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We adopt a two-moment formalism, together with a reference-metric approach, to express the equations
of relativistic radiation hydrodynamics in a form that is well suited for numerical implementations in
curvilinear coordinates. We illustrate the approach by employing a gray opacity in an optically thick
medium. As numerical demonstrations we present results for two test problems, namely stationary, slab-
symmetric solutions in flat spacetimes, including shocks, and heated Oppenheimer-Snyder collapse to a
black hole. For the latter, we carefully analyze the transition from an initial transient to a post-transient
phase that is well described by an analytically known diffusion solution. We discuss the properties of the
numerical solution when rendered in moving-puncture coordinates.
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I. INTRODUCTION

The coincident detection of gravitational and electro-
magnetic radiation from GW170817 [1] has allowed us to
observe directly the late inspiral of binary neutron stars
together with a short gamma-ray burst (sGRB) and kilo-
nova launched in its aftermath. The interpretation of these
observations requires theoretical models, which can be
provided by numerical relativity simulations (see, e.g.,
[2–6], as well as [7,8] for reviews). Since a host of different
physical processes and phenomena—including relativistic
magnetohydrodynamics, nuclear reactions and radiation
transport (both electromagnetic and neutrinos)—play
important roles in the merger of binary neutron stars and
the launch of sGRBs and kilonovae, all of these processes
also must be accounted for in the numerical simulations.
While several current codes can handle at least some of

these processes, and can evolve the remnant of neutron star
mergers for at least several tens of dynamical timescales,
i.e., tens of milliseconds, the complete modeling of secular
processes requires even longer evolution times, posing a
formidable challenge for most codes (see, e.g., [9–13]). On
the other hand, the radiation will propagate radially at large
distance, where it is measured, and the remnant will rather
quickly settle down into an approximately axisymmetric
configuration. These are just some motivations for consid-
ering algorithms in curvilinear coordinates, which can take
optimal advantage of such symmetries, be they exact or
approximate.
One disadvantage of curvilinear coordinates is the

appearance of coordinate singularities. It turns out, how-
ever, that these do not affect the stability of suitable
evolution schemes as long as all singular terms are handled
analytically. The latter can be accomplished with the help

of a reference-metric formulation (see [14–18]) together
with a proper rescaling of all tensorial quantities. Such an
approach was first demonstrated for Einstein’s equations in
spherical polar coordinates in full 3þ 1 dimensions by
[19], and very similar methods have now been implemented
in the Einstein Toolkit (also in spherical polar coordinates
[20]), the NRPy++ code (in more general classes of
curvilinear coordinates [21]), as well as the SpEC code
(in cylindrical coordinates [22]).
When coupling matter fields to Einstein’s equations in

this approach, it is advantageous to cast these matter fields
in a reference-metric formulation as well. This has been
demonstrated for hydrodynamics in [23] (hereafter MBM,
see also [24]), magnetohydrodynamics (see [25]), as well as
electrodynamics (see [26]), but not yet for radiation hydro-
dynamics—which is the subject of this paper.
An exact description of radiation transfer entails solving

the Boltzmann equation for the specific (energy-dependent)
radiation intensity (see, e.g., [27–29]), which, without any
approximation or simplifying assumptions, is well beyond
the reach of current numerical codes. As an approximation,
local effects of radiative cooling can be estimated with a
leakage scheme (see, e.g., [30–38]). Radiation transport can
be approximated by evolving the lowest angular moments
of the intensity only, and expressing higher-order moments
with the help of suitable closure relations (see [39]). In flux-
limited diffusion schemes, only the zeroth-order moment
(the radiation energy density) is evolved (see, e.g., [40–45]
and references therein). In a two-moment (so-called M1)
scheme, the first-order moment (the radiation momentum
density, or flux) is evolved together with the zeroth-order
moment (e.g., [46–59]). In general, the moments depend on
energy in addition to location and time, but in so-called
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“gray” treatments this dependence is suppressed by inte-
grating over the energy.
In this paper we retrace the derivation of such a gray,

two-moment formalism using a reference-metric frame-
work, and present numerical examples. Specifically, we
follow the treatment of [47], hereafter FLLS, in Sec. II,
focusing on the optically thick regime, but adopt a
reference-metric formalism in order to bring the equations
into a form that is suitable for implementation in curvilinear
coordinates. Unlike in some previous treatments we also
use a systematic 3þ 1 decomposition of all tensorial
quantities, thereby avoiding the potential for confusion
between tensors of different types. In Sec. III we demon-
strate the feasibility of solving the equations in spherical
polar coordinates by presenting numerical results for two
test problems, namely planar radiation hydrodynamics
shock problems in flat spacetimes, and Oppenheimer-
Snyder collapse to a black hole with radiation. We carefully
analyze the early transient behavior of the radiative
quantities for the latter, and compare the subsequent
radiation field with an approximate analytical solution
derived within the relativistic diffusion approximation [42].
Throughout this paper we adopt geometrized units with

G ¼ 1 ¼ c. We denote spacetime indices with a; b; c… and
spatial indices with i; j; k….

II. EQUATIONS

A. Preliminaries

We assume that the spacetime M has been foliated by a
family of spatial slices that coincide with level surfaces of a
coordinate time t. The spacetime line element can then be
written as

ds2 ¼ gabdxadxb

¼ −α2dt2 þ γijðdxi þ βidtÞðdxj þ βjdtÞ; ð1Þ

where gab is the spacetime metric, α the lapse function, βi

the shift vector, and

γab ¼ gab þ nanb ð2Þ

the induced spatial metric on the spatial slices. In the last
expression, na is the future-pointing normal vector on the
spatial slices, which we may express as

na ¼ α−1ð1;−βiÞ or na ¼ ð−α; 0; 0; 0Þ: ð3Þ

For applications in curvilinear coordinates it is conven-
ient to introduce a spatial reference metric γ̂ij (see, e.g.,
[14–17]). In numerical applications it is most natural to
choose this reference metric to be the flat metric in
whatever coordinate system is used—in our code, for
example, it is taken to be the flat metric in spherical polar
coordinates. This assumption is not necessary, however. In

our treatment below we will assume only that γ̂ij is
independent of time (which could also be relaxed, for
example for applications in cosmology), and will present an
analytical example with a curved reference metric in
Sec. III C.
The Baumgarte-Shapiro-Shibata-Nakamura (BSSN) for-

mulation of Einstein’s equations [60–62], governing the
evolution of the gravitational fields, has been expressed in
terms of a reference metric by [16,17], and implemented
numerically, assuming spherical polar coordinates, in
[18,19]. In the following we also assume the presence of
fluid matter. The equations governing the fluid follow from
conservation of rest mass,

∇aðρ0uaÞ ¼ 0; ð4Þ

and conservation of total stress-energy,

∇aTab ¼ ∇aðTab
fluid þ RabÞ ¼ 0: ð5Þ

Here ρ0 is the fluid’s rest-mass density, ua the fluid’s four-
velocity, ∇a the covariant derivative associated with the
spacetime metric gab, and the fluid’s stress-energy tensor is
given by

Tab
fluid ¼ ρ0huaub þ Pgab; ð6Þ

where h ¼ 1þ ϵþ P=ρ0 is the specific enthalpy, ϵ the
specific internal energy density, and P the fluid pressure. In
(5) we have accounted for the presence of radiation by
including the radiation stress-energy tensor Rab introduced
in Eq. (7) below. As shown in MBM, the equations of
relativistic hydrodynamics can also be rewritten with the
help of a reference metric, thereby avoiding some of the
numerical problems encountered in curvilinear coordinates,
and casting the equations in a framework that meshes well
with that for the gravitational field equations. In Sec. II D
we will follow a very similar procedure to rewrite the
dynamical equations for the radiation fields.

