challenging to express in HLS C++ [5, 21]. We im-
plement a systolic array generator using Calyx in only 239 LOC of
Python and approximately 40 person-hours of effort. The generator
can produce arrays with arbitrary dimensions and arbitrary PEs
which are implemented as Calyx components themselves.

811

Rachit Nigam, Samuel Thomas, Zhijing Li, and Adrian Sampson

i—l
Figure 5: Architecture for a 2X2 by 2x2 matrix-multiply sys-

tolic array. Highlighted boxes show some of the groups used
by the control.

seq {
par { t0; 10; } // Move data from memories
par { pe_00; } // Run the first PE
// Move data from memories and from registers
par { t0; tl; 10; 11; pe_00_down; pe_00_right; }
// Execute first PE and PEs on diagonals
par { pe_00; pe_01; pe_10; }
// Next step...
par { tl; 11; down_00; down_01; right_00; right_10; }
par { pe_01; pe_10; pe_11; }
par { down_01; right_10; } par { pe_11; }

Figure 6: Control generated for 2x2x2x2 matrix-multiply.
Execution interleaves data movement and PE execution.

Input. The systolic array generator takes the dimensions of the
matrix block and a Calyx component that implements the PE. For
a matrix multiply accelerator, for example, the PE consists of a
multiply—accumulate (MAC) unit. It generates a systolic array that
matches the dimensions of matrix block.

Architecture. Figure 5 shows the desired architecture for a 2x2
systolic array. The design consists of several groups highlighted in
the figure. The groups that surround a PE implement data movement:
the groups on the edges move the data from the input memories
to registers, and the ones in the middle move the data along the
fabric. Finally, the compute groups perform the computation in the
PE and write their results to an internal register.

Generating Calyx. To target Calyx, the systolic array generator
needs to (1) instantiate PEs, (2) create the relevant groups, and (3)
define the control for the systolic array. The compiler performs (1)
and (2) using templates. For each PE, the compiler also instantiates
the surrounding input registers and connects them to registers in
the previous PE. Finally, it defines groups to move the data and
perform the computation.

A Compiler Infrastructure for Accelerator Generators

The next step is generating the control. Figure 6 shows the con-
trol statements generated for a 2X2 systolic array. At each time step,
the compiler enables all the data movement groups to move the data
to input registers of each PE, and then in sequence, enable all the
PEs with valid inputs. This schedule implements the classic systolic
data flow that implements matrix multiplication which shifts the
input data by one step in each dimension. The generated control
accounts for invalid data and selectively enables data movement
and compute groups when the input data streams start and end.

Inferring latencies. The systolic array generator does not generate
any "static" annotations. However, the Calyx compiler is able to
completely infer the latency (Section 5.3) of a generated systolic
array when the processing element provides its latency. This means
that the generator, by virtue of using the Calyx compiler, auto-
matically supports both latency-sensitive and latency-insensitive
systolic arrays.

Debugging with Calyx. In an initial version, the generator prema-
turely enabled data movement groups causing the systolic array to
compute the wrong result. While debugging the kernel, it was easy
to spot this mistake in the control program. This demonstrates a key
quality-of-life improvement when using the Calyx infrastructure
to build accelerator generators—control logic bugs can be caught
by investigating the execution schedule.

6.2 The Dahlia Compiler

Dabhlia [25] is a recently proposed general-purpose language for
designing accelerators that resembles traditional C-based HLS. It
differs from traditional HLS by adding a substructural type system
that constrains the language to rule out programs that lead to
inefficient hardware. The original Dahlia compiler generates C++
with annotations for the commercial Vivado HLS [44] toolchain.

In this case study, we build a new compiler for the Dahlia lan-
guage that generates hardware using Calyx, eliminating the depen-
dence on a monolithic, closed-source HLS backend and allowing
greater control over the generated architecture. The goal is not to
outperform the Vivado HLS backend; instead, we aim to show that
Calyx makes it possible to exploit Dahlia’s unique semantics to
build a compiler that is far simpler than a full-fledged C-to-RTL
toolchain.

Lowered Dahlia. Dahlia is a simple imperative language extended
with high-level convenience features such as memory partitioning,
loop unrolling, and logical array indexing. We elide the details
of the first step of compilation that unrolls loops and compiles
accesses to partitioned memories. We refer interested readers to
our implementation.

Our explanation focuses on compiling Dahlia programs that use
a small set of constructs: variables, unpartitioned memories, while
loops, conditionals, and Dahlia’s two novel composition operators:
unordered composition (;) and ordered composition (---).

In Dahlia, memories and variables have an associated type and
can be updated with assignment syntax:

let x: ubit<32> = 1; x := 2;

let arr: ubit<32>[10]; arr[1] := 3;

Dabhlia’s unordered composition operator allows backends to paral-
lelize computations while preserving data flow:

812

ASPLOS 21, April 19-23, 2021, Virtual, USA

x =1; y =2 // can occur in parallel

In contrast, Dahlia’s ordered composition operator requires backend
to execute statements in a sequence:
x =1

X =2
Ordered composition does not reason about explicit clock cycles.
Instead, it imposes a partial order over the execution of program
statements by reasoning about logical timesteps. Lowered Dahlia
also supports standard imperative while loops and 1 f conditionals.

