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Abstract Motivated by recent experimental observa-

tions [Phys. Rev. 96, 020407 (2017)] on hexagonal fer-

rites, we revisit the phase diagrams of diluted magnets

close to the lattice percolation threshold. We perform

large-scale Monte Carlo simulations of XY and Heisen-

berg models on both simple cubic lattices and lattices

representing the crystal structure of the hexagonal fer-

rites. Close to the percolation threshold pc, we find that

the magnetic ordering temperature Tc depends on the

dilution p via the power law Tc ∼ |p− pc|ϕ with expo-

nent ϕ = 1.09, in agreement with classical percolation

theory. However, this asymptotic critical region is very

narrow, |p− pc| ≲ 0.04. Outside of it, the shape of the

phase boundary is well described, over a wide range

of dilutions, by a nonuniversal power law with an ex-

ponent somewhat below unity. Nonetheless, the perco-

lation scenario does not reproduce the experimentally

observed relation Tc ∼ (xc−x)2/3 in PbFe12−xGaxO19.

We discuss the generality of our findings as well as im-

plications for the physics of diluted hexagonal ferrites.

1 Introduction

Disordered many-body systems feature three different

types of fluctuations, viz., static random fluctuations

due to the quenched disorder, thermal fluctuations, and

quantum fluctuations. Their interplay can greatly affect

the properties of phase transitions, with possible con-

sequences ranging from a simple change of universality

class [1] to exotic infinite-randomness criticality [2, 3],

classical [4] and quantum [5, 6] Griffiths singularities,

as well as the destruction of the transition by smearing
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[7–10]. Recent reviews of some of these phenomena can

be found in Refs. [11–13]. Randomly diluted magnetic

materials are a particularly interesting class of systems

in which the above interplay is realized. Here, the dis-

order fluctuations correspond to the geometric fluctua-

tions of the underlying lattices which can undergo a ge-

ometric percolation transition between a disconnected

phase and a connected (percolating) phase [14].

Recently, the behavior of diluted magnets close to

the percolation transition has reattracted attention be-

cause of the unexpected shape of the phase bound-

ary observed in the diluted hexagonal ferrite (hexafer-

rite) PbFe12−xGaxO19 [15]. Pure PbFe12O19 orders fer-

rimagnetically at temperatures below about 720 K [16].

The ordering temperature Tc can be suppressed by ran-

domly substituting nonmagnetic Ga ions for Fe ions in

PbFe12−xGaxO19. It vanishes when x reaches the crit-

ical value xc ≈ 8.6. This value is very close the perco-

lation threshold xp = 8.846 of the underlying lattice1,

suggesting that the transition at xc is of percolation

type [15]. Remarkably, the phase boundary follows the

power law Tc(x) = Tc(0)(1− x/xc)
ϕ with ϕ = 2/3 over

the entire x-range from 0 to xc. This disagrees with

the prediction from classical percolation theory [14, 17]

which yields a crossover exponent of ϕ > 1 for contin-

uous symmetry magnets, at least for dilutions close to

xc.

In this paper, we therefore reinvestigate the phase

boundary close to the percolation transition of diluted

classical planar and Heisenberg magnets by means of

large-scale Monte Carlo simulations. The purpose of

the paper is twofold. First, we wish to test and verify

the percolation theory predictions, focusing not only on

1The lattice in question is the lattice of exchange interactions
between the Fe ions.
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the asymptotic critical behavior but also on the width

of the critical region and the preasymptotic properties.

Second, we wish to explore whether the classical per-

colation scenario can explain the experimental observa-

tions in PbFe12−xGaxO19 [15].

Our paper is organized as follows. In Sec. 2, we in-

troduce the diluted XY and Heisenberg models and dis-

cuss their qualitative behavior. Section 3 summarizes

the predictions of percolation theory. Our Monte Carlo

simulation method is described in Sec. 4. Sections 5.1

and 5.2 report our results for model systems on cubic

lattices and for systems defined on the hexagonal ferrite

lattice, respectively. We conclude in Sec. 6.

2 The Models

Consistent with the dual purpose of studying the crit-

ical behavior of the phase boundary close to a mag-

netic percolation transition and of addressing the ex-

perimental observations in diluted hexaferrites [15], we

consider two models, viz., (i) site-diluted classical XY

and Heisenberg models on simple cubic lattices and (ii)

a classical Heisenberg Hamiltonian based on the hexa-

ferrite crystal structure using realistic exchange inter-

actions. Comparing the results of these different models

will also allow us to explore the universality of the crit-

ical behavior.

