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Accretion onto a small black hole at the center of a neutron star
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We revisit the system consisting of a neutron star that harbors a small, possibly primordial, black hole at
its center, focusing on a nonspinning black hole embedded in a nonrotating neutron star. Extending earlier
treatments, we provide an analytical treatment describing the rate of secular accretion of the neutron star
matter onto the black hole, adopting the relativistic Bondi accretion formalism for stiff equations of state
that we presented elsewhere. We use these accretion rates to sketch the evolution of the system analytically
until the neutron star is completely consumed. We also perform numerical simulations in full general
relativity for black holes with masses up to nine orders of magnitude smaller than the neutron star mass,
including a simulation of the entire evolution through collapse for the largest black hole mass. We construct
relativistic initial data for these simulations by generalizing the black hole puncture method to allow for the
presence of matter, and evolve these data with a code that is optimally designed to resolve the vastly
different length scales present in this problem. We compare our analytic and numerical results, and provide
expressions for the lifetime of neutron stars harboring such endoparasitic black holes.
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I. INTRODUCTION AND SUMMARY

A number of authors have discussed the prospect of
using neutron stars as dark matter detectors (see, e.g., [1-8]
and references therein). The idea is that the dark matter may
be in the form of small black holes that may be captured by
neutron stars, or may be in the form of other particles that
may coalesce to form black holes in the interior of neutron
stars. In either case, neutron stars may end up harboring a
small “endoparasitic” black hole at their center. Such a
black hole will then accrete the surrounding neutron star
matter until the entire star has been consumed. The current
existence of neutron star populations therefore can be used
to constrain the nature of black holes as candidates for dark
matter.

In principle, the above scenario could be realized in at
least two different ways. It is possible that primordial black
holes (PBHs) formed in the early Universe (see, e.g.,
[9,10]), and that they contribute to, or even account for,
the dark matter. Such PBHs can be captured by stars.
Following capture, the black holes can settle close to the
stellar center, and subsequently accrete the entire star (see,
e.g., [9,11]). The capture, settling and accretion process are
particularly efficient for neutron stars (see, e.g., [5,8], but
see also [12]), so that the current existence of certain
neutron star populations constrains the density of PBHs in
certain mass ranges. In particular, these arguments have
been used to establish limits in the mass range of
10715 My < Mgy <107 My, [5], which is otherwise only
poorly constrained (cf. [13-15]; see also [16,17] and

2470-0010/2021/103(10)/104009(20)

104009-1

references therein for constraints arising from gravitational
wave observations).

Alternatively, it is possible that dark matter particles are
captured inside a neutron star. Under sufficiently favorable
conditions, these particles may form a high-density object
that may then collapse to form a small black hole (see, e.g.,
[1-3,6]). The authors of [6], for example, estimated the
black hole mass to be approximately Mgy < 10710 M,
similar to the mass range of interest for PBHs.

Once a black hole has either been captured by the
neutron star, or has formed inside the neutron star, and after
this black hole has settled to the center, it will accrete the
neutron star matter, ultimately consuming the entire star.
Observational signatures of this process have been dis-
cussed by a number of authors, including [8,18,19], while
numerical simulations have been performed recently by [7].
The authors of [7] considered three different equations of
state (EOSs), as well as both rotating and nonrotating
neutron stars, but limited their simulations to relatively
large black hole masses with Mgy /M > 1072, where M is
the neutron star mass. They found that the accretion rate
follows the relation MBH o M3y as suggested by Bondi
accretion ([20]; see also [21], hereafter ST, for a textbook
treatment, including its relativistic generalization), and that
the accretion rate is largely independent of the neutron star
spin, in agreement with [22].

In this paper we extend earlier work on the accretion of
neutron stars by endoparasitic black holes in several ways.
In Sec. II we provide an analytical overview describing the
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accretion process in the core of a nonrotating neutron star.
Building on our earlier results [23,24], we adopt a rela-
tivistic Bondi accretion model to describe a nonspinning
black hole accreting gas obeying a stiff, polytropic EOS to
track the evolution of the system. As discussed in [23],
Bondi accretion for stiff EOSs with adiabatic indices I" >
5/3 exhibits some qualitative differences from correspond-
ing results for soft EOSs; taking these into account we
obtain the constant of proportionality in the previously
confirmed relation Mgy « M3y, We integrate the equa-
tions, crudely accounting for the quasistatic evolution of the
neutron star during the accretion process, to calculate the
neutron star’s survival time.

