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We revisit the system consisting of a neutron star that harbors a small, possibly primordial, black hole at
its center, focusing on a nonspinning black hole embedded in a nonrotating neutron star. Extending earlier
treatments, we provide an analytical treatment describing the rate of secular accretion of the neutron star
matter onto the black hole, adopting the relativistic Bondi accretion formalism for stiff equations of state
that we presented elsewhere. We use these accretion rates to sketch the evolution of the system analytically
until the neutron star is completely consumed. We also perform numerical simulations in full general
relativity for black holes with masses up to nine orders of magnitude smaller than the neutron star mass,
including a simulation of the entire evolution through collapse for the largest black hole mass. We construct
relativistic initial data for these simulations by generalizing the black hole puncture method to allow for the
presence of matter, and evolve these data with a code that is optimally designed to resolve the vastly
different length scales present in this problem. We compare our analytic and numerical results, and provide
expressions for the lifetime of neutron stars harboring such endoparasitic black holes.
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I. INTRODUCTION AND SUMMARY

A number of authors have discussed the prospect of
using neutron stars as dark matter detectors (see, e.g., [1–8]
and references therein). The idea is that the dark matter may
be in the form of small black holes that may be captured by
neutron stars, or may be in the form of other particles that
may coalesce to form black holes in the interior of neutron
stars. In either case, neutron stars may end up harboring a
small “endoparasitic” black hole at their center. Such a
black hole will then accrete the surrounding neutron star
matter until the entire star has been consumed. The current
existence of neutron star populations therefore can be used
to constrain the nature of black holes as candidates for dark
matter.
In principle, the above scenario could be realized in at

least two different ways. It is possible that primordial black
holes (PBHs) formed in the early Universe (see, e.g.,
[9,10]), and that they contribute to, or even account for,
the dark matter. Such PBHs can be captured by stars.
Following capture, the black holes can settle close to the
stellar center, and subsequently accrete the entire star (see,
e.g., [9,11]). The capture, settling and accretion process are
particularly efficient for neutron stars (see, e.g., [5,8], but
see also [12]), so that the current existence of certain
neutron star populations constrains the density of PBHs in
certain mass ranges. In particular, these arguments have
been used to establish limits in the mass range of
10−15 M⊙ ≲MBH ≲ 10−9 M⊙ [5], which is otherwise only
poorly constrained (cf. [13–15]; see also [16,17] and

references therein for constraints arising from gravitational
wave observations).
Alternatively, it is possible that dark matter particles are

captured inside a neutron star. Under sufficiently favorable
conditions, these particles may form a high-density object
that may then collapse to form a small black hole (see, e.g.,
[1–3,6]). The authors of [6], for example, estimated the
black hole mass to be approximately MBH ≲ 10−10 M⊙,
similar to the mass range of interest for PBHs.
Once a black hole has either been captured by the

neutron star, or has formed inside the neutron star, and after
this black hole has settled to the center, it will accrete the
neutron star matter, ultimately consuming the entire star.
Observational signatures of this process have been dis-
cussed by a number of authors, including [8,18,19], while
numerical simulations have been performed recently by [7].
The authors of [7] considered three different equations of
state (EOSs), as well as both rotating and nonrotating
neutron stars, but limited their simulations to relatively
large black hole masses with MBH=M ≥ 10−2, where M is
the neutron star mass. They found that the accretion rate
follows the relation _MBH ∝ M2

BH as suggested by Bondi
accretion ([20]; see also [21], hereafter ST, for a textbook
treatment, including its relativistic generalization), and that
the accretion rate is largely independent of the neutron star
spin, in agreement with [22].
In this paper we extend earlier work on the accretion of

neutron stars by endoparasitic black holes in several ways.
In Sec. II we provide an analytical overview describing the
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accretion process in the core of a nonrotating neutron star.
Building on our earlier results [23,24], we adopt a rela-
tivistic Bondi accretion model to describe a nonspinning
black hole accreting gas obeying a stiff, polytropic EOS to
track the evolution of the system. As discussed in [23],
Bondi accretion for stiff EOSs with adiabatic indices Γ >
5=3 exhibits some qualitative differences from correspond-
ing results for soft EOSs; taking these into account we
obtain the constant of proportionality in the previously
confirmed relation _MBH ∝ M2

BH. We integrate the equa-
tions, crudely accounting for the quasistatic evolution of the
neutron star during the accretion process, to calculate the
neutron star’s survival time.
In Sec. III we perform numerical simulations of the

accretion process in full general relativity. Supported by the
results of [7] we focus on nonrotating, spherical neutron
stars and nonspinning black holes only, and adopt, for
simplicity, a stiff, polytropic EOS with Γ ¼ 2. Such a value
is often used in numerical simulations to approximate a stiff
nuclear EOS. Using a numerical relativity code imple-
mented in spherical polar coordinates (see [25,26]) with a
logarithmic radial coordinate, we extend the results of [7]
by simulating the accretion onto black holes with mass
ratios as small as MBH=M ≃ 10−9. This allows our simu-
lations to extend into the mass range of interest from the
perspective of PBHs and viable black hole dark matter
candidates, as discussed above. Such black hole masses
thus extend down to the range of dwarf planets.
We compare our analytical and numerical results in

Sec. IV. In particular, we compile accretion rates obtained
both analytically and numerically for a large range of black
hole masses in Table III. We also plot these results in Fig. 1,
which serves as a summary of our results. In this figure, the
solid line represents the analytical accretion rate quoted in
Eq. (44). The dashed line shows theminimum accretion rate
for Γ ¼ 2 as identified by [23] (see their Eq. 51). Such a
minimum only arises for stiff EOSs, but is surprisingly
insensitive to the EOS for Γ > 2. The open circles and filled
triangles mark two different methods for computing the
accretion rate in our numerical simulation data. The former
result from evaluating the accretion rate directly from the
flux of matter crossing the black hole horizon, while the
latter are based on measuring the rate at which the area of
the horizon increases. Since the black hole grows at a rate
that is proportional to the square of the black hole mass, and
hence is exceedingly slow for small black hole masses, we
can accurately measure the horizon’s growth rate numeri-
cally only for the largest black hole masses. We note that
the proportionality _MBH ∝ M2

BH holds over many orders of
magnitude, that our numerically determined accretion rates
agree well with those computed analytically from the
relativistic Bondi accretion relation (indicating that we
have correctly identified the constant of proportionality),
and finally that the actual accretion rates are only slightly
larger than the minimum accretion rate identified in [23].

All of the above confirms that the consumption of a neutron
star by an endoparasitic black hole is well described by
Bondi accretion for stiff EOSs, so that these analytical
expressions can be used to establish the lifetime of such
neutron stars (see Sec. II C).
Throughout this paper we use geometrized units with

G ¼ 1 ¼ c unless noted otherwise.

II. ANALYTICAL OVERVIEW

A. Accretion rates

We assume that a nonspinning black hole with massMBH
is located at the center of a spherical neutron star with mass
M ≫ MBH and radius R ≫ MBH that would be in strict
hydrostatic equilibrium in the absence of the black hole. We
take the matter to be at rest far from the black hole, which
resides at the center of a nearly homogeneous core. To
estimate the rate at which the black hole accretes matter
from the neutron star we first define the capture radius

ra ≡MBH

a2c
: ð1Þ

Here a is the speed of sound, given by

a2 ¼ dP
dρ

!!!!
s
¼ dP

dρ0

!!!!
s

ρ0
ρþ P

; ð2Þ

FIG. 1. The analytical and numerical values of the accretion
rate _M⋆

BH as a function of MBH=M, computed for our fiducial
Γ ¼ 2 neutron star model (see Table II for details). On the left we
express the accretion rate in geometrized units, while on the right
we express it in units of solar masses M⊙ per year (since the
former is dimensionless, no mass scale is needed for this
conversion). The solid (blue) line represents the analytical
solution (44) based on Bondi accretion for stiff EOSs, while
(red) triangles and (green) circles represent numerical measure-
ments of the accretion rate based on the growth of the black hole
horizon and on the rest-mass flux, respectively (see Secs. III C 2
and III C 3). The dashed (red) line represents the minimum
accretion rate (45) for a Γ ¼ 2 polytrope. (See also Table III
for a detailed listing of these results.)
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and ac is its value evaluated at the center of the unperturbed
star. In (2), P is the pressure, ρ the total mass-energy
density, ρ0 the rest-mass density, and the derivative is taken
at constant entropy. For the Newtonian estimates that we
will provide in this section we will not need to distinguish
between ρ and ρ0, but we introduce them here for later
reference. For a polytropic equation of state with

P ¼ KρΓ0 ; ð3Þ

where Γ is the adiabatic index and K a constant, we may
then approximate

ac ≃
"
ΓPc

ρc

#
1=2

≃
"
ΓM
R

#
1=2

: ð4Þ

Here Pc and ρc are the values of the unperturbed star’s
pressure and density at the center, with Pc ≪ ρc and where
we have assumed hydrostatic equilibrium in writing the last
(rough) equality.
The accretion flow onto the black hole can be approxi-

mated in two opposite limiting regimes, depending on
whether the neutron star mass mðraÞ contained within the
capture radius ra is greater or smaller than the black hole
massMBH. In the latter case we may ignore the self-gravity
of the neutron star matter, so that the accretion process is
described by secular Bondi accretion, i.e., adiabatic flow
with asymptotically constant matter density and pressure
and zero flow velocity ([20,27]; see also ST for a textbook
treatment). In the former case we cannot ignore the self-
gravity, and the evolution modeled as an accretion process
becomes catastrophic dynamical collapse.
Defining mðrÞ as the neutron star mass within the radius

r, so that M ¼ mðRÞ, we have

mðrÞ ≃ 4π
3
ρcr3 ð5Þ

for sufficiently small r. We then compute the crucial mass
ratio,

mðraÞ
MBH

≃
4π
3

M2
BHρc
a6c

≃
4π
3

M2
BHρcR

3

Γ3M3
: ð6Þ

We now write

ρc ¼ δρ̄ ¼ δ
3M
4πR3

; ð7Þ

where ρ̄ is the unperturbed star’s mean density, and the
factor δ measures its central concentration, ρc=ρ̄. We
tabulate values of δ for Newtonian polytropes of index n
and adiabatic index Γ ¼ 1þ 1=n in Table I. Inserting (7)
into (6) we now have

mðraÞ
MBH

≃ δ
Γ3

"
MBH

M

#
2

: ð8Þ

We see that mðraÞ ∼MBH only for large black hole masses
MBH ∼M and soft EOSs that result in large values of δ=Γ3,
also listed in Table I. For black holes that start out with
masses much smaller than the neutron star mass,
MBH ≪ M, almost the entire accretion process (i.e., the
longest duration) will occur in the regime mðraÞ ≪ MBH,
and will therefore be described by quasistatic Bondi
accretion, while only the short final epoch proceeds
dynamically in the regime mðraÞ ∼MBH. In the following
two Sections we will provide estimates for these cases
separately, namely for Bondi accretion in Sec. II A 1 and
for dynamical accretion in Sec. II A 2.