B. Radiation fields in the fluid frame

We assume that the radiation stress-energy tensor Rab

can be written as

Rab ¼ Euaub þ Faub þ uaFb þ Pab: ð7Þ

Here ua is the fluid four-velocity,

E ¼
Z

dνdΩIν; ð8Þ

the radiation energy density as measured by an observer
comoving with the fluid,
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Fa ¼ hab

Z
dνdΩIνNb; ð9Þ

the comoving radiation flux four-vector,

Pab ¼ hachbd

Z
dνdΩIνNcNd; ð10Þ

the comoving radiation stress tensor, Iν is the specific
intensity, and

hab ¼ gab þ uaub; ð11Þ

the projection operator that projects onto slices orthogonal
to the fluid four-velocity.
To illustrate our approach, we assume for simplicity that

the radiation is nearly isotropic everywhere, which is
appropriate in media that are optically thick. In this case,
the radiation stress tensor takes the form Pab ¼ Phab,
where P is the radiation pressure. The system of equations
may then be closed by adopting an Eddington factor of 1=3,
so that

Pab ¼ Phab ¼ 1

3
Ehab ð12Þ

(see, e.g., [49–51,56,59,63] and references therein for more
sophisticated closure schemes).
In the above integrals,dΩ is thedifferential solid angle, ν is

the frequency and Iν ¼ Iðxa;Ni; νÞ is the specific intensity of
radiation at a location xa, moving in the direction
Na ¼ pa=ðhνÞ, all measured in the local Lorentz frame of
a fiducial observer. In the last expression pa is the photon
four-momentum, andh thePlanck constant.We alsonote that
Fa is orthogonal to the fluid four-velocity,

uaFa ¼ 0: ð13Þ

The dynamical equations governing the radiation can
then be written as

∇bRab ¼ −Ga; ð14Þ

where Ga is the radiation four-force

Ga ¼ ρ0κabsðE − 4πBÞua þ ρ0ðκabs þ κscÞFa: ð15Þ

Here κabs and κsc are the (frequency-independent) gray-
body absorption and scattering opacities, respectively (see,
e.g., FLLS for details). In (15), the frequency-integrated
equilibrium intensity BðTÞ can be written as

4πB ¼ aRT4; ð16Þ

where T is the temperature and aR a constant. The value of
the latter depends on the type of radiation considered: for

thermal radiation it equals the usual radiation constant a;
for each flavor of nondegenerate neutrinos or antineutrinos
it is ð7=16Þa; and for all neutrinos and antineutrinos
combined it is ð7Nν=8Þa, where Nν is the number of
neutrino flavors contributing to the thermal radiation (see
FLLS); here we assume that kT ≫ mν, as is the case in
most stellar applications. For situations in which the
radiation is in thermal equilibrium with the fluid we have
E ¼ 4πB, but we will not assume that in general.
The radiation moments E and Fa, both describing

quantities measured by an observer comoving with the
fluid, form the primitive radiation variables. Coupling the
equations of motion to the evolution of spacetime, it is
often advantageous to employ a 3þ 1 decomposition, and
to express the radiation equations in terms of conserved
quantities that are related to quantities measured by normal
observers.

C. Radiation fields in the normal frame

Westart by decomposing the tensors appearing in Sec. II B
into their normal and spatial components. Using (2), we can
write the fluid four-velocity ua, for example, as

ua ¼ gabub ¼ γabub − nanbub: ð17Þ

Defining the Lorentz-factor between normal and fluid
observers as

W ≡ −naua ¼ αut ð18Þ

and

va ≡ 1

W
γabub ¼ ð0; ui=W þ βi=αÞ; ð19Þ

we may write

ua ¼ Wðva þ naÞ: ð20Þ

Note that va is spatial by construction, nava ¼ 0. Our
definition follows that used in the “Valencia” formulation
of relativistic hydrodynamics, but differs from that used by
many other authors, including FLLS,

viFLLS ≡
ui

ut
¼ αvi − βi: ð21Þ

We similarly decompose the radiation flux four-vector
into its normal and spatial parts,

F ≡ −naFa ¼ αFt; F a ≡ γabFb; ð22Þ

so that

Fa ¼ F a þ Fna: ð23Þ
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Note that the orthogonality condition (13) can now be
expressed as

F ¼ vaF a: ð24Þ

Following the same approach for the radiation four-force
(15) we obtain

G≡−naGa¼ ρ0κabsðE−4πBÞWþρ0ðκabsþ κscÞF ð25Þ

and

Ga ≡ γabGb ¼ ρ0κabsðE − 4πBÞWva þ ρ0ðκabs þ κscÞF a:

ð26Þ

We now decompose the radiation stress-energy tensor (7)
into purely normal, purely spatial, and mixed components.
Specifically, the purely normal component results in the
radiation energy density as observed by a normal observer,

ρ̄≡ nanbRab ¼ α2Rtt

¼ W2Eþ 2WF þ PðW2 − 1Þ; ð27Þ

where we have used nanbhab ¼ W2 − 1 in the last equality.
Adopting the closure relation (12) we obtain

ρ̄ ¼ 4

3
W2E −

1

3
Eþ 2WF : ð28Þ

The mixed normal-spatial components of (7) yield the
momentum flux as observed by a normal observer,

|̄a ≡ −γabncRbc ¼ αðRat þ βaRttÞ

¼ 4

3
EW2va þWF a þ FWva; ð29Þ

where we have used γabnchbc ¼ −W2va. Finally, the
radiation stress tensor as observed by a normal observer
is given by a purely spatial projection of (7),

S̄ab ≡ γacγbdRcd ¼ Rab − αnaRbt − αnbRat þ α2nanbRtt

¼ 4

3
EW2vavb þ 1

3
Eγab þWF avb þWvaF b: ð30Þ

In the above expressions we introduced the bars in order to
distinguish these radiation quantities from similar quan-
tities often defined in the 3þ 1 decomposition of the matter
stress-energy tensor.