2.1 Site-diluted XY and Heisenberg models on cubic

lattices

We consider a simple cubic lattice ofN = L3 sites. Each

site is either occupied by a vacancy or by a classical

spin, i.e., an n-component unit vector Si (n = 2 for

the XY model and n = 3 for the Heisenberg case). The

Hamiltonian reads

H = −J
∑︂
<i,j>

ϵiϵjSi · Sj . (1)

Here, the sum is over pairs of nearest-neighbor sites,

and J > 0 denotes the ferromagnetic exchange inter-

action. (In the following, we set J to unity for the

cubic lattice simulations.) The quenched independent

random variables ϵi implement the site dilution. They

take the values 0 (vacancy) with probability p and 1

(occupied site) with probability 1 − p. We employ pe-

riodic boundary conditions. Magnetic long-range order

can be characterized by the order parameter, the total

magnetization

m =
1

N

∑︂
i

Si . (2)

Fig. 1 Double unit cell of PbFe12O19. 24 Fe3+ ions are lo-
cated on five distinct sublattices.

The qualitative behavior of this model as a function

of temperature T and dilution p is well understood (see,

e.g., Ref. [18] for an overview). For sufficiently small di-

lution, the system orders magnetically below a critical

temperature Tc(p). The critical temperature decreases

continuously with p until it reaches zero at the perco-

lation threshold pc of the lattice. For dilutions beyond

the percolation threshold, magnetic long-range order is

impossible because the system breaks down into finite

noninteracting clusters. The point p = pc, T = 0 is a

multicritical point at which both the geometric fluctua-

tions of the lattice and the thermal fluctuations become

long-ranged.

2.2 Hexaferrite Heisenberg model

PbFe12O19 crystallizes in the magnetoplumbite struc-

ture, as illustrated in Fig. 1. A double unit cell con-

tains 24 Fe3+ ions in five distinct sublattices; they are

in the spin state S = 5/2. Below a temperature of about

720K, the material orders ferrimagnetically, with 16 of

the Fe spins pointing up and the remaining 8 Fe ions

pointing down [16]. Note that the high critical temper-

ature and the high spin value suggest that a classical

description should provide a good approximation.

In PbFe12−xGaxO19, the randomly substituted Ga

ions, which replace the Fe ions, act as quenched spinless

impurities. To model this system, we start from the

hexaferrite crystal structure and randomly place either

a vacancy (with probability p) or a classical Heisenberg

spin Si (with probability 1 − p) at each Fe site. The

dilution p is related to the number x of Ga ions in the
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unit cell by p = x/12. The Hamiltonian reads

H = −
∑︂
i,j

JijϵiϵjSiSj . (3)

The quenched random variables ϵi distinguish vacan-

cies and spins, as before. The values of the exchange

interactions Jij stem from the density functional cal-

culation in Ref. [19]; they are scaled by a common fac-

tor to approximately reproduce the critical temperature

Tc = 720K of the undiluted material. In most of our

Monte Carlo simulations, we include only the leading

(strongest) interactions which are between the following

sublattice pairs: 2a-4fIV , 2b-4fV I , 12k-4fIV , 12k-4fV I .

These interactions are non-frustrated and establish the

ferrimagnetic order. We also perform a few test calcula-

tions to explore the effects of additional couplings which

are significantly weaker but frustrate the ferrimagnetic

order.

The qualitative features of the phase diagram of the

model (3) are expected to be similar to those discussed

in the previous section. With increasing dilution p, the

critical temperature Tc(p) is continuously suppressed

and reaches zero at the site percolation threshold. The

value of the percolation threshold of the lattice spanned

by the leading non-frustrated interactions between the

Fe ions was determined in Ref. [15] by means of Monte

Carlo simulations. They yielded pc = 0.7372(5), corre-

sponding to xc = 8.846(6) Ga ions per unit cell. (The

numbers in brackets show the error estimate of the last

digit.)