In Sec. IIT we perform numerical simulations of the
accretion process in full general relativity. Supported by the
results of [7] we focus on nonrotating, spherical neutron
stars and nonspinning black holes only, and adopt, for
simplicity, a stiff, polytropic EOS with I" = 2. Such a value
is often used in numerical simulations to approximate a stiff
nuclear EOS. Using a numerical relativity code imple-
mented in spherical polar coordinates (see [25,26]) with a
logarithmic radial coordinate, we extend the results of [7]
by simulating the accretion onto black holes with mass
ratios as small as Mgy /M ~ 107°. This allows our simu-
lations to extend into the mass range of interest from the
perspective of PBHs and viable black hole dark matter
candidates, as discussed above. Such black hole masses
thus extend down to the range of dwarf planets.

We compare our analytical and numerical results in
Sec. IV. In particular, we compile accretion rates obtained
both analytically and numerically for a large range of black
hole masses in Table III. We also plot these results in Fig. 1,
which serves as a summary of our results. In this figure, the
solid line represents the analytical accretion rate quoted in
Eq. (44). The dashed line shows the minimum accretion rate
for I' = 2 as identified by [23] (see their Eq. 51). Such a
minimum only arises for stiff EOSs, but is surprisingly
insensitive to the EOS for I' > 2. The open circles and filled
triangles mark two different methods for computing the
accretion rate in our numerical simulation data. The former
result from evaluating the accretion rate directly from the
flux of matter crossing the black hole horizon, while the
latter are based on measuring the rate at which the area of
the horizon increases. Since the black hole grows at a rate
that is proportional to the square of the black hole mass, and
hence is exceedingly slow for small black hole masses, we
can accurately measure the horizon’s growth rate numeri-
cally only for the largest black hole masses. We note that
the proportionality Myy o MZ,; holds over many orders of
magnitude, that our numerically determined accretion rates
agree well with those computed analytically from the
relativistic Bondi accretion relation (indicating that we
have correctly identified the constant of proportionality),
and finally that the actual accretion rates are only slightly
larger than the minimum accretion rate identified in [23].
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FIG. 1. The analytical and numerical values of the accretion

rate M]*;H as a function of Mgy/M, computed for our fiducial
I" = 2 neutron star model (see Table II for details). On the left we
express the accretion rate in geometrized units, while on the right
we express it in units of solar masses M, per year (since the
former is dimensionless, no mass scale is needed for this
conversion). The solid (blue) line represents the analytical
solution (44) based on Bondi accretion for stiff EOSs, while
(red) triangles and (green) circles represent numerical measure-
ments of the accretion rate based on the growth of the black hole
horizon and on the rest-mass flux, respectively (see Secs. III C 2
and IIIC3). The dashed (red) line represents the minimum
accretion rate (45) for a I' = 2 polytrope. (See also Table III
for a detailed listing of these results.)

All of the above confirms that the consumption of a neutron
star by an endoparasitic black hole is well described by
Bondi accretion for stiff EOSs, so that these analytical
expressions can be used to establish the lifetime of such
neutron stars (see Sec. I C).

Throughout this paper we use geometrized units with
G = 1 = c unless noted otherwise.

II. ANALYTICAL OVERVIEW

A. Accretion rates

We assume that a nonspinning black hole with mass My
is located at the center of a spherical neutron star with mass
M > Mgy and radius R > Mgy that would be in strict
hydrostatic equilibrium in the absence of the black hole. We
take the matter to be at rest far from the black hole, which
resides at the center of a nearly homogeneous core. To
estimate the rate at which the black hole accretes matter
from the neutron star we first define the capture radius

M
ro=—31. (1)
a

Here a is the speed of sound, given by

_dp
-5

- dpP
s dpo

a2 Po ’ (2)
Pt P
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and a, is its value evaluated at the center of the unperturbed
star. In (2), P is the pressure, p the total mass-energy
density, p, the rest-mass density, and the derivative is taken
at constant entropy. For the Newtonian estimates that we
will provide in this section we will not need to distinguish
between p and p,, but we introduce them here for later
reference. For a polytropic equation of state with

P = Kp}, (3)

where I' is the adiabatic index and K a constant, we may
then approximate

1/2 1/2
a, =~ <E> ~ <%) . (4)
Pe R
Here P, and p, are the values of the unperturbed star’s
pressure and density at the center, with P, < p,. and where
we have assumed hydrostatic equilibrium in writing the last
(rough) equality.

