Vectorization for Digital Signal Processors
via Equality Saturation

Alexa VanHattum
Cornell University
Ithaca, NY, USA

James Bornholt
The University of Texas at Austin
Austin, TX, USA

ABSTRACT

Applications targeting digital signal processors (DSPs) benefit from
fast implementations of small linear algebra kernels. While exist-
ing auto-vectorizing compilers are effective at extracting perfor-
mance from large kernels, they struggle to invent the complex data
movements necessary to optimize small kernels. To get the best
performance, DSP engineers must hand-write and tune specialized
small kernels for a wide spectrum of applications and architec-
tures. We present Diospyros, a search-based compiler that auto-
matically finds efficient vectorizations and data layouts for small
linear algebra kernels. Diospyros combines symbolic evaluation
and equality saturation to vectorize computations with irregular
structure. We show that a collection of Diospyros-compiled kernels
outperform implementations from existing DSP libraries by 3.1x on
average, that Diospyros can generate kernels that are competitive
with expert-tuned code, and that optimizing these small kernels
offers end-to-end speedup for a DSP application.

CCS CONCEPTS

- Software and its engineering — Source code generation; «
Hardware — Digital signal processing; - Theory of computa-
tion — Vector / streaming algorithms.

KEYWORDS
Vectorization, DSPs, Program Synthesis, Equality Saturation

ACM Reference Format:

Alexa VanHattum, Rachit Nigam, Vincent T. Lee, James Bornholt, and Adrian
Sampson. 2021. Vectorization for Digital Signal Processors via Equality Sat-
uration. In Proceedings of the 26th ACM International Conference on Architec-
tural Support for Programming Languages and Operating Systems (ASPLOS
'21), April 19-23, 2021, Virtual, USA. ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3445814.3446707

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ASPLOS 21, April 19-23, 2021, Virtual, USA

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8317-2/21/04...$15.00
https://doi.org/10.1145/3445814.3446707

Rachit Nigam
Cornell University
Ithaca, NY, USA

874

Vincent T. Lee
Facebook Reality Labs Research
Redmond, WA, USA

Adrian Sampson
Cornell University
Ithaca, NY, USA

1 INTRODUCTION

Compute-heavy embedded sensing applications, from augmented
reality to 5G networking, rely on digital signal processors (DSPs).
DSPs target power- and energy-constrained domains with real-time
performance targets, so their design optimizes for power efficiency
over programmability and software compatibility. Their simple
in-order cores help meet strict real-time deadlines but also mean
that unoptimized code performs poorly. For performance, DSP
architectures expose VLIW and vector instruction sets with exotic
architecture-specific extensions. These instruction sets offload the
burden of parallelization onto the compiler and programmer.

DSP applications typically rely on on two categories of computa-
tional kernels': (1) large-scale kernels operating on high-dimensional
data (much larger than the machine’s vector width), and (2) small-
scale kernels operating on low-dimensional data (on the order of
the vector width). In an industrial context, the distribution of
kernels tends to be bimodally distributed: many have small dimen-
sionality (~3-6), and the remaining are much larger (~100-1000).
While compiler toolchains and vendor libraries for DSPs often fo-
cus their attention on large-scale kernels—shipping linear algebra
libraries tuned for large, dense operations—small-scale kernels still
consume a non-trivial portions of the end-to-end performance of
many emerging DSP applications. Some DSP applications are bot-
tlenecked by small-scale kernels as part of the “last mile” of a larger
computation. In other words, a variety of small kernels impose an
Amdahl limitation [8, 25, 42] that yields diminishing returns from
speeding up just the large-scale loops. Other applications, such
as simultaneous localization and mapping (SLAM) [20, 21, 33, 34]
and structure from motion [35], have many components that are
dominated entirely by small-scale kernels.

Compiling efficient small-scale kernels is challenging even for
state-of-the-art compiler techniques because the best performance
requires complex data movement strategies that are beyond the
scope of most automatic vectorization. Moreover, DSP architec-
tures are extremely diverse: they offer per-application instruction
set customization and can even support custom proprietary ISA
extensions [11]. As a result, DSP engineers still manually apply
device- and kernel-specific optimizations by hand-writing vector
intrinsics [2, 17, 43]. This manual effort does not scale with the
plethora of kernels and target architectures. For example, products
and convolutions of small 3 x 3 and 4 x4 matrices are commonplace

1Here, we define a kernel to be a function that consumes one or more multidimensional
input matrices and produces one or more multidimensional output matrices. A kernel
can be implemented as multiple nested source-level functions.

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3445814.3446707
https://doi.org/10.1145/3445814.3446707

ASPLOS 21, April 19-23, 2021, Virtual, USA

Alexa VanHattum, Rachit Nigam, Vincent T. Lee, James Bornholt, and Adrian Sampson

Scalar Symbolic Abstract ;| Equality Optimized o OBt?:wli(zegtciion Optimized
Program Evaluation Vector DSL Saturation Vector DSL P ’ C++ Intrinsics
& Lowering
§3.1 §3.2-3.4 §4
for (i=0; i<N; i++) (List (+ (Get a @) ..) vec_add(a_0, b_0);

clil = alil

+ o

(; (Get a 1) ..)

(VecAdd (Vec ..)
(Vec ..))

P

Translation

Validation
§3.4

Figure 1: The Diospyros compiler workflow. Diospyros first lifts scalar input programs into a high-level DSL via symbolic
evaluation and then searches for equivalent optimized programs using equality saturation. The optimized program is finally

lowered to C+ intrinsics for compilation with a DSP toolchain.

in various machine perception applications, but the most efficient
implementations for these two sizes are very different. Specialized
kernels for each size can vastly outperform general implementa-
tions in linear algebra libraries [15, 31].

This paper designs a compiler, Diospyros, that aims to com-
pete with manual tuning by DSP experts while baking in minimal
assumptions about the target hardware. Diospyros frames com-
pilation as a search problem in a space of candidate programs. It
defines this search space using a system of rewrite rules that en-
compass both high-level functional specifications and low-level
device-specific instructions. Crucially, the resulting program space
includes implementations that use arbitrary indexing to express
complex data movement patterns. Unlike traditional approaches
to general-purpose vectorization [16], Diospyros focuses on using
the shuffle and select instructions common in DSPs to implement
the irregular data movement necessary to pack as much work as
possible into vector lanes.

Figure 1 shows the Diospyros compilation workflow. Diospyros
takes a program in a scalar, imperative language and lifts it to a high-
level vector DSL using symbolic evaluation. The core optimization
engine is an exhaustive search in a restricted space of candidate
programs from this DSL using equality saturation [13, 36, 40]. Most
compilers apply rewrite rules in a fixed order, which offers pre-
dictable compilation but sacrifices optimality. Equality saturation
effectively applies all rewrite rules simultaneously by representing
the input program as an E-graph [23] and performing congruence
closure using the rewrite rules as an equivalence relation. The sat-
urated E-graph compactly represents the entire space of candidate
programs, from which Diospyros can extract the most efficient
one according to an abstract cost model. After extracting the op-
timal program, Diospyros lowers it to C vector intrinsics for code
generation via a backend DSP compiler.

We implement Diospyros to target Tensilica DSPs and show
that it can compile kernels that outperform optimized library func-
tions from the Tensilica SDK by a geometric mean speedup of 3.1x.
Compared to one expert-written kernel hand-tuned for a fixed
matrix size, Diospyros produces code within 8% of the expert per-
formance within 2.2 seconds of compilation time. To show that
Diospyros-compiled kernels offer end-to-end speedups on realistic
applications, we integrate them into code from Theia [35], an open-
source computer vision library for structure from motion (SFM).
The Diospyros version of this application performs 2.1x faster on

our selected functionality than Theia’s original implementation,
which uses the Eigen template library for linear algebra [12].

This paper’s contributions include: (1) a strategy for using sym-
bolic evaluation and equality saturation to search for SIMD im-
plementations of high-level specifications, (2) Diospyros, an end-
to-end compiler design that uses the rewrite system to optimize
computational kernels for DSP architectures, and (3) an evaluation
on a range of realistic DSP computations and a commercial DSP tar-
get showing performance improvement over optimized baselines.

2 MOTIVATING EXAMPLE

This section shows how an example DSP kernel poses challenges
to traditional compilers and how hardware-specific manual tuning
can outperform them. We give an overview of how Diospyros’s
design can mimic the hand-tuning process.

Consider optimizing a fixed-size matrix convolution for a DSP.
Embedded DSP applications typically rely on specialized kernel
implementations for fixed, small data sizes—for example, a convo-
lution with a 3 X 5 input matrix and a 3 x 3 filter:
for (oRow = 0; oRow < 5; oRow++) {

for (oCol = 0; oCol < 7; oCol++) {

for (fRow = 0; fRow < 3; fRow++) {
for (fCol = 0; fCol < 3; fCol++) {

fRT = 3 - 1 - fRow; fCT = 3 - 1 - fCol;

iRow = oRow - fRT; iCol = oCol - fCT;

if (iRow >= 0 && iRow < 3 &&

iCol >= 0 && iCol < 5)
o[oRow] [0Col] += in[iRow][iCol] x f[fRT][fCT];
}r 1}

The outer loops run 5 and 7 times because they iterate over the
output matrix. This convolution “pads” the input matrix at the
boundaries and produces a slightly larger output matrix.

