THE ISOPERIMETRIC INEQUALITY FOR A MINIMAL
SUBMANIFOLD IN EUCLIDEAN SPACE

SIMON BRENDLE

ABSTRACT. We prove a Sobolev inequality which holds on submani-
folds in Euclidean space of arbitrary dimension and codimension. This
inequality is sharp if the codimension is at most 2. As a special case,
we obtain a sharp isoperimetric inequality for minimal submanifolds in
Euclidean space of codimension at most 2.

1. INTRODUCTION

The isoperimetric inequality for a domain in R™ is one of the most beau-
tiful results in geometry. It has long been conjectured that the isoperimetric
inequality still holds if we replace the domain in R™ by a minimal hyper-
surface in R™*1. In this paper, we prove this conjecture, as well as a more
general inequality which holds for submanifolds of arbitrary dimension and
codimension.

Theorem 1. Let ¥ be a compact n-dimensional submanifold of R (pos-
sibly with boundary 0%), where m > 2. Let f be a positive smooth function
on Y. Then
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Here, H denotes the mean curvature vector of 3, and B™ denotes the open
unit ball in R™.

Let us consider the special case m = 2. The standard recursion formula
for the volume of the unit ball in Euclidean space gives (n + 2)|B"*?| =
27 |B"| = 2|B?||B"|. Thus, Theorem 1 implies a sharp Sobolev inequality
for submanifolds of codimension 2:

Corollary 2. Let ¥ be a compact n-dimensional submanifold of R"*2 (pos-
sibly with boundary 0% ), and let f be a positive smooth function on ¥. Then

/E\/|vzf‘2+f2’H|2+/aEfZn|B”|i (/Efn’_ll>

where H denotes the mean curvature vector of 3.

Finally, we characterize the case of equality in Corollary 2:
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Theorem 3. Let ¥ be a compact n-dimensional submanifold of R"*? (pos-
sibly with boundary 0%), and let f be a positive smooth function on X. If

/E\/|vzf‘2+f2’H’2+/82fZn\B”ﬁ (/Efn"l>”217

then f is constant and ¥ is a flat round ball.

In particular, if ¥ is a compact n-dimensional minimal submanifold of
R"™*2 then ¥ satisfies the sharp isoperimetric inequality

O8] > n|B"|x |25,

and equality holds if and only if ¥ is a flat round ball.

Every n-dimensional submanifold of R"*! can be viewed as a submanifold
of R"*2. Hence, Corollary 2 and Theorem 3 imply a sharp isoperimetric
inequality in codimension 1.

The isoperimetric inequality on a minimal surface has a long history.
In 1921, Torsten Carleman [4] proved that every two-dimensional minimal
surface ¥ which is diffeomorphic to a disk satisfies the sharp isoperimetric
inequality |0X|?> > 47 |X|. Various authors have weakened the topological
assumption in Carleman’s theorem. In particular, the sharp isoperimet-
ric inequality has been verified for two-dimensional minimal surfaces with
connected boundary (see [11], [15]); for two-dimensional minimal surfaces
diffeomorphic to annuli (cf. [9], [14]); and for two-dimensional minimal sur-
faces with two boundary components (cf. [6], [12]). On the other hand, using
different techniques, Leon Simon showed that every two-dimensional mini-
mal surface satisfies the non-sharp isoperimetric inequality |0%|? > 27 |3
(see [17], Section 4). Stone [16] subsequently improved the constant in this
inequality: he proved that |9%|2 > 2v/2 7 |¥| for every two-dimensional min-
imal surface ¥. We refer to [7] for a survey of these developments.

In higher dimensions, the famous Michael-Simon Sobolev inequality (cf.
[1], Section 7, and [13]) implies an isoperimetric inequality for minimal sub-
manifolds, albeit with a non-sharp constant. Castillon [5] gave an alternative
proof of the Michael-Simon Sobolev inequality using methods from optimal
transport. Finally, Almgren [2] proved a sharp version of the filling inequal-
ity of Federer and Fleming [8]. In particular, this gives a sharp isoperimetric
inequality for area-minimizing submanifolds in all dimensions.