Generating Calyx. The Calyx backend for Dahlia is a bottom-up
pass that compiles each expression by instantiating groups and
scheduling them using the control language.

For example, for this Dahlia program:

let x = 0

if (x > 10) { x =1 } else { x =2 }
The Calyx backend generates a group for each statement:

group init_x { x.in = 0; init_x[done] = x.done; }

group one { x.in = 1; one[done] = x.done; }

group two { x.in = 2; one[done] = x.done; }

group cond { gt.left = x.out; gt.right = 10; cond[done] = 1; }

And schedules them using the following control program:

seq {
init_x;
if gt.out with cond { one } else { two }
}
The Calyx backend has a one-to-one mapping for the language
constructs in lowered Dahlia and the Calyx control language: mem-
ory and variable assignments generate groups representing the
update, ordered composition becomes seq, unordered composition
becomes par, loops and conditionals map to while and if.

Interfacing with black-box RTL. Dahlia’s HLS backend uses a vendor-
provided header to implement custom math functions such as
square root. The HLS compiler connects definitions within such
headers to black-box RTL code. In order to interact with black-box
RTL components, Calyx programs can provide external definitions:

extern "sqrt.sv" {

component sqrt(left: 32, right: 32, go: 1) -> (

out: 32, done: 1
)5
}

External definitions do not provide an implementation; instead the
Calyx compiler links in the corresponding RTL program, in this
case sqrt.sv, during code generation. External components can
be used like any other component:

group foo {
sqrto.left = 10; sqrto.right = 20;
sqrt0.go = !sqrtO.done ? 1;
foo[done] = sqrt0.done

}

Latency annotations. Most operations in a Dahlia program have a
precise latency—register writes take one cycle, multiplies take four
cycles, etc. The Calyx backend uses this information to annotate the
latency of each group with the "static" attribute. Some operations,

https://github.com/cucapra/dahlia/tree/3acddf5277beba750065564f9c9206b55d58ae18/src/main/scala/passes

ASPLOS 21, April 19-23, 2021, Virtual, USA

such as the RTL primitive to calculate the square-root, take a data-
dependent number of cycles, so groups using them omit latency
information. Since the Calyx compiler gracefully handles mixed
latency-sensitive and latency-insensitive groups, we do not need
to change anything else.

6.3 Summary

In our experience, a Calyx-based compiler requires three ingredi-
ents: (1) the abstract architecture for the domain, (2) a mapping from
source constructs to Calyx constructs, and (3) a strategy to gener-
ate groups and control. For Dahlia, the architecture corresponded
directly with the control language; for systolic arrays, we used a
templated design with a latency-insensitive interface. In both com-
pilers, we used groups and control to modularize and compose data
flow graphs, which is not possible when generating RTL directly.

7 EVALUATION

We evaluate Calyx by generating accelerators using the frontends
in the previous section and answering three questions:

e Can we build a simple compiler that generates performant
specialized architectures?

e Can we use Calyx to generate reasonable hardware in a
general-purpose, HLS-like domain?

e What is the effect of control-flow-sensitive optimizations
implemented in the Calyx compiler?

We compare Calyx-generated accelerators to Vivado HLS, a com-
mercial HLS tool that represents decades of engineering effort. Our
aim is not to beat HLS at its own game but instead achieve the same
performance regime with much lower effort.

7.1 Systolic Arrays

To the best of our knowledge, Vivado HLS does not automatically
infer systolic arrays from loop nests. Instead, programmers need to
rewrite their program to coerce the compiler into generating pre-
cisely the hardware they want. Calyx advocates for a more domain-
specific approach—instead of relying on black-box compilers to
infer hardware structures, design new DSLs that automatically
synthesize them. We study the performance characteristics of the
Calyx-based systolic array generator (Section 6.1).

Evaluation setup. We generate hardware designs for matrix multi-
plication kernels ranging from 2 X 2 to 8 x 8. For each configuration,
we generate a systolic array using the Calyx-based generator and
implement a straightforward matrix-multiply kernel in Vivado HLS
that fully unrolls the outer two loops. For the Calyx designs, we col-
lect the number of cycles by simulating the design in Verilator [39]
(v4.108) and get resource estimates by synthesizing designs with
Vivado [44], targeting Zynq UltraScale+ XCZU3EG FPGA at a 7ns
clock period. For the HLS designs, we report the latency and re-
source estimates from the HLS report. We compare the cycle counts
(Figure 7a) and the LUT usage (Figure 7b) of the designs. We report
the characteristics of systolic arrays compiled with the SENSITIVE
pass (Latency-sensitive) and those without (Latency-insensitive).

Comparison against HLS. Compared to HLS-based designs, Calyx-
based systolic arrays are faster by a geometric mean of 4.6X and

813

Rachit Nigam, Samuel Thomas, Zhijing Li, and Adrian Sampson

BN Calyx (Latency-sensitive)

2000
Calyx (Latency-insensitive)
£ 1500 HLS
!
o
3 1000
>
O
500
0 — — N [|
2x2 4 x4 6x6 8x8
Input size
(a) Absolute cycle counts.
14000
12000
10000
&
g 8000
5 6000
—
4000
2000 l
0 |
2x2 4x4 6x6 8x8
Input size
(b) Absolute LUT usage.

