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Phase boundary near a magnetic percolation transition
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Abstract Motivated by recent experimental observa-
tions [Phys. Rev. 96, 020407 (2017)] on hexagonal fer-
rites, we revisit the phase diagrams of diluted magnets
close to the lattice percolation threshold. We perform
large-scale Monte Carlo simulations of XY and Heisen-
berg models on both simple cubic lattices and lattices
representing the crystal structure of the hexagonal fer-
rites. Close to the percolation threshold p., we find that
the magnetic ordering temperature T, depends on the
dilution p via the power law T, ~ |p — p.|? with expo-
nent ¢ = 1.09, in agreement with classical percolation
theory. However, this asymptotic critical region is very
narrow, |p — p.| < 0.04. Outside of it, the shape of the
phase boundary is well described, over a wide range
of dilutions, by a nonuniversal power law with an ex-
ponent somewhat below unity. Nonetheless, the perco-
lation scenario does not reproduce the experimentally
observed relation T, ~ (x, —x)?/3 in PbFe;5_,Ga,O19.
We discuss the generality of our findings as well as im-
plications for the physics of diluted hexagonal ferrites.

1 Introduction

Disordered many-body systems feature three different
types of fluctuations, viz., static random fluctuations
due to the quenched disorder, thermal fluctuations, and
quantum fluctuations. Their interplay can greatly affect
the properties of phase transitions, with possible con-
sequences ranging from a simple change of universality
class [1] to exotic infinite-randomness criticality [2], [3],
classical [4] and quantum [5l [6] Griffiths singularities,
as well as the destruction of the transition by smearing
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[HI0]. Recent reviews of some of these phenomena can
be found in Refs. [ITHI3]. Randomly diluted magnetic
materials are a particularly interesting class of systems
in which the above interplay is realized. Here, the dis-
order fluctuations correspond to the geometric fluctua-
tions of the underlying lattices which can undergo a ge-
ometric percolation transition between a disconnected
phase and a connected (percolating) phase [14].

Recently, the behavior of diluted magnets close to
the percolation transition has reattracted attention be-
cause of the unexpected shape of the phase bound-
ary observed in the diluted hexagonal ferrite (hexafer-
rite) PbFe13_,Ga,; O19 [15]. Pure PbFe 5019 orders fer-
rimagnetically at temperatures below about 720 K [16].
The ordering temperature 7, can be suppressed by ran-
domly substituting nonmagnetic Ga ions for Fe ions in
PbFei2_,Ga;0O19. It vanishes when x reaches the crit-
ical value z. ~ 8.6. This value is very close the perco-
lation threshold z, = 8.846 of the underlying latticﬂ
suggesting that the transition at z. is of percolation
type [I5]. Remarkably, the phase boundary follows the
power law T.(z) = T.(0)(1 — z/x.)® with ¢ = 2/3 over
the entire z-range from 0 to z.. This disagrees with
the prediction from classical percolation theory [14 [17]
which yields a crossover exponent of ¢ > 1 for contin-
uous symmetry magnets, at least for dilutions close to
Ze.

In this paper, we therefore reinvestigate the phase
boundary close to the percolation transition of diluted
classical planar and Heisenberg magnets by means of
large-scale Monte Carlo simulations. The purpose of
the paper is twofold. First, we wish to test and verify
the percolation theory predictions, focusing not only on

1The lattice in question is the lattice of exchange interactions
between the Fe ions.



the asymptotic critical behavior but also on the width
of the critical region and the preasymptotic properties.
Second, we wish to explore whether the classical per-
colation scenario can explain the experimental observa-
tions in PbFeis_,Ga,O19 [15].

Our paper is organized as follows. In Sec. [2] we in-
troduce the diluted XY and Heisenberg models and dis-
cuss their qualitative behavior. Section [3| summarizes
the predictions of percolation theory. Our Monte Carlo
simulation method is described in Sec. [l Sections [(.1]
and report our results for model systems on cubic
lattices and for systems defined on the hexagonal ferrite
lattice, respectively. We conclude in Sec. [0}

2 The Models

Consistent with the dual purpose of studying the crit-
ical behavior of the phase boundary close to a mag-
netic percolation transition and of addressing the ex-
perimental observations in diluted hexaferrites [15], we
consider two models, viz., (i) site-diluted classical XY
and Heisenberg models on simple cubic lattices and (ii)
a classical Heisenberg Hamiltonian based on the hexa-
ferrite crystal structure using realistic exchange inter-
actions. Comparing the results of these different models
will also allow us to explore the universality of the crit-
ical behavior.

