

THE ISOPERIMETRIC INEQUALITY FOR A MINIMAL SUBMANIFOLD IN EUCLIDEAN SPACE

SIMON BRENDEL

ABSTRACT. We prove a Sobolev inequality which holds on submanifolds in Euclidean space of arbitrary dimension and codimension. This inequality is sharp if the codimension is at most 2. As a special case, we obtain a sharp isoperimetric inequality for minimal submanifolds in Euclidean space of codimension at most 2.

1. INTRODUCTION

The isoperimetric inequality for a domain in \mathbb{R}^n is one of the most beautiful results in geometry. It has long been conjectured that the isoperimetric inequality still holds if we replace the domain in \mathbb{R}^n by a minimal hypersurface in \mathbb{R}^{n+1} . In this paper, we prove this conjecture, as well as a more general inequality which holds for submanifolds of arbitrary dimension and codimension.

Theorem 1. *Let Σ be a compact n -dimensional submanifold of \mathbb{R}^{n+m} (possibly with boundary $\partial\Sigma$), where $m \geq 2$. Let f be a positive smooth function on Σ . Then*

$$\int_{\Sigma} \sqrt{|\nabla^{\Sigma} f|^2 + f^2 |H|^2} + \int_{\partial\Sigma} f \geq n \left(\frac{(n+m) |B^{n+m}|}{m |B^m|} \right)^{\frac{1}{n}} \left(\int_{\Sigma} f^{\frac{n}{n-1}} \right)^{\frac{n-1}{n}}.$$

Here, H denotes the mean curvature vector of Σ , and B^n denotes the open unit ball in \mathbb{R}^n .

Let us consider the special case $m = 2$. The standard recursion formula for the volume of the unit ball in Euclidean space gives $(n+2) |B^{n+2}| = 2\pi |B^n| = 2 |B^2| |B^n|$. Thus, Theorem 1 implies a sharp Sobolev inequality for submanifolds of codimension 2:

Corollary 2. *Let Σ be a compact n -dimensional submanifold of \mathbb{R}^{n+2} (possibly with boundary $\partial\Sigma$), and let f be a positive smooth function on Σ . Then*

$$\int_{\Sigma} \sqrt{|\nabla^{\Sigma} f|^2 + f^2 |H|^2} + \int_{\partial\Sigma} f \geq n |B^n|^{\frac{1}{n}} \left(\int_{\Sigma} f^{\frac{n}{n-1}} \right)^{\frac{n-1}{n}},$$

where H denotes the mean curvature vector of Σ .

Finally, we characterize the case of equality in Corollary 2:

This project was supported by the National Science Foundation under grant DMS-1806190 and by the Simons Foundation.

Theorem 3. *Let Σ be a compact n -dimensional submanifold of \mathbb{R}^{n+2} (possibly with boundary $\partial\Sigma$), and let f be a positive smooth function on Σ . If*

$$\int_{\Sigma} \sqrt{|\nabla^{\Sigma} f|^2 + f^2 |H|^2} + \int_{\partial\Sigma} f = n |B^n|^{\frac{1}{n}} \left(\int_{\Sigma} f^{\frac{n}{n-1}} \right)^{\frac{n-1}{n}},$$

then f is constant and Σ is a flat round ball.

In particular, if Σ is a compact n -dimensional minimal submanifold of \mathbb{R}^{n+2} , then Σ satisfies the sharp isoperimetric inequality

$$|\partial\Sigma| \geq n |B^n|^{\frac{1}{n}} |\Sigma|^{\frac{n-1}{n}},$$

and equality holds if and only if Σ is a flat round ball.

Every n -dimensional submanifold of \mathbb{R}^{n+1} can be viewed as a submanifold of \mathbb{R}^{n+2} . Hence, Corollary 2 and Theorem 3 imply a sharp isoperimetric inequality in codimension 1.

The isoperimetric inequality on a minimal surface has a long history. In 1921, Torsten Carleman [4] proved that every two-dimensional minimal surface Σ which is diffeomorphic to a disk satisfies the sharp isoperimetric inequality $|\partial\Sigma|^2 \geq 4\pi |\Sigma|$. Various authors have weakened the topological assumption in Carleman's theorem. In particular, the sharp isoperimetric inequality has been verified for two-dimensional minimal surfaces with connected boundary (see [11], [15]); for two-dimensional minimal surfaces diffeomorphic to annuli (cf. [9], [14]); and for two-dimensional minimal surfaces with two boundary components (cf. [6], [12]). On the other hand, using different techniques, Leon Simon showed that every two-dimensional minimal surface satisfies the non-sharp isoperimetric inequality $|\partial\Sigma|^2 \geq 2\pi |\Sigma|$ (see [17], Section 4). Stone [16] subsequently improved the constant in this inequality: he proved that $|\partial\Sigma|^2 \geq 2\sqrt{2}\pi |\Sigma|$ for every two-dimensional minimal surface Σ . We refer to [7] for a survey of these developments.