D. Dynamical equations for the radiation fields

We now project the dynamical Eq. (14) both along the
normal and the into spatial slice. The former will give rise
to the radiation energy Eq. (34) below, while the latter
results in the radiation momentum (or flux) Eq. (44).

1. The energy equation

We start with a normal projection of (14),

na∇bRab ¼ ∇bðnaRabÞ − Rab∇bna ¼ −naGa ¼ G: ð31Þ

Applying the identity

∇aVa ¼ 1ffiffiffiffiffi
jgj

p ∂að
ffiffiffiffiffi
jgj

p
VaÞ ð32Þ

twice—once for the covariant derivative∇a associated with
the spacetime metric gab and its determinant g, and once for
the covariant derivative D̂i associated with the reference
metric γ̂ij and its determinant γ̂—we may rewrite the first
term in the first equality of (31) as

∇bðnaRabÞ¼ 1
ffiffiffiffiffiffi−gp ∂bð

ffiffiffiffiffiffi−gp
naRabÞ

¼ 1
ffiffiffiffiffiffi−gp f∂tð

ffiffiffiffiffiffi−gp
naRatÞþ∂ið

ffiffiffiffiffiffi−gp
naRaiÞg

¼−
1

α
ffiffiffi
γ

p f∂tð
ffiffiffi
γ

p
α2RttÞþ∂ið

ffiffiffi
γ

p
α2RitÞg

¼− 1

α
ffiffiffiffiffiffiffi
γ=γ̂

p f∂tð
ffiffiffiffiffiffiffi
γ=γ̂

p
α2RttÞþD̂ið

ffiffiffiffiffiffiffi
γ=γ̂

p
α2RitÞg:

ð33Þ

Here we have used g ¼ −αγ, where γ is the determinant of
the spatial metric γij. We have also assumed that the
determinant of the reference metric, γ̂, is independent of
time, which would be easy to generalize if desired.
Inserting (33) into (31) we obtain

∂tτ̄ þ D̂ifiτ̄ ¼ sτ̄ − α
ffiffiffiffiffiffiffi
γ=γ̂

p
G; ð34Þ

where we have defined the radiation energy density
variable

τ̄≡
ffiffiffiffiffiffiffi
γ=γ̂

p
α2Rtt ¼

ffiffiffiffiffiffiffi
γ=γ̂

p
ρ̄; ð35Þ

its associated energy flux,

fiτ̄≡
ffiffiffiffiffiffiffi
γ=γ̂

p
α2Rit ¼

ffiffiffiffiffiffiffi
γ=γ̂

p
ðα|̄i− ρ̄βiÞ

¼ τ̄ðαvi−βiÞþα
ffiffiffiffiffiffiffi
γ=γ̂

p "
1

3
Evi−WFviþWF i

#
; ð36Þ

as well as the source term

sτ̄ ≡ −α
ffiffiffiffiffiffiffi
γ=γ̂

p
Rab∇bna ¼ α

ffiffiffiffiffiffiffi
γ=γ̂

p
RabðKba þ nbaaÞ

¼
ffiffiffiffiffiffiffi
γ=γ̂

p
ðαS̄ijKij − |̄i∂iαÞ: ð37Þ

In the last equation
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Kab ≡ −γacγbd∇cnd ¼ −∇anb − naab ð38Þ

is the extrinsic curvature, and

ab ≡ na∇anb ¼ γbc∂c ln α ð39Þ

the acceleration of the normal observer.
We note that, in the reference-metric formalism, all

quantities are defined using ratios between determinants,
rather than just the determinants themselves, and are
therefore tensor-densities of weight zero. We will discuss
some other computational advantages of the reference-
metric formalism in Sec. III C 3 below.

2. The momentum equation

We now take a spatial projection of (14), which yields

γia∇bRab ¼ −γiaGa ¼ −Gi: ð40Þ

We first rewrite

γia∇bRab ¼ gia∇bRab ¼ ∇bðRi
bÞ ð41Þ

and then use the identity

∇bTa
b ¼ 1ffiffiffiffiffi

jgj
p ∂bð

ffiffiffiffiffi
jgj

p
Ta

bÞ − Tc
bΓc

ab ð42Þ

twice to find

γia∇bRab ¼ 1

α
ffiffiffiffiffiffiffi
γ=γ̂

p f∂tðα
ffiffiffiffiffiffiffi
γ=γ̂

p
Ri

tÞ þ D̂jðα
ffiffiffiffiffiffiffi
γ=γ̂

p
Ri

jÞg

þ Rj
kΓ̂j

ki − Rc
bΓc

bi; ð43Þ

where the Γc
ab are the Christoffel symbols associated with

the spacetime metric gab, and the Γ̂j
ki are those associated

with the reference metric γ̂ij. Inserting (43) into (40) we
obtain

∂tS̄i þ D̂jðfS̄Þij ¼ ðsS̄Þi − α
ffiffiffiffiffiffiffi
γ=γ̂

p
Gi; ð44Þ

where we have defined the radiation momentum density, or
flux, variable

S̄i ≡ α
ffiffiffiffiffiffiffi
γ=γ̂

p
Ri

t ¼
ffiffiffiffiffiffiffi
γ=γ̂

p
|̄i; ð45Þ

its associated momentum flux

ðfS̄Þij ≡ α
ffiffiffiffiffiffiffi
γ=γ̂

p
Ri

j ¼
ffiffiffiffiffiffiffi
γ=γ̂

p
ðαS̄ij − |̄iβjÞ

¼ S̄iðαvj − βjÞ

þ α
ffiffiffiffiffiffiffi
γ=γ̂

p "
1

3
Eδij −WFvivj þWviF j

#
; ð46Þ

and the source term

ðsS̄Þi ≡ α
ffiffiffiffiffiffiffi
γ=γ̂

p
ðRc

bΓc
bi − Rj

kΓ̂j
kiÞ: ð47Þ

We now write

Rc
bΓc

bi − Rj
kΓ̂j

ki ¼ RcbΓcbi − RckgjcΓ̂
j
ki; ð48Þ

expand Rab into its projections (27), (29) and (30), and use

ΓðbcÞi ¼ ∂igbc ¼ −gdbgec∂igde ð49Þ

[where () denotes symmetrization] to rewrite the source
term (47) as

ðsS̄Þi ¼
ffiffiffiffiffiffiffi
γ=γ̂

p "
−ρ̄D̂iαþ |̄jD̂iβj þ

1

2
αS̄jkD̂iγjk

#
ð50Þ

(see Sec. III. B in MBM; also note that |̄t ¼ |̄iβi).
For most numerical applications, a natural choice for the

reference metric γ̂ij is the flat (spatial) metric in whatever
coordinate system used. If so, Eqs. (34) and (44) reduce to
familiar expressions [e.g., Eqs. (35) and (38) of FLLS]
when evaluated in Cartesian coordinates, for which γ̂ ¼ 1

and D̂i ¼ ∂i. In curvilinear coordinates, we evaluate the
flux terms in both equations by writing, for example,
D̂ifiτ̄ ¼ ∂ifiτ̄ þ fjτ̄Γ̂i

ji, where the Christoffel symbols Γ̂i
jk

are known analytically. We then move these Christoffel
terms to the right-hand sides of the equations, as discussed
in MBM, so that they act as source terms.
Equations (34) and (44) now form the dynamical

equations for the conserved radiation variables τ̄ and S̄i;
in a numerical simulation they have to be solved together
with the equations for the gravitational fields, relativistic
hydrodynamics and any other fields or sources that are
being considered. We present a simple analytical example,
also highlighting some advantages of the reference-metric
formulation, in Sec. III C 3.

