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Abstract. We prove a Sobolev inequality which holds on submani-
folds in Euclidean space of arbitrary dimension and codimension. This
inequality is sharp if the codimension is at most 2. As a special case,
we obtain a sharp isoperimetric inequality for minimal submanifolds in
Euclidean space of codimension at most 2.

1. Introduction

The isoperimetric inequality for a domain in Rn is one of the most beau-
tiful results in geometry. It has long been conjectured that the isoperimetric
inequality still holds if we replace the domain in Rn by a minimal hyper-
surface in Rn+1. In this paper, we prove this conjecture, as well as a more
general inequality which holds for submanifolds of arbitrary dimension and
codimension.

Theorem 1. Let Σ be a compact n-dimensional submanifold of Rn+m (pos-
sibly with boundary ∂Σ), where m ≥ 2. Let f be a positive smooth function
on Σ. Then∫

Σ

√
|∇Σf |2 + f2 |H|2 +

∫
∂Σ
f ≥ n

((n+m) |Bn+m|
m |Bm|

) 1
n
(∫

Σ
f

n
n−1

)n−1
n
.

Here, H denotes the mean curvature vector of Σ, and Bn denotes the open
unit ball in Rn.

Let us consider the special case m = 2. The standard recursion formula
for the volume of the unit ball in Euclidean space gives (n + 2) |Bn+2| =
2π |Bn| = 2 |B2| |Bn|. Thus, Theorem 1 implies a sharp Sobolev inequality
for submanifolds of codimension 2:

Corollary 2. Let Σ be a compact n-dimensional submanifold of Rn+2 (pos-
sibly with boundary ∂Σ), and let f be a positive smooth function on Σ. Then∫

Σ

√
|∇Σf |2 + f2 |H|2 +

∫
∂Σ
f ≥ n |Bn|

1
n

(∫
Σ
f

n
n−1

)n−1
n
,

where H denotes the mean curvature vector of Σ.

Finally, we characterize the case of equality in Corollary 2:
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Theorem 3. Let Σ be a compact n-dimensional submanifold of Rn+2 (pos-
sibly with boundary ∂Σ), and let f be a positive smooth function on Σ. If∫

Σ

√
|∇Σf |2 + f2 |H|2 +

∫
∂Σ
f = n |Bn|

1
n

(∫
Σ
f

n
n−1

)n−1
n
,

then f is constant and Σ is a flat round ball.

In particular, if Σ is a compact n-dimensional minimal submanifold of
Rn+2, then Σ satisfies the sharp isoperimetric inequality

|∂Σ| ≥ n |Bn|
1
n |Σ|

n−1
n ,

and equality holds if and only if Σ is a flat round ball.
Every n-dimensional submanifold of Rn+1 can be viewed as a submanifold

of Rn+2. Hence, Corollary 2 and Theorem 3 imply a sharp isoperimetric
inequality in codimension 1.

The isoperimetric inequality on a minimal surface has a long history.
In 1921, Torsten Carleman [4] proved that every two-dimensional minimal
surface Σ which is diffeomorphic to a disk satisfies the sharp isoperimetric
inequality |∂Σ|2 ≥ 4π |Σ|. Various authors have weakened the topological
assumption in Carleman’s theorem. In particular, the sharp isoperimet-
ric inequality has been verified for two-dimensional minimal surfaces with
connected boundary (see [11], [15]); for two-dimensional minimal surfaces
diffeomorphic to annuli (cf. [9], [14]); and for two-dimensional minimal sur-
faces with two boundary components (cf. [6], [12]). On the other hand, using
different techniques, Leon Simon showed that every two-dimensional mini-
mal surface satisfies the non-sharp isoperimetric inequality |∂Σ|2 ≥ 2π |Σ|
(see [17], Section 4). Stone [16] subsequently improved the constant in this
inequality: he proved that |∂Σ|2 ≥ 2

√
2π |Σ| for every two-dimensional min-

imal surface Σ. We refer to [7] for a survey of these developments.
In higher dimensions, the famous Michael-Simon Sobolev inequality (cf.