In higher dimensions, the famous Michael-Simon Sobolev inequality (cf. [1], Section 7, and [13]) implies an isoperimetric inequality for minimal submanifolds, albeit with a non-sharp constant. Castillon [5] gave an alternative proof of the Michael-Simon Sobolev inequality using methods from optimal transport. Finally, Almgren [2] proved a sharp version of the filling inequality of Federer and Fleming [8]. In particular, this gives a sharp isoperimetric inequality for area-minimizing submanifolds in all dimensions.

Our method of proof is inspired in part by the Alexandrov-Bakelman-Pucci maximum principle (cf. [3], [18]). An alternative way to prove Theorem 1 would be to use optimal transport; in that case, we would consider the transport map from a thin annulus in \mathbb{R}^{n+m} to the submanifold Σ equipped with the measure $f^{\frac{n}{n-1}} d\text{vol}$.

2. PROOF OF THEOREM 1

Let Σ be a compact n -dimensional submanifold of \mathbb{R}^{n+m} (possibly with boundary $\partial\Sigma$), where $m \geq 2$. For each point $x \in \Sigma$, we denote by $T_x\Sigma$

and $T_x^\perp\Sigma$ the tangent and normal space to Σ at x , respectively. Moreover, we denote by Π the second fundamental form of Σ . Recall that Π is a symmetric bilinear form on $T_x\Sigma$ which takes values in $T_x^\perp\Sigma$. If X and Y are tangent vector fields on Σ and V is a normal vector field along Σ , then $\langle \Pi(X, Y), V \rangle = \langle \bar{D}_X Y, V \rangle = -\langle \bar{D}_X V, Y \rangle$, where \bar{D} denotes the standard connection on \mathbb{R}^{n+m} . The trace of the second fundamental form gives the mean curvature vector, which we denote by H . Finally, we denote by η the co-normal to $\partial\Sigma$.

We now turn to the proof of Theorem 1. We first consider the special case that Σ is connected. By scaling, we may assume that

$$\int_{\Sigma} \sqrt{|\nabla^{\Sigma} f|^2 + f^2 |H|^2} + \int_{\partial\Sigma} f = n \int_{\Sigma} f^{\frac{n}{n-1}}.$$

Since Σ is connected, we can find a function $u : \Sigma \rightarrow \mathbb{R}$ with the property that

$$\operatorname{div}_{\Sigma}(f \nabla^{\Sigma} u) = n f^{\frac{n}{n-1}} - \sqrt{|\nabla^{\Sigma} f|^2 + f^2 |H|^2}$$

on Σ and $\langle \nabla^{\Sigma} u, \eta \rangle = 1$ at each point on $\partial\Sigma$. Since the function $\sqrt{|\nabla^{\Sigma} f|^2 + f^2 |H|^2}$ is Lipschitz continuous, it follows from standard elliptic regularity theory that the function u is of class $C^{2,\gamma}$ for each $0 < \gamma < 1$ (see [10], Theorem 6.30).

We define

$$\begin{aligned} \Omega &:= \{x \in \Sigma \setminus \partial\Sigma : |\nabla^{\Sigma} u(x)| < 1\}, \\ U &:= \{(x, y) : x \in \Sigma \setminus \partial\Sigma, y \in T_x^\perp\Sigma, |\nabla^{\Sigma} u(x)|^2 + |y|^2 < 1\}, \\ A &:= \{(x, y) \in U : D_{\Sigma}^2 u(x) - \langle \Pi(x), y \rangle \geq 0\}. \end{aligned}$$

Moreover, we define a map $\Phi : U \rightarrow \mathbb{R}^{n+m}$ by

$$\Phi(x, y) = \nabla^{\Sigma} u(x) + y$$

for all $(x, y) \in U$. Note that Φ is of class $C^{1,\gamma}$ for each $0 < \gamma < 1$. Since $\nabla^{\Sigma} u(x) \in T_x\Sigma$ and $y \in T_x^\perp\Sigma$ are orthogonal, we obtain $|\Phi(x, y)|^2 = |\nabla^{\Sigma} u(x)|^2 + |y|^2 < 1$ for all $(x, y) \in U$.