2.1 Site-diluted XY and Heisenberg models on cubic
lattices

We consider a simple cubic lattice of N = L3 sites. Each
site is either occupied by a vacancy or by a classical
spin, i.e., an n-component unit vector S; (n = 2 for
the XY model and n = 3 for the Heisenberg case). The
Hamiltonian reads

H=-J Z EiGjSi . Sj . (1)

<i,5>

Here, the sum is over pairs of nearest-neighbor sites,
and J > 0 denotes the ferromagnetic exchange inter-
action. (In the following, we set J to unity for the
cubic lattice simulations.) The quenched independent
random variables ¢; implement the site dilution. They
take the values 0 (vacancy) with probability p and 1
(occupied site) with probability 1 — p. We employ pe-
riodic boundary conditions. Magnetic long-range order
can be characterized by the order parameter, the total
magnetization

m:%ZSi. (2)
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Fig. 1 Double unit cell of PbFe12019. 24 Fe31 ions are lo-
cated on five distinct sublattices.

The qualitative behavior of this model as a function
of temperature T and dilution p is well understood (see,
e.g., Ref. [18] for an overview). For sufficiently small di-
lution, the system orders magnetically below a critical
temperature T.(p). The critical temperature decreases
continuously with p until it reaches zero at the perco-
lation threshold p. of the lattice. For dilutions beyond
the percolation threshold, magnetic long-range order is
impossible because the system breaks down into finite
noninteracting clusters. The point p = p., T = 0 is a
multicritical point at which both the geometric fluctua-
tions of the lattice and the thermal fluctuations become
long-ranged.

2.2 Hexaferrite Heisenberg model

PbFe 5019 crystallizes in the magnetoplumbite struc-
ture, as illustrated in Fig. [I A double unit cell con-
tains 24 Fe3* ions in five distinct sublattices; they are
in the spin state S = 5/2. Below a temperature of about
720K, the material orders ferrimagnetically, with 16 of
the Fe spins pointing up and the remaining 8 Fe ions
pointing down [I6]. Note that the high critical temper-
ature and the high spin value suggest that a classical
description should provide a good approximation.

In PbFejs_,Ga, 019, the randomly substituted Ga
ions, which replace the Fe ions, act as quenched spinless
impurities. To model this system, we start from the
hexaferrite crystal structure and randomly place either
a vacancy (with probability p) or a classical Heisenberg
spin S; (with probability 1 — p) at each Fe site. The
dilution p is related to the number z of Ga ions in the



unit cell by p = x/12. The Hamiltonian reads

H = 72 JijQEjSiSj . (3)
i,

The quenched random variables ¢; distinguish vacan-
cies and spins, as before. The values of the exchange
interactions J;; stem from the density functional cal-
culation in Ref. [19]; they are scaled by a common fac-
tor to approximately reproduce the critical temperature
T. = 720K of the undiluted material. In most of our
Monte Carlo simulations, we include only the leading
(strongest) interactions which are between the following
sublattice pairs: 2a-4fry, 2b-4fy ;, 12k-4fry, 12k-4fy ;.
These interactions are non-frustrated and establish the
ferrimagnetic order. We also perform a few test calcula-
tions to explore the effects of additional couplings which
are significantly weaker but frustrate the ferrimagnetic
order.

The qualitative features of the phase diagram of the
model are expected to be similar to those discussed
in the previous section. With increasing dilution p, the
critical temperature T.(p) is continuously suppressed
and reaches zero at the site percolation threshold. The
value of the percolation threshold of the lattice spanned
by the leading non-frustrated interactions between the
Fe ions was determined in Ref. [I5] by means of Monte
Carlo simulations. They yielded p. = 0.7372(5), corre-
sponding to z, = 8.846(6) Ga ions per unit cell. (The
numbers in brackets show the error estimate of the last
digit.)

3 Predictions of Percolation Theory

In this section, we briefly summarize the predictions of
classical percolation theory for the shape of the phase
boundary T.(p) close to multicritical point p = p., T =
0 [14, [T7, 20]. Close to this point, two length scales
are at play, the percolation correlation length, &, which
characterizes the size of finite isolated clusters of lat-
tice sites and the magnetic thermal correlation length
on the critical infinite percolating cluster at p. denoted
by (7. The percolation correlation length £, diverges
as &, ~ |p — pe|"» as the percolation threshold is ap-
proached. The magnetic thermal correlation length be-
haves as &7 ~ T for continuous-symmetry magnets
described by the n-vector model with n > 1.