3 Predictions of Percolation Theory

In this section, we briefly summarize the predictions of

classical percolation theory for the shape of the phase

boundary Tc(p) close to multicritical point p = pc, T =

0 [14, 17, 20]. Close to this point, two length scales

are at play, the percolation correlation length, ξp which

characterizes the size of finite isolated clusters of lat-

tice sites and the magnetic thermal correlation length

on the critical infinite percolating cluster at pc denoted

by ξT . The percolation correlation length ξp diverges

as ξp ∼ |p − pc|−νp as the percolation threshold is ap-

proached. The magnetic thermal correlation length be-

haves as ξT ∼ T−νT for continuous-symmetry magnets

described by the n-vector model with n > 1.

To find the phase boundary, consider the magneti-

zation near the critical point. It fulfills the scaling form,

m(p− pc, T ) = |p− pc|β X (ξT /ξp) . (4)

For p < pc, the magnetic phase transition occurs at

a particular value xc of the argument of the scaling

function X. At the magnetic transition, we therefore

have ξT = xcξp. This yields the power law relation

Tc(p) ∼ |p− pc|ϕ . (5)

The crossover exponent ϕ takes the value ϕ = νp/νT .

(In contrast, ξT diverges exponentially, ξT ∼ (e−2J/T )−νT ,

for Ising magnets, leading to a logarithmic dependence

Tc(p) ∼ ln−1(1/|p− pc|).)
Using a renormalization group calculation, Coniglio

[17] established the relation νT = 1/ζ̃R. Here, ζ̃R char-

acterizes the resistance R of a random resistor network

on a critical percolation cluster of linear size L via

R ∼ Lζ̃R .

The exponent ζ̃R can be related to the well-known

conductivity critical exponent t which describes how

the conductivity σ of the resistor network depends on

the distance from the percolation threshold, σ ∼ |p −
pc|t. To do so, consider a resistor network on a perco-

lating lattice close to pc but on the percolating side. Its

behavior is critical for clusters of size less than ξp and

Ohmic for sizes beyond ξp. For a d-dimensional system

of linear size L ≫ ξp, we can employ Ohm’s law to

combine blocks of size ξp, yielding

R(L) = R(ξp)

(︃
L

ξp

)︃(︃
L

ξp

)︃−(d−1)

∼ ξζR̃p ξd−2
p L2−d . (6)

The conductivity on the percolating side thus behaves

as σ ∼ ξ
−(d−2+ζ̃R)
p ∼ |p − pc|νp(d−2+ζR̃). Thus, we ob-

tain the hyperscaling relation, t = (d − 2 + ζR̃)νp or

ζR̃ = t/νp−d+2. Using the numerical estimates t/νp =

2.28(2) and νp = 0.876(2) [21, 22] for three-dimensional

systems yields ζR̃ = 1.28(2), predicting a crossover ex-

ponent of ϕ = νp/νT = νpζ̃R = 1.12(2). 2

4 Numerical Simulations

4.1 Monte Carlo method

To find the critical temperature for a given dilution of

the system, we perform large-scale Monte Carlo (MC)

simulations. These simulations employ the Wolff [25]

and Metropolis [26] algorithms. Specifically, a full MC

sweep consists of a Wolff sweep followed by a Metropolis

sweep. The Wolff algorithm is a cluster-flip algorithm

which is beneficial in reducing critical slowing down of

the system near criticality. The Metropolis algorithm

is a single spin-flip algorithm. It is required to achieve

2The crossover exponent has also been computed within an
expansion in powers of ϵ = 6 − d yielding ϕ = 1 + ϵ/42 to
first order in ϵ [23, 24]. The resulting value, ϕ = 1.071, is
surprisingly close to the best numerical estimate ϕ = 1.12(2).
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Fig. 2 Equilibration of the energy per site E and the mag-
netization m for a cubic lattice XY model of size L = 56,
dilution p = 0.66 , and temperature T = 0.156 averaged over
20 disorder configurations. The comparison of hot and cold
starts shows that the system equilibrates after roughly 50
Monte Carlo sweeps despite being close to the multicritical
point.

equilibration of small isolated clusters of lattice sites

which might form as a result of dilution.

For the cubic lattice calculations, we consider sys-

tem sizes ranging from L3 = 103 to L3 = 1123. We

have simulated 4000−40000 independent disorder con-

figurations for each size. For the hexaferrite lattice, we

simulate systems consisting of 103 to 403 double unit

cells (each double unit cell contains 24 Fe sites) us-

ing 100 − 300 independent disorder configurations for

each size. All physical quantities of interest, such as

energy, magnetization, correlation length, etc. are aver-

aged over the disorder configurations. Statistical errors

are obtained from the variations of the results between

the configurations.