E. Recovery

Solving Eqs. (34) and (44) yields the conserved radiation
variables τ̄ and S̄i. In the course of the dynamical evolution,
however, we also need the primitive variables E and Fa—
or, equivalently, E, F and F i. The latter variables therefore
have to be recovered from the conserved variables. For the
hydrodynamical variables, a similar recovery step generally
requires a numerical iteration, but for the radiation equa-
tions treated here the recovery can be accomplished
algebraically, as was the case in FLLS.
We start by using (28) in (35),

τ̄ ¼
ffiffiffiffiffiffiffi
γ=γ̂

p "
1

3
ð4W2 − 1ÞEþ 2WF

#
: ð51Þ
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Next we compute the contraction naubRab twice; once
expressing Rab as in (7), i.e., projected with respect to ua,

naubRab ¼ WEþ F ; ð52Þ

and once expressing Rab in terms of its spatial projections,

naubRab ¼ nagcbucRab ¼ naðγcb − ncnbÞucRab

¼ ρ̄W − |̄cuc ¼ Wðρ̄ − |̄iviÞ: ð53Þ

Multiplying both expressions with
ffiffiffiffiffiffiffi
γ=γ̂

p
and equating

them yields

Wðτ̄ − S̄iviÞ ¼
ffiffiffiffiffiffiffi
γ=γ̂

p
ðWEþ F Þ: ð54Þ

This is equivalent to Eq. (66) in FLLS, once the different
definitions of the spatial velocity vi have been taken into
account (see Eq. (21) above).
Equations (51) and (54) now provide two equations for

two unknowns E and F that can be solved directly given
values of the conserved variables τ̄ and S̄i.
Finally, we insert (29) into (45),

S̄i ¼
ffiffiffiffiffiffiffi
γ=γ̄

p "
4

3
EW2va þWF a þWFva

#
; ð55Þ

and solve for F a to obtain

F a ¼ 1

W
ffiffiffiffiffiffiffi
γ=γ̂

p S̄i −
4

3
EWva − Fva ð56Þ

(compare Eq. 67 in FLLS). This completes the recovery of
the primitive variables E, F , and F a from the conserved
variables τ̄ and S̄i.
While the recovery of the primitive radiation variables

involves algebraic equations only, the solution may never-
theless be affected by significant numerical error, especially
at large optical depths. This is because, in such regions, the
flux variables F and F i will often be much smaller than
the radiation energy density E as well as the conserved
quantities τ̄ and S̄i. In this case, the flux variables are
computed as the small differences between (potentially)
much larger numbers, which generally leads to increased
numerical error. We will discuss a concrete example in
Sec. III C 4 below.

III. NUMERICAL EXAMPLES

A. Numerical implementation

Most features of our numerical implementation have
been described in [19,23,24]. Specifically, we use a
reference-metric approach [14–17] to express the
Baumgarte-Shapiro-Shibata-Nakamura (BSSN) formu-
lation [60–62] of Einstein’s equations as well as the

equations of relativistic hydrodynamics in spherical polar
coordinates. Specifically, we adopt the flat metric in
spherical polar coordinates as our reference metric γ̂ij.
We rescale all tensorial quantities with appropriate powers
of r and sin θ so that all singular terms can be treated
analytically. For example, rather than evolving the covar-
iant components S̄r, S̄θ and S̄φ of the radiation flux (45), we
define new “tilde” variables according to

S̄i ¼

0

B@
S̃r
rS̃θ

r sin θS̃φ

1

CA ð57Þ

and evolve the rescaled variables S̃r ¼ S̄r, S̃θ ¼ S̄θ=r and
S̃φ ¼ S̄φ=ðr sin θÞ in our code. We treat vectors with
contravariant components similarly, except that, in (57),
we would divide the tilde variables by geometric factors
rather than multiplying them. For the associated fluxes
ðfS̄Þij in (46) with mixed indices we write

ðfS̄Þij ¼

0

B@
ðf̃S̄Þrr ðf̃S̄Þrθ=r ðf̃S̄Þrφ=ðr sin θÞ
rðf̃S̄Þθr ðf̃S̄Þθθ ðf̃S̄Þθφ= sin θ

r sin θðf̃S̄Þφr sin θðf̃S̄Þφθ ðf̃S̄Þφφ

1

CA

ð58Þ

and compute the divergence term D̂jðfS̄Þij in (44) from the
rescaled tilde variables ðf̃S̄Þij rather than the physical fluxes
ðfS̄Þij, treating derivatives of the geometric factors r and
sin θ analytically. We impose parity boundary conditions to
allow finite-differencing across the origin and the axis (see,
e.g., Table I in [19]), and Robin-type conditions on the
outer boundaries.
The latest version of our code uses fourth-order differ-

encing for all spatial derivatives in Einstein’s field equa-
tions, together with a fourth-order Runge-Kutta time
integrator [26]. We solve the equations of relativistic
hydrodynamics using an HLLE approximate Riemann
solver [64,65], together with a simple monotonized cen-
tral-difference limiter reconstruction scheme [66]. The
latter is second-order accurate in most regions, but reduces
to first order close to discontinuities or extrema. More
accurate schemes are used by many groups (e.g.,
[22,67,68]; see also [69,70]), but are not needed for the
numerical examples presented here.
We have now implemented the equations of radiation

hydrodynamics, in the gray, optically thick two-moment
approximation of Sec. II above, in the exact same computa-
tional framework as those of relativistic hydrodynamics,
allowing for fully relativistic radiation hydrodynamics sim-
ulations in spherical polar coordinates. As numerical dem-
onstrations we consider flat spacetime tests in Sec. III B, and
heated Oppenheimer-Snyder collapse in Sec. III C.
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B. Flat spacetime tests

Stationary and slab-symmetric solutions to the equations
of relativistic radiation hydrodynamics in flat (Minkowski)
spacetimes can be derived by assuming that the solutions to
Eq. (14), as well as the equations of relativistic hydro-
dynamics, are independent of time, and depend on one
spatial Cartesian coordinate only, say z (see [28,71]).
Further assuming a Γ-law equation of state,

P ¼ ðΓ − 1Þϵρ0; ð59Þ

the equations reduce to a set of five coupled ordinary
differential equations that can be solved as discussed in
Appendix C of FLLS [72]. We will assume that κsc ¼ 0,
and that κabs is constant. We then transform these semi-
analytical solutions to spherical polar coordinates, and
adopt the resulting data as initial data for our dynamical
evolutions. Given that the data describe stationary solu-
tions, any departure from the initial data serves as a
measure of numerical error.