To find the phase boundary, consider the magneti-
zation near the critical point. It fulfills the scaling form,

m(p —pe,T) = [p _pc|ﬁ X (gT/gp) . (4)

For p < p., the magnetic phase transition occurs at
a particular value x. of the argument of the scaling

function X. At the magnetic transition, we therefore
have {7 = x.€p. This yields the power law relation

Te(p) ~ |p — pel® - (5)

The crossover exponent ¢ takes the value ¢ = v,/vp.
(In contrast, &7 diverges exponentially, &7 ~ (e=27/T)=vr,
for Ising magnets, leading to a logarithmic dependence
T.(p) ~ ™ (1/[p = pc|).)

Using a renormalization group calculation, Coniglio
[17] established the relation vp = 1/ . Here, j char-
acterizes the resistance R of a random resistor network
on a critical percolation cluster of linear size L via
R~ LSk,

The exponent (5 can be related to the well-known
conductivity critical exponent ¢ which describes how
the conductivity o of the resistor network depends on
the distance from the percolation threshold, o ~ |p —
pelt. To do so, consider a resistor network on a perco-
lating lattice close to p. but on the percolating side. Its
behavior is critical for clusters of size less than &, and
Ohmic for sizes beyond &,. For a d-dimensional system
of linear size L >> &,, we can employ Ohm’s law to
combine blocks of size &, yielding

I L\ @b -
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The conductivity on the percolating side thus behaves
as o ~ 5;(d72+<") ~ |p— pc|”P(d*2+<;‘). Thus, we ob-
tain the hyperscaling relation, ¢ = (d — 2 + (R)l/p or
(r= t/vp—d+2. Using the numerical estimates t/v, =
2.28(2) and v, = 0.876(2) [21] 22] for three-dimensional
systems yields C~R = 1.28(2), predicting a crossover ex-
ponent of ¢ = v, /vy = v,(p = 1.12(2).

4 Numerical Simulations
4.1 Monte Carlo method

To find the critical temperature for a given dilution of
the system, we perform large-scale Monte Carlo (MC)
simulations. These simulations employ the Wolff [25]
and Metropolis [26] algorithms. Specifically, a full MC
sweep consists of a Wolff sweep followed by a Metropolis
sweep. The Wolff algorithm is a cluster-flip algorithm
which is beneficial in reducing critical slowing down of
the system near criticality. The Metropolis algorithm
is a single spin-flip algorithm. It is required to achieve

2The crossover exponent has also been computed within an
expansion in powers of ¢ = 6 — d yielding ¢ = 1 4 ¢/42 to
first order in e [23] [24]. The resulting value, ¢ = 1.071, is
surprisingly close to the best numerical estimate ¢ = 1.12(2).
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Fig. 2 Equilibration of the energy per site £ and the mag-
netization m for a cubic lattice XY model of size L = 56,
dilution p = 0.66 , and temperature 7' = 0.156 averaged over
20 disorder configurations. The comparison of hot and cold
starts shows that the system equilibrates after roughly 50
Monte Carlo sweeps despite being close to the multicritical
point.

equilibration of small isolated clusters of lattice sites
which might form as a result of dilution.

For the cubic lattice calculations, we consider sys-
tem sizes ranging from L3 = 103 to L3 = 1123. We
have simulated 4000 — 40000 independent disorder con-
figurations for each size. For the hexaferrite lattice, we
simulate systems consisting of 10% to 40 double unit
cells (each double unit cell contains 24 Fe sites) us-
ing 100 — 300 independent disorder configurations for
each size. All physical quantities of interest, such as
energy, magnetization, correlation length, etc. are aver-
aged over the disorder configurations. Statistical errors
are obtained from the variations of the results between
the configurations.

Measurements of observables must be performed af-
ter the system reaches thermal equilibrium. We deter-
mine the number of Monte Carlo sweeps required for
the system to equilibrate by comparing the results of
runs with hot starts (for which the spins initially point
in random directions) and with cold starts (for which
all spins are initially aligned). An example of such a
test for a cubic lattice XY system close to multicrit-
ical point is shown in Fig. The energy and order
parameter attain their respective equilibrium values af-
ter roughly 50 Monte Carlo sweeps. Similar numerical
checks were performed for other parameter values as
well as for the cases of Heisenberg spins on cubic and
hexaferrite lattices. Based on these tests, we have cho-
sen 150 equilibration sweeps (using a hot start) and 500
measurement sweeps per disorder configuration for the
cubic lattice simulations. For the hexaferrite lattice, we

perform 1000 equilibration sweeps and 2000 measure-
ment sweeps (using a hot start). Note that the combi-
nation of relatively short Monte Carlo runs and a large
number of disorder configurations leads to an overall
reduction of statistical error [27H29].