Measurements of observables must be performed af-

ter the system reaches thermal equilibrium. We deter-

mine the number of Monte Carlo sweeps required for

the system to equilibrate by comparing the results of

runs with hot starts (for which the spins initially point

in random directions) and with cold starts (for which

all spins are initially aligned). An example of such a

test for a cubic lattice XY system close to multicrit-

ical point is shown in Fig. 2. The energy and order

parameter attain their respective equilibrium values af-

ter roughly 50 Monte Carlo sweeps. Similar numerical

checks were performed for other parameter values as

well as for the cases of Heisenberg spins on cubic and

hexaferrite lattices. Based on these tests, we have cho-

sen 150 equilibration sweeps (using a hot start) and 500

measurement sweeps per disorder configuration for the

cubic lattice simulations. For the hexaferrite lattice, we

perform 1000 equilibration sweeps and 2000 measure-

ment sweeps (using a hot start). Note that the combi-

nation of relatively short Monte Carlo runs and a large

number of disorder configurations leads to an overall

reduction of statistical error [27–29].

4.2 Data analysis

We employ the Binder cumulant [30] to precisely esti-

mate the critical temperature Tc. It is defined as

g =

[︃
1− ⟨|m|4⟩

3⟨|m|2⟩2

]︃
dis

(7)

where ⟨...⟩ denotes the thermodynamic (Monte Carlo)

average and [...]dis denotes the disorder average. The

Binder cumulant g is a dimensionless quantity, it there-

fore fulfills the finite-size scaling form

g(t, L, u) = g(tλ−1/ν , Lλ, uλδ) . (8)

Here, λ is an arbitrary scale factor, t = (T −Tc)/Tc de-

notes the reduced temperature, and ν is the correlation

length exponent of the (magnetic) finite-temperature

phase transition. We have included the irrelevant vari-

able u characterized by the exponent δ > 0 to describe

the corrections from the leading scaling behavior ob-

served in our data. Setting the scale factor λ = L−1,

we obtain g(t, L, u) = F (tL1/ν , uL−δ) where F is a di-

mensionless scaling function. Expanding F in its second

argument yields

g(t, L, u) = Φ(tL
1
ν ) + uL−δΦu(tL

1
ν ) . (9)

In the absence of corrections to scaling (u = 0), the

Binder cumulants at t = 0 corresponding to different

system sizes have the universal value Φ(0), i.e., the crit-

ical temperature is marked by a crossing of all Binder

cumulant curves. If corrections to scaling cannot be ne-

glected (u ̸= 0), this is not the case (see, e.g., Ref. [31])

because g(0, L, u) is not independent of L but takes the

value g(0, L, u) = Φ(0)+uL−δΦu(0). Instead, the cross-

ing point shifts with L and approaches t = 0 as L → ∞.

The functional form of this shift can be worked out ex-

plicitly by expanding the scaling functions Φ and Φu,

g(t, L, u) = Φ(0) + tL
1
ν Φ′(0) + uL−δΦu(0) . (10)

Using this expression to evaluate the crossing temper-

ature T ∗(L) between the Binder cumulant curves for

sizes L and cL (where c is a constant) yields

T ∗(L) = Tc + bL−ω with ω = δ +
1

ν
(11)

where b ∼ u is a non-universal amplitude.
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To determine the crossing temperature, we fit the g

vs T data sets corresponding to different system sizes

with separate quartic polynomials.(Quartic polynomi-

als provide reasonable fits within the temperature range

of interest while avoiding spurious oscillations.) The in-

tersection point of these polynomials yields the crossing

temperature T ∗. To estimate the errors of the crossing

temperature we use an ensemble method. For each g(T )

curve, we create an ensemble of artificial data sets ga(T )

by adding noise to the data

ga(T ) = g(T ) +∆g(T ) r . (12)

Here, r is a random number chosen from a normal dis-

tribution of zero mean and unit variance, and ∆g(T ) is

the statistical error of the Monte Carlo data for g(T ).

Note that we use the same random number r for the

entire g(T ) curve, leading to an upward or downward

shift of the curve. This stems from the fact that the sta-

tistical error ∆g(T ) is dominated by the disorder noise

while the Monte Carlo noise is much weaker. This im-

plies that the deviations at different temperatures of the

Binder cumulant from the true average are correlated.

Repeating the crossing analysis with these ensembles

of curves, we get ensembles of crossing temperatures.