In this example, we will optimize this convolution for the Ten-
silica Fusion G3 DSP [6], which has a 4-wide floating-point SIMD
vector unit. SIMD instructions are critical in DSP programming for
both performance and efficiency: they both enable parallelism and
amortize the energy cost of fetching and dispatching instructions.
While statically specifying the sizes allows Tensilica’s vectorizing
compiler to improve on this naive for-loop-based implementation
by 1.6X%, the best implementation we have found with Diospyros
uses machine-specific vector intrinsics to achieve a further speedup
of 22.9x. We explore why and how this gap arises in general for this

875

Vectorization for Digital Signal Processors via Equality Saturation

input vectors

index vector

a0

output vector

Figure 2: An ISA-specific shuffle instruction that takes three
arguments—two input vectors and an index vector—and pro-
duces a single output vector with the specified combination
of values. Experts can use similar instructions to orchestrate
complex data movement strategies.

category of DSP kernels, where the problem dimensions are close
to the vector width. Namely, for these kernels, boundary conditions
make up a large proportion of the kernel’s work, which hinders
straightforward approaches to parallelization.

Traditional automatic parallelization. Two commonplace com-
piler techniques for vectorizing sequential code are loop-level vec-
torization and superword-level parallelism (SLP) optimizations [16].
For 2D convolution, the index math for transposing the filter (fRT
and fcT) and the 5 f for the boundary conditions pose a problem to
loop-level vectorization. While loop-level vectorization works well
when the data dimensions are large enough that there is a steady
state that admits processing in 4-wide chunks, smaller loops do
not have such a steady state. In this convolution example, no loop
executes more times than twice the vector width—so every loop
iteration is a boundary condition.

Because the array sizes for our problem are fixed, a compiler
could unroll the loops and apply non-loop vectorization techniques
such as SLP [16]. And indeed, specializing the array sizes leads to
the aforementioned 1.6X speedup over a version with variable array
sizes. However, this approach still leaves some performance on the
table. Because the matrix dimensions (3 X 5 and 3 X 3) are close
to the machine’s vector width (4), SIMD instructions do not apply
“cleanly” to the input arrays. Furthermore, the memory accesses to
f are not contiguous, meaning that a simple vector load will not
suffice to enable vectorized arithmetic. The Tensilica compiler’s
vectorization pass fails to find perfectly aligned runs of 4 identical
operations, and it does not attempt to gather or shuffle disparate
values to fill a vector. Alternatively, the if for the boundary con-
dition means that a straightforward vectorized version will need
to use predicated operations, wasting some potential computation
bandwidth. Traditional vectorization optimizations rely on regu-
larity in data movement and computation that is not present in
specialized DSP kernels like this one, where loops are imperfect
and data sizes are not much larger than the vector width.

Hand tuning. Instead, an expert programmer can use the Fusion
G3’s special instructions for data movement to pack computation
into the vector lanes. The DSP supports gather/scatter and shuf-
fle operations that pack data irregularly into vector registers for
subsequent regular processing. For example, this intrinsic call:
int dindices[4] = {1, 2, 0, 5};

xb_vecMx32 vec3 = PDX_SEL_MX32(vecl, vec2, indices);

876

ASPLOS 21, April 19-23, 2021, Virtual, USA

computes a new 4-wide vector value by selecting specific hard-
coded indices from the concatenation of two other vectors, vec1
and vec2, as illustrated in Figure 2. The programmer can use this
strategy to implement tactics for gathering data to fill vector lanes
for later computation, like this multiplication:

xb_vecMx32 vec4 = PDX_MUL_MX32(vecl, vec3);

With judicious use of vector intrinsics and manual derivation of
index operands, an expert implementation can surmount the limita-
tions of traditional auto-vectorization. A manually tuned kernel can
be an order of magnitude faster than the automatically parallelized
version. However, the tuning required is specific to both the Fusion
G3 target and the specific specialized size of the convolution kernel.
A different vectorization strategy with completely different shuffle
indices will be optimal for a 4 X 4 filter, for example.

Vectorization via rewriting. Diospyros uses term rewriting to
search for DSP vectorization strategies that exploit this kind of ir-
regular data layout techniques to optimize for vector unit utilization.
Our system starts with an imperative reference implementation
and, using symbolic evaluation (Section 3.1), extracts a specification
describing the value to compute for each element of the kernel’s
output(s). For our convolution example, the specifications for the
first four values of the output matrix are:

[io,0 X fi.1 + 0.1 X fi.0 + ir,0 X fo,1 + i1 X fo.0 |
[io.0 X fr.2 + 0,1 X fi.1 +io.2 X fr.o + i.o X fo.2 + i1 X foa +i1.2 X fo.o |
[o.1 X fr.2 + 0.2 X fi.1 +i0.3 X fi.o + 1.1 X fo.2 +i1,2 X fo1 +i1.3 X fo.o |

(o2 X fr.2 + 0,3 X fi.1 + 0,4 X fi.0 + in,2 X fo.2 +i1,3 X fo,1 + 11,4 X fo.0 |

Here, the first expression is smaller because of the kernel’s bound-
ary condition. Diospyros uses a term rewriting system to find vec-
torization opportunities across these mathematical expressions. For
example, the vec_multiply_accumulate rule can apply here to show
that the above outputs are equivalent to expressing the last prod-
uct in each element as a fused multiply—accumulate vectorized
operation, VecMAC:

(VecMAC (...)
(Vec (Get I 6) (Get I 7) (Get I 8) (Get I 9))
(Vec (Get F 0) (Get F 0) (Get F 0) (Get F 0)))

Vec and Get are ISA-agnostic data movement abstractions that rep-
resent accessing the specified indices of a memory (with 2D arrays
flattened to 1D access). Our full vector domain specific language is
described in Section 3.1 and shown in Figure 3.

Due to the commutativity and associativity of + and X, there
are many possible shuffles a programmer could use to generate
valid VecMAC operations. Diospyros uses an equality saturation
approach to consider many possible shuffles—rather than applying
destructive rewrites, as a traditional compiler would—and selects
the pattern best suited to an abstract model of our architecture’s
data movement instructions. For example, here each Vec references
the elements of only a single input array, which can be implemented
with in-register data movement.

When targeting the Fusion G3, Diospyros produces this code for
the vectorized expression:
shuf_I = PDX_SEL_MX32(I_4_8, I_8_12, [6, 7, 8, 9]);
shuf_F = PDX_SHUF_MX32(F_0_0, [0, 0, 0, 01);
PDX_MAC_MFX32(out_0_4, shuf_I, shuf_F);

ASPLOS 21, April 19-23, 2021, Virtual, USA

The full implementation that Diospyros generates for this problem
size is 22.9x faster than a naive fixed-size implementation and 4.5X
faster than an optimized vendor library kernel.

3 REWRITING FOR VECTORIZATION

Our core vectorization formulation uses equality saturation [36] to
search for optimized implementations. This section describes the
optimization workflow. Programmers write an imperative reference
implementation using scalar operations, symbolic evaluation lifts
this to an abstract vector DSL, then Diospyros searches for an
optimal vectorized program using an equality saturation engine—
trading off efficiency and completeness in the search. Next, Section 4
shows how Diospyros compiles the optimized program back to the
imperative DSL to produce efficient code for the DSP target.

3.1 Defining and Lifting Specifications

Diospyros takes as input scalar programs written in a simple im-
perative language with first-class matrix and vector objects and
operations, implemented as an embedded Racket DSL. For example,
this code specifies a simple vector-vector add:

(define (vector-add-spec A B n)
(vec-decl 'A n 'input)
(vec-decl 'B n 'input)
(define C (make-vector n))
(for ([i nl)

(vector-set! C i
(add (vector-ref A 1)
(vector-ref B 1i))))
C)

Here, A and B are vectors of input data and n is a compile-time
parameter that determines the input size.

This input language is both convenient to write and straightfor-
ward to compile to executable code for use in validation or testing.
It supports arbitrarily complex indexing expressions and control
flow, as long as they are independent of the input data. The input
language provides the usual scalar arithmetic operations, such as +,
but users can also define custom scalar functions to reflect a given
target DSP and application.

While we could optimize this language directly (in the spirit of
Denali [13]), doing so would conflate details of the imperative imple-
mentation with the underlying abstract mathematical computation.
To focus on the latter and simplify the search, Diospyros first lifts
imperative input programs into a mathematical representation. It
symbolically evaluates the input program using Rosette [37], which
extends Racket DSLs with symbolic evaluation support.