1. Case I: mðraÞ ≪ MBH—Bondi accretion

In this case we can neglect the self-gravity of the neutron
star fluid inside the capture radius ra, since the gravitational
forces are dominated by those exerted by the black hole. In
this case, the accretion is well described by adiabatic Bondi
accretion [20], the rate for which is given by

_M⋆
BH ¼ − _M⋆ ¼ 4πλGR

"
MBH

a2⋆

#
2

ρ⋆a⋆: ð9Þ

Here λGR is a dimensionless “accretion eigenvalue”, typ-
ically of order unity, and the ⋆ symbols denote values as
observed by a “local asymptotic” static observer who is far
from the black hole, but still well inside the neutron star,
i.e.,MBH ≪ r ≪ R. The dot in the accretion rates denotes a
derivative with respect to time as measured by such an
observer (see also Appendix A for a detailed discussion). It
is assumed that the density ρ⋆ and sound speed a⋆ approach
constants, and the flow speed u⋆ approaches zero, as r > ra
becomes large in this asymptotic region, which typically
resides inside the nearly homogeneous core of the neutron
star. In Appendix A, as well as Sec. III C 2 below, we
discuss how this “local” accretion rate is related to the rate
of mass accretion as seen by an observer far from the star.

TABLE I. Values of the central condensation δ as well as the
combination Γ3=δ for Newtonian polytropes with polytropic
index n and adiabatic index Γ ¼ 1þ 1=n. For Γ ≤ 5=3 we also
include the accretion eigenvalues λs; see Eq. (10). For Γ > 5=3,
the relativistic accretion eigenvalues λGR can be constructed as in
[23]; see also Sec. II D below.

n Γ δ δ=Γ3 λs

3.0 4=3 54.2 22.94 0.707
2.5 7=5 23.3 8.45 0.625
2.0 3=2 11.4 3.38 0.500
1.5 5=3 5.99 1.296 0.250
1.0 2.0 3.29 0.411 % % %
0.5 3.0 1.84 0.068 % % %
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Here we simply point out that the accretion of bound
matter is not influenced by the spherical matter distribution
beyond the radius at which it becomes bound (Birkhoff’s
theorem): when self-gravity of the matter bound to the
black hole can be neglected, the only gravitational source
influencing the accretion is the central black hole.
The accreted mass measured by (9) is fundamentally a

(baryon) rest mass. It enhances the black hole’s total
gravitational mass by a similar amount for strictly adiabatic
flow as long as the asymptotic internal energy of the gas is
small in comparison to the rest-mass energy (see Sec. IV C
and Table III). We will ignore this difference in the context
of the approximate treatment in this Section.
A relativistic treatment of accretion for nonspinning

black holes shows that the requirement that the sound
speed be less than the speed of light demands that the flow
become transonic and pass through a critical point, yielding
a unique value for λGR, as shown by ST. For soft equations
of state with Γ ≤ 5=3 and a⋆ ≪ 1 these accretion eigen-
values can be found from a Newtonian treatment of Bondi
accretion, resulting in

λGR → λs ¼
1

4

"
5 − 3Γ

2

#ð3Γ−5Þ=2ðΓ−1Þ
ð10Þ

(see, e.g., Chapter 14, Eq. (14.3.17), and Table 14.1 in ST).
Unlike λGR, the values of λs are independent of a⋆ and as,
the sound speed at the transonic radius rs (see [23] for
details). Stiffer equations of state require a relativistic
treatment as discussed in [23].
We now assume that ra is sufficiently small, ra ≪ R, that

we can approximate the fluid variables as seen by the local
observer discussed above, i.e., ρ⋆ and a⋆, by those at the
center of the unperturbed star, i.e., ρc and ac. The accretion
rate then becomes

_M⋆
BH ¼ − _M⋆ ¼ 4πλGR

M2
BH

a3c
ρc; ð11Þ

from which we can crudely estimate the accretion timescale
τacc

τacc ≡MBH

_M⋆
BH

≃
a3c

4πλGRMBHρc
¼ Γ3=2

3δλGR

M1=2R3=2

MBH
: ð12Þ

Here we have used (4) and (7) in the last step. The above
estimates the timescale for the black hole to double its
mass, which is the bottleneck in the neutron star con-
sumption process: this epoch takes the longest because both
the black hole mass and hence the accretion rate (11) are the
smallest they will be during the process. Dividing by the
neutron star mass, we may rewrite this result as

τacc
M

≃
Γ3=2

3δλGR

"
R
M

#
3=2

"
M

MBH

#
: ð13Þ

Note that τacc=M → ∞ as MBH=M → 0. Alternatively, we
may also express the accretion timescale in terms of the
neutron star’s dynamical (collapse) timescale

τdyn ≃
γ

ð4πρc=3Þ1=2
¼ γ

δ1=2

"
R
M

#
3=2

M; ð14Þ

where γ is a factor of order unity and where we have used
(7). Combining (12) and (14) we obtain

τacc
τdyn

≃
Γ3=2

δ1=2λGRγ

"
M

MBH

#
: ð15Þ

We again have τacc=τdyn → ∞ as MBH=M → 0. We will
calculate τacc more carefully in Sec. II C below.

2. Case II: mðraÞ ∼MBH—dynamical accretion

In this case we cannot neglect the self-gravity of the
neutron star fluid inside the capture radius ra. We now
generalize the definition (1) of this capture radius, and
define a critical radius,

rcrit ¼
mðrcritÞ þMBH

a2c
; ð16Þ

inside which the gas is marginally bound by the combined
mass of the black hole and the gas itself. Using (5), we can
rewrite (16) as

4π
3
ρcr2crit

"
1þ MBH

mðrcritÞ

#
¼ a2c: ð17Þ

The rate at which the black hole accretes mass can now be
expressed as the area of the sphere with the critical radius,
4πr2crit, times the mass flux across this sphere, ρcuc.
Assuming that, at the critical radius, the fluid speed uc
is comparable to the sound speed ac, as in typical Bondi
flows, we then have

_M⋆
BH ≃ 4πr2critρcac ¼ 3a3c

"
1þ MBH

mðrcritÞ

#−1
; ð18Þ

where we have used (17) in the last equality. The corre-
sponding accretion timescale is then given by

τacc ¼
MBH

_MBH
≃

MBH

3Γ3=2

"
R
M

#
3=2

"
1þ MBH

mðrcritÞ

#
; ð19Þ

or

τacc
τdyn

≃
δ1=2

3γΓ3=2

MBH

M

"
1þ MBH

mðrcritÞ

#
; ð20Þ
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where we have approximated the dynamical timescale τdyn
as in (14).
We now evaluate Eq. (20) in two limits. In the limit

MBH ∼mðrcritÞ, in which case MBH ∼M by (8), we notice
that the accretion timescale τacc becomes comparable to the
dynamical timescale τdyn, as one would expect. In the
opposite limit, MBH ≫ mðrcritÞ, the critical radius rcrit
defined in (16) reduces to ra defined in (1) and we may
approximate

MBH

mðrcritÞ
≃

3MBH

4πρcr3a
¼ 3a6c

4πρcM2
BH

¼ Γ3

δ

"
M

MBH

#
2

; ð21Þ

where we have used (4) and (7) in the last equality.
Inserting (21) into (20) we recover, up to factors of order
unity, the Bondi accretion timescale (15), as expected.

B. Effects of stellar evolution

Our simple estimates (15) and (20) for the accretion
timescales ignore the fact that the accretion rates change
as the black holemassMBH increases, and also ignore the fact
that the neutron star structure changes as the accretion
proceeds. We can approximate the effects of this secular
“stellar evolution”by assuming that,while the star losesmass
to the black hole, it will adjust quasistatically to a new
equilibrium configuration while keeping its total Newtonian
energy E constant. We now write this energy as the simple
functional

E ¼ −α
MMBH

R
−
3Γ − 4

5Γ − 6

M2

R
; ð22Þ

where the first term accounts for the interaction between the
stellar gas and the black hole, with α being a constant that
depends onΓ, α ¼ αðΓÞ, while the second term describes the
neutron star’s self-energy [see Eq. (3.3.10) in ST].
Evaluating (22) at the initial time, denoted by (0), we

have

E ¼ −α
Mð0ÞMBHð0Þ

Rð0Þ
−
3Γ − 4

5Γ − 6

Mð0Þ2

Rð0Þ
: ð23Þ

Since, by our assumption, expressions (22) and (23) must
be identical, we can equate them and solve for R to find

R¼ M
Mð0Þ

αMBHþð3Γ−4ÞM=ð5Γ−6Þ
αMBHð0Þþð3Γ−4ÞMð0Þ=ð5Γ−6Þ

Rð0Þ: ð24Þ

We now approximate MBH ≪ M, in which case (24)
reduces to

R ≃
"

M
Mð0Þ

#
2

Rð0Þ: ð25Þ

Using (25) in (4) then yields

ac ≃
"
ΓMð0Þ
Rð0Þ

#
1=2

"
Mð0Þ
M

#
1=2

; ð26Þ

while (7) gives

ρc ≃ δ
3Mð0Þ
4πRð0Þ2

"
Mð0Þ
M

#
5

: ð27Þ

Inserting (26) and (27) into the Bondi accretion rate (9) then
results in

_M¼−
3λGRδ

Γ3=2

ðMBHð0ÞþMð0Þ−MÞ2

Mð0Þ1=2Rð0Þ3=2

"
M

Mð0Þ

#−7=2
; ð28Þ

where we have expressed the black-hole massMBH in terms
of the evolving neutron star mass M as

MBH ¼ MBHð0Þ þMð0Þ −M: ð29Þ

Note that the last factor in (28) accounts for stellar
evolution.