Figure 7: Resource and cycle count comparison matrix mul-
tiply implementation HLS and as systolic arrays.

take 1.11x more LUTs. For the largest input size, the systolic ar-
ray is 10.78% faster than the HLS implementation while using
1.3X more LUTs.

Latency-sensitive compilation. The systolic array generator does
not generate any "static" annotations used by the SENSITIVE
pass. It instead relies on the Calyx compiler to infer these attributes
(Section 5.3). On average, SENSITIVE makes designs 1.9X faster and
1.1X smaller.

Discussion. Our systolic array case study demonstrates how a lan-
guage designer can quickly experiment with architectural designs
that are harder to express in traditional HLS tools. Without exten-
sive engineering effort, the specialized approach can outperform a
general-purpose HLS compiler.

7.2 Dahlia

We built the Dahlia-to-Calyx compiler in 2011 LOC of Scala. This
includes extensions to the Dahlia compiler that add passes to lower
Dabhlia specific constructs as well as the backend to generate Calyx
from lowered Dahlia.

Evaluation setup. We compare the Calyx-generated RTL against
the original Dahlia compiler [25], which emits annotated C++ and
relies on Vivado HLS to generate hardware designs. We implement
all 19 kernels from the linear algebra category of the PolyBench [23]
benchmark suite and, for the 11 benchmarks Dahlia’s type system
allows it, unroll the loops to unlock parallelism. We use the same
setup as in Section 7.1 to gather numbers.

A Compiler Infrastructure for Accelerator Generators

C0.25

% I Not Unrolled

g0.5 Unrolled

ke

n

2 1 IIIII I IIII .I

=S

o

= 2

.0 8 _BEE B R RN B EEmnE Y N -

E’ 4 Geo Mean

3

£

n
EES WE > > Lx W >c 5 og > g
EERBEEHEEW"8S85 - 2525
[SR))

(a) Cycle slowdown of Calyx designs compared to Vivado HLS.
signs below the y-axis are slower.

0.25

0.5

LUT Increase Factor

N VU X A o 4]
EERTELAEET RIS 853

(b) LUT increase of Calyx designs over Vivado HLS. Designs below
the y-axis are larger.

Figure 8: Resource and cycle count comparison for Dahlia-
generated Calyx designs and HLS designs for PolyBench
benchmarks. Missing unrolled bars indicate that the bench-
mark was not unrollable in Dahlia.

We also evaluate the effects of the latency-sensitive compilation
(Section 4.4). We run each benchmark with the SENSITIVE pass en-
abled and disabled, following the same synthesis and measurement
workflow above.

Comparison against HLS. We collected cycles counts (Figure 8a) and
LUT usage (Figure 8b) for each benchmark with all optimizations
turned on and normalized them to the corresponding Vivado HLS
implementation. For the unrolled designs, we normalize against the
corresponding unrolled HLS designs. Since DSP and BRAM usage
is almost identical for all benchmarks, we elide them.

On average, the Calyx generated designs are 3.1x slower than
the designs generated by Vivado HLS and use 1.2X more LUTs.
For the unrolled designs, Calyx comes closer to HLS execution
time, being 2.3x slower while taking 2.2x more LUTs. Vivado HLS
is a heavily optimized toolchain that incorporates state-of-the-art
optimizations and is designed to perform well on the kinds of nested
loop nests we evaluated.

Latency-sensitive compilation. Figure 9c shows the effect of the SEN-
SITIVE pass (Section 4.4) on the Dahlia-to-Calyx compiler. Enabling
the optimization reduces execution time on average by 1.43x with-
out significantly changing the resource usage.

814

ASPLOS 21, April 19-23, 2021, Virtual, USA

Discussion. Despite its simplicity, the Dahlia frontend for Calyx
can already generate designs that are within a few factors of the
performance of a heavily optimized, commercial HLS toolchain.
Part of the reason is that Dahlia is a far simpler language than C++,
which makes a narrowly focused compiler tractable to build. This is
the use case for Calyx—rapidly designing compilers for specialized
languages and achieving good performance quickly.

We see adding traditional HLS-focused optimizations to Calyx,
such as SDC scheduling [6], as the main avenue to close the gap
with Vivado HLS.

7.3 Effects of Optimization

To demonstrate Calyx’s ability to express control-flow based op-
timizations, we wrote a resource sharing pass (Section 5.1) and a
register sharing pass (Section 5.2). We perform an ablation study to
characterize their effects on the final designs.

Figure 9a reports the resource utilization of PolyBench bench-
marks in three configurations: (1) resource sharing enabled, (2)
register sharing enabled, and (3) both resource sharing and regis-
ter sharing turned on. We normalize the resource counts against
baselines with both passes disabled.

While both optimization passes find opportunities to share hard-
ware components, there is not a uniform drop in the LUT usage.
On average, the resource sharing pass increases LUT usage by 3%
and the register sharing pass increases LUT usage by 11%. Sharing
hardware components causes additional multiplexers to be instanti-
ated which makes the resource usage worse in some cases. We plan
to implement a heuristic cost model to decide which components
are worth sharing (Section 9).