Lemma 4. *The image $\Phi(A)$ is the open unit ball B^{n+m} .*

Proof. Clearly, $\Phi(A) \subset \Phi(U) \subset B^{n+m}$. To prove the reverse inclusion, we consider an arbitrary vector $\xi \in \mathbb{R}^{n+m}$ such that $|\xi| < 1$. We define a function $w : \Sigma \rightarrow \mathbb{R}$ by $w(x) := u(x) - \langle x, \xi \rangle$. Using the Cauchy-Schwarz inequality, we obtain

$$\langle \nabla^{\Sigma} w(x), \eta(x) \rangle = \langle \nabla^{\Sigma} u(x), \eta(x) \rangle - \langle \eta(x), \xi \rangle = 1 - \langle \eta(x), \xi \rangle > 0$$

for each point $x \in \partial\Sigma$. Consequently, the function w must attain its minimum in the interior of Σ . Let $\bar{x} \in \Sigma \setminus \partial\Sigma$ be a point in the interior of Σ such that $w(\bar{x}) = \inf_{x \in \Sigma} w(x)$. Clearly, $\nabla^{\Sigma} w(\bar{x}) = 0$. This implies $\xi = \nabla^{\Sigma} u(\bar{x}) + \bar{y}$ for some $\bar{y} \in T_{\bar{x}}^\perp\Sigma$. Consequently, $|\nabla^{\Sigma} u(\bar{x})|^2 + |\bar{y}|^2 = |\xi|^2 < 1$. Moreover, we have $D_{\Sigma}^2 w(\bar{x}) \geq 0$. From this, we deduce that $D_{\Sigma}^2 u(\bar{x}) - \langle \Pi(\bar{x}), \xi \rangle \geq$

0. Since $\langle II(\bar{x}), \xi \rangle = \langle II(\bar{x}), \nabla^\Sigma u(\bar{x}) + \bar{y} \rangle = \langle II(\bar{x}), \bar{y} \rangle$, we conclude that $D_\Sigma^2 u(\bar{x}) - \langle II(\bar{x}), \bar{y} \rangle \geq 0$. Therefore, $(\bar{x}, \bar{y}) \in A$ and $\Phi(\bar{x}, \bar{y}) = \xi$. Thus, $B^{n+m} \subset \Phi(A)$.

Lemma 5. *The Jacobian determinant of Φ is given by*

$$\det D\Phi(x, y) = \det(D_\Sigma^2 u(x) - \langle II(x), y \rangle)$$

for all $(x, y) \in U$.

Proof. Fix a point $(\bar{x}, \bar{y}) \in U$. Let $\{e_1, \dots, e_n\}$ be an orthonormal basis of the tangent space $T_{\bar{x}}\Sigma$, and let (x_1, \dots, x_n) be a local coordinate system on Σ such that $\frac{\partial}{\partial x_i} = e_i$ at the point \bar{x} . Moreover, let $\{\nu_1, \dots, \nu_m\}$ denote a local orthonormal frame for the normal bundle $T^\perp\Sigma$. Every normal vector y can be written in the form $y = \sum_{\alpha=1}^m y_\alpha \nu_\alpha$. With this understood, $(x_1, \dots, x_n, y_1, \dots, y_m)$ is a local coordinate system on the total space of the normal bundle $T^\perp\Sigma$. We compute

$$\begin{aligned} \left\langle \frac{\partial \Phi}{\partial x_i}(\bar{x}, \bar{y}), e_j \right\rangle &= \langle \bar{D}_{e_i}(\nabla^\Sigma u), e_j \rangle + \sum_{\alpha=1}^m \bar{y}_\alpha \langle \bar{D}_{e_i} \nu_\alpha, e_j \rangle \\ &= (D_\Sigma^2 u)(e_i, e_j) - \langle II(e_i, e_j), \bar{y} \rangle. \end{aligned}$$

In the last step, we have used the identity $\langle II(e_i, e_j), \nu_\alpha \rangle = -\langle \bar{D}_{e_i} \nu_\alpha, e_j \rangle$. Moreover,

$$\left\langle \frac{\partial \Phi}{\partial y_\alpha}(\bar{x}, \bar{y}), e_j \right\rangle = \langle \nu_\alpha, e_j \rangle = 0$$

and

$$\left\langle \frac{\partial \Phi}{\partial y_\alpha}(\bar{x}, \bar{y}), \nu_\beta \right\rangle = \langle \nu_\alpha, \nu_\beta \rangle = \delta_{\alpha\beta}.$$

Thus, we conclude that

$$\det D\Phi(\bar{x}, \bar{y}) = \det \begin{bmatrix} D_\Sigma^2 u(\bar{x}) - \langle II(\bar{x}), \bar{y} \rangle & 0 \\ * & \text{id} \end{bmatrix} = \det(D_\Sigma^2 u(\bar{x}) - \langle II(\bar{x}), \bar{y} \rangle).$$

This proves the assertion.

Lemma 6. *The Jacobian determinant of Φ satisfies*

$$0 \leq \det D\Phi(x, y) \leq f(x)^{\frac{n}{n-1}}$$

for all $(x, y) \in A$.