C. Accretion times

We can now compute the neutron star lifetime (i.e., the
accretion time) by integrating Eq. (28). Towards that end, it
is useful to introduce the dimensionless quantities

y0 ≡MBHð0Þ þMð0Þ
Mð0Þ

; y≡ M
Mð0Þ

; ð30Þ

and

T ≡ 3λGRδ

Γ3=2

"
Mð0Þ
Rð0Þ3

#
1=2

t; ð31Þ

in terms of which we may rewrite (28) as

dy
dT

¼ −ðy0 − yÞ2y−7=2: ð32Þ

As in (28), the last factor accounts for stellar evolution.

1. Without stellar evolution

We first ignore the effects of stellar evolution, so that
(32) reduces to

dy
dT

¼ −ðy0 − yÞ2; ð33Þ

which can be integrated readily to yield
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½T'fi ¼
$

1

y − y0

%
f

i
: ð34Þ

Here the square brackets serve as a reminder to insert limits
of integration. At the initial time, which we choose to be
Ti ¼ 0, we have yi ¼ 1, so that

Tf ¼
1

yf − y0
−

1

1 − y0
¼ Mð0Þ

MBHð0Þ
−
Mð0Þ
MBH

; ð35Þ

whereMBH is the black hole mass at the time Tf, and where
we have used (29). We can now find the total accretion time
by setting the final neutron star mass equal to zero, i.e., by
choosing yf ¼ 0. Further assuming that MBHð0Þ ≪ Mð0Þ
and recalling (31) we find

τacc
Mð0Þ

¼ Γ3=2

3δλGR

"
Rð0Þ
Mð0Þ

#
3=2

"
Mð0Þ

MBHð0Þ

#
; ð36Þ

which is identical to (13), as expected.

2. With stellar evolution

We now repeat the exercise, but include the last factor in
(28) in order to account for stellar evolution. In this case the
integral can be carried out as described in Appendix B.
Choosing, as before, yi ¼ 1 at Ti ¼ 0, as well as yf ¼ 0 in
order to obtain the accretion time Tf ¼ Tacc, we obtain

Tacc ¼
5

2
þ 4

3
y0 þ 6y20 þ

y30
y0 − 1

− 7y5=20 ln
"
y1=20 þ 1

y1=20 − 1

#
:

ð37Þ

Alternatively, we may introduce

yh0 ¼ y0 − 1 ¼ MBHð0Þ
Mð0Þ

ð38Þ

and rewrite (37) as

Tacc ¼ 7y2h0 þ
49

3
yh0 þ

161

15
þ 1

yh0

−
7

2
ðyh0 þ 1Þ5=2 ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ yh0

p
þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ yh0
p

− 1
: ð39Þ

Taking the limit yh0 → 0, we see that Tacc will be
dominated by the term 1=yh0, so that we recover the same
accretion time tacc as in (36).1 This is not entirely surpris-
ing, since most of the accretion time is spent during early
times when neither the neutron star mass nor radius change

appreciably, so that stellar evolution is not important. At
late times, however, the response of the star to the accretion
process, and the corresponding adjustments in the stellar
structure, will affect the accretion time, as expressed
by (39).
As a concrete example, consider a star with M ¼ 1 M⊙.

Since, in geometrized units, 1 M⊙ ≃ 1.4 km ≃ 5 μs, we
then have

τacc ∼
"
Rð0Þ
Mð0Þ

#
3=2

"
Mð0Þ

MBHð0Þ

#
10−5 s; ð40Þ

where we ignored factors of order unity. For a main-
sequence star, with R ≃ 105M, we see that the accretion
timewill exceed a Hubble time ifMBHð0Þ ≲ 10−15 M⊙. For
a neutron star, however, R ≃ 10M, resulting in significantly
smaller accretion timescales. Therefore, black holes with
masses as small as MBHð0Þ≳ 10−21 M⊙ would be able to
consume a neutron star well within a Hubble time.

D. Fiducial neutron star model

In our comparisons with the numerical results of Sec. III
below we consider, as a fiducial neutron star model, a
dynamically stable equilibrium star with a central rest-mass
density of ρ0c ¼ 0.2K−n governed by a polytropic equation
of state (3) with Γ ¼ 2 and n ¼ 1, which we constructed by
solving the Tolman-Oppenheimer-Volkoff (TOV) [28,29]
equations. Detailed properties of this stellar model are
listed in Table II.
Since Kn=2 has units of length in geometrized units, we

may introduce nondimensional quantities by rescaling any
dimensional quantity with a suitable power of K; in
particular, we define

ρ̃≡ Knρ; R̃≡ K−n=2R;

ρ̃0 ≡ Knρ0; M̃ ≡ K−n=2M; ð41Þ

and similar for other quantities. We list “tilde” variables
that have been rescaled with respect to K in the second
column in Table II. In the third column we rescale each
variable with respect to the neutron star’s gravitational mass
M, while in the fourth column we rescale with respect to the
corresponding maximum-mass configuration. In particular
we note that, for our adopted model, M=Mmax ¼ 0.959,
where Mmax is the maximum gravitational mass of a
spherical star with our adopted EOS. Finally, for the fifth
column in Table II we assume that our star has a
gravitational mass of M ¼ 1.4 M⊙, in which case K takes
the value K ¼ ð1.4 M⊙=M̃Þ2 ≃ 156 km2.
From the parameters given in Table II we compute the

central sound speed to be

ac ¼ 0.534: ð42Þ

1Note, however, that we have modeled the effects of stellar
evolution to leading order only, see Sec. II B, so that only the
leading-order corrections to our results in the absence of stellar
evolution have physical significance.
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We identify, as before, the neutron star’s central density and
sound speed with the corresponding asymptotic values for
the Bondi accretion onto the black hole and follow [23] to
compute the accretion eigenvalue

λGR ¼ 1.29: ð43Þ

Inserting the above values into the Bondi accretion rate (9)
we obtain

_M⋆
BH ¼ 21.24M̃2

BH; ð44Þ

which is not significantly larger than the minimum steady
state accretion rate for a stiff polytrope with Γ ¼ 2,

_M⋆
BH;min ¼ 9.29M̃2

BH ð45Þ

(see Eq. 51 in [23]). Adopting the above value of K, and
recalling that, in geometrized units, M⊙ ≃ 5 × 10−6 s, we
can evaluate (45) to yield

_M⋆
BH;min ¼ 7.33 × 10−9

M⊙
yr

"
MBH

10−10 M⊙

#
2

: ð46Þ

III. NUMERICAL TREATMENT

A. Initial data

We construct relativistic initial data describing a non-
spinning black hole embedded at the center of a non-
rotating, spherical neutron star. Our task is to solve the

Hamiltonian and momentum constraints of general rela-
tivity (see, e.g., [30] for discussion and references) which
we do by generalizing the puncture method (see [31]) to
allow for the presence of matter. Our approach differs from
that adopted by [7], who constructed initial data by
matching an interior black hole solution to an exterior
neutron star solution.
We assume that the initial slice is conformally flat, so

that we may write the spatial metric as γij ¼ ψ4ηij, where ψ
is the conformal factor and ηij the flat metric. We also
assume the initial slice to be momentarily static, and
thereby choose the extrinsic curvature to vanish,
Kij ¼ 0, and the initial momentum density measured by
a normal observer to vanish, Si ≡ −γianbTab ¼ 0. Here a
“normal observer” is an observer whose four-velocity is the
normal vector na on the spatial slice, and Tab is the stress-
energy tensor. With these assumptions the momentum
constraints are satisfied trivially, and the Hamiltonian
constraint becomes

D̄2ψ ¼ −2πψ5ρ; ð47Þ

where D̄2 is the flat Laplace operator, and ρ≡ nanbTab the
mass-energy density as observed by a normal observer. We
allow for a conformal rescaling of the density,

ρ ¼ ψmρ̄; ð48Þ

where m is a yet-to-be-determined exponent. An attractive
choice might be m ¼ −6, since it leaves the proper integral
over the density ρ invariant if we keep ρ̄ fixed,

TABLE II. Parameters for our fiducial Γ ¼ 2, n ¼ 1 polytropic neutron star model in the absence of a black hole
(see text for details). The conformal factor ψ is well defined by our assumption that, in Cartesian coordinates, the
determinant of the conformally related metric is γ̄ ¼ 1. The lapse function α listed here is the value obtained from
integrating the TOV equations, and is different from the 1þ log lapse adopted in our numerical evolution
calculations (see Eq. (57)).