Figure 9b shows the effects of the register sharing pass on the
number of registers used in the designs. On average, the pass re-
duces register usage by 12% and finds register sharing opportunities
in every benchmark. Registers, compared to multiplexers, are more
expensive in ASIC processes which represents another opportunity
for heuristics in a future version of the Calyx compiler.

7.4 Compilation Statistics

For the largest PolyBench design (gemver) Calyx takes 0.06 seconds
to generate RTL, compared to 26.1 seconds for the Vivado HLS
compiler. The largest Calyx design is the 8 X 8 systolic array which
contains 241 cells, 224 groups, and 1,744 control statements. The
Calyx compiler generates 8,906 LOC of SystemVerilog in 0.7 seconds
for this design.

8 RELATED WORK

Intermediate representations (IRs) for hardware generation have
been a topic of detailed study. Calyx differs from past work because
it is not tied to a specific hardware generation methodology as in IRs
for HLS compilers [3, 45], it represents programs at a higher level of
abstraction than IRs for RTL design [7, 15], and it provides precise
control over scheduling logic generation unlike Bluespec [26].

Bluespec. Bluespec [26] is an HDL that uses guarded atomic actions
to enable compositional hardware design. The Bluespec compiler
detects conflicts between such actions, generates a parallel exe-
cution schedule, and dynamically aborts rules on conflicts. Calyx

ASPLOS 21, April 19-23, 2021, Virtual, USA

.
8

]

S W Il

3 | I “““ d|l

(%]

(2]

5

c

'5 1.33 B Resource Sharing
- W Register Sharing

[Both Enabled

EESMEZZzREXX 0w>c39€E 2 €
N v O X o o 4]
(E(YE)N_U@EDE’ME’EW a8 U5 - a* 5

(a) LUT increase from resource sharing and register sharing,.

15

=
N
&

1I
E E
E E
N o

(b) Register decrease from the register sharing optimization.

Register Decrease Factor

X e
© E

EMEZZES 52 5E7
w EowE S & -

2
o
3
el
[
(9]
o
n
%15 Geo Mean
Chae 1 1 W 1 | ek
()
o
(9]
3
o
3
E
)
AN U X O O w0
EERSEEWLEEN"838 2525
[\INep] oo

(c) Speedup from using latency-sensitive compilation.

Figure 9: Effects of optimization passes. All graphs use loga-
rithmic scales.

requires no implicit dynamic scheduling; it provides explicit control
over the execution schedule using its control language.

Halide. Halide [31] is an image processing DSL that pioneered
the separation of algorithmic specifications from the implemen-
tation schedule to facilitate performance tuning, and follow-on
work has shown how to compile Halide-like languages to hard-
ware [13, 20, 30]. Halide schedules represent optimization strate-
gies, such as loop tiling, that do not affect the algorithm’s semantics.
Calyx’s concept of a schedule is different: it orchestrates and orders
the invocation of hardware components and as such determines the

815

Rachit Nigam, Samuel Thomas, Zhijing Li, and Adrian Sampson

program’s semantics. Calyx’s schedules are appropriate for express-
ing implementations of optimizations like loop tiling performed by
high-level DSL compilers.

Software IRs. Some hardware generators repurpose software IRs
such as LLVM [3, 22, 34, 45], GCC’s internal IR [28], and SUIF [2].
Calyx is different from these approaches since it does not limit
frontend compilers to sequential, C-like semantics. It can represent
both hardware resources and fine-grained parallelism that these
representations lack.

IRs for HLS. Several HLS compilers include IRs that extend their
sequential input languages with representations of parallelism.
uIR [35] uses a task-parallel representation, SPARK [12] targets
speculation and parallelism optimizations, CIRRF [11] provides
primitives for pipelining, and Wu et al. [43] propose a hierarchical
CDEFG representation. Calyx differs from these IRs by providing
lower-level control primitives to explicitly represent hardware re-
sources and avoiding ties to a traditional HLS setting.

Another category of HLS IRs uses finite state machines (FSMs) to
model programs’ execution schedules at the cycle level [9, 32, 37].
While such FSM representations are reminiscent of Calyx’s control
language, these IRs impose restrictions on the timing behavior of the
operations inside the FSMs. Calyx imposes no such restrictions and
can compose arbitrary RTL programs while providing an interface
to generate optimized latency-sensitive designs when possible.

Languages with hardware parallelism. Language extensions and
DSLs aim to combat the expressivity problems of HLS. They extend
C with CSP-like parallelism [1], exploit software-oriented parallel
interfaces in C# [36], or start with SystemC instead of plain C [24,
27]. Spatial [18] provides primitives to generate hardware from
parallel patterns [29]. HeteroCL [20] is a Python-based DSL for
optimizing programs above the HLS level of abstraction. These
languages are higher level than Calyx and are not appropriate as
general IRs because they are tied to specific models of parallelism.
Calyx can serve as a backend for them.

IRs for HDLs. Modern HDL toolchains have IRs for transforming
hardware designs [7, 15, 33, 41, 42]. These IRs work at the RTL level
of abstraction and are appropriate for representing a finished hard-
ware implementation. For generating and optimizing accelerators
from DSLs, however, they have the same abstraction gap problem
as any other RTL language. These IRs are potential compilation
targets for Calyx.