1. Continuous solutions

Continuous semianalytic solutions can be constructed by
adopting boundary conditions at the lower boundary for E
and Fz ≪ E, as well as for the fluid’s rest-mass density ρ0,
pressure P, and four-velocity uz, and integrating to larger
values of z. In particular, we assume that the radiation is in
thermal equilibrium with the fluid at the lower boundary,
i.e., E ¼ 4πB ¼ aRT4 ¼ aRm4ðP=ρ0Þ4. Here we have
adopted the Maxwell-Boltzmann ideal gas law
P ¼ ρ0T=m, where m is the mean mass of the fluid
particles, and where we have chosen units in which
Boltzmann’s constant is unity, kB ¼ 1. Since no shocks
are encountered in this test, we replaced the monotonized
central-difference limiter reconstruction scheme with sim-
ple quadratic interpolation, and therefore expect second-
order convergence for these simulations.
As an example, we show results for the boundary values

listed in the top row of Table I, which correspond to Test 4
listed in Table I of FLLS. We show profiles of this solution
in Fig. 1, comparing the numerical solution at time t ¼
10.053 (displayed as the colored surface with spherical
polar coordinate lines) with the semianalytical solution
(represented by rectangular grid). It is difficult to see any
difference in these plots.

In Fig. 2 we show a convergence test for this setup,
except that we have also boosted the solution with a speed
β ¼ 0.1 in the positive z-direction for this test. We
interpolate our numerical solutions to the z-axis, then
compute the difference ΔE between this numerical solution
and the semianalytical solution, and finally multiply these
differences with N2. The plot shows that these rescaled
differences N2ΔE converge, establishing the expected

TABLE I. Left and right states for the flat spacetime tests of Sec. III B. The continuous solution in the top row corresponds to Test 4 in
Table I of FLLS, while the shock solution in the bottom row corresponds to their Test 1 (except that we use κabs ¼ 0.24).

Left state Right state

Type κabs Γ aRm4 ρ0 P uz E ρ0 P uz E

continuous 0.08 5=3 1.39 × 108 1.0 6 × 10−3 0.69 0.18 3.65 3.59 × 10−2 0.189 1.30
shock 0.24 5=3 1.24 × 1010 1.0 3 × 10−5 0.015 1.0 × 10−8 2.4 1.61 × 10−4 6.25 × 10−3 2.51 × 10−7

FIG. 1. A continuous flat-spacetime solution, showing the fluid
rest-mass density ρ0 in the top panel and the radiation energy
density E in the bottom panel. The black rectangular grid
represents the semianalytical solution for the data in the top
row of Table I, while the colored surface shows the numerical
solution at time t ¼ 10.053, obtained with Nr ¼ 320 radial and
Nθ ¼ 120 angular grid points, with the grid extending to
rout ¼ 24. The white lines represent our spherical polar coor-
dinate system, showing every 12-th radial and every 4-th angular
grid line.
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second-order convergence. The bottom right inset shows
that integrals of the numerical error also decrease with N−2,
as expected.

2. Discontinuous solutions

Solutions featuring a shock discontinuity, on the other
hand, can be constructed by assuming that the radiation is
in thermal equilibrium with the fluid at both the lower and
the upper boundary. As discussed in Appendix C of FLLS,
a “shooting method” can then be employed to integrate the
equations from both boundaries to the location of a shock
discontinuity at z ¼ zshock, and imposing matching con-
ditions there [73].
As an example, we show profiles of the fluid rest-mass

density ρ0 and the radiation energy density E at t ¼ 10.053
in Fig. 3, demonstrating that the shock discontinuity is well
resolved, even when the shock front does not coincide with
a coordinate plane.

C. Heated Oppenheimer-Snyder collapse

An analytical solution describing “heated Oppenheimer-
Snyder collapse”, i.e., collapse of a homogeneous dust
sphere to a black hole (see [74]) with radiation, has been
derived in [42] (see also [29,75] for a summary). This
solution makes several assumptions that are realized only
approximately in numerical simulations that adopt a two-
moment radiation formalism. One of these assumptions is

that all pressure and radiation terms are sufficiently small so
that they do not affect the spacetime and dust evolution;
another assumption is that the radiative processes can be
described in the relativistic diffusion limit (see
Appendix A.1 in FLLS). The former condition can be
met in a numerical simulation by making suitable choices
for the equation of state and the initial data. While the latter
approximation is quite adequate during most of the
evolution for a star of sufficiently large optical depth, it
is violated during an initial transient phase, lasting a few
light-travel times across the initial dust sphere, after which
it improves in accuracy. In this section we carefully discuss
the resulting transition from the initial data to post-transient
diffusion solution. An exact numerical solution has been
obtained by integrating the Boltzmann equation without
approximation in [75].

1. Oppenheimer-Snyder collapse

Oppenheimer-Snyder collapse describes the collapse
from rest of a constant-density dust sphere to a black hole

FIG. 2. Convergence test for the continuous solution shown in
Fig. 1, except that we have also boosted the solution with a speed
β ¼ 0.1 in the z-direction for this test. The different lines show
differences N2ΔE, rescaled assuming second-order convergence,
between the numerical and semianalytical solutions. The different
lines show interpolations to the z-axis, for grids with Nr ¼ 32N
radial and Nθ ¼ 12N grid points, and with the numerical grid
extending to rout ¼ 24. The top left inset shows the behavior in
the vicinity of the center, demonstrating second-order conver-
gence even in the presence of the coordinate singularities at the
origin. The bottom right inset shows results for the norm
jjΔEjj≡ R

jΔEjdV, integrated to a radius of r ¼ 12. The solid
line in this inset represents a power-law ð1=NÞ2.