The accretion flow onto the black hole can be approxi-
mated in two opposite limiting regimes, depending on
whether the neutron star mass m(r,) contained within the
capture radius r, is greater or smaller than the black hole
mass Myy. In the latter case we may ignore the self-gravity
of the neutron star matter, so that the accretion process is
described by secular Bondi accretion, i.e., adiabatic flow
with asymptotically constant matter density and pressure
and zero flow velocity ([20,27]; see also ST for a textbook
treatment). In the former case we cannot ignore the self-
gravity, and the evolution modeled as an accretion process
becomes catastrophic dynamical collapse.

Defining m(r) as the neutron star mass within the radius
r, so that M = m(R), we have

m(r) = —-p.r’ (5)

for sufficiently small ». We then compute the crucial mass
ratio,

m(r,) N 4 Myyp. _4n Miyp R

~— . 6
MBH 3 ag 3 F3M3 ( )

We now write

3M
47R3’

(7)

pe=06p=26

where p is the unperturbed star’s mean density, and the
factor 6 measures its central concentration, p./p. We
tabulate values of § for Newtonian polytropes of index n
and adiabatic index I' = 1 + 1/n in Table 1. Inserting (7)
into (6) we now have

TABLE I. Values of the central condensation 6 as well as the
combination I?/§ for Newtonian polytropes with polytropic
index n and adiabatic index ' =1+ 1/n. For I' < 5/3 we also
include the accretion eigenvalues 4;; see Eq. (10). For I" > 5/3,
the relativistic accretion eigenvalues Agg can be constructed as in
[23]; see also Sec. II D below.

n r s 5/T2 A
3.0 4/3 54.2 22.94 0.707
2.5 7/5 233 8.45 0.625
2.0 3/2 11.4 3.38 0.500
1.5 5/3 5.99 1.296 0.250
1.0 2.0 3.29 0.411 e
0.5 3.0 1.84 0.068
m(ra) o MBH 2 (8)
Mgy T3\ M )~

We see that m(r,) ~ Mgy only for large black hole masses
Mgy ~ M and soft EOSs that result in large values of §/I°°,
also listed in Table I. For black holes that start out with
masses much smaller than the neutron star mass,
Mgy < M, almost the entire accretion process (i.e., the
longest duration) will occur in the regime m(r,) < Mgy,
and will therefore be described by quasistatic Bondi
accretion, while only the short final epoch proceeds
dynamically in the regime m(r,) ~ Mgy. In the following
two Sections we will provide estimates for these cases
separately, namely for Bondi accretion in Sec. Il A 1 and
for dynamical accretion in Sec. IT A 2.

1. Case I: m(r,) < Mgy—Bondi accretion

In this case we can neglect the self-gravity of the neutron
star fluid inside the capture radius r,, since the gravitational
forces are dominated by those exerted by the black hole. In
this case, the accretion is well described by adiabatic Bondi
accretion [20], the rate for which is given by

. . M 2
Ml;l—l =-M" = 47[/1GR< a];H> Py (9)

*

Here Agr is a dimensionless “accretion eigenvalue”, typ-
ically of order unity, and the » symbols denote values as
observed by a “local asymptotic” static observer who is far
from the black hole, but still well inside the neutron star,
i.e., Mgy < r < R. The dot in the accretion rates denotes a
derivative with respect to time as measured by such an
observer (see also Appendix A for a detailed discussion). It
is assumed that the density p, and sound speed a, approach
constants, and the flow speed u, approaches zero, as r > r,
becomes large in this asymptotic region, which typically
resides inside the nearly homogeneous core of the neutron
star. In Appendix A, as well as Sec. IIIC2 below, we
discuss how this “local” accretion rate is related to the rate
of mass accretion as seen by an observer far from the star.
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Here we simply point out that the accretion of bound
matter is not influenced by the spherical matter distribution
beyond the radius at which it becomes bound (Birkhoff’s
theorem): when self-gravity of the matter bound to the
black hole can be neglected, the only gravitational source
influencing the accretion is the central black hole.