4.2 Data analysis

We employ the Binder cumulant [30] to precisely esti-
mate the critical temperature T,.. It is defined as

(Im|*) }
g=[1-mi )
[ 3(jml?)2 | 4,
where (...) denotes the thermodynamic (Monte Carlo)
average and [...]gs denotes the disorder average. The

Binder cumulant g is a dimensionless quantity, it there-
fore fulfills the finite-size scaling form

g(t,Lyu) = g(tA™", LA, uX’) . (8)

Here, A is an arbitrary scale factor, t = (T'—T.)/T. de-
notes the reduced temperature, and v is the correlation
length exponent of the (magnetic) finite-temperature
phase transition. We have included the irrelevant vari-
able u characterized by the exponent § > 0 to describe
the corrections from the leading scaling behavior ob-
served in our data. Setting the scale factor A = L™,
we obtain g(t, L,u) = F(tLY",uL~?) where F is a di-
mensionless scaling function. Expanding F' in its second
argument yields

g(t, Lou) = B(tL?) +uL°®,(tL7) . (9)

In the absence of corrections to scaling (u = 0), the
Binder cumulants at ¢ = 0 corresponding to different
system sizes have the universal value ¢(0), i.e., the crit-
ical temperature is marked by a crossing of all Binder
cumulant curves. If corrections to scaling cannot be ne-
glected (u # 0), this is not the case (see, e.g., Ref. [31])
because ¢(0, L, u) is not independent of L but takes the
value ¢(0, L,u) = ®(0) +uL~%®,(0). Instead, the cross-
ing point shifts with L and approaches ¢t = 0 as L — oo.
The functional form of this shift can be worked out ex-
plicitly by expanding the scaling functions ¢ and @,,,

g(t, L,u) = &(0) + tLv &' (0) + uL~°P,(0) . (10)

Using this expression to evaluate the crossing temper-
ature T*(L) between the Binder cumulant curves for
sizes L and cL (where ¢ is a constant) yields

with

T*(L) = T, + bL™* W=+ (11)
12

where b ~ u is a non-universal amplitude.



To determine the crossing temperature, we fit the g
vs T data sets corresponding to different system sizes
with separate quartic polynomials.(Quartic polynomi-
als provide reasonable fits within the temperature range
of interest while avoiding spurious oscillations.) The in-
tersection point of these polynomials yields the crossing
temperature T*. To estimate the errors of the crossing
temperature we use an ensemble method. For each g(T')
curve, we create an ensemble of artificial data sets g, (T')
by adding noise to the data

9a(T) = g(T) + Ag(T) 7 . (12)

Here, r is a random number chosen from a normal dis-
tribution of zero mean and unit variance, and Ag(T) is
the statistical error of the Monte Carlo data for g(T').
Note that we use the same random number r for the
entire g(7T') curve, leading to an upward or downward
shift of the curve. This stems from the fact that the sta-
tistical error Ag(T') is dominated by the disorder noise
while the Monte Carlo noise is much weaker. This im-
plies that the deviations at different temperatures of the
Binder cumulant from the true average are correlated.
Repeating the crossing analysis with these ensembles
of curves, we get ensembles of crossing temperatures.
Their mean and standard deviation yield T* and the
associated error AT™, respectively.

5 Results

In this section we report the results of our simulations
for cubic and hexaferrite lattices occupied by XY or
Heisenberg spins.

5.1 Cubic Lattices

We investigate the behavior of both XY and Heisenberg
models on cubic lattices. To check the validity of our
simulations, we first consider clean (undiluted) lattices.
We find critical temperatures of T, = 2.2017(1) and
T, = 1.44298(2) for XY and Heisenberg spins, respec-
tively. They agree well with previously known numerical
results [32] [33].

We now turn to diluted systems, starting with the
XY case. For reference, the site percolation threshold
of the simple cubic lattice is at the vacancy probability
pe = 0.6883923(2) [22]. For low dilutions (p < 0.64), the
Binder cumulant vs. temperature curves for all simu-
lated system sizes cross through exactly the same point
within their statistical errors, implying that corrections
to the leading finite-size scaling behavior are not im-
portant. Therefore, we determine T, from the cross-
ing of the g(T') curves of the two largest system sizes,
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Fig. 3 Binder cumulant g vs temperature T for the cubic
lattice XY model with dilution p = 0.10. The statistical errors
arising from the Monte Carlo simulation are smaller than the
symbol size. The inset show the intersection region of the
curves more closely. All curves cross at the same point within
their statistical errors.
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Fig. 4 Binder cumulant g vs temperature T for the XY model
on a cubic lattice for dilution p = 0.65, i.e. close to p.. The
curves do not all cross at the same temperature. Instead, the
crossing progressively shifts as L increases. The statistical
errors arising from the Monte Carlo simulation are smaller
than the symbol size.