Their mean and standard deviation yield T ∗ and the

associated error ∆T ∗, respectively.

5 Results

In this section we report the results of our simulations

for cubic and hexaferrite lattices occupied by XY or

Heisenberg spins.

5.1 Cubic Lattices

We investigate the behavior of both XY and Heisenberg

models on cubic lattices. To check the validity of our

simulations, we first consider clean (undiluted) lattices.

We find critical temperatures of Tc = 2.2017(1) and

Tc = 1.44298(2) for XY and Heisenberg spins, respec-

tively. They agree well with previously known numerical

results [32, 33].

We now turn to diluted systems, starting with the

XY case. For reference, the site percolation threshold

of the simple cubic lattice is at the vacancy probability

pc = 0.6883923(2) [22]. For low dilutions (p < 0.64), the

Binder cumulant vs. temperature curves for all simu-

lated system sizes cross through exactly the same point

within their statistical errors, implying that corrections

to the leading finite-size scaling behavior are not im-

portant. Therefore, we determine Tc from the cross-

ing of the g(T ) curves of the two largest system sizes,
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1.93 1.94 1.95

0.4
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0.6

Fig. 3 Binder cumulant g vs temperature T for the cubic
lattice XY model with dilution p = 0.10. The statistical errors
arising from the Monte Carlo simulation are smaller than the
symbol size. The inset show the intersection region of the
curves more closely. All curves cross at the same point within
their statistical errors.
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Fig. 4 Binder cumulant g vs temperature T for the XY model
on a cubic lattice for dilution p = 0.65, i.e. close to pc. The
curves do not all cross at the same temperature. Instead, the
crossing progressively shifts as L increases. The statistical
errors arising from the Monte Carlo simulation are smaller
than the symbol size.

L3 = 803 and L3 = 1123. The ensemble method is ap-

plied to find the error of Tc. Fig. 3 shows an example

of this situation for dilution p = 0.1.

For higher dilutions (p ≥ 0.64) in the vicinity of

the percolation threshold pc, the crossing of the Binder

cumulant vs. temperature curves is less sharp. Specif-

ically, the crossing temperature T ∗(L) of the curves

for linear system sizes L and
√
2L shifts visibly to-

wards higher temperatures as the system sizes are in-

creased. An example (for p = 0.65) is demonstrated in

Fig. 4. As shown in the previous section, this shift is

caused by corrections to the leading finite-size scaling
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Fig. 5 Extrapolation to infinite system size of the crossing
temperature T ∗ of the Binder cumulant curves for system
sizes L and

√
2L using ω = 1.5. The dilution is p = 0.65. A fit

to Eq. (11) gives Tc = 0.2064(4). The error bars of T ∗ have
been determined using the ensemble method described in Sec.
4.2.
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Fig. 6 Overview of the extrapolations of the crossing tem-
peratures T ∗ for several dilutions near pc using ω = 1.5. The
error bars ∆T ∗ are smaller than the symbols.

behavior. According to Eq. (11), it can be modeled as

T ∗(L) = Tc + bL−ω. To find the asymptotic (infinite

system size) value of Tc, we thus fit the crossing tem-

perature T ∗(L) to Eq. (11). As ω is expected to be uni-

versal, i.e., to take the same value for all dilutions near

pc, we perform a combined fit for all dilutions p ≥ 0.64

and treat ω as a fitting parameter. This combined fit

produces ω = 1.5 ± 0.4. An example of the resulting

extrapolation is presented in Fig. 5 for p = 0.65. The

figure shows that the finite-size shifts of the crossing

temperature are not very strong. This is further con-

firmed in Fig. 6 which presents an overview of the fits

for all dilutions from p = 0.64 to p = 0.6825.

0.00.640.678
p

5 4 3 2 1
ln|p pc|

3

2

1

0

1

ln
(T

c)

= 0.80(1)
= 1.09(2)

0.0 0.2 0.4 0.6
p

0

1

2

T c

Fig. 7 Phase boundary of the site-diluted XY model on a
cubic lattice. Main panel: Log-log plot of Tc vs. |p− pc|. The
straight lines are power-law fits, Tc ∼ |p−pc|ϕ. They are shown
as solid lines within the fit range. The dotted and dash-dotted
lines are extrapolations. For details see text. Inset: Overview
presented as linear plot of Tc vs. p. All error bars of the data
points are smaller than the symbol size.