FIG. 3. Same as Fig. 1, except for a solution featuring a shock
discontinuity (see the bottom row in Table I). For this test,
performed with Nr ¼ 256 radial and Nθ ¼ 48 angular grid
points, and the outer boundary at rout ¼ 16, we placed the shock
discontinuity at z ¼ 2 rather than at z ¼ 0, so that the shock front
does not coincide with the symmetry plane of the coordinate
system.
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[74]. An analytical solution for this collapse can be
constructed by matching a closed-Friedmann solution for
the stellar interior to a Schwarzschild solution for the
exterior. Expressed in Gaussian normal coordinates, the
interior line element is given by

ds2 ¼ −dτ2 þ a2ðτÞðdχ2 þ sin2 χdΩ2Þ; ð60Þ

where 0 ≤ χ ≤ χ0 is a radial coordinate that is comoving
with the dust particles, aðτÞ a scale factor, and τ the proper
time as observed by observers comoving with the dust. It is
also useful to define the conformal time η according to
dτ ¼ aðτÞdη, in terms of which the scale factor a can be
expressed as

a ¼ 1

2
amð1þ cos ηÞ; ð61Þ

and the proper time τ as

τ ¼ 1

2
amðηþ sin ηÞ; ð62Þ

with 0 ≤ η ≤ π. Matching this interior solution to a
Schwarzschild exterior solution at the stellar surface results
in relations for the initial scale factor am ¼ að0Þ,

am ¼
"
R3
0

2M

#
1=2

; ð63Þ

and the maximum value of the radial coordinate χ,

χ0 ¼ sin−1ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M=R0

p
Þ: ð64Þ

Here R0 is the initial areal radius of the dust cloud andM its
gravitational mass (see also Sec. 1.4 in [29] as well as [76]).
The dust’s rest-mass density ρ0 ¼ uaubTab, where ua is

the dust particles’ four-velocity and Tab the stress-energy
tensor, remains homogenous on each slice of constant
proper time τ and is given by

ρ0ðτÞ
ρ0ð0Þ

¼
"

am
aðτÞ

#
3

: ð65Þ

The initial rest-mass density ρ0ð0Þ is related to the dust
cloud’s mass and initial radius by

M ¼ 4π
3
ρ0ð0ÞR3

0: ð66Þ

2. Heated Oppenheimer-Snyder collapse: Diffusion
approximation

Given a suitable number of approximations, the radiation
emerging from a “heated” Oppenheimer-Snyder collapse
can be described analytically (see [42]). Specifically, the

solutions assumes that neither the spacetime nor the dust
evolution are affected by the radiation field, that the
radiation is in local thermal equilibrium everywhere (so
that 4πB ¼ E ¼ aRT4), and that certain time derivatives
can be neglected in an optically thick gas, so that Eqs. (34)
and (44) can be combined to form a relativistic diffusion
equation (see also Appendix A.1 in FLLS). Further
assuming that the initial radiation energy density is con-
stant, Eð0Þ ¼ E0 and that the initial flux vanishes, the
analytical solution is given by Eqs. (3.23) and (3.25) in
[42]. In [75], this analytical solution was compared with an
exact numerical solution of the Boltzmann equation (radi-
ation transport equation) without approximation, including
the exact boundary conditions at the surface; the two
approaches showed very good agreement for the energy
density EðτÞ and the emergent flux, i.e., the radiation
momentum density Fa evaluated on the stellar surface.
However, the comparison focused on the post-transient
behavior, after a few light-crossing times across the star.
In Fig. 5 we show a comparison between our numerical

results and the analytical diffusion approximation. For
these simulations, we choose an initial areal radius
R0 ¼ 10M, we set up the initial data as described in
[76], and we approximate dust as a fluid with a Gamma-
law equation of state (59) with Γ ¼ 1.001 and with P ¼
10−6ρ0 initially. We also choose the initial radiation energy
density to be Eð0Þ ¼ E0 ¼ 10−5ρ0, and impose local
thermal equilibrium by setting B ¼ E=ð4πÞ as in the
analytical solution of [42], and set the initial flux Fa to
zero. With these choices the pressure is radiation dominated
and has little influence on the dynamics (P=ρ0 ≪ M=r).
We adopted Nr ¼ 2048 radial equidistant grid points
extending to an exterior outer boundary at an isotropic
radius of rmax ¼ 24M, and evolved with moving-puncture
coordinates, i.e., 1þ log slicing for the lapse [77], and a
Gamma-driver condition for the shift [78,79]. In the
notation of Eq. (39) in [76] we chose the parameter μS
appearing in the Gamma-driver condition according
to μS ¼ α2.
Since we restrict our analysis to the optically thick stellar

interior, we impose radiation boundary conditions close to
the stellar surface. For strictly outgoing isotropic emission
at the stellar surface the boundary condition is F ¼ 0.5E,
where F is the magnitude of the flux

F≡ ðFaFaÞ1=2 ¼ ðF iF i − F 2Þ1=2: ð67Þ

Since E quickly plummets at the surface once the evolution
is underway, we follow [42] and adopt the “zero-temper-
ature approximation” for E at the surface, i.e., E ¼ 0. The
flux is much smaller than E everywhere in the interior and
we find that its behavior is insensitive to its precise
boundary value we choose near and at the surface provided
it is kept small. In keeping with our zero-temperature
approximation for E we therefore set F i ¼ 0 near the
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surface. We caution that our closure relation (12) does not
provide a realistic prescription in the optically thin regions
very close to the surface, but in the limit of arbitrarily large
values of the opacity this region is infinitesimally thin
geometrically. We have chosen the absorption opacity κabs

so that the optical depth of the center is τabs ¼
κabsρ0R ¼ 25, as well as κsc ¼ 0. Note that the optical
depth increases as R−2 as the collapse proceeds.
We follow 25 Lagrangian fluid tracers, and record the

fluid and radiation variables observed by these fluid
particles together with their proper times τ and areal radii
R. At selected instants of coordinate time t we then plot
these variables, and compare with the analytical solutions
computed from τ and R. Both the analytical and numerical
solutions remain valid even after the entire star is inside a
black hole.
We find very good agreement of the our numerical

results with the analytical expression (65) for the rest-mass
density ρ0 (top panel in Fig. 5), and—consistent with the
findings of [75]—quite good agreement with the diffusion
result for the radiation energy density E (middle panel in
Fig. 5). Likewise, the magnitude of the flux F (lower
panel), which, unlike the components of Fa, is a scalar and
can be compared directly, is in reasonably good agreement
after the initial transient. Similar to the findings of [75], the
values on the surface, which determine the emergent flux,
are not all that different from the diffusion values, but
during the initial transient the behavior is quite different in
the stellar interior. The numerical data for the flux drop to
very small values probably dominated by numerical trun-
cation error even close to the surface, while the analytical
solution follows an approximately exponential decay
toward greater optical depths. In order to better understand
these differences, and to illuminate some of the features of
the numerical solution, we analyze the behavior of sol-
utions to the dynamical radiation Eqs. (34) and (44) at
early times.