Quantity Rescaled wrta K Rescaled wrt M Rescaled wrt max. mass model Physical units

ρ0c
b ρ̃0c ¼ 0.2 M2ρ0c ¼ 0.00495 ρ0c=ρmax

0c ¼ 0.629 ρ0c ¼ 3.41 × 1015 g=cm3

ρc
c ρ̃c ¼ 0.24 M2ρ0c ¼ 0.0059 ρc=ρmax

c ¼ 0.572 ρc ¼ 4.09 × 1015 g=cm3

Rd R̃ ¼ 0.865 R=M ¼ 5.50 R=Rmax ¼ 1.13 R ¼ 10.8 km
riso

e r̃iso ¼ 0.699 riso=M ¼ 4.45 riso=rmax
iso ¼ 1.19 riso ¼ 8.73 km

Mf M̃ ¼ 0.157 M=M ¼ 1 M=Mmax ¼ 0.959 M ¼ 2.80 × 1033 g
M0

g M̃0 ¼ 0.176 M0=M ¼ 1.12 M0=Mmax
0 ¼ 0.954 M0 ¼ 3.14 × 1033 g

ψc
h ψc ¼ 1.27 ψc ¼ 1.27 ψc=ψmax

c ¼ 0.933 ψc ¼ 1.27
αc

I αc ¼ 0.570 αc ¼ 0.570 αc=αmax
c ¼ 1.23 αc ¼ 0.570

aWith respect to.
bCentral rest-mass density.
cCentral mass-energy density.
dAreal radius.
eIsotropic radius.
fGravitational mass.
gRest mass.
hCentral conformal factor.
iCentral lapse function.
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Z
ψ6ρd3x ¼

Z
ρ̄d3x: ð49Þ

Note, however, that this integral represents neither the
gravitational nor the rest mass.
Now assume that we have constructed a solution to the

TOV equations [28,29] in isotropic coordinates, so that we
obtain radial profiles of the conformal factor ψNS and the
mass-energy density ρNS for the equilibrium neutron star by
itself. In particular, these functions satisfy the Hamiltonian
constraint (47) with

D̄2ψNS ¼ −2πψ5
NSρNS; ð50Þ

and we identify

ρ̄ ¼ ψ−m
NS ρNS: ð51Þ

We now want to modify this solution so that the new
solution accounts for a black hole embedded at the center of
the neutron star. Towards that end, we write the conformal
factor as a sum of contributions from the neutron star and
the black hole, as well as a correction u,

ψ ¼ ψNS þ ψBH þ u; ð52Þ

and recast the Hamiltonian constraint as an equation for u.
In (52) we have introduced

ψBH ¼ M
2r

ð53Þ

as an isolated black hole’s contribution to the conformal
factor in our isotropic coordinates. We refer to M as the
“puncture mass”; it has no immediate physical significance,
and serves as a mass parameter only (see Sec. III C 1 and
Eqs. (59) and (67) below for the black hole’s isolated
horizon, or irreducible, mass). Inserting (52) into the
Hamiltonian constraint (47) and observing that D̄2ψBH ¼
0 we obtain

D̄2ψNS þ D̄2u ¼ −2πðψNS þ ψBH þ uÞ5þmρ̄; ð54Þ

or, using (50),

D̄2u ¼ −2πfðψNS þ ψBH þ uÞ5þm − ψ5þm
NS gρ̄: ð55Þ

Since ψBH diverges as r → 0, it may be desirable to choose
m < −5, which makes the right-hand side of (55) regular.
Therefore, unless noted otherwise, we will use m ¼ −6 in
all our simulations. In Appendix C we derive an approxi-
mate but analytical solution to (55), and discuss some of the
properties of the solutions u (see also Fig. 9).
We have now reduced the problem to finding regular

solutions u to the elliptic equation (55), subject to the Robin
boundary condition u ∝ 1=r for large r. Since the equation

is nonlinear, we adopt an iterative approach. Once we have
obtained this solution we can compute the new (physical)
energy density ρ from

ρ ¼ ψmρ̄ ¼
"
ψNS þ ψBH þ u

ψNS

#
m
ρNS: ð56Þ

Note that we will have ρ → 0 as r → 0withm < 0 initially.
We have implemented the above approach in the code

described in [25,26], which solves Einstein’s equations in
spherical polar coordinates. We use a logarithmic radial
coordinate, which allows us to resolve both the black hole
and the neutron star with modest numerical resources, even
when M ≪ M (see Sec. III B for details). We show
examples of density profiles for black holes with different
masses embedded in our fiducial neutron star model
in Fig. 2.
While our initial data depend on our choice of m in

Eq. (48), they quickly settle into a quasiequilibrium
configuration soon after matter marginally bound to the
black hole begins to flow inward at t ∼ ra=ac ∼ 7MBH. The
system thus relaxes to a state of quasistatic accretion onto
the black hole that is independent of m (see Figs. 3 as well
as the discussion in III B below).

B. Numerical evolution

We evolve our initial data with a code that solves the
Baumgarte-Shapiro-Shibata-Nakamura (BSSN) formu-
lation of Einstein’s equations [32–34]. We adopt a refer-
ence-metric formulation (see, e.g., [35–38]) in order to
implement the equations in spherical polar coordinates (see
[25,26] for details and tests; see also [39] for tests
with Bondi accretion as well as [40–42] for other

FIG. 2. Profiles of the initial rest-mass density ρ0 as a function
of isotropic radius r, for our fiducial neutron star model (see
Table II) with different black hole puncture masses M. Here and
throughout we choose m ¼ −6 in (48) unless stated otherwise.
Even for tiny black hole masses, the logarithmic radial variable
allows us to resolve the vastly different length scales of the black
hole and the neutron star.
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implementations of this approach). The latest version of our
code uses fourth-order finite differencing for all spatial
derivatives in Einstein’s equations, together with a fourth-
order Runge-Kutta time integrator.
We impose coordinates using the “1þ log” slicing

condition

ð∂t − βi∂iÞα ¼ −2αK ð57Þ

(see [43]) for the lapse function α, and a “Gamma-driver”
condition for the shift vector βi (see [44,45]). On our initial
slice we choose a “precollapsed” lapse with α ¼ ψ−2 and
zero shift.
For all simulations reported in this paper we used a

numerical grid ofNr ¼ 512 radial grid points with the outer
boundary at r̃out ¼ 4, corresponding to about 5.7 times the
isotropic radius of our fiducial neutron star. We allocate the
radial grid points using a sinh function, resulting in a grid
that becomes logarithmic asymptotically and allows us to
resolve the vastly different length scales associated with the
black hole and the neutron star. We adjust the parameters of
this sinh function for each black hole mass so that the black
hole is resolved by approximately 50 grid points, and the
smallest grid spacing (at the center of the black hole) is
approximately 1% of the black hole’s isotropic radius
or less.
We similarly implement the equations of relativistic

hydrodynamics in spherical polar coordinates adopting a
reference-metric formulation [46]. We solve the resulting
equations using an Harten-Lax-van Leer-Einfeldt approxi-
mate Riemann solver [47,48], together with a simple

monotonized central-difference limiter reconstruction
scheme [49]. We solve these equations adopting an ideal
gas law

P ¼ ðΓ − 1Þρ0ϵ; ð58Þ

where ϵ is the specific internal energy density, in terms of
which the total mass energy density is given by
ρ ¼ ρ0ð1þ ϵÞ. While Eq. (58) allows for nonisentropic
flow, e.g., shocks, we have found in our numerical
simulations that the relation between P and ρ0 remains
very close to the polytropic relation (3), indicating that the
accretion flow is laminar and nearly adiabatic. As before we
focus on Γ ¼ 2 and we refer to [7] for a survey of different
EOSs. We also note that, for stiff EOSs with polytropic
index 0.5 ≤ n ≤ 1.5 (or 5=3 ≤ Γ ≤ 3), there exists a maxi-
mum accretion timescale that is nearly independent of the
polytropic index; see [24].
As an example of our evolution calculations, we show in

Fig. 3 profiles of the density ρ0 for our fiducial neutron
star model hosting a black hole with puncture mass
M̃ ¼ 1 × 10−3. We show results for different values of
the conformal exponent m in (48). Evidently, the initial
density profiles, shown in the inset of Fig. 3, show large
differences, as one might expect. However, once the
evolution reaches quasiequilibrium, shown in the main
graph in Fig. 3, the profiles are all very similar. This gives
us confidence that, except for a small initial transient, our
evolution calculations are largely independent of our choice
of m, and quickly settle down into a solution describing a
steady-state accretion onto the endoparasitic black hole.

C. Diagnostics

We invoke a number of different diagnostics in order to
evaluate our numerical simulations.

1. Black hole mass

A black hole’s isolated horizon, or irreducible, mass is
given by

MBH ¼
"

A
16π

#
1=2

; ð59Þ

whereA is the proper area of the black hole’s event horizon
at a given instant of time.
In practice, we locate in our numerical evolution calcu-

lations the black hole’s apparent horizon rather than the event
horizon, since the former requires data at one instant of time
only, rather than the entire spacetime (see, e.g., [30] for a
textbook discussion). The two horizons should coincide for
quasistatic evolution. We then compute the apparent hori-
zon’s proper area, and use this value in (59). For many
situations, in particular for stationary or nearly stationary
spacetimes, this yields an excellent approximation.