The accreted mass measured by (9) is fundamentally a
(baryon) rest mass. It enhances the black hole’s total
gravitational mass by a similar amount for strictly adiabatic
flow as long as the asymptotic internal energy of the gas is
small in comparison to the rest-mass energy (see Sec. [V C
and Table III). We will ignore this difference in the context
of the approximate treatment in this Section.

A relativistic treatment of accretion for nonspinning
black holes shows that the requirement that the sound
speed be less than the speed of light demands that the flow
become transonic and pass through a critical point, yielding
a unique value for Agg, as shown by ST. For soft equations
of state with I' <5/3 and a, < 1 these accretion eigen-
values can be found from a Newtonian treatment of Bondi
accretion, resulting in

- (10)

AGR_)AS:Z

1 (5 — 31") (3r-5)/2(r-1)
(see, e.g., Chapter 14, Eq. (14.3.17), and Table 14.1 in ST).
Unlike Agg, the values of A, are independent of a, and ay,
the sound speed at the transonic radius r, (see [23] for
details). Stiffer equations of state require a relativistic
treatment as discussed in [23].

We now assume that r,, is sufficiently small, r, < R, that
we can approximate the fluid variables as seen by the local
observer discussed above, i.e., p, and a,, by those at the
center of the unperturbed star, i.e., p. and a.. The accretion
rate then becomes

s o My
Mgy = -M" = 4”/1GR7/7C7 (11)

from which we can crudely estimate the accretion timescale

Tacc

MBH ag F3/2 M1/2R3/2
My 4nicrMpup.  36Agr  Mpum

(12)

Tacc

Here we have used (4) and (7) in the last step. The above
estimates the timescale for the black hole to double its
mass, which is the bottleneck in the neutron star con-
sumption process: this epoch takes the longest because both
the black hole mass and hence the accretion rate (11) are the
smallest they will be during the process. Dividing by the
neutron star mass, we may rewrite this result as

Tace 3/2 5 32/ M (13)
M~ 36lgr \M Mgy )’

Note that 7,..,/M — oo as Mgy /M — 0. Alternatively, we
may also express the accretion timescale in terms of the
neutron star’s dynamical (collapse) timescale

y y R\ 3/2
12 512\ M, (14)
(47p./3) 6/5\M

where y is a factor of order unity and where we have used
(7). Combining (12) and (14) we obtain

/2 M
Tacc ~ ( ) . (15)

Tayn 0% Agry \Mpn

~

Tdyn

We again have 7,../7qyn — 00 as Mgy/M — 0. We will
calculate z,.. more carefully in Sec. I C below.

2. Case II: m(r,) ~ Mgg—dynamical accretion

In this case we cannot neglect the self-gravity of the
neutron star fluid inside the capture radius r,. We now
generalize the definition (1) of this capture radius, and
define a critical radius,

. M
Forit = Mjmﬂ (16)

ac

inside which the gas is marginally bound by the combined
mass of the black hole and the gas itself. Using (5), we can
rewrite (16) as

A > MBH
—p i |1+ ——) =dl. 17
(1 4) = "

The rate at which the black hole accretes mass can now be
expressed as the area of the sphere with the critical radius,
4n'r2m, times the mass flux across this sphere, p.u..
Assuming that, at the critical radius, the fluid speed u,
is comparable to the sound speed a.., as in typical Bondi

flows, we then have

. M -1
M3y ~ 42, =3a3(1 BH . (18

where we have used (17) in the last equality. The corre-
sponding accretion timescale is then given by

Mgy Mgy (R)3? Mgy
= x> —FF | — 1 + s 19
e Mgy 3092 \M m(Ferig) (19)
or
52 M M
Tace kv (1 + 24 > (20)
Tdyn 37/F M m(rcrit)

104009-4



ACCRETION ONTO A SMALL BLACK HOLE AT THE CENTER ...