L? = 80% and L3 = 1123. The ensemble method is ap-
plied to find the error of T,. Fig. [3| shows an example
of this situation for dilution p = 0.1.

For higher dilutions (p > 0.64) in the vicinity of
the percolation threshold p., the crossing of the Binder
cumulant vs. temperature curves is less sharp. Specif-
ically, the crossing temperature T*(L) of the curves
for linear system sizes L and /2L shifts visibly to-
wards higher temperatures as the system sizes are in-
creased. An example (for p = 0.65) is demonstrated in
Fig. [l As shown in the previous section, this shift is
caused by corrections to the leading finite-size scaling
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Fig. 5 Extrapolation to infinite system size of the crossing
temperature T* of the Binder cumulant curves for system
sizes L and v/2L using w = 1.5. The dilution is p = 0.65. A fit
to Eq. gives T. = 0.2064(4). The error bars of T* have
been determined using the ensemble method described in Sec.
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Fig. 6 Overview of the extrapolations of the crossing tem-
peratures T* for several dilutions near p. using w = 1.5. The
error bars AT* are smaller than the symbols.

behavior. According to Eq. , it can be modeled as
T*(L) = T, + bL=“. To find the asymptotic (infinite
system size) value of T,., we thus fit the crossing tem-
perature 7*(L) to Eq. (I1)). As w is expected to be uni-
versal, i.e., to take the same value for all dilutions near
Pe, we perform a combined fit for all dilutions p > 0.64
and treat w as a fitting parameter. This combined fit
produces w = 1.5 + 0.4. An example of the resulting
extrapolation is presented in Fig. [ for p = 0.65. The
figure shows that the finite-size shifts of the crossing
temperature are not very strong. This is further con-
firmed in Fig. [] which presents an overview of the fits
for all dilutions from p = 0.64 to p = 0.6825.
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Fig. 7 Phase boundary of the site-diluted XY model on a
cubic lattice. Main panel: Log-log plot of T, vs. |[p — pc|. The
straight lines are power-law fits, T ~ |[p—pc|?. They are shown
as solid lines within the fit range. The dotted and dash-dotted
lines are extrapolations. For details see text. Inset: Overview
presented as linear plot of Ty vs. p. All error bars of the data
points are smaller than the symbol size.

The resulting phase boundary T, (p) of the site-diluted
XY model on a cubic lattice is shown in Fig. [7] The
overview given in the inset demonstrates that T.(p) is
indeed continuously suppressed with increasing p and
approaches zero as p — p.. To analyze the functional
form of T,.(p) close to p., the main panel of Fig. m shows
a log-log plot of T, vs. |p — p.|- We observe that the
phase boundary follows two different power laws, close
to the percolation threshold p. and further away from
pe. The asymptotic value of ¢ is determined from a fit of
the data closest to p. (viz. p between 0.678 to 0.6825),
yielding a crossover exponent of ¢ = 1.09(2). Its error
estimate is a combination of the statistical error from
the fit and a systematic error estimated from the ro-
bustness of the value against changes of the fit interval.
The asymptotic value of ¢ agrees reasonably well with
the prediction of percolation theory. The asymptotic
power law describes the data for dilutions above about
p = 0.65. The asymptotic critical region thus ranges
from about p = 0.65 to p. = 0.6883923.

The preasymptotic behavior of T.(p) for p between
p = 0 to p = 0.64 also follows a power law in good
approximation. However, the exponent is significantly
below unity, ¢ = 0.80(1).

We proceed in the same manner for the Heisenberg
model on the cubic lattice. Starting from the clean case,
we gradually increase dilution and find T.(p). In the
case of Heisenberg spins, we find that the corrections
to finite-size scaling are weaker than in the XY case.
Even in the vicinity of p., all Binder cumulant curves
intersect in a single point within their statistical errors.
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Fig. 8 Binder cumulant g vs temperature 7' for dilution p =
0.65 on cubic lattice and Heisenberg spins. All curves cross at
the same temperature. Error bars are smaller than the symbol
size.
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Fig. 9 Phase boundary of the site-diluted Heisenberg model
on a cubic lattice. Main panel: Log-log plot of T, vs. |p — pc|.
The straight lines are power-law fits, T. ~ |p — pc|?. They are
shown as solid lines within the fit range. The dotted and dash-
dotted lines are extrapolations. For details see text. Inset:
Overview presented as linear plot of T, vs. p. All error bars
of the data points are smaller than the symbol sizes.