FIG. 3. The rest-mass density ρ0 as a function of isotropic radius
r for different values of the conformal exponent m in (48) for
M̃ ¼ 10−3, so M̃BHð0Þ ¼ 1.267 × 10−3, and MBHð0Þ=Mð0Þ ¼
8.03 × 10−3. Although the initial density profiles, shown in the
inset, clearly depend on m, they all evolve to the same density
profile, shown in the large plot, once a quasiequilibrium has been
reached. Here and in several of the following graphs we suppress
the innermost few grid pointswell inside the horizon, since they are
affected by numerical noise caused by the puncture singularity at
the origin.
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We can also compute the approximate initial black-hole
mass as follows. Since our initial data are conformally flat
and describe a moment of time-symmetry with zero shift,
we may write the spacetime metric at that instant as

ds2 ¼ −α2dt2 þ ψ4ðdr2 þ r2dΩ2Þ: ð60Þ

The expansion of a bundle of outgoing null geodesics
orthogonal to a spherical surface of radius r is then given by

Θ ¼
ffiffiffi
2

p

rψ2

d
dr

ðrψ2Þ ð61Þ

(see, e.g., Eq. (7.22) in [30] with A2 ¼ B2 ¼ ψ4). We will
assume that u in (52) is small compared to the other terms
(see Appendix C) so that we may approximate

ψ ≃ ψNS þ ψBH ¼ ψNS þ
M
2r

: ð62Þ

For r much smaller than the neutron star radius we may
approximate ψNS as constant.
We now find the black hole’s apparent horizon by setting

the expansion (61) to zero, which yields

d
dr

"
r
"
ψNS þ

M
2r

#
2
#
≃ ψ2

NS −
M2

4r2
¼ 0 ð63Þ

or

rAH ≃
M
2ψNS

: ð64Þ

At the apparent horizon, we then have

ψAH ≡ ψðrAHÞ ≃ 2ψNS: ð65Þ

We now compute the apparent horizon’s proper area from

A ¼ 4πψ4
AHr

2
AH ¼ 16πψ2

NSM
2; ð66Þ

where have used both (64) and (65). Inserting (66) into (59)
we obtain our result

MBH ≃ ψNSM; ð67Þ

where ψNS may be estimated by the central value of the
unperturbed neutron star’s conformal factor. We have found
that, for M ≪ M, Eq. (67) provides an excellent approxi-
mation to our numerical values for the initial black hole
masses (see Table III).

2. Accretion rates: Black hole growth

We measure the rates at which the black hole accretes
neutron star matter in two different ways (see also Fig. 1
and Table III).
In one approach, we directly measure the black hole

mass MBH from (59) as a function of coordinate time, and
then determine the accretion rate from the slope of this
function. We show an example in Fig. 4. We also included
in Fig. 4 results for a black hole of the same initial mass

TABLE III. Accretion rates for different black hole masses embedded in our fiducial neutron star model (see Table II). The accretion
rates _MBH and F ðrAHÞ represent rates as measured by a static observer at infinity. To compare these rates with those measured by a
“local asymptotic” static observer in the neutron star core, _M⋆

BH, we divide the former by the lapse α⋆ of the local observer. The
numerically measured rest-mass flux F ðrAHÞ=α⋆ (see Sec. III C 3) agrees very well with the analytical value _M⋆

BH given by Bondi
accretion (see Eq. (44). Measuring the growth of the black hole horizon _MBH=α⋆ (see Sec. III C 2) results in somewhat larger values,
presumably because it includes internal thermal energy in addition to rest-mass energy. Results in this table are also shown in Fig. 1.

M̃a M̃BHð0Þb MBHð0Þ=M0
c α⋆

d _MBH=α⋆
e F ðrAHÞ=α⋆f _M⋆

BH
g

10−3 1.267 × 10−3 7.12 × 10−3 0.616 4.58 × 10−5 3.44 × 10−5 3.41 × 10−5

10−4 1.267 × 10−4 7.12 × 10−4 0.619 4.67 × 10−7 3.42 × 10−7 3.41 × 10−7

10−5 1.267 × 10−5 7.12 × 10−5 0.622 % % % 3.41 × 10−9 3.41 × 10−9

10−6 1.267 × 10−6 7.12 × 10−6 0.623 % % % 3.40 × 10−11 3.41 × 10−11

10−7 1.267 × 10−7 7.12 × 10−7 0.623 % % % 3.42 × 10−13 3.41 × 10−13

10−8 1.267 × 10−8 7.12 × 10−8 0.623 % % % 3.43 × 10−15 3.41 × 10−15

10−9 1.267 × 10−9 7.12 × 10−9 0.623 % % % 3.43 × 10−17 3.41 × 10−17

10−10 1.267 × 10−10 7.12 × 10−10 0.623 % % % 3.43 × 10−19 3.41 × 10−19

aBlack hole puncture mass M̃ ¼ K−1=2M in our initial data; see Sec. III A.
bInitial irreducible mass M̃BHð0Þ ¼ K−1=2MBHð0Þ of the black hole; see Sec. III C 1.
cRatio between MBHð0Þ and the neutron star rest mass M0.dLapse of a “local asymptotic” static observer; see, e.g., Fig. 5 for an example.
eMass-energy accretion rate from measurements of MBH; see Sec. III C 2.
fRest-mass accretion rate from flux across horizon; see Sec. III C 3.
gRest-mass accretion rate from Bondi expressions; see Eq. (44).
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MBHð0Þ, but evolved in vacuum, i.e., without a neutron star,
shown as the dashed (red) line. The latter appears nearly
horizontal, demonstrating that the growth observed for a
black hole embedded in a neutron star indeed results from
accretion of neutron star material, rather than numerical
noise. For small black hole masses, however, the accretion
becomes so slow (cf. Eq. (9) that it is no longer possible to
accurately determine the slope of the function MBHðtÞ.
Therefore we have used this direct measure of the black
hole growth only for black holes with M̃BHð0Þ ≳ 10−4 (see
Fig. 1 and Table III).
Measuring the slope of curves MBHðtÞ yields the

accretion rate _MBH, where the derivative is taken with
respect to the coordinate time t. Since this coordinate time
agrees with proper time of a static observer at infinity, i.e.,
one at large distances from the neutron star with r ≫ R, this
measure determines the accretion rate as observed by a
static observer at infinity. In Sec. II A 1, we introduced the
accretion rate _M⋆

BH as observed by a static “local asymp-
totic” observer far from the black hole, but well inside the
star, with MBH ≪ r ≪ R. In _M⋆

BH, the derivative is there-
fore taken with respect to this local observer’s proper time
τ⋆ (see also Appendix A for a detailed discussion). We can
relate the two rates by recognizing that the proper time of
the static, local observer moving along a normal vector to
our spacelike hypersurfaces will advance at a rate
dτ⋆ ¼ α⋆dt, where α⋆ is the lapse function of this local
observer. We then have

_MBH ¼ dMBH

dt
¼ α⋆

dMBH

dτ⋆
¼ α⋆ _M⋆

BH ð68Þ

(see also Eq. (A21). We may interpret this relation as
stating that the rate as observed by a distant observer, _MBH,

is red-shifted by the lapse function α⋆ with respect to the
rate as observed by a local observer, _M⋆

BH, as one might
expect.
In Fig. 5 we show profiles of the rest-mass density ρ0, the

lapse function α and the shift vector βr in one of our
simulations. This example shows how the density and lapse
function “plateau” in a region MBH ≪ r ≪ R, so that their
values for a “local asymptotic” observer can be identified to
high accuracy as long as MBH ≪ M. Note also that, in this
region, the shift βr is very close to zero, so that in this
nearly static spacetime a static observer (i.e., one whose
four-velocity is aligned with the timelike Killing vector)
indeed coincides with a normal observer, as we had
assumed above.
We list results for accretion rates determined numerically

from the growth of the black hole mass in Table III.

3. Accretion rates: Rest-mass flux

An alternative approach to computing the accretion rate
is to measure the rate of fluid flow across the black hole
horizon. Assuming that the accretion is sufficiently slow so
that we can approximate the black hole as nearly static, we
can compute the flux F of rest-mass accretion through a
sphere H of radius r from

F ðrÞ ¼ −
Z

H

ffiffiffiffiffiffi−gp
ρ0urdθdϕ; ð69Þ

where g is the determinant of the spacetime metric (see,
e.g., Appendix A in [50]). Assuming spherical symmetry
we may carry out the integration to obtain

FIG. 4. Growth of the black hole’s irreducible mass (59) as a
function of time, for M̃BHð0Þ ¼ 1.26 × 10−3 (the solid orange
line). The dashed-dotted (green) line shows a linear fit, whose
slope we identify with the accretion rate _MBH. For comparison,
we also include as the dashed (red) line the irreducible mass of a
black hole with the same initial mass MBHð0Þ in vacuum, i.e.,
without a neutron star.

FIG. 5. Profiles of the rest-mass density ρ0, lapse α and shift
vector βr in an evolution of our fiducial neutron star with a black
hole of mass M̃BHð0Þ ¼ 1.267 × 10−6 at different (coordinate)
times. At the later times, all functions have settled down into a
(quasi) equilibrium. Note also that the density and lapse “plateau”
in a region MBH ≪ r ≪ R, where they take the nearly constant
values ρ0⋆ ≃ ρ0c ¼ 0.2 and α⋆ ≃ 0.623 (marked by the horizontal
dotted lines). Note also that the shift is very close to zero in this
region. The black circles denote the location of the black hole
horizon.
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F ðrÞ ¼ −4πα ffiffiffi
γ

p
ρ0urr2; ð70Þ

where we have used
ffiffiffiffiffiffi−gp ¼ α

ffiffiffi
γ

p
, and where γ is the

determinant of the spatial metric. This expression yields the
flux of rest-mass through any sphere of radius r, and
the accretion rate in particular when evaluated on the black
hole horizon,

_MBH ¼ F ðrhorÞ: ð71Þ

For stationary flow we expect F to become independent of
radius. We demonstrate this behavior in Fig. 6, where we
show profiles of F at different instants of time, for a black
hole with initial mass MBHð0Þ=M ¼ 7.12 × 10−10

embedded in our fiducial neutron star. Note that F takes
a nearly constant value in an inner region that grows with
time, as the fluid flow settles down into steady-state
accretion onto the black hole.
Also included in Fig. 6 are profiles of the flux F for an

evolution of our fiducial neutron star model without a black
hole. While these profiles show the same behavior as the
neutron star with the black hole in the outer parts of the star,
where the flux is dominated by a numerical adjustment of
the near-equilibrium initial data to the numerical grid, the
profiles are very different in the vicinity of the black hole.
This demonstrates that the plateau in the flux observed for

the evolution with the black hole indeed represents steady-
state accretion onto the black hole, rather than a numerical
artifact.
We record our numerical results for these accretion rates

in Table III. Note that, just like the accretion rate computed
in Sec. III C 2, the rate (71) represents a rate as measured by
an observer at a large distance from the neutron star, i.e., at
r ≫ R. Comparing this rate with the rates computed in
Sec. II, which represented those measured by a “local
asymptotic” observer at MBH ≪ r ≪ R, again requires this
local observer’s lapse function α⋆ (see also Appendix A).
Also note that the accretion rate discussed in III C 2

measures changes in the black hole’s gravitational mass,
while the flux (71) measures the accretion of rest mass. In
our numerical simulations we find that the black hole’s
gravitational mass grows at a rate somewhat larger than the
rate of rest-mass accretion, which is presumably because
the former includes the accretion of other forms of energy
(in particular, internal thermal energy) in addition to rest-
mass energy.