9 FUTURE WORK

Calyx provides a useful foundation for exploring the design of
higher-level DSLs, compiler optimizations, and target-specific hard-
ware design. We plan to build upon it to explore these ideas.

First-class pipelining. Pipelines are a crucial building block for high-
performance hardware designs. Calyx program encode pipelines
using while loops and par blocks. However, in keeping with Ca-
lyx’s philosophy of explicit control flow, we plan to design a first-
class operator that will enable frontends to explicitly instantiate
pipelines. An explicit representation will enable the compiler to
implement pipeline-specific optimizations such as automatic buffer
insertion. Higher-level control operators, such as pipelining, can

A Compiler Infrastructure for Accelerator Generators

be compiled into more primitive control operators, which lets the
Calyx IL and compiler incrementally add support for new operators.

Target-specific optimization. Calyx’s optimization passes do not
currently use cost models and other heuristics. We plan to extend
the Calyx compiler to support target-specific heuristics that en-
able users to make different trade-offs for different targets. For
example, multiplexers are cheap in ASICs but expensive in FPGAs
while registers are the opposite. Such differences should affect how
aggressively optimization passes that share registers are applied.

Burden of synthesizability. Several factors affect the ability of a de-
sign to meet a specific clock period: the fan-out and fan-in factors
of modules, the size of the control FSM, and placement of registers
in long combinational paths. Currently, Calyx requires frontends
to account for these problems and generate programs that, for ex-
ample, break up long combinational paths. In the future, we plan to
implement passes that can analyze programs for such problems and
transform them to make them synthesizable. Compiler developers
can then use these passes and shift the burden of synthesizability
onto the Calyx compiler.

10 CONCLUSION

The world of specialized hardware accelerator generators needs
more shared infrastructure. A common representation of control
and structure can enable interoperability between languages while
amplifying the impact of cross-cutting optimizations, analyses,
transformations, and tools.

ACKNOWLEDGMENTS

We thank Theodore Bauer and Kenneth Fang for their contributions
to the implementation of the Calyx compiler. Drew Zagieboylo
and Zhiru Zhang provided feedback on the design of Calyx and
early drafts of the paper. Luis Vega provided invaluable help in
understanding synthesis toolchains debugging RTL code generation.
We also thank the anonymous reviewers and our shepherd, Sophia
Shao, for their detailed feedback.

This work was supported in part by the Center for Applications
Driving Architectures (ADA), one of six centers of JUMP, a Semi-
conductor Research Corporation program co-sponsored by DARPA.
This is also partially supported by the Intel and NSF joint research
center for Computer Assisted Programming for Heterogeneous Ar-
chitectures (CAPA). We also gratefully acknowledge support from
SambaNova Systems and software donations from Xilinx. Support
included NSF awards #1845952 and #1723715.

A THE CALYX ARTIFACT
A.1 Abstract

Our artifact packages an environment that can be used to repro-
duce the figures in the paper and perform similar evaluations. It is
available at the following link:
https://zenodo.org/record/4432747
It includes the following:

o futil: The Calyx compiler.

e fud: Driver for the futil compiler and hardware tools.

e Linear algebra PolyBench written in Dahlia.

816

ASPLOS 21, April 19-23, 2021, Virtual, USA

Note on proprietary tools. We use Xilinx’s Vivado and Vivado HLS
tools to synthesize hardware designs and to generate HLS estimates.
While trail version of these tools can be installed using Xilinx’s HL
WebPACK installer, their licenses for these tool disallow redistribu-
tion. Our README .md details installation steps for these tools.

A.2 Artifact Meta-Information

e Program: Polybench Benchmark Suite [23]. (All benchmarks used
in the evaluation are included with the artifact.)

e Binary: All binaries included except Vivado and Vivado HLS.

Run-time environment: Rust source code can be compiled any-

where: macOS, Windows, and Linux will all work. Our evaluation

scripts assume a Unix environment with the following installed:
— GNU Parallel 20161222
— verilator v4.038
- python3, pip3 and the python packages: numpy, pandas,
seaborn, matplotlib, jupyterlab
- jq 1.5.1
— vcdump 0.1.2
— vivado v2019.2, vivado_hls v2019.2
- futil, fudfrom commit dccd6f.
- dahlia from commit 978ffa.
Our packaged virtual machine has these tools installed.
e Metrics: LUT usage and simulated cycle counts.
e Output: The figures reported in the paper.
Experiments: We provide scripts for running the experiments and
use Jupyter notebook for making the figures.
e How much disk space required (approximately)?: 65 GB.
e Time needed to prepare workflow?: 4-8 hours.
e Time needed to complete experiments?: 4-8 hours.

A3
A3.1

Description and Installation
How to Access. The artifact is provided in two forms:

o A virtual image with all dependencies installed.
o Code repositories hosted on GitHub.

The instructions to download both the virtual image and the code reposito-
ries can be accessed here:

https://github.com/cucapra/calyx-evaluation

To install the proprietary tools and run the scripts, please follow the
instructions in the README . md file at the root of the code repository.