As an example, the g vs T data for p = 0.65 are shown
in Fig. |8l The critical temperatures T.(p) and its er-
ror are therefore determined from the Binder cumulant
crossing for system sizes L2 = 80% and L3 = 1123, the
largest systems simulated.

The phase boundary of the site-diluted Heisenberg
model on a cubic lattice is constructed from these data
and shown in Fig. [0 Similar to the XY case, we ob-
serve two separate power law exponents governing the
phase boundary. The dilutions p 2 0.65 constitute the
asymptotic critical region with crossover exponent ¢ =
1.08(2), in agreement with the percolation theory pre-
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Fig. 10 Phase boundary for the Heisenberg model on a
hexagonal ferrite lattice. The main panel shows the log-log
plot of T, vs. |p — pe|. The statistical errors of the data (de-
termined by the ensemble method) are smaller than the sym-
bol size. The straight lines are fits to 7. ~ |p — pc|¢. They
are shown as solid lines within the fit range. The dotted and
dash-dotted lines are extrapolations. For details see text. The
inset shows a linear plot the complete phase boundary T.(p).

diction. The nonuniversal preasymptotic crossover ex-
ponent obtained for dilutions p < 0.62 is again smaller
than unity, ¢ = 0.86(1), but somewhat larger than in
the XY case.

5.2 Hexagonal Ferrite Lattice

Whereas the asymptotic critical behavior of the phase
boundary close to the percolation threshold is expected
to be universal, its behavior outside the asymptotic crit-
ical region does not have to be universal. For a bet-
ter quantitative understanding of the magnetic phase
boundary of the diluted hexaferrites, we therefore also
perform simulations of the Heisenberg model using
the hexaferrite crystal structure and realistic exchange
interactions. In the calculations, we focus on the lead-
ing non-frustrated interactions, as outlined in Sec.
The site percolation threshold for the lattice spanned
by these interactions is p. = 0.7372(5) [15].

As before, the critical temperature T, for a given
dilution is determined from the Binder cumulant cross-
ings. Corrections to the finite-size scaling were found
to be negligible within the statistical errors. Thus, we
used the Binder cumulant crossing of the two largest
system sizes (283 and 40 double unit cells) to find
T.. The resulting phase boundary is shown in Fig. [I0]
The behavior of this phase boundary is very similar
to the cubic lattice results. High dilutions, p 2 0.68,
fall into the asymptotic critical region with a crossover
exponent of ¢ = 1.12(3), in excellent agreement with
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Fig. 11 Comparison between the numerically determined
phase boundary 7T.(z) and the experimental data for
PbFe12-;Ga;O19 [I5]. The tuning parameter z is related to
the dilution by /12 = p. The Monte Carlo simulations show
a more rapid suppression of T, with z. Including additional
weak frustrated interactions increases the discrepancy.

the percolation theory predictions. This also confirms
the universality of the asymptotic crossover exponent.
The preasymptotic exponent ¢ = 0.88(2) that governs
the behavior for dilutions below about 0.65 is smaller
than unity and takes roughly the same value as for the
Heisenberg model on the cubic lattice.

Our numerical results disagree with the experimen-

tally observed 2/3 power law, T,.(z) = T.(0)(1—x/2.)%/3.

In the simulations, the transition temperature T is sup-
pressed more rapidly with x than in the experimental
data (see Fig. . To explore possible reasons for this
discrepancy, we also perform test simulations that in-
clude additional weaker exchange interactions [19] that
frustrate the ferrimagnetic order. The results of these
simulations, which are included in Fig. show that
these weaker frustrating interactions have little effect
at low dilutions. At higher dilutions, when the ferri-
magnetic order is already weakened, the frustrating in-
teractions further suppress the transition temperature.
They thus further increase the discrepancy between the
experimental data and the Monte Carlo results.

6 Conclusion

To summarize, motivated by recent experimental ob-
servations on hexagonal ferrites, we have studied clas-
sical site-diluted XY and Heisenberg models by means
of large-scale Monte Carlo simulations, focusing on the
shape of the magnetic phase boundary. We have ob-
tained two main results.