IV. RESULTS

In this Section we compare our numerical results in
Sec. III for our fiducial neutron star model hosting black
holes with a wide range of different masses to our analytical
estimates in Sec. II.

A. Comparison with Bondi flow

We start with a comparison of fluid flow profiles. In our
numerical simulations, we focus on data in the vicinity of
the black hole, at sufficiently late times so that the fluid has
had enough time to settle down into steady-state accretion.
We compare these numerical results with those resulting
from a direct integration of the “relativistic Bondi-equa-
tions”, i.e., the equations describing spherically symmetric,
steady-state, adiabatic fluid flow in a Schwarzschild space-
time (see, e.g., Appendix G in ST and [23]).
Since the coordinates used in our code are different from

the Schwarzschild coordinates used in the usual construc-
tion of the steady-state Bondi solution, only scalar quan-
tities—for example the rest-mass density ρ0—can be easily
compared directly. In order to compare an invariant
measure of the fluid four-velocity ua, we compute the
“gamma-factor” between an observer comoving with the
fluid and a “Killing observer”, i.e., a static observer whose
four-velocity is aligned with a timelike Killing-vector
ξa ¼ ∂=∂t,

Wξ ¼ −
ξaua

ð−ξaξaÞ1=2
¼ −

ut
ð−gttÞ1=2

: ð72Þ

In Schwarzschild coordinates, this can be expressed as

FIG. 6. Profiles of the flux (70) at different instants of time, for
a black hole with initial mass M̃BHð0Þ ¼ 1.267 × 10−10, M ¼
1 × 10−10 embedded in our fiducial neutron star model. In the
outer parts of the star, the nonzero flux reflects a numerical
adjustment of the star, resulting from the fact that the initial data
are not in perfect equilibrium on the numerical grid. In the inner
part, the flux approaches a value that becomes independent of
both space and time, resulting in an equilibrium accretion flow
onto the black hole. For comparison we also included, as the faint
lines, profiles for an evolution of the same neutron star but
without a black hole, which shows the same behavior in the outer
parts of the star, but very different behavior in the vicinity of the
black hole.
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Wξ ¼ αSutS ¼
"
1 −

2MBH

rS

#
1=2

utS

¼
'
1þ

"
1 −

2MBH

rS

#−1
ðurSÞ2

(
1=2

; ð73Þ

while, in our code, we evaluate

Wξ ¼
Wðα − βrvrÞ
ðα2 − βrβrÞ1=2

ð74Þ

with W ¼ αut and

vr ≡ 1

W
γraua ¼

ur

W
þ βr

α
; ð75Þ

where vi is the spatial projection of the four-velocity ua,
divided by W. Here we assume not only that the spacetime
is indeed approximately static, but also that the lapse α and
the shift βr render this spacetime in a coordinate system that
leaves the metric quantities nearly time-independent. Note
also that static observers exist only outside the black hole,
so that we can evaluate Wξ only for r≳ 2MBH.
Finally, we can compare the flux (70) computed in our

code with the accretion rate (9) as predicted from the Bondi
solution.
We show such a comparison for M̃ ¼ 10−6 at (coor-

dinate) time t ¼ 1.59 × 103MBH in Fig. 7. For the rest-mass
density ρ0 and the gamma-factor Wξ, the curves agree so
well that they can hardly be distinguished in the figure. The
graphs for the accretion appear to differ more, but, at least
in part, that is because the scale of the y-axis spans a much

smaller range for the (almost) constant functions displayed
in this panel. In fact, even the accretion rates agree to within
a small fraction of a percent in the vicinity of the black hole,
demonstrating that the accretion onto an endoparasitic
black hole inside a neutron star is well described by
relativistic Bondi accretion.

B. Final fate: Total consumption

For small initial black hole masses, the total accretion
times are far too long for us to simulate the consumption of
the entire neutron star numerically. We have therefore
performed simulations of such a complete consumption
only for sufficiently large initial black hole masses.
As an example, we show inFig. 8 results from a simulation

with an initial black hole mass of M̃BHð0Þ ¼ 0.0126. These
initial data have a total gravitational Arnowitt-Deser-Misner
(ADM)mass of M̃ADM ¼ 0.1655, so thatMBHð0Þ=MADM ¼
0.0761. At early times, the black hole mass grows steadily, at
a rate similar to those predicted by the analytical estimates of
Sec. II A 1. At around t ≃ 25MADM, however, the consump-
tionbecomes dynamical, as described inSec. II A 2.Once the
black hole has consumed the entire neutron star, its mass
settles down to a value that agrees to within less than 0.1%
with the initial ADMmass of the system, which confirms the
accuracy of our numerical simulations.
We also included in Fig. 8 the analytical estimates

resulting from the integrations of Sec. II C. Specifically,
the dashed line represents an estimate that includes the

FIG. 7. Comparison of our numerical fluid flow profiles
(dashed red lines) with those obtained from integrating the Bondi
equations (solid blue lines), for our fiducial neutron star model
hosting a black hole of initial mass M̃BHð0Þ ¼ 1.267 × 10−6, at
time t ¼ 1.59 × 103MBH (see text for details). The open black
circles denote the location of the black hole horizon at r ¼ 2MBH,
where r is the areal radius, while the solid green dots mark the
location of the critical radius (which, in the Newtonian limit,
reduces to the location at which the fluid flow becomes
supersonic).

FIG. 8. The black hole mass MBH as a function of coordinate
time t in a simulation leading to complete collapse. The solid line
represents the numerical values of the black hole mass MBH,
starting with the initial black hole mass M̃BHð0Þ ¼ 0.0126 and
MBHð0Þ=MADM ¼ 0.0761. At late times, after the black hole has
consumed the entire neutron star, its mass agrees to high accuracy
with the initial total gravitational mass MADM. The dashed line
shows the analytical estimate (B16) that takes into account effects
of stellar evolution, while the dotted line shows the estimate (35)
that ignores these effects. In this comparison we have adopted the
value α⋆ ≃ 0.623, even though for these simulations the black-
hole mass is too large to identify a clean “plateau” like the one
shown in Fig. 5 (see text for details).

ACCRETION ONTO A SMALL BLACK HOLE AT THE CENTER … PHYS. REV. D 103, 104009 (2021)

104009-13



effects of stellar evolution (see Sec. II C 2), while the dotted
line ignores stellar evolution (Sec. II C 1).
We caution that these comparisons should be considered

qualitative for several reasons. Perhaps most importantly,
the initial ratio of the black hole to neutron star mass is too
large for the asymptotic region in the core just beyond where
the gas becomes bound to the black hole to be homogeneous,
as required by theBondimodel. In addition, the final phase of
accretion departs from secular to dynamical growth, and the
Bondi rates we adopted throughout break down. Also, all the
estimates of Sec. II are based on rates as observed by a “local
asymptotic”, static observer. Relating these “local” rates to
the “global” rates computed in the numerical simulations
requires the lapse function of a local observer, α⋆. While this
can bedone ratherwell ifMBH ≪ M, as shown inFig. 5, such
a lapse function can no longer be identified unambiguously if
MBH ≲M. In fact, the entire notion of a local, static observer
in a region withMBH ≪ r ≪ R no longer applies during the
late stages. Finally, we used simple Newtonian arguments to
model effects of stellar evolution (see Sec. II B), which
clearly do not apply in the late-time, dynamical collapse.
Werewe able to follow the entire evolution for an initial black
holewithMBH ≪ M the number of decades in both time and
increasing mass ratio during which the analytic curves
closely match the numerical tracks in Fig. 8 would be
considerably larger.
Despite all these disclaimers, we observe in Fig. 8 that

the qualitative agreement between the numerical results and
analytical estimates is reasonable. In particular, we see that
including the effects of stellar evolution does improve this
agreement. In these comparisons, we adopted the value
α⋆ ¼ 0.623 to convert from our analytic local to our
numerical global observers. This was the value that we
had identified for smaller black hole masses for this fiducial
neutron star. But as we discussed above, in reality this value
is no longer well defined at late times.

C. Accretion rates

We summarize in Table III results from our simulations
for a large range of initial black hole masses, spanning
seven orders of magnitude in MBH=M. For each black hole
mass, we compute in our code the accretion rates _MBH,
directly from the growth of the black hole mass (for
sufficiently large initial black holes) as discussed in
Sec. III C 2, and/or from the fluid flux, _MBH ¼ F ðrAHÞ,
as discussed in Sec. III C 3. We also identify the lapse α⋆ of
a “local asymptotic” observer far inside the neutron star
(see Fig. 5 for an example), and then divide the above
“global” rates by this lapse in order to compute the rates
that such a local observer would measure. The latter can
also be estimated from the Bondi expression (44), the result
of which we list in the last column of Table III. The entries
in this Table are also shown in Fig. 1.
We clarify that, for the small black hole masses listed in

Table III, we do not track the evolution to completion, until

the entire star has been consumed, since doing so would
require following the star for many more dynamical time-
scales than is computationally feasible. Instead we evolve
the system for a coordinate time of approximately 103MBH,
by which time the accretion has settled down into equi-
librium and we can accurately measure the accretion rate.
Most importantly we observe that the different measures

of the accretion rates agree well with each other. In our
numerical simulations of Sec. III, the flux of (baryon) rest
mass across the horizon agrees very well with the analytical
accretion rates computed from relativistic Bondi accretion
in Sec. II. Determining the accretion rate from the growth of
the black hole horizon, which provides a measure of the
increase in total gravitational mass, results in a somewhat
larger value, presumably because this includes internal
thermal energy in addition to rest-mass energy. Note,
however, that this observation holds only for early times,
while the accretion is described by Bondi accretion, and not
for the last dynamical phase, during which most of the mass
is accreted (see Fig. 8).
Finally, we note that the initial black hole mass M̃BHð0Þ

agrees very well with the analytical estimate (67) with ψc ¼
1.27 for our fiducial neutron star model (see Table II).