3. Initial transient: Analytical treatment

We will assume again that neither the spacetime nor the
dust evolution are affected by the radiation field, so that
both are still given by the expressions of Sec. III C 1.
Adopting the same Gaussian normal coordinates as used
there we can identify the lapse α ¼ 1, the shift vector
βi ¼ 0, and the spatial metric

γij ¼ a2ðτÞ

0

B@
1 0 0

0 sin2 χ 0

0 0 sin2 χ sin2 θ

1

CA ð68Þ

from the line element (60). In these coordinates, slices of
constant coordinate time t coincide with slices of constant
proper timer τ, and the mean curvature on these slices is
given by

K ≡ γijKij ¼ −
3

a
da
dτ

: ð69Þ

We also note that, in these comoving coordinates, both
normal observers and dust particles follow geodesics; there-
fore the normal vector na on slices of constant τ must
be aligned with the dust’s four-velocity ua, na ¼ ua.
From (19) we see that the dust’s spatial velocity va must
therefore vanish in these coordinates, va ¼ 0, and that
W ¼ −naua ¼ 1.
In order to evaluate the dynamical Eqs. (34) and (44) for

heated Oppenheimer-Snyder collapse we first choose

γ̂ij ¼

0

B@
1 0 0

0 sin2 χ 0

0 0 sin2 χ sin2 θ

1

CA ð70Þ

as our reference metric, so that

ffiffiffiffiffiffiffi
γ=γ̂

p
¼ a3: ð71Þ

We note that this ratio depends on τ only; in particular it
remains finite and nonzero at the center of the coordinate
system, highlighting another advantage of the reference-
metric formalism. Without using this formalism we would
have encountered the term γ1=2 ¼ a3 sin2 χ sin θ instead,
which vanishes at the origin, and displays a significantly
more complicated dependence on the coordinates.
Similarly, in spherical polar coordinate systems, γ1=2 itself
typically scales with r2 sin θ close to the origin. In the
reference-metric formalism, this term can be canceled out
by choosing the reference metric γ̂ij to be the flat metric in
spherical polar coordinates—thereby avoiding the numeri-
cal issues associated with a vanishing determinant. This is
essentially what we did in (70).
We also note that, from (24) with va ¼ 0, we must have

F ¼ 0: ð72Þ

We then have

τ̄ ¼ a3ρ̄ ¼ a3E ð73Þ

from (35) and (27),

fiτ̄ ¼ a3F i ð74Þ

from (36), and

sτ̄ ¼
a3

3
EγijKij ¼ −a2E

da
dτ

ð75Þ

from (37), where we have used (69) in the last expression.
Inserting the last three equations into the energy Eq. (34)
we obtain
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∂τða4EÞ þ aD̂iða3F iÞ ¼ 0; ð76Þ

where we have used dτ ¼ dt in Gaussian normal
coordinates.
We similarly evaluate (45)–(47) to find

S̄i ¼ a3F i; ð77Þ

ðfS̄Þij ¼
a3

3
Eδij; ð78Þ

ðsS̄Þi ¼
a3

6
EγjkD̂iγjk ¼ 0 ð79Þ

[where we have used D̂iγjk ¼ D̂iða2γ̂jkÞ ¼ 0 in the last
expression], and insert these into the momentum Eq. (44) to
find

∂τða3F iÞ þ
1

3
D̂jða3EδijÞ ¼ −a3ρ0ðκabs þ κscÞF i: ð80Þ

We briefly note that the term ðsS̄Þi in (79) vanishes by virtue
of the reference-metric formalism; without this formalism,
the covariant derivative D̂i would appear as a partial
derivative ∂i instead, and one would rely on the resulting
nonzero terms to be canceled by new terms originating
from the appearance of γ1=2 rather than ðγ=γ̂Þ1=2 in the
divergence term on the left-hand side of (80) (see also the
discussion in Sec. III. E in MBM).
Equations (76) and (80) now form a pair of equations for

the two primitive variables E and F i. Combining the two
equations, one can show that, as a consequence of our
adopted closure relation (12), the characteristic speeds of
the radiation field take the expected values crad ¼ %

ffiffiffiffiffiffiffiffi
1=3

p

as measured by a normal observer comoving with the
matter. In the schematic spacetime diagram of Fig. 4 we
include one such characteristic, originating at the stellar
surface at the initial time and traveling towards the stellar
center, as the (green) line labeled “radiation char.”
Now consider as initial data a homogeneous radiation

energy density Eð0Þ ¼ E0 throughout the star, and zero
flux F ið0Þ ¼ 0 everywhere. By contrast, Eð0Þ is set equal
to zero outside the star, which distinguishes the stellar
surface. For these data, the spatial derivatives in Eqs. (76)
and (80) vanish identically in the interior. In the domain of
dependence of the interior initial data, the flux will then
remain zero, F iðτÞ ¼ 0, while the energy Eq. (76) is solved
by adiabatic heating

EðτÞ
E0

¼
"

am
aðτÞ

#
4

; ð81Þ

as one might have expected. In the spacetime diagram of
Fig. 4, the domain of dependence of the interior initial data
is given by the area marked as Regions I and II, below the

radiation characteristic originating from the surface. In
these two regions, the analytical solution to the radiation
equations is given by (81) together with F i ¼ 0 in any
coordinate system. Only in Region III can the radiation
field approach the diffusive analytical solution of [42,75].
This reflects the difference between the full transport
equations, which are hyperbolic, and the diffusion approxi-
mation, which is parabolic.

4. Initial transient: Numerical results

Numerical codes usually do not adopt Gaussian coor-
dinates, however; instead, a common choice is moving-
puncture coordinates with 1+log slicing [77],

ð∂t − βi∂iÞα ¼ −2αK: ð82Þ

The properties of Oppenheimer-Snyder collapse as ren-
dered in 1+log slicing with initial condition αð0Þ ¼ 1 were
analyzed by [76]; in particular, the authors pointed out the
existence of a gauge characteristic with characteristic speed
cgauge ¼ %

ffiffiffiffiffiffiffiffi
2=α

p
as measured by a normal observer. In

Fig. 4, the (blue) gauge characteristic labeled “gauge char.”
originating from the surface at the initial time and propa-
gating toward the center separates Region I from Region II.
As pointed out by [76], the lapse remains spatially constant
in Region I, and takes the value

α ¼ 1þ 6 ln ðaðτÞ=amÞ ð83Þ

there, while outside of Region I the lapse will depend on
space also. In the top panel of Fig. 6 we show a snapshot at

FIG. 4. A schematic spacetime diagram for Oppenheimer-
Snyder collapse. The (red) lines starting out vertically at τ ¼ 0
trace the worldlines of selected dust particles, with the thick line
marking the surface. The (black) dotted horizontal line shows a
surface of constant proper time τ (where τ is measured by
observers comoving with the dust), while the (black) dashed line
sketches a surface of constant coordinate time t. Also included are
two characteristics originating at the stellar surface and traveling
inwards; one for the radiation field, and one for gauge perturba-
tions (see text for details).
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t ¼ 5.52M [corresponding to the data shown as the (green)
circles in Fig. 5]. In Region I, where the lapse remains
spatially constant, slices of constant coordinate time t will
coincide with slices of constant proper time τ, as sketched
in the schematic spacetime diagram of Fig. 4. Outside of
Region I, however, where the lapse is no longer spatially
constant, slices of constant coordinate time depart from
those of constant proper time (the dashed and dotted lines,

respectively, in Fig. 4). Furthermore, the normal vector na

is still be aligned with the dust’s four-velocity ua in
Region I, so that we still have va ¼ 0 in this region, as
shown in the bottom panel of Fig. 6.
We can now discuss the consequences of these coor-

dinate properties on the radiation quantities. In Fig. 7 we
show the primitive radiation energy density E and flux F r.
As expected, E is constant in Region I, according to (81)
together with the observation that slices of constant t and τ
coincide in this region. The latter is not the case in Region
II; since a constant coordinate time t corresponds to a later
proper time τ at larger radius, the energy density E slightly
increases outwards in Region II (shown in the inset), before
dropping significantly more rapidly in Region III, which
has come into causal contact with the stellar surface. We
also see that the flux F r is nonzero in Region III, but very
close to zero in Regions I and II, as we would expect.