First, for high dilutions close to the lattice percola-
tion threshold, the critical temperature depends on the
dilution via the power law T, ~ |p — p.|? in all studied
systems. In this asymptotic region, we have found the
values ¢ = 1.09(2) and 1.08(2) for XY and Heisenberg
spins on cubic lattices, respectively. For the Heisenberg
model on the hexaferrite lattice, ¢ = 1.12(3). These val-
ues agree with each other and with the prediction ¢ =
1.12(2) of classical percolation theory. The crossover
exponent ¢ thus appears to be super-universal, i.e., it
takes the same value not just for different lattices but
also for XY and Heisenberg symmetry.

Interestingly, the asymptotic critical region of the
percolation transition is very narrow, as the asymptotic
power-laws only hold in the range |p — p.| < 0.04. At
lower dilutions, the phase boundary still follows a power
law in |p — p¢|, but with an exponent that appears to
be non-universal and below unity (in the range between
0.8 and 0.9).

Our second main result concerns the origin of the
2/3 power law, T.(z) = T.(0)(1 — x/2.)%?, that was
experimentally observed in PbFeis_,Ga,O19 over the
entire concentration range between 0 and close to the
percolation threshold [I5]. Neither the asymptotic nor
the preasymptotic power laws identified in the simu-
lations match the experimental result. In fact, in all
simulations, the critical temperature is suppressed more
rapidly with increasing dilution than in the experiment.
The observed shape of the magnetic phase boundary in
PbFeis_,Ga,; 019 thus remains unexplained.

Potential reasons for the unusual behavior may in-
clude the interplay between magnetism and ferroelec-
tricity in these materials [34] or the presence of quan-
tum fluctuations (arising from the frustrated magnetic
interactions mentioned above), even though it is hard
to imagine that these stay relevant at temperatures as
high as 720 K. Another possible explanation could be
a statistically unequal occupation of the different iron
sites in the unit cell by Ga ions. Exploring these pos-
sibilities remains a task for the future. Disentangling
these effects may also require additional experiments
introducing further tuning parameters such as pressure
or magnetic field in addition to chemical composition.

Acknowledgements We acknowledge support from the NSF
under Grant Nos. DMR-1506152, DMR-1828489, and OAC-
1919789. The simulations were performed on the Pegasus and
Foundry clusters at Missouri S&T. We also thank Martin
Puschmann for helpful discussions.

References

1. G. Grinstein and A. Luther, [Phys. Rev. B 13, 1329
(1976).


http://dx.doi.org/10.1103/PhysRevB.13.1329
http://dx.doi.org/10.1103/PhysRevB.13.1329

X N3O N

10.
11.
12.
13.
14.

15.

16.

17.
18.

19.

20.

21.

22.

23.

24.

25.
26.

27.

28.
29.
30.
31.
32.
33.

34.

D. S. Fisher, [Phys. Rev. Lett. 69, 534 (1992).

D. S. Fisher, Phys. Rev. B 51, 6411 (1995).

R. B. Griffiths, [Phys. Rev. Lett. 23, 17 (1969).

M. Thill and D. A. Huse, Physica A 214, 321 (1995).
A. P. Young and H. Rieger, Phys. Rev. B 53, 8486 (1996 ).
T. Vojta, [Phys. Rev. Lett. 90, 107202 (2003).

R. Sknepnek and T. Vojta, Phys. Rev. B 69, 174410

(2004).
G. Schehr and H. Rieger, Phys. Rev. Lett. 96, 227201
(2006).
J. A. Hoyos and T. Vojta, Phys. Rev. Lett. 100, 240601
(2008).

T. Vojta, J. Phys. A 39, R143 (2006).

T. Vojta, J. Low Temp. Phys. 161, 299 (2010).

T. Vojta,|Ann. Rev. Condens. Mat. Phys. 10, 233 (2019).
D. Stauffer and A. Aharony, Introduction to Percolation
Theory (CRC Press, Boca Raton, 1991).

S. E. Rowley, T. Vojta, A. T. Jones, W. Guo, J. Oliveira,
F. D. Morrison, N. Lindfield, E. Baggio Saitovitch, B. E.
Watts, and J. F. Scott, Phys. Rev. B 96, 020407 (2017).
G. Albanese, F. Leccabue, B. E. Watts, and S. Diaz-
Castanoén, |J. Mat. Sci 37, 3759 (2002).

A. Coniglio, Phys. Rev. Lett. 46, 250 (1981).

T. Vojta and J. A. Hoyos, in Recent Progress in Many-
Body Theories, edited by J. Boronat, G. Astrakharchik,
and F. Mazzanti (World Scientific, Singapore, 2008) p.
235.