Our method of proof is inspired in part by the Alexandrov-Bakelman-
Pucci maximum principle (cf. [3], [18]). An alternative way to prove Theo-
rem 1 would be to use optimal transport; in that case, we would consider the
transport map from a thin annulus in R**™ to the submanifold ¥ equipped
with the measure f =1 dvol.

2. PROOF OF THEOREM 1

Let ¥ be a compact n-dimensional submanifold of R"™ (possibly with
boundary 0¥), where m > 2. For each point x € 3, we denote by T,%
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and 7Y the tangent and normal space to ¥ at x, respectively. Moreover,
we denote by II the second fundamental form of . Recall that I is a
symmetric bilinear form on 7,.Y which takes values in T;-E. If X and YV
are tangent vector fields on > and V is a normal vector field along 3, then
(I(X,Y),V) = (DxY,V) = —(DxV,Y), where D denotes the standard
connection on R"*™. The trace of the second fundamental form gives the
mean curvature vector, which we denote by H. Finally, we denote by 7 the
co-normal to 0%.

We now turn to the proof of Theorem 1. We first consider the special
case that ¥ is connected. By scaling, we may assume that

/Z\/WEﬂQJer'H'QJF/aEf:”/Ef"zl.

Since X is connected, we can find a function u : ¥ — R with the property
that

divs(f V¥u) = n f7 — \[|VEf[2 + 72 |H]?

on ¥ and (V¥u,n) = 1 at each point on 9%. Since the function 1/|V=f[2 + f2|H|?
is Lipschitz continuous, it follows from standard elliptic regularity theory
that the function u is of class C?7 for each 0 < v < 1 (see [10], Theorem
6.30).

We define

Q:={z e\ % : |VZu(z)| <1},
U:={(z,y): 2 €\ 0%, y € T;%, [VZu()* + [y* < 1},
A= {(z,y) € U : D¥u(z) — (II(z),y) > 0}.
Moreover, we define a map ® : U — R*™™ by
®(z,y) = V7u(z) +y

for all (z,y) € U. Note that ® is of class C*7 for each 0 < v < 1.
Since V>u(z) € T,¥ and y € T;-¥ are orthogonal, we obtain |®(x,y)|? =
|VEu(z)|? + |y|? < 1 for all (x,y) € U.

Lemma 4. The image ®(A) is the open unit ball B"*™.

Proof. Clearly, ®(4) C ®(U) C B™™™. To prove the reverse inclusion,
we consider an arbitrary vector £ € R™*™ such that |(| < 1. We define a
function w : ¥ — R by w(z) := u(x) — (x,€). Using the Cauchy-Schwarz
inequality, we obtain

(VEw(2),m(2)) = (VZu(z),n(z)) — (n(x),€) = 1 - (n(2),€) >0
for each point x € 0X. Consequently, the function w must attain its mini-
mum in the interior of ¥. Let z € ¥\ X be a point in the interior of ¥ such
that w(Z) = infyex w(z). Clearly, V=w(Z) = 0. This implies £ = VZu(Z)+7y
for some 5 € T#+Y. Consequently, |VZu(Z)|? + |52 = [£]?> < 1. Moreover,
we have DZw(Z) > 0. From this, we deduce that Diu(z) — (II(z),£) >
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0. Since (II(z),&) = I(Z),V>u(Z) + §) = (II(Z),y), we conclude that
DZu(z) — (II(z),y) > 0. Therefore, (Z,5) € A and ®(z,y) = £ Thus,
Bt C d(A).