The resulting phase boundary Tc(p) of the site-diluted

XY model on a cubic lattice is shown in Fig. 7. The

overview given in the inset demonstrates that Tc(p) is

indeed continuously suppressed with increasing p and

approaches zero as p → pc. To analyze the functional

form of Tc(p) close to pc, the main panel of Fig. 7 shows

a log-log plot of Tc vs. |p − pc|. We observe that the

phase boundary follows two different power laws, close

to the percolation threshold pc and further away from

pc. The asymptotic value of ϕ is determined from a fit of

the data closest to pc (viz. p between 0.678 to 0.6825),

yielding a crossover exponent of ϕ = 1.09(2). Its error

estimate is a combination of the statistical error from

the fit and a systematic error estimated from the ro-

bustness of the value against changes of the fit interval.

The asymptotic value of ϕ agrees reasonably well with

the prediction of percolation theory. The asymptotic

power law describes the data for dilutions above about

p = 0.65. The asymptotic critical region thus ranges

from about p = 0.65 to pc = 0.6883923.

The preasymptotic behavior of Tc(p) for p between

p = 0 to p = 0.64 also follows a power law in good

approximation. However, the exponent is significantly

below unity, ϕ = 0.80(1).

We proceed in the same manner for the Heisenberg

model on the cubic lattice. Starting from the clean case,

we gradually increase dilution and find Tc(p). In the

case of Heisenberg spins, we find that the corrections

to finite-size scaling are weaker than in the XY case.

Even in the vicinity of pc, all Binder cumulant curves

intersect in a single point within their statistical errors.
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Fig. 8 Binder cumulant g vs temperature T for dilution p =
0.65 on cubic lattice and Heisenberg spins. All curves cross at
the same temperature. Error bars are smaller than the symbol
size.
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Fig. 9 Phase boundary of the site-diluted Heisenberg model
on a cubic lattice. Main panel: Log-log plot of Tc vs. |p− pc|.
The straight lines are power-law fits, Tc ∼ |p− pc|ϕ. They are
shown as solid lines within the fit range. The dotted and dash-
dotted lines are extrapolations. For details see text. Inset:
Overview presented as linear plot of Tc vs. p. All error bars
of the data points are smaller than the symbol sizes.

As an example, the g vs T data for p = 0.65 are shown

in Fig. 8. The critical temperatures Tc(p) and its er-

ror are therefore determined from the Binder cumulant

crossing for system sizes L3 = 803 and L3 = 1123, the

largest systems simulated.

The phase boundary of the site-diluted Heisenberg

model on a cubic lattice is constructed from these data

and shown in Fig. 9. Similar to the XY case, we ob-

serve two separate power law exponents governing the

phase boundary. The dilutions p ≳ 0.65 constitute the

asymptotic critical region with crossover exponent ϕ =

1.08(2), in agreement with the percolation theory pre-

0.00.650.71
p

5 4 3 2 1
ln|p pc|

2

3

4

5

6

7

ln
(T

c/K
)

= 0.88(2)
= 1.12(3)

0.0 0.2 0.4 0.6 0.8
p

0

200

400

600

T c
(K

)

Fig. 10 Phase boundary for the Heisenberg model on a
hexagonal ferrite lattice. The main panel shows the log-log
plot of Tc vs. |p − pc|. The statistical errors of the data (de-
termined by the ensemble method) are smaller than the sym-
bol size. The straight lines are fits to Tc ∼ |p − pc|ϕ. They
are shown as solid lines within the fit range. The dotted and
dash-dotted lines are extrapolations. For details see text. The
inset shows a linear plot the complete phase boundary Tc(p).

diction. The nonuniversal preasymptotic crossover ex-

ponent obtained for dilutions p ≲ 0.62 is again smaller

than unity, ϕ = 0.86(1), but somewhat larger than in

the XY case.

5.2 Hexagonal Ferrite Lattice

Whereas the asymptotic critical behavior of the phase

boundary close to the percolation threshold is expected

to be universal, its behavior outside the asymptotic crit-

ical region does not have to be universal. For a bet-

ter quantitative understanding of the magnetic phase

boundary of the diluted hexaferrites, we therefore also

perform simulations of the Heisenberg model (3) using

the hexaferrite crystal structure and realistic exchange

interactions. In the calculations, we focus on the lead-

ing non-frustrated interactions, as outlined in Sec. 2.2.