C. Wu, Z. Yu, K. Sun, J. Nie, R. Guo, H. Liu, X. Jiang,
and Z. Lan, Scientific Reports 6, 36200 (2016).

E. Shender and B. Shklovskii, Physics Letters A 55, 77
(1975).

B. Kozlov and M. Lagués, Physica A: Statistical Mechan-
ics and its Applications 389, 5339 (2010).

J. Wang, Z. Zhou, W. Zhang, T. M. Garoni, and Y. Deng,
Phys. Rev. E 87, 052107 (2013).

A. B. Harris and T. C. Lubensky, J. Phys. A 17, L609
(1984).

A. B. Harris and A. Aharony, Phys. Rev. B 40, 7230
(1989).

U. Wolff, Phys. Rev. Lett. 62, 361 (1989).

N. Metropolis and S. Ulam, Journal of the American sta-
tistical association 44, 335 (1949).

H. G. Ballesteros, L. A. Ferndndez, V. Martin-Mayor,
A. Munoz Sudupe, G. Parisi, and J. J. Ruiz-Lorenzo,
Phys. Rev. B 58, 2740 (1998).

T. Vojta and R. Sknepnek, Phys. Rev. B 74, 094415
(2006).

Q. Zhu, X. Wan, R. Narayanan, J. A. Hoyos, and T. Vo-
jta, Phys. Rev. B 91, 224201 (2015).

K. Binder, |Zeitschrift fur Physik B 43, 119 (1981).

W. Selke and L. N. Shchur, |J. Phys. A 38, L739 (2005).
A. P. Gottlob and M. Hasenbusch, Physica A: Statistical
Mechanics and its Applications 201, 593 (1993).

R. G. Brown and M. Ciftan, Phys. Rev. B 74, 224413
(2006).

S. E. Rowley, Y.-S. Chai, S.-P. Shen, Y. Sun, A. T. Jones,
B. E. Watts, and J. F. Scott, Scientific Reports 6, 25724
(2016).


http://dx.doi.org/10.1103/PhysRevLett.69.534
http://dx.doi.org/10.1103/PhysRevB.51.6411
http://dx.doi.org/10.1103/PhysRevLett.23.17
http://dx.doi.org/10.1016/0378-4371(94)00247-Q
http://dx.doi.org/10.1103/PhysRevB.53.8486
http://dx.doi.org/10.1103/PhysRevLett.90.107202
http://dx.doi.org/10.1103/PhysRevB.69.174410
http://dx.doi.org/10.1103/PhysRevB.69.174410
http://dx.doi.org/10.1103/PhysRevLett.96.227201
http://dx.doi.org/10.1103/PhysRevLett.96.227201
http://dx.doi.org/10.1103/PhysRevLett.100.240601
http://dx.doi.org/10.1103/PhysRevLett.100.240601
http://dx.doi.org/10.1088/0305-4470/39/22/R01
http://dx.doi.org/10.1007/s10909-010-0205-4
http://dx.doi.org/10.1146/annurev-conmatphys-031218-013433
http://dx.doi.org/ 10.1103/PhysRevB.96.020407
http://dx.doi.org/10.1023/A:1016529812985
http://dx.doi.org/10.1103/PhysRevLett.46.250
http://dx.doi.org/ 10.1038/srep36200
http://dx.doi.org/https://doi.org/10.1016/j.physa.2010.08.002
http://dx.doi.org/https://doi.org/10.1016/j.physa.2010.08.002
http://dx.doi.org/ 10.1103/PhysRevE.87.052107
http://dx.doi.org/10.1088/0305-4470/17/11/010
http://dx.doi.org/10.1088/0305-4470/17/11/010
http://dx.doi.org/10.1103/PhysRevB.40.7230
http://dx.doi.org/10.1103/PhysRevB.40.7230
http://dx.doi.org/10.1103/PhysRevLett.62.361
http://dx.doi.org/10.1103/PhysRevB.58.2740
http://dx.doi.org/10.1103/PhysRevB.74.094415
http://dx.doi.org/10.1103/PhysRevB.74.094415
http://dx.doi.org/ 10.1103/PhysRevB.91.224201
http://dx.doi.org/10.1007/BF01293604
http://dx.doi.org/10.1088/0305-4470/38/44/l03
http://dx.doi.org/ https://doi.org/10.1016/0378-4371(93)90131-M
http://dx.doi.org/ https://doi.org/10.1016/0378-4371(93)90131-M
http://dx.doi.org/10.1103/PhysRevB.74.224413
http://dx.doi.org/10.1103/PhysRevB.74.224413
http://dx.doi.org/ 10.1038/srep25724
http://dx.doi.org/ 10.1038/srep25724

	Introduction
	The Models
	Predictions of Percolation Theory
	Numerical Simulations
	Results
	Conclusion