A.4 Evaluation and Expected Results
The evaluation process aims to accomplish two goals:

o Reproduce the graphs in the paper (Figures 5 and 6).

o Demonstrate the robustness of our tooling and infrastructure.
The README . md file at the root of the code repository walks through the
steps to reproduce the graphs from the paper, use the compiler to generate
RTL code, and build on the infrastructure as a library.

Note on Figure 7a. Our original submission contained a bug in one of the
plotting scripts that was caught and fixed during artifact evaluation process.
Complete details are in the README . md instructions.

A.5 Methodology

Submission, reviewing, and badging methodology.

REFERENCES

[1] ALE. Abdallah and John Hawkins. 2003. Formal Behavioural Synthesis of Handel-
C Parallel Hardware Implementations from Functional Specifications. In Hawaii
International Conference on System Sciences (HICSS).

https://zenodo.org/record/4432747
https://github.com/cucapra/calyx/tree/dccd6fc08ff5ed5ad38637d29610fe8ebda14354
https://github.com/cucapra/dahlia/tree/978ffa21572957c85a9409d80850af91b42fdaa0
https://github.com/cucapra/calyx-evaluation
http://cTuning.org/ae/submission-20201122.html
http://cTuning.org/ae/reviewing-20201122.html
https://www.acm.org/publications/policies/artifact-review-badging

=

o

= =

ASPLOS 21, April 19-23, 2021, Virtual, USA

[2] C Scott Ananian. 1998. Silicon C: A Hardware Backend for SUIF. https:

//flex.cscott.net/SiliconC/.

Andrew Canis, Jongsok Choi, Mark Aldham, Victor Zhang, Ahmed Kammoona,
Jason H Anderson, Stephen Brown, and Tomasz Czajkowski. 2011. LegUp: High-
level synthesis for FPGA-based processor/accelerator systems. In International
Symposium on Field-Programmable Gate Arrays (FPGA).

Luca P Carloni, Kenneth L McMillan, and Alberto L Sangiovanni-Vincentelli.
2001. Theory of latency-insensitive design. IEEE/ACM International Conference
on Computer-Aided Design (ICCAD) (2001).

J. Cong and J. Wang. 2018. PolySA: Polyhedral-Based Systolic Array Auto-
Compilation. In IEEE/ACM International Conference on Computer-Aided Design
(ICCAD).

J. Cong and Zhiru Zhang. 2006. An efficient and versatile scheduling algorithm
based on SDC formulation. In Design Automation Conference (DAC).

Ross Daly, Lenny Truong, and Pat Hanrahan. 2018. Invoking and Linking Gener-
ators from Multiple Hardware Languages using CorelR. In Second Workshop on
Open-Source EDA Technology (WOSET).

David Durst, Matthew Feldman, Dillon Huff, David Akeley, Ross Daly,
Gilbert Louis Bernstein, Marco Patrignani, Kayvon Fatahalian, and Pat Hanrahan.
2020. Type-Directed Scheduling of Streaming Accelerators. In ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI).

Nikil D Dutt, Tedd Hadley, and Daniel D Gajski. 1991. An intermediate represen-
tation for behavioral synthesis. In Design Automation Conference (DAC).
Jeremy Fowers, Kalin Ovtcharov, Michael Papamichael, Todd Massengill, Ming
Liu, Daniel Lo, Shlomi Alkalay, Michael Haselman, Logan Adams, Mahdi Ghandi,
Stephen Heil, Prerak Patel, Adam Sapek, Gabriel Weisz, Lisa Woods, Sitaram
Lanka, Steven K. Reinhardt, Adrian M. Caulfield, Eric S. Chung, and Doug Burger.
2018. A Configurable Cloud-scale DNN Processor for Real-time AL In Interna-
tional Symposium on Computer Architecture (ISCA).

Zhi Guo, Betul Buyukkurt, John Cortes, Abhishek Mitra, and Walild Najjar. 2008.
A compiler intermediate representation for reconfigurable fabrics. International
Journal of Parallel Programming (2008).

S Gupta, Renu Gupta, Nikil Dutt, and Alex Nicolau. 2004. SPARK: A Parallelizing
Approach to the High-Level Synthesis of Digital Circuits.

James Hegarty, John Brunhaver, Zachary DeVito, Jonathan Ragan-Kelley, Noy
Cohen, Steven Bell, Artem Vasilyev, Mark Horowitz, and Pat Hanrahan. 2014.
Darkroom: Compiling high-level image processing code into hardware pipelines.
ACM Transactions on Graphics.

Intel. 2021. Intel High Level Synthesis Compiler. Retrieved January 16, 2021
from https://www.altera.com/products/design- software/high-level-design/intel-
hls-compiler/overview.html

Adam M. Izraelevitz, Jack Koenig, Patrick Li, Richard Lin, Angie Wang, Albert
Magyar, Donggyu Kim, Colin Schmidt, Chick Markley, Jim Lawson, and Jonathan
Bachrach. 2017. Reusability is FIRRTL ground: Hardware construction languages,
compiler frameworks, and transformations. In IEEE/ACM International Conference
on Computer-Aided Design (ICCAD).

Lana Josipoviundefined, Radhika Ghosal, and Paolo Ienne. 2018. Dynami-
cally Scheduled High-Level Synthesis. In International Symposium on Field-
Programmable Gate Arrays (FPGA).

Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal,
Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, Rick
Boyle, Pierre luc Cantin, Clifford Chao, Chris Clark, Jeremy Coriell, Mike Da-
ley, Matt Dau, Jeffrey Dean, Ben Gelb, Tara Vazir Ghaemmaghami, Rajendra
Gottipati, William Gulland, Robert Hagmann, C. Richard Ho, Doug Hogberg,
John Hu, Robert Hundt, Dan Hurt, Julian Ibarz, Aaron Jaffey, Alek Jaworski,
Alexander Kaplan, Harshit Khaitan, Andy Koch, Naveen Kumar, Steve Lacy,
James Laudon, James Law, Diemthu Le, Chris Leary, Zhuyuan Liu, Kyle Lucke,
Alan Lundin, Gordon MacKean, Adriana Maggiore, Maire Mahony, Kieran Miller,
Rahul Nagarajan, Ravi Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie, Mark
Omernick, Narayana Penukonda, Andy Phelps, Jonathan Ross, Matt Ross, Amir
Salek, Emad Samadiani, Chris Severn, Gregory Sizikov, Matthew Snelham, Jed
Souter, Dan Steinberg, Andy Swing, Mercedes Tan, Gregory Thorson, Bo Tian,
Horia Toma, Erick Tuttle, Vijay Vasudevan, Richard Walter, Walter Wang, Eric
Wilcox, and Doe Hyun Yoon. 2017. In-Datacenter Performance Analysis of a
Tensor Processing Unit. In International Symposium on Computer Architecture
(ISCA).

David Koeplinger, Matthew Feldman, Raghu Prabhakar, Yaqi Zhang, Stefan Hadjis,
Ruben Fiszel, Tian Zhao, Luigi Nardi, Ardavan Pedram, Christos Kozyrakis,
and Kunle Olukotun. 2018. Spatial: A language and compiler for application
accelerators. In ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI).

Hsiang-Tsung Kung. 1982. Why systolic architectures? IEEE computer (1982).
Yi-Hsiang Lai, Yuze Chi, Yuwei Hu, Jie Wang, Cody Hao Yu, Yuan Zhou, Jason
Cong, and Zhiru Zhang. 2019. HeteroCL: A Multi-Paradigm Programming In-
frastructure for Software-Defined Reconfigurable Computing. In International
Symposium on Field-Programmable Gate Arrays (FPGA).

Y.-H. Lai, H. Rong, S. Zheng, W. Zhang, X. Cui, Y. Jia, J. Wang, B. Sullivan, Z.
Zhang, Y. Liang, Y. Zhang, J. Cong, N. George, J. Alvarez, C. Hughes, and P.

Rachit Nigam, Samuel Thomas, Zhijing Li, and Adrian Sampson

Dubey. 2020. SuSy: A Programming Model for Productive Construction of High-
Performance Systolic Arrays on FPGAs. In [EEE/ACM International Conference
on Computer-Aided Design (ICCAD).

Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation. In International Symposium on
Code Generation and Optimization (CGO).

Louis-Noel Pouchet. 2021. PolyBench/C: The Polyhedral Benchmark Suite. Re-
trieved January 16, 2021 from http://web.cse.ohio-state.edu/~pouchet.2/software/
polybench/

Mentor Graphics. 2021. Catapult High-Level Synthesis. Retrieved January 16,
2021 from https://www.mentor.com/hls-1p/catapult-high-level-synthesis/
Rachit Nigam, Sachille Atapattu, Samuel Thomas, Zhijing Li, Theodore Bauer,
Yuwei Ye, Apurva Koti, Adrian Sampson, and Zhiru Zhang. 2020. Predictable Ac-
celerator Design with Time-Sensitive Affine Types. In ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI).

Rishiyur Nikhil. 2004. Bluespec System Verilog: Efficient, correct RTL from high
level specifications. In Conference on Formal Methods and Models for Co-Design
(MEMOCODE).

Preeti Ranjan Panda. 2001. SystemC: A modeling platform supporting multiple
design abstractions. In International Symposium on Systems Synthesis.

Christian Pilato and Fabrizio Ferrandi. 2013. Bambu: A modular framework
for the high level synthesis of memory-intensive applications. In International
Conference on Field-Programmable Logic and Applications (FPL).

Raghu Prabhakar, David Koeplinger, Kevin] Brown, HyoukJoong Lee, Christo-
pher De Sa, Christos Kozyrakis, and Kunle Olukotun. 2016. Generating con-
figurable hardware from parallel patterns. In ACM International Conference on
Architectural Support for Programming Languages and Operating Systems (ASP-
LOS).

Jing Pu, Steven Bell, Xuan Yang, Jeff Setter, Stephen Richardson, Jonathan Ragan-
Kelley, and Mark Horowitz. 2017. Programming heterogeneous systems from an
image processing DSL. ACM Transactions on Architecture and Code Optimization
(TACO).

Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo
Durand, and Saman P. Amarasinghe. 2013. Halide: A language and compiler for
optimizing parallelism, locality, and recomputation in image processing pipelines.
In ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion (PLDI).