Proof. Consider a point $(x, y) \in A$. Using the inequality $|\nabla^\Sigma u(x)|^2 + |y|^2 < 1$ and the Cauchy-Schwarz inequality, we obtain

$$\begin{aligned} & -\langle \nabla^\Sigma f(x), \nabla^\Sigma u(x) \rangle - f(x) \langle H(x), y \rangle \\ & \leq \sqrt{|\nabla^\Sigma f(x)|^2 + f(x)^2 |H(x)|^2} \sqrt{|\nabla^\Sigma u(x)|^2 + |y|^2} \\ & \leq \sqrt{|\nabla^\Sigma f(x)|^2 + f(x)^2 |H(x)|^2}. \end{aligned}$$

Using the identity $\operatorname{div}_\Sigma(f \nabla^\Sigma u) = n f^{\frac{n}{n-1}} - \sqrt{|\nabla^\Sigma f|^2 + f^2 |H|^2}$, we deduce that

$$\begin{aligned} & \Delta_\Sigma u(x) - \langle H(x), y \rangle \\ &= n f(x)^{\frac{1}{n-1}} - f(x)^{-1} \sqrt{|\nabla^\Sigma f(x)|^2 + f(x)^2 |H(x)|^2} \\ &\quad - f(x)^{-1} \langle \nabla^\Sigma f(x), \nabla^\Sigma u(x) \rangle - \langle H(x), y \rangle \\ &\leq n f(x)^{\frac{1}{n-1}}. \end{aligned}$$

Moreover, $D_\Sigma^2 u(x) - \langle \Pi(x), y \rangle \geq 0$ since $(x, y) \in A$. Hence, the arithmetic-geometric mean inequality implies

$$0 \leq \det(D_\Sigma^2 u(x) - \langle \Pi(x), y \rangle) \leq \left(\frac{\operatorname{tr}(D_\Sigma^2 u(x) - \langle \Pi(x), y \rangle)}{n} \right)^n \leq f(x)^{\frac{n}{n-1}}.$$

Using Lemma 5, we conclude that $0 \leq \det D\Phi(x, y) \leq f(x)^{\frac{n}{n-1}}$. This completes the proof of Lemma 6.

We now continue with the proof of Theorem 1. Using Lemma 4 and Lemma 6, we obtain

$$\begin{aligned} & |B^{n+m}| (1 - \sigma^{n+m}) \\ &= \int_{\{\xi \in \mathbb{R}^{n+m} : \sigma^2 < |\xi|^2 < 1\}} 1 d\xi \\ &\leq \int_{\Omega} \left(\int_{\{y \in T_x^\perp \Sigma : \sigma^2 < |\Phi(x, y)|^2 < 1\}} |\det D\Phi(x, y)| 1_A(x, y) dy \right) d\operatorname{vol}(x) \\ &\leq \int_{\Omega} \left(\int_{\{y \in T_x^\perp \Sigma : \sigma^2 < |\nabla^\Sigma u(x)|^2 + |y|^2 < 1\}} f(x)^{\frac{n}{n-1}} dy \right) d\operatorname{vol}(x) \\ &= |B^m| \int_{\Omega} \left[(1 - |\nabla^\Sigma u(x)|^2)^{\frac{m}{2}} - (\sigma^2 - |\nabla^\Sigma u(x)|^2)_+^{\frac{m}{2}} \right] f(x)^{\frac{n}{n-1}} d\operatorname{vol}(x) \end{aligned}$$

for all $0 \leq \sigma < 1$. Since $m \geq 2$, the mean value theorem gives $b^{\frac{m}{2}} - a^{\frac{m}{2}} \leq \frac{m}{2} (b - a)$ for $0 \leq a \leq b \leq 1$. Consequently,

$$\begin{aligned} & (1 - |\nabla^\Sigma u(x)|^2)^{\frac{m}{2}} - (\sigma^2 - |\nabla^\Sigma u(x)|^2)_+^{\frac{m}{2}} \\ &\leq \frac{m}{2} \left[(1 - |\nabla^\Sigma u(x)|^2) - (\sigma^2 - |\nabla^\Sigma u(x)|^2)_+ \right] \leq \frac{m}{2} (1 - \sigma^2) \end{aligned}$$

for all $x \in \Omega$ and all $0 \leq \sigma < 1$. Putting these facts, together, we obtain

$$|B^{n+m}| (1 - \sigma^{n+m}) \leq \frac{m}{2} |B^m| (1 - \sigma^2) \int_{\Omega} f^{\frac{n}{n-1}}$$

for all $0 \leq \sigma < 1$. In the next step, we divide by $1 - \sigma$ and take the limit as $\sigma \rightarrow 1$. This gives

$$(n + m) |B^{n+m}| \leq m |B^m| \int_{\Omega} f^{\frac{n}{n-1}} \leq m |B^m| \int_{\Sigma} f^{\frac{n}{n-1}}.$$