The symbolic evaluation step produces an expression in Diospy-
ros’s vector DSL, shown in Figure 3. The vector DSL includes both
scalar and vector versions of common arithmetic operations (+,
—, X, etc.), as well as operations to initialize vectors with literals
or variables and to extract individual vector lanes. The lifting pro-
cess, however, only produces the scalar subset of the language—the
rewriting system in the next section will use the vector constructs.
Lifting supports calls to user-defined functions by introducing un-
interpreted functions. The same symbolic evaluation engine also
powers the translation validation tool that Diospyros uses to verify
its output (see Section 3.4).

Alexa VanHattum, Rachit Nigam, Vincent T. Lee, James Bornholt, and Adrian Sampson

877

(prog) == (List (expr)*) | (expr)

(expr)y == (scalar) | (vector)

== (integer) | (variable)

| (+ (scalar) (scalar)) | (- (scalar) (scalar}))
| (* (scalar) (scalar))|(/ (scalar) (scalar))
| (sgn (scalar)) | (sqrt (scalar)) | (- (scalar))
|
|

(scalar)

(Get (variable) (integer))
({func) (scalar)*)

(Vec (scalar)*) | (Concat (vector) {vector))

| (VecAdd (vector) (vector)) | (VecMinus (vector) (vector))
| (VecMul (vector) (vector)) | (VecDiv (vector) (vector))

| (VecMAC (vector) (vector) (vector))
|

|

(vector) =

(VecSgn (vector)) | (VecSqrt (vector))
(VecNeg (vector))

(func)
Figure 3: Diospyros’s vector DSL. A top-level program is a
(possibly singleton) list of outputs. Expressions operate over
both scalars and vectors.

u= (symbol)

To expose vectorization opportunities for the rewriting system,
the lifting process converts matrix and vector outputs into a single
List output term, with one element for each value in the program
output. For example, the vector-vector add above with n = 2 lifts
to this expression:

(List
(+ (Get a 0) (Get b 0))
(+ (Get a 1) (Get b 1)))

Here, Get is list access and List constructs a new output list holding
the two elements of the output vector.

3.2 Rewriting Strategy

To vectorize the lifted program in the abstract DSL, Diospyros
uses a family of built-in (though user-extensible) rewrite rules. The
key equivalence that enables vectorization is that the rewrite rules
consider a List to be equivalent to a concatenation of fixed-size
vectors. For example, Diospyros can rewrite our vector-vector add
with n = 4 and a vector width of two this way:

(List (+ (Get a 0) (Get b 0))
(+ (Get a 1) (Get b 1))
(+ (Get a 2) (Get b 2))
(+ (Get a 3) (Get b 3)))
N>
(Concat (Vec (+ (Get a 0) (Get b 0))
(+ (Get a 1) (Get b 1)))
(Vec (+ (Get a 2) (Get b 2))
(+ (Get a 3) (Get b 3))))

Vec constructs a vector from a configurable machine-width number
of scalar values (here, two), and Concat concatenates two vectors
into a list. In real DSP code, they correspond to vector load and store
instructions (see Section 4). Diospyros’s rewrite rules can pad lists
with zeros if their lengths are not a multiple of the vector width.
This rewriting into vector-sized chunks creates opportunities to
use vectorized computation. The rewrite system finds Vec expres-
sions that contain similar scalar expressions and replaces them with

Vectorization for Digital Signal Processors via Equality Saturation

their vectorized equivalents. For example, the rule for introducing
vectorized add instructions, VecAdd:

(Vec (+ a b) (+ ¢ d)) ~ (VecAdd (Vec a c) (Vec b d))
applies twice to the example above, producing:

(Concat (VecAdd (Vec
(Vec

(VecAdd (Vec

(Vec

(Get a 0) (Get a 1))
(Get b 0) (Get b 1)))
(Get a 2) (Get a 3))
(Get b 2) (Get b 3))))

Here, the indices in the Get expression determine the data move-
ment strategy required for this program. In this case, the pairs of
indices 0, 1 and 2, 3 can each be implemented by a vector load with-
out additional data movement. This example is now fully vectorized
because all Vec expressions contain simple memory lookups and
no scalar computations expressions remain.

Diospyros’s code generation backend (Section 4) produces DSP
code from this vectorized program by emitting C intrinsics resem-
bling this pseudocode:

vecreg a_0_2 =
/] ...
vecreg b_2_4 =

load(a, 0, 2);

load(b, 2, 2);

vecreg add_1 =
vecreg add_2 =

vec_add(a_06_2,
vec_add(a_2_3,

b_0_2);
b_2_4);

store(out, add_1, 0, 2);
store(out, add_2, 2, 2);

While this simple example has perfectly aligned vector accesses,
most realistic code requires nontrivial data movement to fill the vec-
tor registers. Diospyros’s backend consumes these Vec expressions
to produce actual loads and data movement instructions based on
the high-level strategy found by the rewrite engine. During code
generation, the backend selects vector shuffle code to implement
each given Vec expression. Similarly, real code mixes both vector
and scalar computation; Diospyros generates a mixture of both.

3.3 Searching for Rewrites

In general, applying the rewrite rules directly (like a traditional
compiler) does not promise optimality—we must be sure to ap-
ply the right rules in the right order to find the optimal program
(with respect to our rule set). This section describes how Diospyros
searches the space of all rewrite rule applications by representing
the lifted program as an equality graph (E-graph) [23] and using
equality saturation [36] for efficient search.

Equality saturation. An E-graph is a data structure for efficiently
representing a large set of terms and equivalences between them.
The nodes of an E-graph are function symbols or terminals, and
subgraphs represent terms. Each node is associated with an equiva-
lence class, and the E-graph guarantees that two nodes are in the
same equivalence class if and only if the program terms rooted
at them are equivalent. When used for program optimization, the
equivalence relation is program equivalence.

Initially, the E-graph represents only one program and its sub-
terms (the input program in the abstract DSL). Equality saturation
then applies rewrite rules (program transformations) to the E-graph,
which introduces new nodes into the graph and annotates them

878

ASPLOS 21, April 19-23, 2021, Virtual, USA

\

[Vec MACJ

\
|
'
|

[VecAdd J

/

(a) Before rewriting

(b) After rewriting

Figure 4: An E-graph before and after applying a rewrite rule
for fused multiply-accumulate. Solid boxes are nodes and
represent program terms. Dashed boxes represent equiv-
alence classes. After rewriting, the VecAdd and VecMAC
terms are in the same equivalence class.

with the appropriate equivalence classes to maintain congruence.
For example, this is a rewrite rule for fused multiply-accumulate:

(VecAdd a (VecMul b ¢)) «~» (VecMAC a b ¢)

Figure 4 illustrates the application of this rewrite rule to an E-graph
which initially represents the program (VecAdd vi (VecMul v2 v3)).
Applying the rule introduces a new VecMAC node into the graph,
with the variables v1, v2, and v3 as children, and adds the new node
to the equivalence class of the existing VecAdd node.

Equality saturation iteratively applies all rewrite rules (possi-
bly multiple times), terminating when no potential rewrite rule
application would change the graph—the graph has saturated—or a
timeout is reached. At this point (unless the timeout is reached), the
saturated E-graph represents all programs that could be produced
by applying the rewrite rules in any order. This property allows us
to avoid the phase ordering problem common to compilers.

We use the egg [40] library for E-graphs and equality saturation.
In egg, a rewrite rule comprises two parts: a searcher that looks for
nodes that can be rewritten, and an applier that applies a rewrite.
egg exposes a pattern DSL to specify simple syntactic rewrites and
a Rust API to implement custom searchers and appliers with more
complex logic than simple pattern matching.

Custom matching for vectorization. Simple unary scalar opera-
tions can be vectorized using rules of the form shown in Section 3.2.
However, DSP kernels often do not fit exactly within the target
architecture’s vector lanes (for example, a 3 X 3 matrix multiply
on an architecture with vector width 4). To vectorize operations
while maximizing hardware utilization, Diospyros provides rewrite
rules that work even when some lanes of a vector computation are
empty. For example, the following concrete rewrite is sound and
enables vectorizing an addition with irregular shape:

(Vec (+ a b) 0 (+ ¢ d) 0) » (VecAdd (Vec a 0 ¢ 0) (Vec b 0 d 0))

To avoid specifying every permutation of zeros on the left-hand
side of this rule, and repeating this specification for each binary
operation, Diospyros uses egg’s support for custom rewrite rules
that go beyond pattern matching. The custom rule first matches
on the outer vector and then identifies whether each lane matches
either the operator pattern ({op) x y) or chosen concrete values
(in this case, a constant zero). Using these custom rules makes it
easier to extend Diospyros with DSP-specific instructions without
developing a comprehensive new rewrite rule family.

ASPLOS 21, April 19-23, 2021, Virtual, USA

Associativity & commutativity. A common challenge in rewrite
systems is handling operators that are associative or commutative
(or both). For example, we want this rewrite:

(+(+ab)0)ew (+ab)

to also apply to associative or commutative variants of the LHS
such as (+ a (+ b 0)). But applying associative and commutative
variants of such rules to saturation dramatically increases the size
of an E-graph; the decision problem of whether two terms can be
unified modulo associativity and commutativity (the AC-matching
problem) is NP-complete [4]. This theoretical problem is also a
scalability challenge for equality saturation in practice [22].