PHYS. REV. D 103, 104009 (2021)

where we have approximated the dynamical timescale 74y,
as in (14).

We now evaluate Eq. (20) in two limits. In the limit
Mgy ~ m(ryy), in which case Mgy ~ M by (8), we notice
that the accretion timescale 7,.. becomes comparable to the
dynamical timescale 74y, as one would expect. In the
opposite limit, Mgy > m(r.;), the critical radius rg;
defined in (16) reduces to r, defined in (1) and we may
approximate

MBH 3MBH - 3a? - F3 M 2 (21)
m<rcrit) B 477,00’% B 4ﬂpcMzBH B o MBH '

where we have used (4) and (7) in the last equality.
Inserting (21) into (20) we recover, up to factors of order
unity, the Bondi accretion timescale (15), as expected.

B. Effects of stellar evolution

Our simple estimates (15) and (20) for the accretion
timescales ignore the fact that the accretion rates change
as the black hole mass My increases, and also ignore the fact
that the neutron star structure changes as the accretion
proceeds. We can approximate the effects of this secular
“stellar evolution” by assuming that, while the star loses mass
to the black hole, it will adjust quasistatically to a new
equilibrium configuration while keeping its total Newtonian
energy E constant. We now write this energy as the simple
functional

where the first term accounts for the interaction between the
stellar gas and the black hole, with « being a constant that
depends onT’, @ = a(I"), while the second term describes the
neutron star’s self-energy [see Eq. (3.3.10) in ST].

Evaluating (22) at the initial time, denoted by (0), we
have

3T — 4 M(0)2
5—6 R(0)

(23)

Since, by our assumption, expressions (22) and (23) must
be identical, we can equate them and solve for R to find

M aMgy+ (3T —4)M/(5T -6)
R = 310 ablgn(0) + (=4 (0)/Gr =)\ @ 24

We now approximate Mgy < M, in which case (24)
reduces to

R~ <%> “R(0). (25)

Using (25) in (4) then yields

R
while (7) gives
e O (MO

Inserting (26) and (27) into the Bondi accretion rate (9) then
results in

M:

36rS (M (0) + M(0) = M)2 [ M \-7/2
o o o) B

where we have expressed the black-hole mass Mgy in terms
of the evolving neutron star mass M as

Mgy = Mgy (0) + M(0) — M. (29)

Note that the last factor in (28) accounts for stellar
evolution.

C. Accretion times

We can now compute the neutron star lifetime (i.e., the
accretion time) by integrating Eq. (28). Towards that end, it
is useful to introduce the dimensionless quantities

Mgy (0) + M(0) M
=/ 1 =——, 30
and
3AgrS (M(0) /2
T= — t, 31
32 (R(O)3 G
in terms of which we may rewrite (28) as
dy 2.,-7/2
o7 = ~ o=y (32)

As in (28), the last factor accounts for stellar evolution.

1. Without stellar evolution

We first ignore the effects of stellar evolution, so that
(32) reduces to

&= (- (33)

which can be integrated readily to yield
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=[] (34)

y=yol;

Here the square brackets serve as a reminder to insert limits
of integration. At the initial time, which we choose to be
T; =0, we have y; = 1, so that

o I MO M)
yi=Yo l—yo Mpu(0) Mgy’

T, (35)
where Mpy is the black hole mass at the time 7'y, and where
we have used (29). We can now find the total accretion time
by setting the final neutron star mass equal to zero, i.e., by
choosing y, = 0. Further assuming that Myy(0) < M(0)
and recalling (31) we find

Tace 32 R(O) 3/ M(O)
()~ 3oign <M<0>> (MBH<0>)’ (36)

which is identical to (13), as expected.