Lemma 5. The Jacobian determinant of ® is given by
det D®(z,y) = det(D3u(x) — (1(x), )
for all (z,y) € U.
Proof. Fix a point (z,y) € U. Let {e1,...,e,} be an orthonormal
basis of the tangent space TzY, and let (x1,...,2,) be a local coordinate
system on X such that % = e; at the point . Moreover, let {v1,...,vp}

denote a local orthonormal frame for the normal bundle 7+¥. Every normal
vector y can be written in the form y = Y "' | yaVq. With this understood,

(1, Zn,Y1,--.,Ym) is a local coordinate system on the total space of the
normal bundle 7. We compute

oD =

(2, @) 3) = (De (V50 €5) 4 3 (e )
= (D%u)(es, ) — (I (e, €5), ).
In the last step, we have used the identity (II(e;,e;),va) = —(De,Va,€j)-
Moreover,
0o
(g @) e3) = o 5) =0

and

< 0P
Ya
Thus, we conclude that

(z,9), V5> = (Va, V8) = dap-
det D®(z, ) = det [D%“(i') - @) i?i] — det(D2u(z) — (I(Z), 7).

This proves the assertion.

Lemma 6. The Jacobian determinant of ® satisfies
0 < det D®(z,y) < f(z)71
for all (z,y) € A.

Proof. Consider a point (z,y) € A. Using the inequality |V>u(x)|? +
ly|?> < 1 and the Cauchy-Schwarz inequality, we obtain

— (V5 f(2), Viula)) — f(x) (H(2).y)
< IVE @) + f@)? [H@)2 \/[V5u()]? + Jy?
< JIVEF @) + f(2)? [H(@)]2.




THE ISOPERIMETRIC INEQUALITY FOR A MINIMAL SUBMANIFOLD 5

Using the identity divs(f VZu) =n fo1 — VIVEFZ + f21H?, we deduce
that

Asu(z) — (H(z).y)
= n f(2)71 — f2) " \IVEF@)P + f(@)? | H @)
— F@) ™ (VR (@), Viu(e) — (H(@).y)

1

<nf(z)"T.

Moreover, DZu(x) — (II(x),y) > 0 since (z,y) € A. Hence, the arithmetic-

geometric mean inequality implies

tr(D3u(z) — (I (x),y))
n

0 < det(Du(w) — (II(x), ) < ( )" < f)

n

Using Lemma 5, we conclude that 0 < det D®(x,y) < f(x)»-1. This com-
pletes the proof of Lemma 6.

We now continue with the proof of Theorem 1. Using Lemma 4 and
Lemma 6, we obtain

’Bn+m| (1 o O_n—l-m)

1de¢

/{seRn+m:a2<s|2<1}

S/ </ | det D®(z,y)| La(z,y) dy) dvol(z)
Q N\ H{yely 2o <|@(z,y)[><1}

S/ </ flz)n dy) dvol(x)
O \J{YeTLs:02<|Viu(z) 24 |y|2<1}

= |B"| /Q (1= [V=u(@))E = (% = [V7u(@)P)] | f(2)77 dvol(z)

m
2

for all 0 < o < 1. Since m > 2, the mean value theorem gives b2 —a <

% (b—a) for 0 < a <b<1. Consequently,

(1= |[V2u(@)P) 5 — (6% = |VZu()]?)2

< 20 - VEu@)?) - (02 - [V%u(@) )] < 2 (1 - o?)

m
2
for all x € 2 and all 0 < ¢ < 1. Putting these facts, together, we obtain
Bl ot < BT o) [ g
Q

for all 0 < o < 1. In the next step, we divide by 1 — ¢ and take the limit as
o — 1. This gives

(n+m) |B™™] < m|Bm|/ i < m|er/ =
Q )
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On the other hand, [, /[VZf2+ f2[H? + [os [ = n [5 f7T in view of
our normalization. Thus, we conclude that

VIVER S e |
by

n n+m IB"*ml / o
=n fnfl Zn fn 1 .
/2 m|B™|

This proves Theorem 1 in the special case when X is connected.