Diospyros addresses AC-matching by optionally allowing users
to disable associativity and commutativity rules during saturation.
This approach sacrifices completeness in terms of missing some
potential rewrites, but reduces memory requirements and thus
allows Diospyros to compile kernels with deeper syntax trees over
associative and commutative operators. To regain some of the power
of associativity and commutativity, we use more complex rewrite
rules to selectively re-enable some limited forms of AC rules that
we have found to be profitable in practice.

For example, consider the following 4-wide vector:

(Vec (+ a®@ (x bO c0))
(+ al (*x bl cl))
(+ a2 (* b2 c2))
(+ (x b3 c3) a3))

We would like to optimize the scalar operations in this vector into a
single vectorized multiply-accumulate. However, without a general
commutativity rule for +, the fourth lane prevents introducing a
VecMAC operation. We work around this limitation using a custom
searcher that matches on each lane independently with one of
several pattern options, and then combines the results. For vector
multiply-accumulate, each lane must match one of these patterns:

(+a(*bc) +(Cboa) (be) 0
The applier (right-hand side) of this rule collects the arguments

into vectors (mapping “missing” values to zero) and applies the
fused operation:

(VecMAC (Vec a0 al a2 a3)
(Vec b0 bl b2 b3)
(Vec cO cl c2 c3))

Unlike an approach that includes AC rules when saturating the E-
graph, this custom searcher approach does not persist its discovered
equivalences. This difference trades off memory for compute: rather
than persisting these equivalences in the E-graph, we re-compute
them every time we try to apply the custom searcher. In practice,
we have found this to be a worthwhile trade-off, allowing larger
kernels that previously exhausted the memory of a 512 GB host
to successfully compile. We expect that similar customizations for
AC searching would be beneficial in a variety of domains beyond
vectorization.

Floating point accuracy. Diospyros’s rewrite rules are correct
with respect to the real numbers. They do not adhere to strict float-
ing point semantics which, for example, would not allow associa-
tivity in addition or multiplication. Diospyros shares this character-
istic with other modern optimizing compilers for compute kernels

Alexa VanHattum, Rachit Nigam, Vincent T. Lee, James Bornholt, and Adrian Sampson

that prioritize speed over numerical stability [14, 29]. We measure
floating point error in our evaluation (Section 5) and find Diospyros-
generated code to match reference implementations within several
decimal places.

3.4 Extraction

After equality saturation completes, Diospyros has a single E-graph
representing many programs that are equivalent to the input pro-
gram (according to the rewriting system). Each program would
be a valid solution to the compilation problem, but we want to
extract the most efficient solution. We cannot explicitly enumerate
the programs to search for an optimal one—doing so would sacri-
fice the compactness of the E-graph representation. Prior equality-
saturation-based superoptimizers [13] extract efficient code by gen-
erating cost-related verification conditions from the E-graph and
discharging them with a SAT solver, but this requires a detailed
architecture-specific cost model.

Diospyros extracts an efficient solution from the E-graph using
a cost model that assigns a fixed cost to each operator in the vec-
tor DSL. This cost model reflects the time and energy savings of
vectorization as well as the cost of reading values from registers
versus memory. To support efficient extraction from the E-graph
(linear in the number of E-graph nodes rather than the number of
candidate programs), this cost function must be strictly monotonic,
i.e., an expression’s cost is greater than the sum of the costs of its
subexpressions. This limitation makes extraction efficient because
it avoids the need to explore all the zero-cost variants of a candidate
expression. While this restriction limits the cost models Diospyros
can express, in our experience we can still extract fast programs, as
Section 5 demonstrates.

Our cost model for data movement is intentionally high-level—
Diospyros assigns a lower cost to shuffles that gather data from a
single input array (or zeros) than to shuffles across different inputs
or non-zero scalars. The Fusion G3’s fast, unrestricted shuffle in-
struction allows this abstract cost model to serve as a good proxy
for data movement costs. This approach may be a poorer fit for ar-
chitectures without support for flexible shuffles (Section 6 discusses
this limitation further).

Timeouts. Saturating an E-graph guarantees that it captures all
possible orderings of the rewrite rules. In practice, saturation can
be very expensive, and so we impose both a wall-clock timeout
and an E-graph node limit to terminate early. Diospyros can still
produce a solution from a timed-out compilation by applying the
above extraction process to the partially saturated E-graph. Half of
our benchmarks in Section 5 time out, and yet most still outperform
optimized libraries. Section 5.5 studies the impact of timeouts on
the quality of Diospyros’s output.

Translation validation. Diospyros depends on a set of rewrite
rules to define the search space of equivalent programs. The equality
saturation engine trusts these rules; while most rules are simple,
an incorrect one can cause Diospyros to miscompile a program. We
address this risk by re-using the symbolic evaluation engine from
Section 3.1. We use this engine to optionally perform translation
validation on the final extracted program, using Rosette [37] to

879

Vectorization for Digital Signal Processors via Equality Saturation

prove that the extracted program is equivalent to the input one for
all possible inputs.

The validation assigns no semantics to the uninterpreted func-
tions that represent user-defined functions, and so programs involv-
ing them may produce spurious validation failures (for example, we
would not know that a user-defined square function only produces
non-negative values). The user can optionally provide (possibly
partial) semantics for user-defined functions as a Racket function,
which Rosette lifts to operate on symbolic inputs and uses to vali-
date translations. These semantics are used only at the translation
validation stage and not by the rest of the compiler.

Translation validation removes the equality saturation engine
and the rewrite rules themselves from the trusted computing base
of the compiler. However, the validation is between two programs
in the vector DSL, and so both the initial lifting from imperative
code into that DSL and the backend code generation (Section 4)
are still trusted. Diospyros’s translation validation models values
in the theory of real arithmetic, rather than with precise floating
point semantics. Anecdotally, we have found translation validation
very useful when developing and debugging new rewrite rules and
vector DSL extensions.

4 LOWERING & CODE GENERATION

After extraction from the E-graph, we are left with a vectorized
program in an idealized vector DSL. This section describes how
Diospyros compiles this program, first to a lower-level vector IR
and then to C+ specific to the target DSP architecture.

Abstract vector IR. To capture the essence of vector computation
with data movement, the Diospyros backend defines a machine-
independent vector intermediate representation (IR). At this abstrac-
tion level, kernels operate on user-specified input arrays to produce
outputs using an imperative language free of control flow. The IR
includes common vectorized operations such as memory loads and
stores, arithmetic, and data shuffles, as well as user-defined uninter-
preted functions for both scalar and vector operations. While the IR
is at a fairly low level of abstraction, it abstracts away concrete de-
tails of the DSP architecture, deferring them to a later architecture-
specific instruction selection phase (Figure 1).

One key challenge to solve at this compilation step is how to
translate instances of Vec in the vector DSL. Vec terms represent
vector initializations, and each vector lane can be populated from an
arbitrary memory location. For example, the quarternion product
benchmark we evaluate in Section 5 includes a Vec term in its
output of the form:

(Vec (Get a 1) (Get a 2) (Get a 0) (Get a 3))

To initialize this vector, the backend IR includes a vector shuffle
operation:

(vec-shuffle inputs indices)

that takes as input an array of indices defining where to move
each element of inputs. The IR does not restrict the possible values
of indices, offering the flexibility to compile vectorization pat-
terns discovered by equality saturation that require complex data
movement. Lowering this instruction to the target DSP architecture

880

ASPLOS 21, April 19-23, 2021, Virtual, USA

requires selecting an instruction sequence that achieves this desired
movement using the architecture’s available shuffle operations.

IR-level optimization. Diospyros’s compilation flow includes fully
unrolling loop nests, which can create very large programs with
redundant terms. This redundancy is not an issue during equal-
ity saturation, because the E-graph representation implicitly de-
duplicates redundant terms. However, a naive lowering from the
high-level vector DSL would include this redundancy and produce
kernels far too large for resource-constrained targets. The Diospy-
ros backend implements a local value numbering (LVN) pass to
eliminate redundant terms. This pass is highly effective: for the
quarternion product benchmark in Section 5, it reduces the output
size from over 100,000 lines of C+ to under 500 lines.

Instruction selection. The final phase of compilation is to per-
form instruction selection for a concrete architecture. Diospyros
delegates much of this work to the vendor-supplied DSP compiler
toolchain, avoiding the need to integrate deep target-specific knowl-
edge into Diospyros for each new DSP target architecture. The low-
ering phase translates the low-level IR into C+ compiler intrinsics
that are then compiled with the DSP toolchain. The programmer can
provide the name and type signature of target-specific instructions
for both scalar and vector operations.

5 EVALUATION

Our evaluation has two main components: a demonstration of
speedups for individual kernels compiled with Diospyros (Sec-
tion 5.4), and a more detailed examination of an application that
can benefit from replacing library calls to fixed-sized linear algebra
kernels with Diospyros kernels (Section 5.7).