V. DISCUSSION

We study in detail the process by which a small
“endoparasitic” black hole, residing at the center of a
neutron star, consumes its host. While a number of aspects
of this problem have been studied before (see, e.g., [5,7,8]),
we expand on these treatments in a number of ways.
Building on our previous study of Bondi accretion for

stiff EOSs [23,24] we develop a quantitative analytical
description of this accretion process. In particular, this
allows us to determine the constant of proportionality in the
relation _MBH ∝ M2

BH that some previous authors had
adopted. We use these results to construct an approximate
analytic model that tracks the secular evolution of the
system as the black hole, assumed initially small, grows by
accretion and ultimately consumes the entire neutron star.
We also perform numerical simulations of this accretion

process, extending previous simulations (see [7]) to sig-
nificantly smaller ratios MBH=M and simulating long
enough for the systems to achieve quasistationary accre-
tion. Our numerical code adopts spherical polar coordinates
(see [25,26]) with a logarithmic radial coordinate, which
allows us to adequately resolve the vastly different length
scales of the black hole and neutron star.
As shown in Fig. 1, our numerical results for the

accretion rates agree remarkably well with those computed
from relativistic Bondi accretion over many orders of
magnitude in MBH=M. This establishes that the accretion
onto small black holes at the center of neutron stars is
indeed governed by secular Bondi accretion, and that the
lifetimes of such stars are determined by these accretion
rates. In particular, this supports our finding reported in

RICHARDS, BAUMGARTE, and SHAPIRO PHYS. REV. D 103, 104009 (2021)

104009-14



[24] that this lifetime is close to a nearly universal
maximum lifetime that is roughly independent of the
properties of the neutron star and its EOS, and depends
on the initial black hole mass MBH only.
As an important application, our results corroborate

arguments that use the current existence of neutron star
populations to constrain either the contribution of primordial
black holes to the dark matter content of the Universe, or that
of dark matter particles that may form black holes at the
center of neutron stars after they have been captured (see,
e.g., [1–8]). These constraints are based on the notion that,
given certain cosmological densities of these dark matter
constituents and their masses, neutron stars would capture
these objects andwould then be consumed by the black holes
after times that are in conflict with the ages of old neutron star
populations. In particular, these arguments have been used to
constrain the contribution of PBHs in the mass range
10−15 M⊙ ≲MBH ≲ 10−9 M⊙ (see, e.g., [5,13]).
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APPENDIX A: BLACK HOLE METRIC AND
BONDI ACCRETION INSIDE A STAR

In this Appendix we generalize the Schwarzschild metric
so that it allows for an asymptotic region that is different
from the Minkowski metric. We then adopt this form of the
metric to describe approximately a small black hole
residing at the center of the neutron star, and to rederive
the equations governing Bondi flow in this context.

1. A general form of the Schwarzschild metric

Following Sec. 5.1 in [51], we write the spherically
symmetric, time-independent metric in vacuum as

ds2 ¼ −e2Adt2 þ e2BdR2 þ R2dΩ2; ðA1Þ

where, in this Appendix only, R is the areal radius (see 5.11
in [51], hereafter C5.11, except that we use A and B instead
of α and β in order to avoid confusion with the lapse
function and the shift vector). We first evaluate the
combination e2ðB−AÞRtt þ RRR, where Rab is the Ricci
tensor, in Einstein’s vacuum field equations. This yields
∂RAþ ∂RB ¼ 0 (see C5.16) and hence

A ¼ −Bþ C; ðA2Þ

where C is a constant of integration. We usually set this
constant to zero (see C5.17), which results in t being the
proper time of a static observer at R → ∞, but here we will
allow C to remain nonzero, and will determine its value in
Sec. A 2 below.
We next evaluate Rθθ in Einstein’s equations, which now

takes the form

e2Að2R∂RAþ 1Þ ¼ e2C ðA3Þ

(compare C5.18) and is solved by

e2A ¼ e2C −
κ
R
; ðA4Þ

where κ is another constant of integration. We usually
identify this constant with 2M, whereM is the gravitational
mass of the black hole, but we will again postpone
determining this constant until Sec. A 2.
Using (A4) and (A2) in (A1) we now find

ds2 ¼ −
"
e2C −

κ
R

#
dt2 þ

"
1 −

e−2Cκ
R

#−1
dR2 þ R2dΩ2

ðA5Þ

for the general form of the Schwarzschild metric. Evidently,
we recover the asymptotic-Minkowski form of the metric
for C ¼ 0 and κ ¼ 2M.

2. Identification of constants

We next identify the constants C and κ in the metric (A5)
by matching to our initial data describing a black hole
embedded inside a neutron star. We assume that the black
hole’s mass is small compared to the mass of the star,
MBH ≪ M, and will restrict our analysis to a region that is
large compared to MBH, but small compared to M (and the
radius of the neutron star). We may then approximate the
neutron star’s conformal factor as constant, ψNS ≃ ψc (see
Table II and the discussion in Sec. III A), and may neglect u
in (52) (see Appendix C). We may also neglect the neutron
star’s contribution to the total mass-energy in this region, so
that the metric (A5) still provides an approximate solution
to Einstein’s equations, even though it was derived in
vacuum.
Recall that, in Sec. III A, we construct the initial spatial

line element from

dl2 ¼ ψ4ðdr2 þ r2dΩ2Þ; ðA6Þ

where r is the isotropic radius, and, by our assumption
above, the conformal factor (52) reduces to
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ψ ¼ ψc þ
M
2r

: ðA7Þ

Identifying (A6) with the spatial part of (A5), we obtain

rψ2 ¼ R ðA8Þ

and

"
1 −

e−2Cκ
R

#−1=2
dR ¼ ψ2dr ¼ R

dr
r

ðA9Þ

or

dR
R1=2ðR − e−2CκÞ1=2

¼ dr
r
: ðA10Þ

Integration of both sides yields

Dr ¼ 2

"
Rþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − Re−2Cκ

p
−
e−2Cκ
2

#
; ðA11Þ

whereD is a constant of integration, which we can solve for
R to find

R ¼ Dr
4

"
1þ e−2Cκ

Dr

#
2

: ðA12Þ

We next use (A8) to write

ψ ¼
"
R
r

#
1=2

¼ D1=2

2

"
1þ e−2Cκ

Dr

#
ðA13Þ

and compare this with (A7) to identify

D ¼ 4ψ2
c ðA14Þ

and

e−2Cκ ¼ 2ψcM ¼ 2Mirr; ðA15Þ

where we have used (67), derived under the same assump-
tions as our treatment here, in the last equality.
We now evaluate the time part of the metric (A5). In

particular, consider a “static asymptotic” observer as
introduced in Sec. II A 1, i.e., an observer at areal radius
R ≫ Mirr, but far inside the neutron star so that our
assumptions above apply. According to (A5), the proper
time of such an observer advances at a rate dτ⋆ ¼ eCdt,
meaning that we may identify eC with the lapse function of
such an observer, α⋆.
Finally, we can insert our results into (A5) to find the

metric describing the spacetime in the vicinity of a black
hole embedded in a neutron star,

ds2 ¼ −α2⋆
"
1 −

2MBH

R

#
dt2 þ

"
1 −

2MBH

R

#−1
dR2

þ R2dΩ2; ðA16Þ

where we have identified the black hole mass with its
irreducible mass, MBH ¼ Mirr.

3. Bondi accretion

The equations governing Bondi accretion, i.e., the
continuity equation and the Euler equation of relativistic
hydrodynamics for stationary, adiabatic, and spherically
symmetric fluid flow, are usually derived assuming a
Schwarzschild metric that asymptotes to a Minkowski
metric. While our metric (A16) takes a slightly different
form, both the continuity equation and the Euler equation
take the exact same form. That means that the results for
relativistic Bondi accretion (as presented, for example, in
Appendix G of ST or in [23]) can be adopted without
change, provided that the black hole massMBH is identified
with its irreducible mass Mirr. In particular, the accretion
rate is given by Eq. (9).
There remains one ambiguity, however, namely the

meaning of the time derivative in _MBH in the accretion
rate, i.e., whose time we refer to in this derivative. In order
to clarify this, we compute the radial component of the fluid
flux as observed by a static observer at an arbitrary radius R
outside the black hole horizon (i.e., not necessarily at
R ≫ MBH, but well inside the neutron star). Specifically,
we take the dot product between the fluid flux J ¼ ρ0u
(where we use bold-face to denote a vector) with the
orthonormal basis one-form ω̃R̂ ¼ ð1 − 2MBH=RÞ−1=2ω̃R

to find

JR̂ ¼ ω̃R̂ · J ¼
"
1 −

2MBH

R

#−1=2
JR: ðA17Þ

We now multiply with −4πR2 and define u≡ −uR (which
is positive for inflowing matter) to obtain the accretion rate
dM=dτ as measured by this observer,

dMBH

dτ
¼ −4πR2JR̂ ¼ 4πR2

"
1 −

2MBH

R

#−1=2
ρ0u: ðA18Þ

Since, for this observer, dτ ¼ α⋆ð1 − 2MBH=RÞ1=2dt, we
may rewrite the above expression as

dMBH

dt
¼ 4πα⋆R2ρ0u; ðA19Þ

which implies

dMBH

dτ⋆
¼ 4πR2ρ0u; ðA20Þ
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where τ⋆ is again the proper time of a static “local
asymptotic” observer. We see that the “usual” expression
for the Bondi accretion rate (e.g., 14.3.18 or G.21 in ST)
refers to a time derivative with respect to the time as
observed by a static asymptotic observer, which, in our
case, means a “local asymptotic” observer—far from the
black hole, but well inside the neutron star. In (9) and
elsewhere we emphasize this by denoting the time deriva-
tive with a star, _M⋆

BH ¼ dMBH=dτ⋆. We also see that the
accretion rates observed by a local asymptotic observer and
an observer at infinity are related by

_M⋆
BH ¼ dMBH

dτ⋆
¼ 1

α⋆

dMBH

dt
¼ 1

α⋆
_MBH; ðA21Þ

as we have observed already in (68).