It remains to consider the case when ¥ is disconnected. In that case, we
apply the inequality to each individual connected component of 3, and take
the sum over all connected components. Since

b > a(a+b) h 4 b(atb)h = (a+b)

for a,b > 0, we conclude that

/z\/|v2f|2+f2|H2+/azf>”((n+ﬁgﬁr+m‘)i(/Ef"nl)n"l.

if ¥ is disconnected. This completes the proof of Theorem 1.

3. PROOF OF THEOREM 3

Suppose that ¥ is a compact n-dimensional submanifold in R"*2 (possibly
with boundary 0%), and f is a positive smooth function on ¥ satisfying

/E\/|vzf|2+f2|H|2+/azf=n|B”|i (/Efn”l>"n1

Clearly, > must be connected.
By scaling, we may arrange that [y, \/|[V>f[2 + f2[H|? + Jos f =n|B"|
and [, f#1 = |B"|. In particular,

/E\/fo’2+f2|ﬂ|2+/azf:”/zfnzl.

Since ¥ is connected, we can find a function u : 3 — R such that

divs(f VZu) = n fo-1 — \/!VZfP + 2| H|?

on ¥ and (V>u,n) = 1 on d%. Moreover, u is of class C*7 for each 0 < v < 1.
Let Q, U, A, and ® : U — R"2 be defined as in Section 2.

Lemma 7. Suppose that :T: €Q gy e Ty, V@2 + 9> = 1, and
D3u(z) — (II(%),7) # f(Z )n T g. Then there exists a real number € € (0,1)
and an open neighborhood V' of the point (Z,y) such that det D®(x,y) <
(1—¢) f(zx)71 for all (z,y) € ANV.



THE ISOPERIMETRIC INEQUALITY FOR A MINIMAL SUBMANIFOLD 7

Proof. We distinguish two cases:
Case 1: Suppose that DZu(z)—(II(z),y) > 0. Since |V=u(Z)*+|y]* = 1,
the Cauchy-Schwarz inequality implies

~(V¥f(2), VZu(z)) — f(2) (H(Z),9) < \/IVZf(i“)IQ + f(2)? [H(7)[>.

Using the identity divs(f VZu) = n fo-1 — /[VEf2 + f2 [H[?, we obtain

1

Asu(#) — (H(z),5) < n f(z)7 1.

Since DZu(z) — (II(Z),y) > 0 and Diu(z) — (II(Z),y) # f(gé)ﬁ g, the
arithmetic-geometric mean inequality gives

det(D¥u(z) — (I1(z),7)) < f(Z)7 .

Let us choose a real number ¢ € (0, 1) such that det(D&u(z) — (II(Z), §)) <

(1—¢) f(i“)% Since u is of class C*7, we can find an open neighborhood
V of (z,y) such that det(DZu(z) — (II(x),y)) < (1 — 5)f(m)ﬁ for all
(z,y) € V. Using Lemma 5, we obtain det D®(z,y) < (1 —¢) f(ozc)ﬁ for
all (z,y) eUNV.

Case 2: Suppose that the smallest eigenvalue of Diu(z) — (II(Z),7) is
strictly negative. Since u is of class C?7, we can find an open neighbor-
hood V of (z,%) with the property that the smallest eigenvalue of D&u(z) —
(II(x),y) is strictly negative for all (x,y) € V. Consequently, ANV = 0.
This completes the proof of Lemma 7.

Lemma 8. We have Diu(x) — (II(z),y) = f(ac)ﬁ g for all z € Q and all
y € T+ satisfying |V=u(x)]? + |y|? = 1.