[1], Section 7, and [13]) implies an isoperimetric inequality for minimal sub-
manifolds, albeit with a non-sharp constant. Castillon [5] gave an alternative
proof of the Michael-Simon Sobolev inequality using methods from optimal
transport. Finally, Almgren [2] proved a sharp version of the filling inequal-
ity of Federer and Fleming [8]. In particular, this gives a sharp isoperimetric
inequality for area-minimizing submanifolds in all dimensions.

Our method of proof is inspired in part by the Alexandrov-Bakelman-
Pucci maximum principle (cf. [3], [18]). An alternative way to prove Theo-
rem 1 would be to use optimal transport; in that case, we would consider the
transport map from a thin annulus in Rn+m to the submanifold Σ equipped

with the measure f
n

n−1 dvol.

2. Proof of Theorem 1

Let Σ be a compact n-dimensional submanifold of Rn+m (possibly with
boundary ∂Σ), where m ≥ 2. For each point x ∈ Σ, we denote by TxΣ
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and T⊥x Σ the tangent and normal space to Σ at x, respectively. Moreover,
we denote by II the second fundamental form of Σ. Recall that II is a
symmetric bilinear form on TxΣ which takes values in T⊥x Σ. If X and Y
are tangent vector fields on Σ and V is a normal vector field along Σ, then
〈II(X,Y ), V 〉 = 〈D̄XY, V 〉 = −〈D̄XV, Y 〉, where D̄ denotes the standard
connection on Rn+m. The trace of the second fundamental form gives the
mean curvature vector, which we denote by H. Finally, we denote by η the
co-normal to ∂Σ.

We now turn to the proof of Theorem 1. We first consider the special
case that Σ is connected. By scaling, we may assume that∫

Σ

√
|∇Σf |2 + f2 |H|2 +

∫
∂Σ
f = n

∫
Σ
f

n
n−1 .

Since Σ is connected, we can find a function u : Σ → R with the property
that

divΣ(f ∇Σu) = n f
n

n−1 −
√
|∇Σf |2 + f2 |H|2

on Σ and 〈∇Σu, η〉 = 1 at each point on ∂Σ. Since the function
√
|∇Σf |2 + f2 |H|2

is Lipschitz continuous, it follows from standard elliptic regularity theory
that the function u is of class C2,γ for each 0 < γ < 1 (see [10], Theorem
6.30).

We define

Ω := {x ∈ Σ \ ∂Σ : |∇Σu(x)| < 1},

U := {(x, y) : x ∈ Σ \ ∂Σ, y ∈ T⊥x Σ, |∇Σu(x)|2 + |y|2 < 1},
A := {(x, y) ∈ U : D2

Σu(x)− 〈II(x), y〉 ≥ 0}.

Moreover, we define a map Φ : U → Rn+m by

Φ(x, y) = ∇Σu(x) + y

for all (x, y) ∈ U . Note that Φ is of class C1,γ for each 0 < γ < 1.
Since ∇Σu(x) ∈ TxΣ and y ∈ T⊥x Σ are orthogonal, we obtain |Φ(x, y)|2 =
|∇Σu(x)|2 + |y|2 < 1 for all (x, y) ∈ U .

Lemma 4. The image Φ(A) is the open unit ball Bn+m.

Proof. Clearly, Φ(A) ⊂ Φ(U) ⊂ Bn+m. To prove the reverse inclusion,
we consider an arbitrary vector ξ ∈ Rn+m such that |ξ| < 1. We define a
function w : Σ → R by w(x) := u(x) − 〈x, ξ〉. Using the Cauchy-Schwarz
inequality, we obtain

〈∇Σw(x), η(x)〉 = 〈∇Σu(x), η(x)〉 − 〈η(x), ξ〉 = 1− 〈η(x), ξ〉 > 0

for each point x ∈ ∂Σ. Consequently, the function w must attain its mini-
mum in the interior of Σ. Let x̄ ∈ Σ\∂Σ be a point in the interior of Σ such
that w(x̄) = infx∈Σw(x). Clearly, ∇Σw(x̄) = 0. This implies ξ = ∇Σu(x̄)+ȳ
for some ȳ ∈ T⊥x̄ Σ. Consequently, |∇Σu(x̄)|2 + |ȳ|2 = |ξ|2 < 1. Moreover,
we have D2

Σw(x̄) ≥ 0. From this, we deduce that D2
Σu(x̄) − 〈II(x̄), ξ〉 ≥
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0. Since 〈II(x̄), ξ〉 = 〈II(x̄),∇Σu(x̄) + ȳ〉 = 〈II(x̄), ȳ〉, we conclude that
D2

Σu(x̄) − 〈II(x̄), ȳ〉 ≥ 0. Therefore, (x̄, ȳ) ∈ A and Φ(x̄, ȳ) = ξ. Thus,
Bn+m ⊂ Φ(A).