On the other hand, $\int_{\Sigma} \sqrt{|\nabla^{\Sigma} f|^2 + f^2 |H|^2} + \int_{\partial\Sigma} f = n \int_{\Sigma} f^{\frac{n}{n-1}}$ in view of our normalization. Thus, we conclude that

$$\begin{aligned} & \int_{\Sigma} \sqrt{|\nabla^{\Sigma} f|^2 + f^2 |H|^2} + \int_{\partial\Sigma} f \\ &= n \int_{\Sigma} f^{\frac{n}{n-1}} \geq n \left(\frac{(n+m) |B^{n+m}|}{m |B^m|} \right)^{\frac{1}{n}} \left(\int_{\Sigma} f^{\frac{n}{n-1}} \right)^{\frac{n-1}{n}}. \end{aligned}$$

This proves Theorem 1 in the special case when Σ is connected.

It remains to consider the case when Σ is disconnected. In that case, we apply the inequality to each individual connected component of Σ , and take the sum over all connected components. Since

$$a^{\frac{n-1}{n}} + b^{\frac{n-1}{n}} > a(a+b)^{-\frac{1}{n}} + b(a+b)^{-\frac{1}{n}} = (a+b)^{\frac{n-1}{n}}$$

for $a, b > 0$, we conclude that

$$\int_{\Sigma} \sqrt{|\nabla^{\Sigma} f|^2 + f^2 |H|^2} + \int_{\partial\Sigma} f > n \left(\frac{(n+m) |B^{n+m}|}{m |B^m|} \right)^{\frac{1}{n}} \left(\int_{\Sigma} f^{\frac{n}{n-1}} \right)^{\frac{n-1}{n}}.$$

if Σ is disconnected. This completes the proof of Theorem 1.

3. PROOF OF THEOREM 3

Suppose that Σ is a compact n -dimensional submanifold in \mathbb{R}^{n+2} (possibly with boundary $\partial\Sigma$), and f is a positive smooth function on Σ satisfying

$$\int_{\Sigma} \sqrt{|\nabla^{\Sigma} f|^2 + f^2 |H|^2} + \int_{\partial\Sigma} f = n |B^n|^{\frac{1}{n}} \left(\int_{\Sigma} f^{\frac{n}{n-1}} \right)^{\frac{n-1}{n}}.$$

Clearly, Σ must be connected.

By scaling, we may arrange that $\int_{\Sigma} \sqrt{|\nabla^{\Sigma} f|^2 + f^2 |H|^2} + \int_{\partial\Sigma} f = n |B^n|$ and $\int_{\Sigma} f^{\frac{n}{n-1}} = |B^n|$. In particular,

$$\int_{\Sigma} \sqrt{|\nabla^{\Sigma} f|^2 + f^2 |H|^2} + \int_{\partial\Sigma} f = n \int_{\Sigma} f^{\frac{n}{n-1}}.$$

Since Σ is connected, we can find a function $u : \Sigma \rightarrow \mathbb{R}$ such that

$$\operatorname{div}_{\Sigma}(f \nabla^{\Sigma} u) = n f^{\frac{n}{n-1}} - \sqrt{|\nabla^{\Sigma} f|^2 + f^2 |H|^2}$$

on Σ and $\langle \nabla^{\Sigma} u, \eta \rangle = 1$ on $\partial\Sigma$. Moreover, u is of class $C^{2,\gamma}$ for each $0 < \gamma < 1$.

Let Ω , U , A , and $\Phi : U \rightarrow \mathbb{R}^{n+2}$ be defined as in Section 2.

Lemma 7. *Suppose that $\bar{x} \in \Omega$, $\bar{y} \in T_{\bar{x}}^{\perp} \Sigma$, $|\nabla^{\Sigma} u(\bar{x})|^2 + |\bar{y}|^2 = 1$, and $D_{\Sigma}^2 u(\bar{x}) - \langle II(\bar{x}), \bar{y} \rangle \neq f(\bar{x})^{\frac{1}{n-1}} g$. Then there exists a real number $\varepsilon \in (0, 1)$ and an open neighborhood V of the point (\bar{x}, \bar{y}) such that $\det D\Phi(x, y) \leq (1 - \varepsilon) f(x)^{\frac{n}{n-1}}$ for all $(x, y) \in A \cap V$.*

Proof. We distinguish two cases:

Case 1: Suppose that $D_{\Sigma}^2 u(\bar{x}) - \langle II(\bar{x}), \bar{y} \rangle \geq 0$. Since $|\nabla^{\Sigma} u(\bar{x})|^2 + |\bar{y}|^2 = 1$, the Cauchy-Schwarz inequality implies

$$-\langle \nabla^{\Sigma} f(\bar{x}), \nabla^{\Sigma} u(\bar{x}) \rangle - f(\bar{x}) \langle H(\bar{x}), \bar{y} \rangle \leq \sqrt{|\nabla^{\Sigma} f(\bar{x})|^2 + f(\bar{x})^2 |H(\bar{x})|^2}.$$

Using the identity $\text{div}_{\Sigma}(f \nabla^{\Sigma} u) = n f^{\frac{n}{n-1}} - \sqrt{|\nabla^{\Sigma} f|^2 + f^2 |H|^2}$, we obtain

$$\Delta_{\Sigma} u(\bar{x}) - \langle H(\bar{x}), \bar{y} \rangle \leq n f(\bar{x})^{\frac{1}{n-1}}.$$

Since $D_{\Sigma}^2 u(\bar{x}) - \langle II(\bar{x}), \bar{y} \rangle \geq 0$ and $D_{\Sigma}^2 u(\bar{x}) - \langle II(\bar{x}), \bar{y} \rangle \neq f(\bar{x})^{\frac{1}{n-1}} g$, the arithmetic-geometric mean inequality gives

$$\det(D_{\Sigma}^2 u(\bar{x}) - \langle II(\bar{x}), \bar{y} \rangle) < f(\bar{x})^{\frac{n}{n-1}}.$$

Let us choose a real number $\varepsilon \in (0, 1)$ such that $\det(D_{\Sigma}^2 u(\bar{x}) - \langle II(\bar{x}), \bar{y} \rangle) < (1 - \varepsilon) f(\bar{x})^{\frac{n}{n-1}}$. Since u is of class $C^{2,\gamma}$, we can find an open neighborhood V of (\bar{x}, \bar{y}) such that $\det(D_{\Sigma}^2 u(x) - \langle II(x), y \rangle) \leq (1 - \varepsilon) f(x)^{\frac{n}{n-1}}$ for all $(x, y) \in V$. Using Lemma 5, we obtain $\det D\Phi(x, y) \leq (1 - \varepsilon) f(x)^{\frac{n}{n-1}}$ for all $(x, y) \in U \cap V$.

Case 2: Suppose that the smallest eigenvalue of $D_{\Sigma}^2 u(\bar{x}) - \langle II(\bar{x}), \bar{y} \rangle$ is strictly negative. Since u is of class $C^{2,\gamma}$, we can find an open neighborhood V of (\bar{x}, \bar{y}) with the property that the smallest eigenvalue of $D_{\Sigma}^2 u(x) - \langle II(x), y \rangle$ is strictly negative for all $(x, y) \in V$. Consequently, $A \cap V = \emptyset$. This completes the proof of Lemma 7.

Lemma 8. *We have $D_{\Sigma}^2 u(x) - \langle II(x), y \rangle = f(x)^{\frac{1}{n-1}} g$ for all $x \in \Omega$ and all $y \in T_x^{\perp} \Sigma$ satisfying $|\nabla^{\Sigma} u(x)|^2 + |y|^2 = 1$.*

Proof. We argue by contradiction. Suppose that there exists a point $\bar{x} \in \Omega$ and a vector $\bar{y} \in T_{\bar{x}}^{\perp} \Sigma$ such that $|\nabla^{\Sigma} u(\bar{x})|^2 + |\bar{y}|^2 = 1$ and $D_{\Sigma}^2 u(\bar{x}) - \langle II(\bar{x}), \bar{y} \rangle \neq f(\bar{x})^{\frac{1}{n-1}} g$. By Lemma 7, we can find a real number $\varepsilon \in (0, 1)$ and an open neighborhood V of the point (\bar{x}, \bar{y}) such that $\det D\Phi(x, y) \leq (1 - \varepsilon) f(x)^{\frac{n}{n-1}}$ for all $(x, y) \in A \cap V$. Using Lemma 6, we deduce that

$$0 \leq \det D\Phi(x, y) \leq (1 - \varepsilon \cdot 1_V(x, y)) f(x)^{\frac{n}{n-1}}$$