5.1 Implementation

Diospyros currently targets Tensilica’s Xtensa Fusion G3 family of
DSP architectures [6]. The backend lowers the vec-shuffle instruc-
tion in the low-level IR to the Xtensa PDX_SHFL_MX32 (single-register
shuffle) and PpXx_SEL_MX32 (two-register select) intrinsics. To imple-
ment arbitrary shuffles with more than two registers, Diospyros
uses nested select instructions.

Diospyros’s implementation spans two languages. 4,800 lines of
Racket, using the Rosette framework [37], implement the domain-
specific vector languages, lifting, translation validation, and back-
end compilation phases. 1,400 lines of Rust implement the rewrite
rules and cost model using the egg [40] equality saturation library.

5.2 Methodology

We report cycle counts from Tensilica’s cycle-level simulator for the
Fusion G3 DSP processor [6], xt-run. We use use xt-run’s default
memory model, which assumes an ideal, unit-delay memory for
all accesses. The simulator is deterministic, so we report results
for a single execution. We compile all implementations (baseline
loops, library-provided functions, and Diospyros-generated code)
with the xt-xcc/xt-xc++ compiler from the Tensilica Xtensa SDK

ASPLOS 21, April 19-23, 2021, Virtual, USA

Alexa VanHattum, Rachit Nigam, Vincent T. Lee, James Bornholt, and Adrian Sampson

Table 1: Benchmark kernels used in the evaluation. We list the lines of code in the reference implementation and show the
time and maximum memory used for compilation, including symbolic evaluation, optimization, and code generation but not

translation validation.

Benchmark Description Ref. LOC Size Time Memory
2DConv 2D convolution 131 3x3, 2x2 2.2s 145 MB
3x3,3x3 5.6s 145 MB
3x5,3x3 30.3s 626 MB
4x4,3x%3 23.8s 370 MB
8x8, 3x3 3m16s’ 3.8GB
10x10, 2x2 21.6s 401 MB
10x10,3x3 3m24st 4.1GB
10x10,4x4 3m11s’ 5.0GB
16x16, 2x2 1m 8s 1.2 GB
16x16, 33 3m9s’ 47GB
16x16,4x4 3m57st 44 GB
MatMul matrix multiply 71 2x2,2%2 1.9s 144 MB
2x3,3x3 2.2s 136 MB
3x3,3x3 2.7s 124 MB
4x4, 4x4 5.8s 130 MB
8x8, 8x8 3m22s’ 4.0GB
10x10, 10x10 3m 305T 6.0 GB
16x16, 16x16 3m 385T 4.5 GB
QProd quaternion product 144 4,3,4,3 6.7s 128 MB
QRDecomp QR matrix decomposition 174 3x3 4m 38s’ 2.2GB
4x4 4h 25m’ 354 GB
+ Equality saturation timed out after 180s.
- R
@ 16
E 8 Naive
:;’ 4 Naive
2 2 f— (fixed size)
% 1 mmm Diospyros
% 0.5 s Nature
: 0.25 | | = Eigen
& n]] I I I | I |
33 3x3 3x5 4x4 8x8 10x10 10x10 10x10 16x16 16x16 16x16 2x2 2x3 3x3 4x4 B8x8 10x10 16x164,3 4,3 3x3 4x4
2x2 3x3 3x3 3x3 3x3 2x2 3x3 4x4 2x2 3x3 4x4 2x2 3x3 3x3 4x4 8x8 10x10 16x16 QProd QR QR
2DConv 2DConv 2DConv 2D Conv 2DConv 2DConv 2DConv 2D Conv 2DConv 2DConv 2DConv MatMul MatMul MatMul MatMul MatMul MatMul MatMul Decomp Decomp

Figure 5: Speedup over Naive (fixed size) in simulated cycles, log scale. Bars above the blue line indicate a speedup. Naive is a
naive loop nest, Naive (fixed size) is a loop nest with fixed bounds, Diospyros is our system, Nature is a vendor-supplied library

function, and Eigen is a C+ template linear algebra library.

at the highest optimization level, -03.> We run experiments on a
machine with two Intel Xeon E5-2620v4 CPUs running CentOS 7.6.
We give Diospyros a 3-minute timeout for equality saturation with
a node limit of 10,000,000. We run without full associativity and
commutativity enabled (as described in Section 3.3).

2Tensilica also provides a second compiler, called xt-clang++, that is not well-
documented in our version of the Xtensa SDK. Xtensa specifies that xt-clang++
does not include a loop transformation framework, such as the one in xt-xc++ at
the —03 optimization level; however, it does perform better on some scalar code due
to more aggressive inlining and a different software pipelining scheduler. To ensure a
consistent baseline, we use the better documented, default xt—xc++ compiler.

881

We compare Diospyros with the Nature DSP library included
with Tensilica’s SDK. Nature is optimized specifically for the Fu-
sion G3 using vector intrinsics, so it performs better than naive
C+; however, the library’s performance is limited by the need to be
generic over matrix sizes. Not all sizes have Nature comparisons
because the library often restricts dimensions to multiples of 4 to
match the machine vector width. We also compare with Eigen [12],
a portable (not Xtensa-optimized) C+ template library for linear
algebra, where available. Although Nature and Eigen are the com-
petitive baselines, we also include straightforward loop-nest-based

Vectorization for Digital Signal Processors via Equality Saturation

implementations for reference: one with parametric sizes and one
with sizes fixed at compile time (with #define). Figure 5 normalizes
simulated cycle times as speedups over the fixed-size naive baseline.

5.3 Kernel Benchmarks

Table 1 lists the benchmark kernels we use, which are inspired
by use cases in computer vision and machine perception. QProd,
for instance, is a Euclidean Lie group product [32], which includes
quaternion and translational product components and appears in
applications such as pose estimation or camera models.

The table also shows the total compilation time for each bench-
mark. While we set the timeout for equality saturation at just 3
minutes, some benchmarks take a significant amount of time to
do backend optimization and code generation. QRDecomp at the
4 x 4 size is a pathological case. The kernel when fully unrolled
is extremely large: the extracted specification alone is a 509 MB
text file. As a result, the E-graph does not saturate and it finds no
vector instructions. The expression is heavily redundant, so our
post-processing optimizations (Section 4) take several hours and
gigabytes of memory to remove redundancy before generating out-
put program, producing only 457 lines of C as output. Here, the
performance benefits of the additional common subexpression elim-
ination enabled by symbolic evaluation (and exploited by our local
value numbering optimization) are enough to beat the naive and
library implementations, even without vectorization. We discuss
this effect further in Section 5.6.

5.4 Kernel Performance Results

Figure 5 compares the Diospyros-generated kernels against straight-
forward loop-based implementations (with both parametric sizes
and inlined fixed sizes to facilitate more aggressive -03 optimiza-
tions) and the Nature DSP and the Eigen library functions. On aver-
age, Diospyros-optimized kernels outperform the best non-expert
baseline by 3.1x.

The Diospyros-generated matrix multiply kernels are between
2.7x and 19.3x faster than the fixed-size naive loop nests. The trends
in Figure 5 indicate that even highly-optimized code such as Nature
can perform poorly on small kernels, such as the 2 x 2 square matrix
product, due to the control overhead of the parametrized unrolling.

In the case of 2DConv, our example from Section 2, Diospyros
finds solutions that are up to 7.5x faster than the library implemen-
tations. Nature outperforms Diospyros on 2DConv at two sizes that
are greater than or equal to the vector width: input sizes 16 X 16
and 10 X 10, with filter size 4 X 4. The Nature library’s 2D con-
volution makes extensive use of vector intrinsics for loads, stores,
and arithmetic operations; however, its unrolling strategies are not
amenable to cases where the filter size is near but not equal to the
vector width.

In the case of matrix multiply, we also have access to propri-
etary hand-tuned code written for the Fusion G3 by a DSP expert
for a single fixed size, 2 X 3 by 3 x 3. The Diospyros-generated
kernel compiles with full equality saturation in 2.7 seconds and
produces runtime performance that is within 8% of the expert per-
formance (39 vs. 36 cycles). The Diospyros kernel and the expert
kernel perform the same number and type of vector operations (two
multiplies and four multiply-accumulates), but Diospyros’s logic to

882

ASPLOS 21, April 19-23, 2021, Virtual, USA

7z 1o I——
5 30 | ——
]

& o I

s 120 I

2

£ 1s0

P Nature

0 200 400 600 800 1000 1200

Simulation cycles, 10x10 10x10 MatMul

1400 1600

Figure 6: Effect of search timeout on MatMul performance.

load elements into registers from main memory is less efficient. We
believe this performance gap could be eliminated with additional
engineering effort in improving code generation.