Lemma 5. The Jacobian determinant of Φ is given by

detDΦ(x, y) = det(D2
Σu(x)− 〈II(x), y〉)

for all (x, y) ∈ U .

Proof. Fix a point (x̄, ȳ) ∈ U . Let {e1, . . . , en} be an orthonormal
basis of the tangent space Tx̄Σ, and let (x1, . . . , xn) be a local coordinate
system on Σ such that ∂

∂xi
= ei at the point x̄. Moreover, let {ν1, . . . , νm}

denote a local orthonormal frame for the normal bundle T⊥Σ. Every normal
vector y can be written in the form y =

∑m
α=1 yανα. With this understood,

(x1, . . . , xn, y1, . . . , ym) is a local coordinate system on the total space of the
normal bundle T⊥Σ. We compute〈 ∂Φ

∂xi
(x̄, ȳ), ej

〉
= 〈D̄ei(∇Σu), ej〉+

m∑
α=1

ȳα 〈D̄eiνα, ej〉

= (D2
Σu)(ei, ej)− 〈II(ei, ej), ȳ〉.

In the last step, we have used the identity 〈II(ei, ej), να〉 = −〈D̄eiνα, ej〉.
Moreover, 〈 ∂Φ

∂yα
(x̄, ȳ), ej

〉
= 〈να, ej〉 = 0

and 〈 ∂Φ

∂yα
(x̄, ȳ), νβ

〉
= 〈να, νβ〉 = δαβ.

Thus, we conclude that

detDΦ(x̄, ȳ) = det

[
D2

Σu(x̄)− 〈II(x̄), ȳ〉 0
∗ id

]
= det(D2

Σu(x̄)− 〈II(x̄), ȳ〉).

This proves the assertion.

Lemma 6. The Jacobian determinant of Φ satisfies

0 ≤ detDΦ(x, y) ≤ f(x)
n

n−1

for all (x, y) ∈ A.

Proof. Consider a point (x, y) ∈ A. Using the inequality |∇Σu(x)|2 +
|y|2 < 1 and the Cauchy-Schwarz inequality, we obtain

− 〈∇Σf(x),∇Σu(x)〉 − f(x) 〈H(x), y〉

≤
√
|∇Σf(x)|2 + f(x)2 |H(x)|2

√
|∇Σu(x)|2 + |y|2

≤
√
|∇Σf(x)|2 + f(x)2 |H(x)|2.
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Using the identity divΣ(f ∇Σu) = n f
n

n−1 −
√
|∇Σf |2 + f2 |H|2, we deduce

that

∆Σu(x)− 〈H(x), y〉

= n f(x)
1

n−1 − f(x)−1
√
|∇Σf(x)|2 + f(x)2 |H(x)|2

− f(x)−1 〈∇Σf(x),∇Σu(x)〉 − 〈H(x), y〉

≤ n f(x)
1

n−1 .

Moreover, D2
Σu(x)− 〈II(x), y〉 ≥ 0 since (x, y) ∈ A. Hence, the arithmetic-

geometric mean inequality implies

0 ≤ det(D2
Σu(x)− 〈II(x), y〉) ≤

(tr(D2
Σu(x)− 〈II(x), y〉)

n

)n
≤ f(x)

n
n−1 .

Using Lemma 5, we conclude that 0 ≤ detDΦ(x, y) ≤ f(x)
n

n−1 . This com-
pletes the proof of Lemma 6.