FIG. 6. The lapse α and the dust velocity vr at coordinate time
t ¼ 5.52M [compare the (green) circled data in Fig. 5]. Regions I,
II, and III are labeled as in the schematic spacetime diagram of
Fig. 4. Note that α does not depend on R, and vr ¼ 0, in Region I.

FIG. 7. Same as Fig. 6 but for the primitive radiation variables
E (top panel) and F r (bottom panel). The inset shows the small
increase in E towards larger radii in Region II.

FIG. 5. A comparison of numerical results and analytical
expressions for the rest-mass density ρ0 (top panel), the radiation
energy density E (middle panel), and the magnitude of the flux
F≡ ðFaFaÞ1=2 (bottom panel) for a heated Oppenheimer with
R0 ¼ 10M (see text for details). The markers represent individual
Lagrangian fluid tracers (rather than grid points), while the solid
lines represent the analytical solution in the diffusion approxi-
mation, computed from the proper times and areal radii recorded
by the Lagrangian tracers.
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Note, however, that F r appears to be affected by
significantly more numerical error in Region II than in
Region I. This behavior can be understood in terms of the
conserved radiation quantities, shown in Fig. 8. As we
discussed above, we have (up to numerical error from the
hydrodynamical evolution and recovery) vr ¼ 0 in Region
I (see bottom panel in Fig. 6); we also expect F r ¼ 0 and
F ¼ 0 in this region. According to Eq. (77) this implies
S̄i ¼ 0 in Region I, consistent with our numerical results
shown in the bottom panel of Fig. 8. We therefore expect
that all terms on the right-hand side of Eq. (56) will be
small, and that wewill hence be able to obtain the analytical
solution F i ¼ 0 to high accuracy.
Outside of Region I, however, the lapse is no longer

spatially constant, which, as we discussed above, results in
nonzero velocities vr (see the bottom panel of Fig. 6). By
the same token, this results in nonzero values for S̄i (see the
bottom panel of Fig. 8). Solving the recovery Eq. (56) in
Region II, we see that we now compute a (vanishingly)
small quantity F i from differences between nonzero
quantities; evidently, this will lead to larger numerical
error than in Region I, as we observed in the bottom panel
of Fig. 7.
Also note that S̄r changes sign at around R ¼ 8.25M in

Region III; in the outer part we have S̄r > 0, reflecting an
outward flux close to the surface, while in the inner parts, at
larger optical depths, our normal observers see the radiation
being dragged inward by the collapsing matter, so that
S̄r < 0.
The behavior shown for F r in Fig. 7 can also be seen for

F ¼ FaFa at early times in Fig. 5. For t ¼ 0.92M and
t ¼ 5.52M, we can clearly distinguish Regions I, II and III.
At later times, following the initial transient, both the gauge
and radiation characteristics have reached the center, the
entire star is now in Region III, and the radiation solution
starts to approximate closely that described by the solution
to the diffusion equation. The diffusion approximation, in
turn, agrees quite well with the exact numerical solution of

the Boltzmann Eq. [75] after the initial transition, even
when exact boundary conditions are incorporated at the
stellar surface.
We point out that the heated Oppenheimer-Snyder

collapse problem we probed here is specifically designed
to highlight the difference between an exact hyperbolic and
an approximate radiation diffusion (parabolic) treatment. In
particular, by adopting a very compact initial configuration
(R0=M ¼ 10) and matter that undergoes free-fall collapse
at nearly the speed of light, the transient phase, during
which the two approaches differ, takes up a non-negligible
fraction of the total collapse time. For more realistic
scenarios the transient phase, which only lasts a few light
travel times across the initial star, represents an insignifi-
cant fraction of the total evolution and radiative trans-
port time.

IV. SUMMARY

We adopt a two-moment approximation together with a
reference-metric formalism to bring the moment equations
of relativistic radiation transfer into a form that is well
suited for numerical implementations in curvilinear coor-
dinates. While curvilinear coordinates can be very effective
in taking advantage of either exact or approximate sym-
metries, they also introduce coordinate singularities that
can be problematic in numerical implementations. One
approach is to treat all singular terms analytically, and the
reference-metric formalism provides a framework that
allows such a treatment. In this paper we derive the
equations governing the radiation fields within this for-
malism, resulting in Eq. (34) for the radiation energy
density and Eq. (44) for the radiation momentum density,
or flux. In contrast to many previous treatments we also
employ a systematic 3þ 1 decomposition of the radiation
fields. We focus here on the optically thick regime and
adopt an Eddington factor of 1=3 [see Eq. (12)], together
with a gray (frequency-independent) opacity, but both
restrictions can be relaxed.
The equations for the radiation fields take a form that is

very similar to the corresponding equations of hydro-
dynamics; an existing relativistic hydrodynamics code
can therefore be augmented to treat radiation as well by
incorporating the radiation equations into the hydrody-
namics algorithm. We implement these equations in a code
that adopts spherical polar coordinates, and, as numerical
demonstrations, present results for two test problems.
Specifically, we consider stationary planar shock solutions
in flat spacetimes, for which a semianalytical solution can
be constructed by solving ordinary differential equations,
as well as heated Oppenheimer-Snyder collapse, for which
we carefully analyze the transition from an early transient
to a post-transient phase that is well approximated by an
analytical-known relativistic diffusion solution.
Many astrophysical objects and processes—including

single stars, remnants of neutron star merger or supernova

FIG. 8. Same as Fig. 6 but for the conserved radiation variables
τ̄ (top panel) and S̄r (bottom panel) in the stellar interior.
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collapse, and accretion onto black holes—display at least an
approximate symmetry. Taking advantage of these sym-
metries as effectively as possible usually entails adopting
curvilinear coordinates, for example spherical polar or
cylindrical coordinates. Even when the matter fields lack
symmetry, the radiation propagates radially at large distan-
ces, where it is measured. The formalism presented in this
paper provides one approach for such simulations, and we
hope that it will prove useful for the modeling of radiation
transport (EM and/or neutrinos) in a number of interesting
and important astrophysics scenarios, including the above.
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