5.5 Timeout Ablation Study

Diospyros’s rewrite engine uses a timeout to emit suboptimal solu-
tions even when it does not reach full equality saturation. Shorter
timeouts stop Diospyros from completely vectorizing the kernel
but still emit an executable C kernel. Figure 6 shows the effect of in-
creasing the timeout on our MatMul benchmark for the largest size,
10 x 10 by 10 x 10. With a 10-second timeout, the Diospyros gen-
erated kernel performs far better than a naive kernel (1,568 cycles),
but not as well as the size-agnostic implementation in the Nature
library (1,241 cycles). Increasing the timeout improves the quality
of the generated benchmark, ultimately saturating the E-graph and
finding a kernel that beats even the Nature library taking 847 cycles.
This formulation allows programmers to trade off compilation time
for runtime performance of the generated kernel.

5.6 Vectorization Ablation Case Study

As the results for QRDecomp at the 4 x4 size demonstrate, symbolic
evaluation alone enables loop unrolling and common subexpression
elimination that yield performance benefits even without explicit
vectorization. To isolate the performance advantage of our vec-
torization strategy over other factors, we measure performance
for Diospyros with all vector rewriting rules disabled. Compiling
kernels with Diospyros without these vector-related rules (but with
symbolic evaluation, scalar rewrite rules, and common subexpres-
sion elimination) yields code that performs 2.2X better than the
best non-Diospyros baseline, compared to 3.1 with vector rewrite
rules. In 4 out of 21 kernels, the non-vectorized code is actually
faster than the Diospyros-vectorized code because the vendor’s
compiler can produce more heavily optimized scalar code. We be-
lieve Diospyros could improve on these cases with a better cost
model that reflects the overheads of vector packing and engineering
enhancements to the backend code generation.

5.7 Application Case Study

We implement a piece of a digital signal processing application
that can use Diospyros-generated kernels to observe their effect
in context. Sensing applications such as structure from motion
(SFM) [35] are rich with small-scale linear algebra kernels calls that
can become bottlenecks if they are implemented in a generic way.

This section studies a camera model computation from the Theia
open-source SFM package [35], which is representative of the kinds
of embedded vision workloads that are common on DSPs. Theia is

ASPLOS 21, April 19-23, 2021, Virtual, USA

well optimized and uses the popular Eigen [12] library of matrix
kernels, but it is not specifically optimized for DSP architectures. It
uses a camera model to define how points in 3D space project into
a 2D image plane captured by the sensor array. We focus on this
initialization function in Theia’s camera model:

bool Camera::InitializeFromProjectionMatrix(
const int image_width,
const int image_height,
const Matrix3x4d projection_matrix)

The core functionality is in DecomposeProjectionMatrix, a function
that initializes camera parameters projecting to a rotation matrix
using a Jacobi SVD decomposition and then decomposing the ma-
trix using RQ decomposition. We port becomposeProjectionMatrix
to Tensilica’s Fusion G3 DSP. We compare against a version us-
ing single-precision floating-point numbers (the original code uses
double-precision FP, but both the original and our optimized ver-
sions are accurate within 1070 even with single precision). We
found that 61% of the run time was spent on a call to a 3 X 3 QR
decomposition from the Eigen library.

We substitute a QR decomposition kernel generated by Diospy-
ros for the Eigen implementation to measure its effect on the overall
computation. QR decomposition is a linear algebra kernel that takes
as input a square matrix A and finds a right triangular matrix R
and an orthogonal matrix Q such that A = Q X R. Both Eigen and
our implementation use the Householder algorithm to iteratively
build both outputs, using a series of matrix multiplications along
with scalar computations. The number of floating point multipli-
cations is cubic in relation to the matrix size. We implement QR
decomposition with about 170 lines of imperative Racket. The re-
sulting SMT-based specification has over 65,000 calls to floating
point multiply, demonstrating the complexity of this kernel.

For the complete projection matrix computation, the Diospyros-
optimized version is 2.1x faster than the original Eigen-based imple-
mentation (30,552 vs. 64,025 cycles). The QR decomposition kernel
alone is an order of magnitude faster than Eigen’s implementa-
tion (see Section 5.4), and these savings translate to a substantial
speedup in the complete computation.

6 LIMITATIONS & PORTABILITY

While Diospyros’s design aims to generalize across DSP architec-
tures, we built the prototype in this paper to target the Tensilica
Fusion G3 specifically. Aspects of the rewriting strategy in Sec-
tion 3.2 reflect the Fusion G3’s ISA: namely, the vector width, the
available vector arithmetic operations, and the support for flexi-
ble “shuffle” instructions for data movement. However, Diospyros’s
equality saturation engine is parametric over most of these target
details—for example, a simple compile-time setting controls the
target vector width.

To target a different DSP, a designer would need to add or remove
rewrite rules that reflect the available primitive operations. For
example, consider a DSP with a vectorized fast reciprocal operation.
To add support for this instruction, a user would need to: (1) add
a scalar rewrite rule like (/ 1 x)~w (recip x), relying on existing
support for division; (2) inform the rewrite engine that recip has a
vector equivalent, using a rule builder available in the Diospyros

Alexa VanHattum, Rachit Nigam, Vincent T. Lee, James Bornholt, and Adrian Sampson

library; and (3) add the target-specific intrinsic to the backend (1-2
lines of code to map VecRecip to the vendor intrinsic).

An important assumption in Diospyros is that the target can
support flexible data movement between vector registers. Its rewrite
rules allow unrestricted data movement during equality saturation,
with a relatively abstract cost model that assigns a higher cost to
gathering data across different inputs or from non-zero scalars. We
expect this approach to be most appropriate for architectures with
a flexible “shuffle” instruction that uses an index vector to change
positions within a vector. For architectures without this kind of
flexible data movement, the backend would need to fall back to
scalar operations more frequently, which would be more expensive.

7 RELATED WORK

Vectorizing compilers. Classical vectorization techniques—from
loop dependency analysis [1] to modern auto-vectorization tech-
niques [17, 19, 24]—typically do not attempt to aggressively shuffle
data into irregular patterns. Existing techniques prioritize efficient
compilation over optimality: they are designed to run on millions
of lines of code but miss vectorization opportunities.

Previous work has used the Halide language [29] to target DSPs,
but has not supported exploration of a large search space of irregular
data movement strategies [39]. Other approaches can generate
target-specific shuffles to implement known permutations, but do
not find the permutation strategies themselves [9, 18]. Our search
strategy can discover novel shuffles and data movement, automating
the labor-intensive hand-tuning process at the cost of increased
compilation time.

SLinGen [31], part of the SPIRAL project [10, 28], optimizes small
linear algebra kernels by first applying optimizations like loop re-
ordering and vectorization and then autotuning. Like SLinGen,
Diospyros works at a higher abstraction level to enable optimiza-
tions that would not be apparent at the assembly level. However, our
work uses equality saturation both to avoid hand-crafting specific
optimization patterns (including for custom functional units that
are common on DSPs) and to offer higher coverage of the search
space than autotuning.

Program synthesis. Program synthesis techniques can expend
compilation time to discover novel optimized programs. Barthe
et al. [3] develop an auto-vectorizer using inductive synthesis but
focus on general-purpose code rather than linear algebra and so do
not generate shuffles. Cowan et al. [7] generate quantized machine
learning kernels using syntax-guided synthesis. Their sketches
exploit the reduction structure of these kernels and so cannot invent
new data movement. MSL [41] is a synthesizer that generates bulk-
synchronous parallel programs. The synthesizer reduces the parallel
problem to a sequential one, uses a syntax-guided synthesis tool [30]
to solve the sequential problem, and then compiles the result to
message-passing parallel code.

Swizzle Inventor [27] infers permutations of data and compu-
tation (swizzles) that are optimized for GPU memory hierarchies.
Unlike Swizzle Inventor, Diospyros has the ability to change the
compute code itself (e.g., by fusing multiply—accumulates) rather
than just the data movement. Swizzle Inventor also requires users
to provide a sketch identifying the sites of possible swizzles; Diospy-
ros’s rewrite rule system does not require sketching.

883

Vectorization for Digital Signal Processors via Equality Saturation

Unlike many synthesis techniques, Diospyros has the ability to
extract partial solutions if the synthesis process takes too long.
Recent work [26] explores synthesis techniques that are best effort,
returning partially valid solutions. Diospyros’s rewrite rules are
sound, and so the partial solutions it returns are always valid, but
the partial solutions are not provably optimal (even with respect to
the limited rewrite rules). This design allows Diospyros to avoid
expensive optimality proofs that can dominate synthesis time [5].
Incorporating unsound rewrite rules that can be repaired at code
generation time is an appealing direction for future work.

An earlier version of Diospyros [38] relied on syntax-guided
synthesis backed by an SMT solver. It generated optimized linear
algebra kernels but encountered scaling issues even on small (2 X 2)
kernels because it needed to reason about bit-level instruction se-
mantics during synthesis. Diospyros now abstracts away arithmetic
semantics and focuses on vectorization by using term rewrite in-
stead, so it can scale to kernels 10x larger than the SMT-based
version. In addition, the previous version of Diospyros required a
full program sketch in addition to a specification for each kernel.
The current Diospyros system allows users can reuse the same
rewrite rules across different kernels.