We now continue with the proof of Theorem 1. Using Lemma 4 and
Lemma 6, we obtain

|Bn+m| (1− σn+m)

=

∫
{ξ∈Rn+m:σ2<|ξ|2<1}

1 dξ

≤
∫

Ω

(∫
{y∈T⊥x Σ:σ2<|Φ(x,y)|2<1}

|detDΦ(x, y)| 1A(x, y) dy

)
dvol(x)

≤
∫

Ω

(∫
{y∈T⊥x Σ:σ2<|∇Σu(x)|2+|y|2<1}

f(x)
n

n−1 dy

)
dvol(x)

= |Bm|
∫

Ω

[
(1− |∇Σu(x)|2)

m
2 − (σ2 − |∇Σu(x)|2)

m
2

+

]
f(x)

n
n−1 dvol(x)

for all 0 ≤ σ < 1. Since m ≥ 2, the mean value theorem gives b
m
2 − a

m
2 ≤

m
2 (b− a) for 0 ≤ a ≤ b ≤ 1. Consequently,

(1− |∇Σu(x)|2)
m
2 − (σ2 − |∇Σu(x)|2)

m
2

+

≤ m

2

[
(1− |∇Σu(x)|2)− (σ2 − |∇Σu(x)|2)+

]
≤ m

2
(1− σ2)

for all x ∈ Ω and all 0 ≤ σ < 1. Putting these facts, together, we obtain

|Bn+m| (1− σn+m) ≤ m

2
|Bm| (1− σ2)

∫
Ω
f

n
n−1

for all 0 ≤ σ < 1. In the next step, we divide by 1− σ and take the limit as
σ → 1. This gives

(n+m) |Bn+m| ≤ m |Bm|
∫

Ω
f

n
n−1 ≤ m |Bm|

∫
Σ
f

n
n−1 .
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On the other hand,
∫

Σ

√
|∇Σf |2 + f2 |H|2 +

∫
∂Σ f = n

∫
Σ f

n
n−1 in view of

our normalization. Thus, we conclude that∫
Σ

√
|∇Σf |2 + f2 |H|2 +

∫
∂Σ
f

= n

∫
Σ
f

n
n−1 ≥ n

((n+m) |Bn+m|
m |Bm|

) 1
n
(∫

Σ
f

n
n−1

)n−1
n
.

This proves Theorem 1 in the special case when Σ is connected.
It remains to consider the case when Σ is disconnected. In that case, we

apply the inequality to each individual connected component of Σ, and take
the sum over all connected components. Since

a
n−1
n + b

n−1
n > a (a+ b)−

1
n + b (a+ b)−

1
n = (a+ b)

n−1
n

for a, b > 0, we conclude that∫
Σ

√
|∇Σf |2 + f2 |H|2 +

∫
∂Σ
f > n

((n+m) |Bn+m|
m |Bm|

) 1
n
(∫

Σ
f

n
n−1

)n−1
n
.

if Σ is disconnected. This completes the proof of Theorem 1.

3. Proof of Theorem 3

Suppose that Σ is a compact n-dimensional submanifold in Rn+2 (possibly
with boundary ∂Σ), and f is a positive smooth function on Σ satisfying∫

Σ

√
|∇Σf |2 + f2 |H|2 +

∫
∂Σ
f = n |Bn|

1
n

(∫
Σ
f

n
n−1

)n−1
n
.

Clearly, Σ must be connected.
By scaling, we may arrange that

∫
Σ

√
|∇Σf |2 + f2 |H|2 +

∫
∂Σ f = n |Bn|

and
∫

Σ f
n

n−1 = |Bn|. In particular,∫
Σ

√
|∇Σf |2 + f2 |H|2 +

∫
∂Σ
f = n

∫
Σ
f

n
n−1 .

Since Σ is connected, we can find a function u : Σ→ R such that

divΣ(f ∇Σu) = n f
n

n−1 −
√
|∇Σf |2 + f2 |H|2

on Σ and 〈∇Σu, η〉 = 1 on ∂Σ. Moreover, u is of class C2,γ for each 0 < γ < 1.
Let Ω, U , A, and Φ : U → Rn+2 be defined as in Section 2.