APPENDIX B: INTEGRATION OF EQ. (32)

In this Appendix we outline how the differential equa-
tion (32) can be solved analytically.
We first separate variables to obtain

dT ¼ −
y7=2dy

ðy0 − yÞ2
ðB1Þ

and then integrate to find

T ¼ −I; ðB2Þ

where we have assumed that the initial time is chosen to
vanish, Ti ¼ 0, and where I is given by

I ¼
Z

y7=2dy
ðy0 − yÞ2

: ðB3Þ

This integral can now be integrated as follows.
Using partial fractions, we rewrite (B3) as

I ¼
Z

y7=2dy
ðy0 − yÞ2

¼
Z

y3=2
y2 þ ðy0 − yÞ2 − ðy0 − yÞ2

ðy0 − yÞ2
dy

¼
Z

y3=2
ðy0 − yÞ2 þ 2yy0 − y20

ðy0 − yÞ2
dy

¼
Z

y3=2dyþ 2y0

Z
y3=2

y − y0=2
ðy0 − yÞ2

dy: ðB4Þ

Repeating the process twice more, we obtain

I ¼
Z

y3=2dyþ 2y0

Z
y1=2dyþ 3y20

Z
y−1=2dy

þ 4y30

Z
y−1=2

y − 3y0=4
ðy0 − yÞ2

dy: ðB5Þ

We now split the last integral into two terms,

y30

Z
y−1=2

4y − 3y0
ðy0 − yÞ2

dy

¼ 4y30

Z
y1=2

ðy0 − yÞ2
dy − 3y40

Z
y−1=2

ðy0 − yÞ2
dy ðB6Þ

and use a hyperbolic trig substitution

y ¼ y0 tanh2 x ðB7Þ

in both integrals, resulting in

4y30

Z
y1=2

ðy0 − yÞ2
dy ¼ 8y5=20

Z
sinh2 xdx ðB8Þ

and

3y40

Z
y−1=2

ðy0 − yÞ2
dy ¼ 6y5=20

Z
cosh2 xdx: ðB9Þ

Since

Z
sinh2 xdx ¼ 1

2
sinh x cosh x −

x
2

ðB10Þ

and

Z
cosh2 xdx ¼ 1

2
sinh x cosh xþ x

2
; ðB11Þ

as can be seen using integration by parts, we can combine
results to find

y30

Z
y−1=2

4y−3y0
ðy0−yÞ2

dy¼ y5=20 ðsinhxcoshx−7xÞ: ðB12Þ

We now rewrite sinh x cosh x in terms of tanh x and insert
the substitution (B7) to obtain

y30

Z
y−1=2

4y − 3y0
ðy0 − yÞ2

dy

¼ y30
y1=2

y0 − y
− 7y5=20 tanh−1ðy=u0Þ1=2: ðB13Þ

Finally we insert this expression into (B5), and carry out the
remaining integrations to find
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I ¼ 2

5
y5=2 þ 4

3
y0y3=2 þ 6y20y

1=2

þ y30
y1=2

y0 − y
− 7y5=20 tanh−1ðy=y0Þ1=2: ðB14Þ

Combining the first four terms and using

tanh−1ðxÞ ¼ 1

2
ln
"
1þ x
1 − x

#
; ðB15Þ

we can also write this result as

I ¼ y1=2
6y3 þ 14y0y2 þ 70y20y − 105y30

15ðy − y0Þ

− 7

2
y5=20 ln

"
y1=20 þ y1=2

y1=20 − y1=2

#
: ðB16Þ

Recall that 1 − y ¼ ðMBH −MBHð0ÞÞ=Mð0Þ measures the
fractional increase in the black hole mass [see Eqs. (29) and
(30)], and thatT ¼ −I is proportional to the time asmeasured
by a local asymptotic static observer [see Eq. (31)].

APPENDIX C: AN APPROXIMATE ANALYTICAL
SOLUTION TO THE HAMILTONIAN

CONSTRAINT

In this Appendix we present an approximate but ana-
lytical solution to the Hamiltonian constraint (55),

D̄2u ¼ −2πfðψNS þ ψBH þ uÞ5þn − ψ5þn
NS gρ̄: ðC1Þ

We have solved this equation to high precision in Sec. III A,
and our goal here is not to reproduce that solution
quantitatively; instead, we adopt some simple arguments
that allow us to understand the qualitative behavior of the
solution u. In particular, we will find that u approaches zero
everywhere as MBH=M → 0, which justifies neglecting u,
for example, in (62) and (A7).
In fact, we start by assuming that u ≪ ψNS, so that we

may neglect this term on the right-hand side of (C1),
ultimately verifying the validity of this step by showing that
it is well satisfied by our final solution. We further
approximate the neutron-star conformal factor ψNS by
using its central value throughout the entire interior of
the star, i.e., for all r < R, and we replace the density ρ̄ by
its average value ρ̄ave ¼ ρ̄c=δ, where we adopt the
Newtonian central condensation δ ¼ 3.29 for a Γ ¼ 2
polytrope (see Table I). While we will see that u does
indeed become arbitrarily small asM approaches zero, the
latter approximation is rather crude and introduces dis-
crepancies, but only of order unity.
We next observe that, even in the interior of the star, the

right-hand side of (C1) behaves differently depending on
whether ψBH or ψNS is greater. If ψBH ¼ M=ð2rÞ ≫ ψNS,
and assuming n < −5, we have

ðψNS þ ψBHÞ5þn − ψ5þn
NS ≃ ψ5þn

BH − ψ5þn
NS ≃ −ψ5þn

NS : ðC2Þ

On the other hand, if ψBH ≪ ψNS, we may expand

ðψNS þ ψBHÞ5þn − ψ5þn
NS ≃ ð5þ nÞψ4þn

NS ψBH: ðC3Þ

Recognizing that ψBH ¼ ψNS at the approximate location
of the apparent horizon

rAH ¼ M
2ψNS

ðC4Þ

identified in (64), we may approximate Eq. (C1) as

D̄2u ¼

8
<

:

s r < rAH
s̃=r rAH ≤ r < R

0 r ≥ R;

ðC5Þ

where we have defined

s ¼ 2πψ5þn
NS ρ̄ ðC6Þ

and

s̃ ¼ −πð5þ nÞψ4þn
NS Mρ̄ ¼ −ð5þ nÞsrAH: ðC7Þ

Since D̄2 is the flat Laplace operator in spherical symmetry,

D̄2u ¼ 1

r2
d
dr

"
r2
du
dr

#
; ðC8Þ

piece-wise solutions to (C5) are given by

u ¼

8
>><

>>:

1
6 sr

2 þ CI r < rAH
1
2 s̃rþ CII þ DII

r rAH ≤ r < R
CIII
r r ≥ R:

ðC9Þ

Here we have assumed regularity at the origin r ¼ 0 and
u → 0 as r → ∞, and the four constants CI, CII, DII, and
CIII are constants of integration. We can determine the latter
by requiring that both u and its first derivative are
continuous at both rAH and R. Evaluating these four
conditions yields

CI ¼ −s̃ðR − rAHÞ −
1

2
sr2AH

CII ¼ −s̃R

DII ¼
1

2
s̃r2AH −

1

3
sr3AH

CIII ¼
1

2
s̃ðr2AH − R2Þ − 1

3
sr3AH: ðC10Þ
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In Fig. 9 we compare the numerical solution for u, for
our fiducial neutron-star model and M̃ ¼ 10−5, with the
approximate analytical solution (C9). As expected, the two
solutions do not agree quantitatively, but they nevertheless
show very similar qualitative behavior. Based on this
qualitative agreement we may make the following obser-
vations about the properties of solutions u to the
Hamiltonian constraint (55):

(i) The largest value of u, in magnitude, occurs at the
center, where it is dominated by the term

uc ≃ −s̃R ∝ −ρ̄MR: ðC11Þ

We see that u is proportional to M, and vanishes
everywhere in the limit M → 0. This justifies our
above approximation to neglect u on the right-hand
side of (C1), as well as in (62) and (A7).

(ii) Similarly, u is proportional to M at r ≃ rAH, while
ψBH is of order unity there. This justifies our
approximation in Sec. III C 1 to neglect u when
computing an approximate location and area of the
apparent horizon in the limit M → 0.

(iii) In the exterior of the star, the contribution of u to the
conformal factor is proportional to

u ≃ −
s̃R2

2r
∼ −

ρR2M
2r

: ðC12Þ

We now assume that, in the far-field, we can write
ψ ≃ 1þMADM=ð2rÞ, and adopt a weak-field
approximation MADM ≃M þMBH þ U, where U
is the interaction energy, i.e., the potential energy
resulting from having placed a black hole at the
center of the neutron star. We then have

U ≃MADM −M −MBH

≃ 2rðψ − ψNS − ψBHÞ

¼ 2ru ∼ −ρR2M ∼ −
MM
R

; ðC13Þ

in accordance with the Newtonian expression for the
interaction energy.
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