Term rewriting systems. Diospyros’s optimization approach is
based on equality saturation [36, 40], a technique for optimizing
compilation using equality graphs (E-graphs). Equality saturation
alleviates the phase ordering problem of traditional compilers by
applying rewriting rules to an E-graph, implicitly capturing all
possible phase orderings. Recent work expands equality satura-
tion to new compilation domains such as CAD models [22]. These
approaches exploit the insight that equality saturation does not
require backtracking so it admits an asymptotically more efficient
E-graph implementation [40]. Diospyros instantiates this approach
for vectorization, using equality saturation to exhaustively search
candidate vectorized programs that include data movement.

Denali [13] is an equality saturation-based superoptimizer for
Alpha assembly code. It saturates an E-graph using assembly-level
rewrite rules and then extracts an optimal program by using a
SAT solver to compute a detailed cost model. Diospyros’s rewriting
happens instead over an abstract DSL, which sacrifices some target-
specific optimality in favor of reasoning about data movement;
such higher-level optimizations are typically where expert DSP
developers focus their hand-tuning efforts.

8 CONCLUSION

Diospyros combines symbolic evaluation, equality saturation, and
translation validation to build an end-to-end compiler for high-
performance DSP code. Diospyros is extensible: users can bring
domain- and architecture-specific insights by adding new rewrite
rules to the equality saturation scheme. A main avenue for future
work is to exploit this flexibility to target more DSP targets and
other esoteric, customizable hardware architectures beyond DSPs.

ACKNOWLEDGMENTS

We thank Jacob Delgado-Lopez for his implementation contribu-
tions and Armin Alaghi and Max Willsey for early feedback on this
work. Many thanks to the anonymous ASPLOS reviewers and our
shepherd, Shoaib Kamil, for their detailed feedback.

884

ASPLOS 21, April 19-23, 2021, Virtual, USA

This work was supported in part by the Center for Applications
Driving Architectures (ADA), one of six centers of JUMP, a Semicon-
ductor Research Corporation program co-sponsored by DARPA. It
is also partially supported by the Intel and NSF joint research center
for Computer Assisted Programming for Heterogeneous Architec-
tures (CAPA). Support included NSF awards #1845952 and #1723715.
This material is based upon work supported by the NSF Graduate
Research Fellowship Program under Grant No. DGE-1650441. Any
opinions, findings, and conclusions or recommendations expressed
in this material are those of the authors and do not necessarily
reflect the views of the National Science Foundation.

A ARTIFACT APPENDIX

Our artifact packages an environment to reproduce the results
presented. Specifically, we package:

e The Diospyros compiler: A search-aided compiler for gener-
ating vectorized DSP kernels.

e Implementation of benchmarks in Diospyros.

e Implementation of the Theia open-source application case
study.

The goal of our evaluation is to reproduce the claims presented
in the paper (Table 1, Figure 5, Figure 6) and to demonstrate the
robustness of our tool.

Note on proprietary tools. Our evaluation uses two proprietary
pieces of software: (1) the Tensilica G3 DSP simulator, and (2) the
Nature library that implements DSP primitives. These tools require
licenses and are not freely available. For the purposes of artifact
evaluation, we have made our research server available to reviewers
so that they can reproduce our studies (with permission from the
ASPLOS AEC chairs).

A.1 Artifact Meta-Information

o Algorithm: solver-aided compilation, equality saturation, symbolic
execution, vectorization

o Hardware: No hardware requirements for reviewer; our evaluation
targets the Tensilica Fusion G3 digital signal processor (DSP) but we
provide SSH access to a server with the necessary tools installed.

e Output: C/C+ code with intrinsics; the figures from the paper.

Experiments: Implementation of Diospyros benchmarks, Theia

case study.

o How much disk space required (approximately)?: 20 GB

o How much time is needed to prepare workflow (approx.)?: 15
minutes.

o How much time is needed to complete experiments (approx.)?:
2-3 hours for required components, an additional 4.5 hours for re-
producing complete results.

o Publicly available?: Yes.

o Code licenses (if publicly available)?: MIT License

e Archived (provide DOI)?: 10.5281/zenodo.4331404

A.2 Description

We have split this artifact into two components:

(1) Diospyros compiler This is our publicly available compiler that
produces C/C+ code with intrinsics. This component can be run on
the provided VirtualBox virtual machine, or installed from source
and run locally on the reviewer’s machine.

ASPLOS 21, April 19-23, 2021, Virtual, USA

(2) Evaluation on licensed instruction set simulator (ISS) Our com-
piler targets the Tensilica Fusion G3, which does not have an pub-
licly accessible compiler or ISS (the vendor provides free academic
licenses, but the process is not automated). To reproduce the cycle-
level simulation statistics from our paper, we have provided reviews
limited access to our research server (with permission from the AEC
chairs).

How to access. We have made our artifact in two formats:

o In the form a virtual image that comes with all the dependencies
pre-installed.
o In the form of an open-source code repository host on GitHub:
The instructions to download our virtual image or install from source
can be found here:

github.com/cucapra/diospyros/blob/asplosaec/evaluation/README.md

A.3 Installation

If you use the provided VirtualBox virtual machine, it has all dependencies
installed. To optionally run locally, follow the instructions for installing
prerequisites from the Diospyros repository:

github.com/cucapra/diospyros

A4 Experiment Workflow

This artifact is intended to reproduce the 4 main experimental results from
the paper:

(1) Compiling benchmarks (Table 1; Figure 5) Compilation and
simulated cycle-level performance of 21 kernels (across 4 distinct
functions). We compare kernels compiled by Diospyros with kernels
compiled with the vendor’s optimizing compiler and optimized
library functions.

Translation validation (Section 3.2) Translation validation for
all 21 kernels that the scalar specification and vectorized result (both
in our abstract vector domain specific language) are equivalent.
Timeout ablation study (Figure 6) Ablation study on a single ker-
nel (10 x 10 by 10 x 10 MatMul) over a range of equality saturation
timeouts.

Application case study (Section 5.7) Speedup of an open source
computer vision application (Theia Structure From Motion library)
with a single kernel compiled by Diospyros (QR decomposition).

@

~

3

=

(4

=z

We provide scripts in Python to automate each of these 4 results; and
provide instructions for (1) running components locally or on the provided
VM, then (2) copying the new data to our research server to finish the
evaluation with the licensed instruction set simulator.

A.5 Evaluation and Expected Results
This artifact aims to let other researchers:

(1) Reproduce the statistics and charts in our paper (Table 1, Figure 5,
Figure 6).
(2) More easily reuse our techniques and implementation.

A.6 Notes

Because equality saturation times out after 3 minutes for some large kernels;
the results may differ slightly from the paper. However, the actual execution
of generated code on the instruction set simulator is deterministic.

A.7 Methodology

Submission, reviewing and badging methodology:
o https://www.acm.org/publications/policies/artifact-review-badging
o http://cTuning.org/ae/submission-20201122.html
e http://cTuning.org/ae/reviewing-20201122.html

Alexa VanHattum, Rachit Nigam, Vincent T. Lee, James Bornholt, and Adrian Sampson

885

REFERENCES

[1] Randy Allen and Ken Kennedy. 1987. Automatic Translation of FORTRAN
Programs to Vector Form. In ACM Transactions on Programming Languages and
Systems (TOPLAS).

Michail Alvanos and Pedro Trancoso. 2016. Video SIMDBench: Benchmarking the
compiler vectorization for multimedia applications. In 2016 Euromicro Conference
on Digital System Design (DSD). IEEE, 168-175.

Gilles Barthe, Juan Manuel Crespo, Sumit Gulwani, César Kunz, and Mark Marron.
2013. From Relational Verification to SIMD Loop Synthesis. In ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming (PPoPP).

Dan Benanav, Deepak Kapur, and Paliath Narendran. 1987. Complexity of match-
ing problems. Journal of Symbolic Computation 3, 1 (1987), 203-216.

James Bornholt, Emina Torlak, Dan Grossman, and Luis Ceze. 2016. Optimizing
Synthesis with Metasketches. In ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL).

Cadence Design Systems, Inc. 2020. Tensilica Customizable Cores.
//ip.cadence.com/ipportfolio/tensilica-ip/xtensa-customizable.
Meghan Cowan, Thierry Moreau, Tiangi Chen, James Bornholt, and Luis Ceze.
2020. Automatic generation of high-performance quantized machine learning ker-
nels. In ACM/IEEE International Symposium on Code Generation and Optimization
(CGO).

Stijn Eyerman and Lieven Eeckhout. 2010. Modeling critical sections in Amdahl’s
law and its implications for multicore design. In International Symposium on
Computer Architecture (ISCA). 362-370.

Franz Franchetti and Markus Puschel. 2008. Generating SIMD Vectorized Permu-
tations. In International Conference on Compiler Construction (CC).