Sameer D Sahasrabuddhe, Hakim Raja, Kavi Arya, and Madhav P Desai. 2007.
AHIR: A hardware intermediate representation for hardware generation from
high-level programs. In International Conference on VLSI Design (VLSID).

Fabian Schuiki, Andreas Kurth, Tobias Grosser, and Luca Benini. 2020. LLHD: A
Multi-Level Intermediate Representation for Hardware Description Languages. In
ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI).

Shang HLS Authors. 2021. The Shang High-Level Synthesis Framework. Re-
trieved January 16, 2021 from https://web.archive.org/web/20180610233052/https:
//github.com/etherzhhb/Shang

Amirali Sharifian, Reza Hojabr, Navid Rahimi, Sihao Liu, Apala Guha, Tony
Nowatzki, and Arrvindh Shriraman. 2019. pIR: An Intermediate Representation
for Transforming and Optimizing the Microarchitecture of Application Accelera-
tors. In IEEE/ACM International Symposium on Microarchitecture (MICRO).
Satnam Singh and David J. Greaves. 2008. Kiwi: Synthesis of FPGA Circuits from
Parallel Programs. In Field-Programmable Custom Computing Machines (FCCM).
Rohit Sinha and Hiren D Patel. 2012. synASM: A high-level synthesis framework
with support for parallel and timed constructs. IEEE/ACM International Conference
on Computer-Aided Design (ICCAD).

H. Srinivasan and M. Wolfe. 1992. Analyzing programs with explicit parallelism.
In Languages and Compilers for Parallel Computing.

Veripool. 2021. Verilator. https://www.veripool.org/wiki/verilator.

Han Wang, Robert Soulé, Huynh Tu Dang, Ki Suh Lee, Vishal Shrivastav, Nate Fos-
ter, and Hakim Weatherspoon. 2017. PAFPGA: A Rapid Prototyping Framework
for P4. In Symposium on SDN Research (SOSR).

Sheng-Hong Wang, Akash Sridhar, and Jose Renau. 2019. LNAST: A language
neutral intermediate representation for hardware description languages. In Second
Workshop on Open-Source EDA Technology (WOSET).

Claire Wolf. 2021. Yosys Manual. Retrieved January 16, 2021 from http://www.
clifford.at/yosys/files/yosys_manual.pdf

Qiang Wu, Yunfeng Wang, Jinian Bian, Weimin Wu, and Hongxi Xue. 2002. A hi-
erarchical CDFG as intermediate representation for hardware/software codesign.
In International Conference on Communications, Circuits and Systems (ICCCAS).
Xilinx Inc. 2021. Vivado Design Suite User Guide: High-Level Syn-
thesis. UG902 (v2017.2) Fune 7, 2017. Retrieved January 16, 2021
from https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_2/
ug902-vivado- high-level-synthesis.pdf

Zhiru Zhang, Yiping Fan, Wei Jiang, Guoling Han, Changgi Yang, and Jason Cong.
2008. AutoPilot: A platform-based ESL synthesis system. In High-Level Synthesis.
99-112.

https://flex.cscott.net/SiliconC/
https://flex.cscott.net/SiliconC/
https://www.altera.com/products/design-software/high-level-design/intel-hls-compiler/overview.html
https://www.altera.com/products/design-software/high-level-design/intel-hls-compiler/overview.html
http://web.cse.ohio-state.edu/~pouchet.2/software/polybench/
http://web.cse.ohio-state.edu/~pouchet.2/software/polybench/
https://www.mentor.com/hls-lp/catapult-high-level-synthesis/
https://web.archive.org/web/20180610233052/https://github.com/etherzhhb/Shang
https://web.archive.org/web/20180610233052/https://github.com/etherzhhb/Shang
https://www.veripool.org/wiki/verilator
http://www.clifford.at/yosys/files/yosys_manual.pdf
http://www.clifford.at/yosys/files/yosys_manual.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_2/ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_2/ug902-vivado-high-level-synthesis.pdf

	Abstract
	1 Introduction
	2 Overview by Example
	2.1 Reduction Tree in Calyx
	2.2 Optimizing Accelerator Designs
	2.3 Structure and Control

	3 The Calyx Intermediate Language
	3.1 Components
	3.2 Cells and Wires
	3.3 Groups and Control
	3.4 Control Statements
	3.5 Attributes
	3.6 Synopsis

	4 Compiling Calyx to Hardware
	4.1 Calling Convention
	4.2 Compilation Workflow
	4.3 Compiling Control Statements
	4.4 Latency-Sensitive Compilation

	5 Optimizing Calyx Programs
	5.1 Resource Sharing
	5.2 Register Sharing via Live-Range Analysis
	5.3 Inferring Latencies

	6 Case Studies
	6.1 Systolic Array Generator
	6.2 The Dahlia Compiler
	6.3 Summary

	7 Evaluation
	7.1 Systolic Arrays
	7.2 Dahlia
	7.3 Effects of Optimization
	7.4 Compilation Statistics

	8 Related Work
	9 Future Work
	10 Conclusion
	Acknowledgments
	A The Calyx Artifact
	A.1 Abstract
	A.2 Artifact Meta-Information
	A.3 Description and Installation
	A.4 Evaluation and Expected Results
	A.5 Methodology

	References