The site percolation threshold for the lattice spanned

by these interactions is pc = 0.7372(5) [15].

As before, the critical temperature Tc for a given

dilution is determined from the Binder cumulant cross-

ings. Corrections to the finite-size scaling were found

to be negligible within the statistical errors. Thus, we

used the Binder cumulant crossing of the two largest

system sizes (283 and 403 double unit cells) to find

Tc. The resulting phase boundary is shown in Fig. 10.

The behavior of this phase boundary is very similar

to the cubic lattice results. High dilutions, p ≳ 0.68,

fall into the asymptotic critical region with a crossover

exponent of ϕ = 1.12(3), in excellent agreement with
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Fig. 11 Comparison between the numerically determined
phase boundary Tc(x) and the experimental data for
PbFe12−xGaxO19 [15]. The tuning parameter x is related to
the dilution by x/12 = p. The Monte Carlo simulations show
a more rapid suppression of Tc with x. Including additional
weak frustrated interactions increases the discrepancy.

the percolation theory predictions. This also confirms

the universality of the asymptotic crossover exponent.

The preasymptotic exponent ϕ = 0.88(2) that governs

the behavior for dilutions below about 0.65 is smaller

than unity and takes roughly the same value as for the

Heisenberg model on the cubic lattice.

Our numerical results disagree with the experimen-

tally observed 2/3 power law, Tc(x) = Tc(0)(1−x/xc)
2/3.

In the simulations, the transition temperature Tc is sup-

pressed more rapidly with x than in the experimental

data (see Fig. 11). To explore possible reasons for this

discrepancy, we also perform test simulations that in-

clude additional weaker exchange interactions [19] that

frustrate the ferrimagnetic order. The results of these

simulations, which are included in Fig. 11, show that

these weaker frustrating interactions have little effect

at low dilutions. At higher dilutions, when the ferri-

magnetic order is already weakened, the frustrating in-

teractions further suppress the transition temperature.

They thus further increase the discrepancy between the

experimental data and the Monte Carlo results.

6 Conclusion

To summarize, motivated by recent experimental ob-

servations on hexagonal ferrites, we have studied clas-

sical site-diluted XY and Heisenberg models by means

of large-scale Monte Carlo simulations, focusing on the

shape of the magnetic phase boundary. We have ob-

tained two main results.

First, for high dilutions close to the lattice percola-

tion threshold, the critical temperature depends on the

dilution via the power law Tc ∼ |p− pc|ϕ in all studied

systems. In this asymptotic region, we have found the

values ϕ = 1.09(2) and 1.08(2) for XY and Heisenberg

spins on cubic lattices, respectively. For the Heisenberg

model on the hexaferrite lattice, ϕ = 1.12(3). These val-

ues agree with each other and with the prediction ϕ =

1.12(2) of classical percolation theory. The crossover

exponent ϕ thus appears to be super-universal, i.e., it

takes the same value not just for different lattices but

also for XY and Heisenberg symmetry.

Interestingly, the asymptotic critical region of the

percolation transition is very narrow, as the asymptotic

power-laws only hold in the range |p − pc| ≲ 0.04. At

lower dilutions, the phase boundary still follows a power

law in |p − pc|, but with an exponent that appears to

be non-universal and below unity (in the range between

0.8 and 0.9).

Our second main result concerns the origin of the

2/3 power law, Tc(x) = Tc(0)(1 − x/xc)
2/3, that was

experimentally observed in PbFe12−xGaxO19 over the

entire concentration range between 0 and close to the

percolation threshold [15]. Neither the asymptotic nor

the preasymptotic power laws identified in the simu-

lations match the experimental result. In fact, in all

simulations, the critical temperature is suppressed more

rapidly with increasing dilution than in the experiment.

The observed shape of the magnetic phase boundary in

PbFe12−xGaxO19 thus remains unexplained.

Potential reasons for the unusual behavior may in-

clude the interplay between magnetism and ferroelec-

tricity in these materials [34] or the presence of quan-

tum fluctuations (arising from the frustrated magnetic

interactions mentioned above), even though it is hard

to imagine that these stay relevant at temperatures as

high as 720K. Another possible explanation could be

a statistically unequal occupation of the different iron

sites in the unit cell by Ga ions. Exploring these pos-

sibilities remains a task for the future. Disentangling

these effects may also require additional experiments

introducing further tuning parameters such as pressure

or magnetic field in addition to chemical composition.
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