2. With stellar evolution

We now repeat the exercise, but include the last factor in
(28) in order to account for stellar evolution. In this case the
integral can be carried out as described in Appendix B.
Choosing, as before, y; = 1 at T; = 0, as well as y; = 0 in
order to obtain the accretion time 7 = T, we obtain

3 1/2 1
yg _7y(5)/2111<y0 + >

5 4 5
Tacc ==+ +6y0 +
Yo

2 3 1 y(l)/ 2
(37)
Alternatively, we may introduce
Yo =Yo— 1= MA?II({(()?) (38)
and rewrite (37) as
Tace = Tio + QYho + 101 + L
3 15 yio
L (o + 1) lnﬁm' (39)

Taking the limit y,, — 0, we see that T,. will be
dominated by the term 1/y,, so that we recover the same
accretion time f,.. as in (36)." This is not entirely surpris-
ing, since most of the accretion time is spent during early
times when neither the neutron star mass nor radius change

lNote, however, that we have modeled the effects of stellar
evolution to leading order only, see Sec. II B, so that only the
leading-order corrections to our results in the absence of stellar
evolution have physical significance.

appreciably, so that stellar evolution is not important. At
late times, however, the response of the star to the accretion
process, and the corresponding adjustments in the stellar
structure, will affect the accretion time, as expressed
by (39).

As a concrete example, consider a star with M = 1 M.
Since, in geometrized units, 1 My~ 1.4 km~35 us, we
then have

v () i) 7>

where we ignored factors of order unity. For a main-
sequence star, with R ~ 10°M, we see that the accretion
time will exceed a Hubble time if Mgy (0) < 10715 M. For
a neutron star, however, R ~ 10M, resulting in significantly
smaller accretion timescales. Therefore, black holes with
masses as small as Mg(0) > 107! M, would be able to
consume a neutron star well within a Hubble time.

D. Fiducial neutron star model

In our comparisons with the numerical results of Sec. I1I
below we consider, as a fiducial neutron star model, a
dynamically stable equilibrium star with a central rest-mass
density of p,. = 0.2K~" governed by a polytropic equation
of state (3) withI" = 2 and n = 1, which we constructed by
solving the Tolman-Oppenheimer-Volkoff (TOV) [28,29]
equations. Detailed properties of this stellar model are
listed in Table II.

Since K/? has units of length in geometrized units, we
may introduce nondimensional quantities by rescaling any
dimensional quantity with a suitable power of K; in
particular, we define

R = K—n/2R’
M=K"’M, (41)

pP=K"p,
Po = K"py.

and similar for other quantities. We list “tilde” variables
that have been rescaled with respect to K in the second
column in Table II. In the third column we rescale each
variable with respect to the neutron star’s gravitational mass
M, while in the fourth column we rescale with respect to the
corresponding maximum-mass configuration. In particular
we note that, for our adopted model, M/M™* = 0.959,
where M™™ is the maximum gravitational mass of a
spherical star with our adopted EOS. Finally, for the fifth
column in Table II we assume that our star has a
gravitational mass of M = 1.4 M, in which case K takes
the value K = (1.4 My/M)? ~ 156 km?.

From the parameters given in Table II we compute the
central sound speed to be

a. = 0.534. (42)
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TABLE II.

Parameters for our fiducial I' = 2, n = 1 polytropic neutron star model in the absence of a black hole

(see text for details). The conformal factor y is well defined by our assumption that, in Cartesian coordinates, the
determinant of the conformally related metric is ¥ = 1. The lapse function « listed here is the value obtained from
integrating the TOV equations, and is different from the 1+ log lapse adopted in our numerical evolution

calculations (see Eq. (57)).

Quantity  Rescaled wrt" K Rescaled wrt M Rescaled wrt max. mass model Physical units

Do’ Doc = 0.2 M?py. = 0.00495 Poc/ P = 0.629 Poe = 3.41 x 105 g/cm?
P p. =024 M?py. = 0.0059 Pe/pr = 0.572 pe = 4.09 x 10P g/cm?
R* R =0.865 R/M =5.50 R/R™ =1.13 R =10.8 km

ris(f,e Fiso = 0.699 Fiso/M = 4.45 Fiso/ TP = 1.19 Fiso = 8.73 km

M M =0.157 M/M =1 M/M™> = 0.959 M=280x10% ¢
M,® My =0.176 My/M =1.12 My/MP> = 0.954 My=3.14x10¥ g
l//ch v, =127 v, =127 .y = 0.933 y. =127

a,' a, = 0.570 a. = 0.570 a. /o™ =123 a. = 0.570

*With respect to.