Lemma 7. Suppose that x̄ ∈ Ω, ȳ ∈ T⊥x̄ Σ, |∇Σu(x̄)|2 + |ȳ|2 = 1, and

D2
Σu(x̄)− 〈II(x̄), ȳ〉 6= f(x̄)

1
n−1 g. Then there exists a real number ε ∈ (0, 1)

and an open neighborhood V of the point (x̄, ȳ) such that detDΦ(x, y) ≤
(1− ε) f(x)

n
n−1 for all (x, y) ∈ A ∩ V .
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Proof. We distinguish two cases:
Case 1: Suppose that D2

Σu(x̄)−〈II(x̄), ȳ〉 ≥ 0. Since |∇Σu(x̄)|2+|ȳ|2 = 1,
the Cauchy-Schwarz inequality implies

−〈∇Σf(x̄),∇Σu(x̄)〉 − f(x̄) 〈H(x̄), ȳ〉 ≤
√
|∇Σf(x̄)|2 + f(x̄)2 |H(x̄)|2.

Using the identity divΣ(f ∇Σu) = n f
n

n−1 −
√
|∇Σf |2 + f2 |H|2, we obtain

∆Σu(x̄)− 〈H(x̄), ȳ〉 ≤ n f(x̄)
1

n−1 .

Since D2
Σu(x̄) − 〈II(x̄), ȳ〉 ≥ 0 and D2

Σu(x̄) − 〈II(x̄), ȳ〉 6= f(x̄)
1

n−1 g, the
arithmetic-geometric mean inequality gives

det(D2
Σu(x̄)− 〈II(x̄), ȳ〉) < f(x̄)

n
n−1 .

Let us choose a real number ε ∈ (0, 1) such that det(D2
Σu(x̄)− 〈II(x̄), ȳ〉) <

(1− ε) f(x̄)
n

n−1 . Since u is of class C2,γ , we can find an open neighborhood

V of (x̄, ȳ) such that det(D2
Σu(x) − 〈II(x), y〉) ≤ (1 − ε) f(x)

n
n−1 for all

(x, y) ∈ V . Using Lemma 5, we obtain detDΦ(x, y) ≤ (1 − ε) f(x)
n

n−1 for
all (x, y) ∈ U ∩ V .

Case 2: Suppose that the smallest eigenvalue of D2
Σu(x̄) − 〈II(x̄), ȳ〉 is

strictly negative. Since u is of class C2,γ , we can find an open neighbor-
hood V of (x̄, ȳ) with the property that the smallest eigenvalue of D2

Σu(x)−
〈II(x), y〉 is strictly negative for all (x, y) ∈ V . Consequently, A ∩ V = ∅.
This completes the proof of Lemma 7.

Lemma 8. We have D2
Σu(x)− 〈II(x), y〉 = f(x)

1
n−1 g for all x ∈ Ω and all

y ∈ T⊥x Σ satisfying |∇Σu(x)|2 + |y|2 = 1.

Proof. We argue by contradiction. Suppose that there exists a point
x̄ ∈ Ω and a vector ȳ ∈ T⊥x̄ Σ such that |∇Σu(x̄)|2 + |ȳ|2 = 1 and D2

Σu(x̄)−
〈II(x̄), ȳ〉 6= f(x̄)

1
n−1 g. By Lemma 7, we can find a real number ε ∈ (0, 1)

and an open neighborhood V of the point (x̄, ȳ) such that detDΦ(x, y) ≤
(1− ε) f(x)

n
n−1 for all (x, y) ∈ A ∩ V . Using Lemma 6, we deduce that

0 ≤ detDΦ(x, y) ≤ (1− ε · 1V (x, y)) f(x)
n

n−1
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for all (x, y) ∈ A. Arguing as in Section 2, we obtain

|Bn+2| (1− σn+2)

=

∫
{ξ∈Rn+2:σ2<|ξ|2<1}

1 dξ

≤
∫

Ω

(∫
{y∈T⊥x Σ:σ2<|Φ(x,y)|2<1}

|detDΦ(x, y)| 1A(x, y) dy

)
dvol(x)

≤
∫

Ω

(∫
{y∈T⊥x Σ:σ2<|∇Σu(x)|2+|y|2<1}

(1− ε · 1V (x, y)) f(x)
n

n−1 dy

)
dvol(x)

= |B2|
∫

Ω

[
(1− |∇Σu(x)|2)− (σ2 − |∇Σu(x)|2)+

]
f(x)

n
n−1 dvol(x)