Proof. We argue by contradiction. Suppose that there exists a point
z € Q and a vector §j € T+ such that |[VZu(Z)|? + |y|> = 1 and DZu(z) —
(II(Z),y) # f(:E)ﬁ g. By Lemma 7, we can find a real number ¢ € (0,1)
and an open neighborhood V of the point (Z,y) such that det D®(z,y) <
(1 —¢) f(x)»T for all (z,y) € ANV. Using Lemma 6, we deduce that

n

0<detD®(z,y) < (1—e-1y(z,y)) f(z)»T
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for all (x,y) € A. Arguing as in Section 2, we obtain
’Bn+2‘ (1 _ Un+2)

/ 1d¢
{€eRnt2:02<|€|2<1}

</ (/ | det D®(z, )| 1a(x, y) dy) dvol(z)
Q {yeTL2:02<|®(z,y)|2<1}

= / </yETiE 02<|VSu(z )|2+|y|2<1}(1 —e-ly(z,y)) flz)»—T dy) dvol(z)
=187 [ (1= IVul@)®) = (0 = IVul) )] £(a) 5 dvol(a)

~<f ( / Ly (2, ) f(2)7 dy) dvol(x)
Q {yeTE2:02<|VE3u(z) |2 +|y[? <1}
<|B?l(1 / f(z)"T dvol(x)

[ / Ly (o0) 107 dy ) vl
Q \ J{yeTy S:02<|VEu(z) 2 +|y|2<1}

for all 0 < ¢ < 1. Dividing by 1 — ¢ and taking the limit as ¢ — 1 gives
(n+2) 1B <208 [ f1 <2182 [ £ = 2875
Q 2

This contradicts the fact that (n + 2)|B"*2| = 2|B?||B"|.

Lemma 9. We have Diu(x) = f(:U)ﬁ g and II(x) =0 for all x € Q.

Proof. Lemma 8 implies D&u(z) — (II(x),y) = f(ac)ﬁ g for all x € Q
and all y € T satisfying |V>u(z)|? + |y|> = 1. Replacing y by —y gives
1
D2u(x) + (II(x),y) = f(x)"T g for all z € Q and all y € T;-3 satisfying
|VEu(x)[? + |y|? = 1. Consequently, DZu(x) = j‘"(a:)ﬁ gand (II(z),y) =0
for all x € Q and all y € T;-Y satisfying |V>u(x)|? + |y|> = 1. From this,
the assertion follows.

Lemma 10. We have V= f(z) =0 for all = € .

Proof. Using Lemma 9, we obtain Ayu = nfﬁ at each point in 2.
This implies divs(f VZu) = nfﬁ + (V> f,V>u) at each point in . On
the other hand, by definition of u, we have divs(f VZu) =n fo1 — |VEf]
at each point in Q. Consequently, (V>f, V>u) = —|V>f| at each point in
Q. Since |VZu| < 1 at each point in 2, we conclude that V= f = 0 at each
point in €.
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Lemma 11. The set () is dense in X.

Proof. We argue by contradiction. Suppose that 2 is not dense in 3.
Then [, f7-T < [¢ f7—T. Hence, the arguments in Section 2 imply

(n+2) 1B <208 [ fn <2182 [ £ = 2875
Q b))
This contradicts the fact that (n + 2)|B""2| = 2|B?| |B"|.

Using Lemma 9, Lemma 10, and Lemma 11, we conclude that D%u =

1
frn=1g, I =0, and V*f = 0 at each point on . Since ¥ is connected and
V¥ f = 0 at each point on ¥, it follows that f = A\*~! for some positive
constant A. Since X is connected and II = 0 at each point on X, ¥ is

1
contained in an n-dimensional plane P. Since D%u = fn-1 g = Ag at each

point on ¥, the function u must be of the form u(z) = 1 X |z — p|? + ¢ for

some point p € P and some constant ¢. On the other hand, we know that
|V>u| < 1 at each point on Q. Using Lemma 11, it follows that |V>u| < 1

at each point on ¥. This implies ¥ C {z € P : A|x —p| < 1}. Since
A'Z| = [¢ fnT = |B"|, we conclude that ¥ = {x € P : XMz —p| < 1}.
This completes the proof of Theorem 3.
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