Franz Franchetti, Yevgen Voronenko, and Markus Piischel. 2006. A rewriting
system for the vectorization of signal transforms. In International Conference on
High Performance Computing for Computational Science (VECPAR).

Ricardo E Gonzalez. 2000. Xtensa: A configurable and extensible processor. IEEE
Micro 20, 2 (2000), 60-70.

Gaél Guennebaud, Benoit Jacob, et al. 2010. Eigen v3. http://eigen.tuxfamily.org.
Rajeev Joshi, Greg Nelson, and Keith H. Randall. 2002. Denali: A Goal-directed
Superoptimizer. In ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI).

Shoaib Kamil, Alvin Cheung, Shachar Itzhaky, and Armando Solar-Lezama. 2016.
Verified Lifting of Stencil Computations. In ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (PLDI).

Nikolaos Kyrtatas, Daniele G. Spampinato, and Markus Piuischel. 2015. A Basic
Linear Algebra Compiler for Embedded Processors. In Design, Automation & Test
in Europe (DATE).

Samuel Larsen and Saman Amarasinghe. 2000. Exploiting Superword Level
Parallelism with Multimedia Instruction Sets. In ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI).

Geoffrey Mainland, Roman Leshchinskiy, and Simon Peyton Jones. 2013. Exploit-
ing Vector Instructions with Generalized Stream Fusion. In ACM International
Conference on Functional Programming (ICFP).

Daniel S. McFarlin, Volodymyr Arbatov, Franz Franchetti, and Markus Piischel.
2011. Automatic SIMD Vectorization of Fast Fourier Transforms for the Larrabee
and AVX Instruction Sets. In Proceedings of the International Conference on Super-
computing.

Charith Mendis and Saman Amarasinghe. 2018. GoSLP: Globally Optimized
Superword Level Parallelism Framework. In ACM SIGPLAN Conference on Object
Oriented Programming, Systems, Languages and Applications (OOPSLA).

Raul Mur-Artal, Jose Maria Martinez Montiel, and Juan D Tardos. 2015. ORB-
SLAM: a versatile and accurate monocular SLAM system. IEEE Transactions on
Robotics 31, 5 (2015), 1147-1163.

Raul Mur-Artal and Juan D Tardés. 2017. ORB-SLAM2: An Open-Source SLAM
System for Monocular, Stereo and RGB-D Cameras. IEEE Transactions on Robotics
33,5 (2017), 1255-1262.

Chandrakana Nandi, Max Willsey, Adam Anderson, James R. Wilcox, Eva
Darulova, Dan Grossman, and Zachary Tatlock. 2020. Synthesizing structured
CAD models with equality saturation and inverse transformations. In ACM SIG-
PLAN Conference on Programming Language Design and Implementation (PLDI).
Greg Nelson. 1980. Techniques for program verification. Ph.D. Dissertation.
Stanford University.

Dorit Nuzman, Ira Rosen, and Ayal Zaks. 2006. Auto-Vectorization of Interleaved
Data for SIMD. In ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI).

JoAnn M Paul and Brett H Meyer. 2007. Amdahl’s law revisited for single chip
systems. International Journal of Parallel Programming 35, 2 (2007), 101-123.
Hila Peleg and Nadia Polikarpova. 2020. Perfect is the Enemy of Good: Best-Effort
Program Synthesis. In European Conference on Object-Oriented Programming
(ECOOP).

Phitchaya Mangpo Phothilimthana, Archibald Samuel Elliott, An Wang, Abhinav
Jangda, Bastian Hagedorn, Henrik Barthels, Samuel J. Kaufman, Vinod Grover,
Emina Torlak, and Rastislav Bodik. 2019. Swizzle Inventor: Data Movement

[2

—_
)

https:

—_
—_

==
)

(14

[15

[16

[17

oy
&

[19

[20

[21

[22

[23

[24

[25

[26

[27

github.com/cucapra/diospyros/blob/asplosaec/evaluation/README.md
github.com/cucapra/diospyros
https://www.acm.org/publications/policies/artifact-review-badging
http://cTuning.org/ae/submission-20201122.html
http://cTuning.org/ae/reviewing-20201122.html
https://ip.cadence.com/ipportfolio/tensilica-ip/xtensa-customizable
https://ip.cadence.com/ipportfolio/tensilica-ip/xtensa-customizable
http://eigen.tuxfamily.org

Vectorization for Digital Signal Processors via Equality Saturation

Synthesis for GPU Kernels. In ACM International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS).

Markus Puschel, José MF Moura, Jeremy R Johnson, David Padua, Manuela M
Veloso, Bryan W Singer, Jianxin Xiong, Franz Franchetti, Aca Gacic, Yevgen
Voronenko, et al. 2005. SPIRAL: Code generation for DSP transforms. Proc. IEEE
93, 2 (2005), 232-275.

Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo
Durand, and Saman P. Amarasinghe. 2013. Halide: a language and compiler for
optimizing parallelism, locality, and recomputation in image processing pipelines.
In ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion (PLDI).

Armando Solar-Lezama, Liviu Tancau, Rastislav Bodik, Sanjit Seshia, and Vijay
Saraswat. 2006. Combinatorial Sketching for Finite Programs. In ACM Inter-
national Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS).

Daniele G. Spampinato, Diego Fabregat-Traver, Paolo Bientinesi, and Markus
Piischel. 2018. Program Generation for Small-Scale Linear Algebra Applications.
In ACM/IEEE International Symposium on Code Generation and Optimization
(CGO).

Hauke Strasdat. 2015. Sophus Project Website. https://strasdat.github.io/Sophus/.
Hauke Strasdat, Andrew] Davison, JM Martinez Montiel, and Kurt Konolige.
2011. Double window optimisation for constant time visual SLAM. In IEEE
International Conference on Computer Vision (ICCV). 2352-2359.

Shinya Sumikura, Mikiya Shibuya, and Ken Sakurada. 2019. OpenVSLAM: A
Versatile Visual SLAM Framework. In Proceedings of the 27th ACM International
Conference on Multimedia (Nice, France) (MM ’19). ACM, New York, NY, USA,
2292-2295. https://doi.org/10.1145/3343031.3350539

ASPLOS 21, April 19-23, 2021, Virtual, USA

Chris Sweeney. 2016. Theia Multiview Geometry Library: Tutorial & Reference.
http://theia-sfm.org.

Ross Tate, Michael Stepp, Zachary Tatlock, and Sorin Lerner. 2009. Equality Satu-
ration: A New Approach to Optimization. In ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL).

Emina Torlak and Rastislav Bodik. 2014. A Lightweight Symbolic Virtual Machine
for Solver-Aided Host Languages. In ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI).

Alexa VanHattum, Rachit Nigam, Vincent T. Lee, James Bornholt, and Adrian
Sampson. 2020. A Synthesis-Aided Compiler for DSP Architectures (WiP Paper).
In ACM SIGPLAN/SIGBED International Conference on Languages, Compilers, and
Tools for Embedded Systems (LCTES).

Sander Vocke, Henk Corporaal, Roel Jordans, Rosilde Corvino, and Rick Nas.
2017. Extending Halide to Improve Software Development for Imaging DSPs. In
ACM Transactions on Architecture and Code Optimization (TACO).

Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt, Zachary Tatlock,
and Pavel Panchekha. 2021. egg: Fast and Extensible Equality Saturation. In ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL).
Zhilei Xu, Shoaib Kamil, and Armando Solar-Lezama. 2014. MSL: A Synthesis
Enabled Language for Distributed Implementations. In International Conference
for High Performance Computing, Networking, Storage and Analysis (SC).

Leonid Yavits, Amir Morad, and Ran Ginosar. 2014. The effect of communication
and synchronization on Amdahl’s law in multicore systems. 40, 1 (2014), 1-16.
Kamen Yotov, Xiaoming Li, Gang Ren, Michael Cibulskis, Gerald DeJong, Maria
Garzaran, David Padua, Keshav Pingali, Paul Stodghill, and Peng Wu. 2003.
A comparison of empirical and model-driven optimization. In ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI). 63-76.

https://strasdat.github.io/Sophus/
https://doi.org/10.1145/3343031.3350539
http://theia-sfm.org

	Abstract
	1 Introduction
	2 Motivating Example
	3 Rewriting for Vectorization
	3.1 Defining and Lifting Specifications
	3.2 Rewriting Strategy
	3.3 Searching for Rewrites
	3.4 Extraction

	4 Lowering & Code Generation
	5 Evaluation
	5.1 Implementation
	5.2 Methodology
	5.3 Kernel Benchmarks
	5.4 Kernel Performance Results
	5.5 Timeout Ablation Study
	5.6 Vectorization Ablation Case Study
	5.7 Application Case Study

	6 Limitations & Portability
	7 Related Work
	8 Conclusion
	Acknowledgments
	A Artifact Appendix
	A.1 Artifact Meta-Information
	A.2 Description
	A.3 Installation
	A.4 Experiment Workflow
	A.5 Evaluation and Expected Results
	A.6 Notes
	A.7 Methodology

	References