− ε
∫

Ω

(∫
{y∈T⊥x Σ:σ2<|∇Σu(x)|2+|y|2<1}

1V (x, y) f(x)
n

n−1 dy

)
dvol(x)

≤ |B2| (1− σ2)

∫
Ω
f(x)

n
n−1 dvol(x)

− ε
∫

Ω

(∫
{y∈T⊥x Σ:σ2<|∇Σu(x)|2+|y|2<1}

1V (x, y) f(x)
n

n−1 dy

)
dvol(x)

for all 0 ≤ σ < 1. Dividing by 1− σ and taking the limit as σ → 1 gives

(n+ 2) |Bn+2| < 2 |B2|
∫

Ω
f

n
n−1 ≤ 2 |B2|

∫
Σ
f

n
n−1 = 2 |B2| |Bn|.

This contradicts the fact that (n+ 2) |Bn+2| = 2 |B2| |Bn|.

Lemma 9. We have D2
Σu(x) = f(x)

1
n−1 g and II(x) = 0 for all x ∈ Ω.

Proof. Lemma 8 implies D2
Σu(x) − 〈II(x), y〉 = f(x)

1
n−1 g for all x ∈ Ω

and all y ∈ T⊥x Σ satisfying |∇Σu(x)|2 + |y|2 = 1. Replacing y by −y gives

D2
Σu(x) + 〈II(x), y〉 = f(x)

1
n−1 g for all x ∈ Ω and all y ∈ T⊥x Σ satisfying

|∇Σu(x)|2 + |y|2 = 1. Consequently, D2
Σu(x) = f(x)

1
n−1 g and 〈II(x), y〉 = 0

for all x ∈ Ω and all y ∈ T⊥x Σ satisfying |∇Σu(x)|2 + |y|2 = 1. From this,
the assertion follows.

Lemma 10. We have ∇Σf(x) = 0 for all x ∈ Ω.

Proof. Using Lemma 9, we obtain ∆Σu = n f
1

n−1 at each point in Ω.

This implies divΣ(f ∇Σu) = n f
n

n−1 + 〈∇Σf,∇Σu〉 at each point in Ω. On

the other hand, by definition of u, we have divΣ(f ∇Σu) = n f
n

n−1 − |∇Σf |
at each point in Ω. Consequently, 〈∇Σf,∇Σu〉 = −|∇Σf | at each point in
Ω. Since |∇Σu| < 1 at each point in Ω, we conclude that ∇Σf = 0 at each
point in Ω.
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Lemma 11. The set Ω is dense in Σ.

Proof. We argue by contradiction. Suppose that Ω is not dense in Σ.

Then
∫

Ω f
n

n−1 <
∫

Σ f
n

n−1 . Hence, the arguments in Section 2 imply

(n+ 2) |Bn+2| ≤ 2 |B2|
∫

Ω
f

n
n−1 < 2 |B2|

∫
Σ
f

n
n−1 = 2 |B2| |Bn|.

This contradicts the fact that (n+ 2) |Bn+2| = 2 |B2| |Bn|.

Using Lemma 9, Lemma 10, and Lemma 11, we conclude that D2
Σu =

f
1

n−1 g, II = 0, and ∇Σf = 0 at each point on Σ. Since Σ is connected and
∇Σf = 0 at each point on Σ, it follows that f = λn−1 for some positive
constant λ. Since Σ is connected and II = 0 at each point on Σ, Σ is

contained in an n-dimensional plane P . Since D2
Σu = f

1
n−1 g = λ g at each

point on Σ, the function u must be of the form u(x) = 1
2 λ |x − p|

2 + c for
some point p ∈ P and some constant c. On the other hand, we know that
|∇Σu| < 1 at each point on Ω. Using Lemma 11, it follows that |∇Σu| ≤ 1
at each point on Σ. This implies Σ ⊂ {x ∈ P : λ |x − p| ≤ 1}. Since

λn |Σ| =
∫

Σ f
n

n−1 = |Bn|, we conclude that Σ = {x ∈ P : λ |x − p| ≤ 1}.
This completes the proof of Theorem 3.
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