for all $(x, y) \in A$. Arguing as in Section 2, we obtain

$$\begin{aligned}
& |B^{n+2}| (1 - \sigma^{n+2}) \\
&= \int_{\{\xi \in \mathbb{R}^{n+2} : \sigma^2 < |\xi|^2 < 1\}} 1 d\xi \\
&\leq \int_{\Omega} \left(\int_{\{y \in T_x^\perp \Sigma : \sigma^2 < |\Phi(x, y)|^2 < 1\}} |\det D\Phi(x, y)| 1_A(x, y) dy \right) d\text{vol}(x) \\
&\leq \int_{\Omega} \left(\int_{\{y \in T_x^\perp \Sigma : \sigma^2 < |\nabla^\Sigma u(x)|^2 + |y|^2 < 1\}} (1 - \varepsilon \cdot 1_V(x, y)) f(x)^{\frac{n}{n-1}} dy \right) d\text{vol}(x) \\
&= |B^2| \int_{\Omega} \left[(1 - |\nabla^\Sigma u(x)|^2) - (\sigma^2 - |\nabla^\Sigma u(x)|^2)_+ \right] f(x)^{\frac{n}{n-1}} d\text{vol}(x) \\
&\quad - \varepsilon \int_{\Omega} \left(\int_{\{y \in T_x^\perp \Sigma : \sigma^2 < |\nabla^\Sigma u(x)|^2 + |y|^2 < 1\}} 1_V(x, y) f(x)^{\frac{n}{n-1}} dy \right) d\text{vol}(x) \\
&\leq |B^2| (1 - \sigma^2) \int_{\Omega} f(x)^{\frac{n}{n-1}} d\text{vol}(x) \\
&\quad - \varepsilon \int_{\Omega} \left(\int_{\{y \in T_x^\perp \Sigma : \sigma^2 < |\nabla^\Sigma u(x)|^2 + |y|^2 < 1\}} 1_V(x, y) f(x)^{\frac{n}{n-1}} dy \right) d\text{vol}(x)
\end{aligned}$$

for all $0 \leq \sigma < 1$. Dividing by $1 - \sigma$ and taking the limit as $\sigma \rightarrow 1$ gives

$$(n+2) |B^{n+2}| < 2 |B^2| \int_{\Omega} f^{\frac{n}{n-1}} \leq 2 |B^2| \int_{\Sigma} f^{\frac{n}{n-1}} = 2 |B^2| |B^n|.$$

This contradicts the fact that $(n+2) |B^{n+2}| = 2 |B^2| |B^n|$.

Lemma 9. *We have $D_{\Sigma}^2 u(x) = f(x)^{\frac{1}{n-1}} g$ and $\Pi(x) = 0$ for all $x \in \Omega$.*

Proof. Lemma 8 implies $D_{\Sigma}^2 u(x) - \langle \Pi(x), y \rangle = f(x)^{\frac{1}{n-1}} g$ for all $x \in \Omega$ and all $y \in T_x^\perp \Sigma$ satisfying $|\nabla^\Sigma u(x)|^2 + |y|^2 = 1$. Replacing y by $-y$ gives $D_{\Sigma}^2 u(x) + \langle \Pi(x), y \rangle = f(x)^{\frac{1}{n-1}} g$ for all $x \in \Omega$ and all $y \in T_x^\perp \Sigma$ satisfying $|\nabla^\Sigma u(x)|^2 + |y|^2 = 1$. Consequently, $D_{\Sigma}^2 u(x) = f(x)^{\frac{1}{n-1}} g$ and $\langle \Pi(x), y \rangle = 0$ for all $x \in \Omega$ and all $y \in T_x^\perp \Sigma$ satisfying $|\nabla^\Sigma u(x)|^2 + |y|^2 = 1$. From this, the assertion follows.

Lemma 10. *We have $\nabla^\Sigma f(x) = 0$ for all $x \in \Omega$.*

Proof. Using Lemma 9, we obtain $\Delta_{\Sigma} u = n f^{\frac{1}{n-1}}$ at each point in Ω . This implies $\text{div}_{\Sigma}(f \nabla^\Sigma u) = n f^{\frac{n}{n-1}} + \langle \nabla^\Sigma f, \nabla^\Sigma u \rangle$ at each point in Ω . On the other hand, by definition of u , we have $\text{div}_{\Sigma}(f \nabla^\Sigma u) = n f^{\frac{n}{n-1}} - |\nabla^\Sigma f|$ at each point in Ω . Consequently, $\langle \nabla^\Sigma f, \nabla^\Sigma u \rangle = -|\nabla^\Sigma f|$ at each point in Ω . Since $|\nabla^\Sigma u| < 1$ at each point in Ω , we conclude that $\nabla^\Sigma f = 0$ at each point in Ω .

Lemma 11. *The set Ω is dense in Σ .*

Proof. We argue by contradiction. Suppose that Ω is not dense in Σ . Then $\int_{\Omega} f^{\frac{n}{n-1}} < \int_{\Sigma} f^{\frac{n}{n-1}}$. Hence, the arguments in Section 2 imply

$$(n+2)|B^{n+2}| \leq 2|B^2| \int_{\Omega} f^{\frac{n}{n-1}} < 2|B^2| \int_{\Sigma} f^{\frac{n}{n-1}} = 2|B^2||B^n|.$$

This contradicts the fact that $(n+2)|B^{n+2}| = 2|B^2||B^n|$.

Using Lemma 9, Lemma 10, and Lemma 11, we conclude that $D_{\Sigma}^2 u = f^{\frac{1}{n-1}} g$, $\Pi = 0$, and $\nabla^{\Sigma} f = 0$ at each point on Σ . Since Σ is connected and $\nabla^{\Sigma} f = 0$ at each point on Σ , it follows that $f = \lambda^{n-1}$ for some positive constant λ . Since Σ is connected and $\Pi = 0$ at each point on Σ , Σ is contained in an n -dimensional plane P . Since $D_{\Sigma}^2 u = f^{\frac{1}{n-1}} g = \lambda g$ at each point on Σ , the function u must be of the form $u(x) = \frac{1}{2} \lambda |x - p|^2 + c$ for some point $p \in P$ and some constant c . On the other hand, we know that $|\nabla^{\Sigma} u| < 1$ at each point on Ω . Using Lemma 11, it follows that $|\nabla^{\Sigma} u| \leq 1$ at each point on Σ . This implies $\Sigma \subset \{x \in P : \lambda |x - p| \leq 1\}$. Since $\lambda^n |\Sigma| = \int_{\Sigma} f^{\frac{n}{n-1}} = |B^n|$, we conclude that $\Sigma = \{x \in P : \lambda |x - p| \leq 1\}$. This completes the proof of Theorem 3.

REFERENCES

- [1] W. Allard, *On the first variation of a varifold*, Ann. of Math. 95, 417–491 (1972)
- [2] F.J. Almgren, Jr., *Optimal isoperimetric inequalities*, Indiana Univ. Math. J. 35, 451–547 (1986)
- [3] X. Cabré, *Elliptic PDEs in probability and geometry. Symmetry and regularity of solutions*, Discrete Cont. Dyn. Systems A 20, 425–457 (2008)
- [4] T. Carleman, *Zur Theorie der Minimalflächen*, Math. Z. 9, 154–160 (1921)
- [5] P. Castillon, *Submanifolds, isoperimetric inequalities and optimal transportation*, J. Funct. Anal. 259, 79–103 (2010)
- [6] J. Choe, *The isoperimetric inequality for a minimal surface with radially connected boundary*, Ann. Scuola Norm. Sup. Pisa 17, 583–593 (1990)
- [7] J. Choe, *Isoperimetric inequalities of minimal submanifolds*, Global Theory of Minimal Surfaces, Clay Math. Proc. vol. 2, pp. 325–369, Amer. Math. Soc., Providence RI, 2005
- [8] H. Federer and W.H. Fleming, *Normal and integral currents*, Ann. of Math. 72, 458–520 (1960)
- [9] J. Feinberg, *The isoperimetric inequality for doubly-connected minimal surfaces in \mathbb{R}^n* , J. d'Anal. Math. 32, 249–278 (1977)
- [10] D. Gilbarg and N. Trudinger, *Elliptic Partial Differential Equations of Second Order*, Springer-Verlag, 2001
- [11] C.C. Hsiung, *Isoperimetric inequalities for two-dimensional Riemannian manifolds with boundary*, Ann. of Math. 73, 213–220 (1961)
- [12] P. Li, R. Schoen, and S.T. Yau, *On the isoperimetric inequality for minimal surfaces*, Ann. Scuola Norm. Sup. Pisa 11, 237–244 (1984)
- [13] J.H. Michael and L.M. Simon, *Sobolev and mean value inequalities on generalized submanifolds of \mathbb{R}^n* , Comm. Pure Appl. Math. 26, 361–379 (1973)
- [14] R. Osserman and M. Schiffer, *Doubly-connected minimal surfaces*, Arch. Rational Mech. Anal. 58, 285–307 (1975)

- [15] W.T. Reid, *The isoperimetric inequality and associated boundary problems*, J. Math. Mech. 8, 897–906 (1959)
- [16] A. Stone, *On the isoperimetric inequality on a minimal surface*, Calc. Var. PDE 17, 369–391 (2003)
- [17] P. Topping, *Relating diameter and mean curvature for submanifolds in Euclidean space*, Comment. Math. Helv. 83, 539–546 (2008)
- [18] N. Trudinger, *Isoperimetric inequalities for quermassintegrals*, Ann. Inst. H. Poincaré Anal. Non Linéaire 11, 411–425 (1994)

DEPARTMENT OF MATHEMATICS, COLUMBIA UNIVERSITY, NEW YORK NY 10027