®Central rest-mass density.
“Central mass-energy density.
Areal radius.

“Isotropic radius.
Gravitational mass.

€Rest mass.

?Central conformal factor.
'Central lapse function.

We identify, as before, the neutron star’s central density and
sound speed with the corresponding asymptotic values for
the Bondi accretion onto the black hole and follow [23] to
compute the accretion eigenvalue

Ar = 1.29. (43)

Inserting the above values into the Bondi accretion rate (9)
we obtain

My = 21.24M3, (44)

which is not significantly larger than the minimum steady
state accretion rate for a stiff polytrope with I' = 2,

M];H.min = 929AZ]%,H (45)

(see Eq. 51 in [23]). Adopting the above value of K, and
recalling that, in geometrized units, Mg ~5 X 107° s, we
can evaluate (45) to yield

. M Mgy 2
My min = 733 x 1079 —2 <7_ ) . (46)
’ yr \10719 M,

III. NUMERICAL TREATMENT
A. Initial data

We construct relativistic initial data describing a non-
spinning black hole embedded at the center of a non-
rotating, spherical neutron star. Our task is to solve the

Hamiltonian and momentum constraints of general rela-
tivity (see, e.g., [30] for discussion and references) which
we do by generalizing the puncture method (see [31]) to
allow for the presence of matter. Our approach differs from
that adopted by [7], who constructed initial data by
matching an interior black hole solution to an exterior
neutron star solution.

We assume that the initial slice is conformally flat, so
that we may write the spatial metric as y;; = wn, j» where y
is the conformal factor and #;; the flat metric. We also
assume the initial slice to be momentarily static, and
thereby choose the extrinsic curvature to vanish,
K;j =0, and the initial momentum density measured by
a normal observer to vanish, S; = —y,,n,T* = 0. Here a
“normal observer” is an observer whose four-velocity is the
normal vector n¢ on the spatial slice, and T4 is the stress-
energy tensor. With these assumptions the momentum
constraints are satisfied trivially, and the Hamiltonian
constraint becomes

D>y = =2zyp, (47)
where D? is the flat Laplace operator, and p = n,n,T* the

mass-energy density as observed by a normal observer. We
allow for a conformal rescaling of the density,

p=y"p, (48)

where m is a yet-to-be-determined exponent. An attractive
choice might be m = —6, since it leaves the proper integral
over the density p invariant if we keep p fixed,
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/1;/6pd3x = /[)d3x. (49)

Note, however, that this integral represents neither the
gravitational nor the rest mass.

Now assume that we have constructed a solution to the
TOV equations [28,29] in isotropic coordinates, so that we
obtain radial profiles of the conformal factor yyg and the
mass-energy density png for the equilibrium neutron star by
itself. In particular, these functions satisfy the Hamiltonian
constraint (47) with

D*yns = =2myRspns (50)

and we identify

P = WNEPNs- (51)

We now want to modify this solution so that the new
solution accounts for a black hole embedded at the center of
the neutron star. Towards that end, we write the conformal
factor as a sum of contributions from the neutron star and
the black hole, as well as a correction u,

Y =Wns +¥eH + U, (52)

and recast the Hamiltonian constraint as an equation for u.
In (52) we have introduced

M
YBH = E (53)

as an isolated black hole’s contribution to the conformal
factor in our isotropic coordinates. We refer to M as the
“puncture mass”; it has no immediate physical significance,
and serves as a mass parameter only (see Sec. [IIC 1 and
Egs. (59) and (67) below for the black hole’s isolated
horizon, or irreducible, mass). Inserting (52) into the
Hamiltonian constraint (47) and observing that D*ygy =
0 we obtain

D?yns + D*u = =2x(wns +wen +u)>™p. (54)

or, using (50),

—y3p (59)

Since ypy diverges as r — 0, it may be desirable to choose
m < =5, which makes the right-hand side of (55) regular.
Therefore, unless noted otherwise, we will use m = —6 in
all our simulations. In Appendix C we derive an approxi-
mate but analytical solution to (55), and discuss some of the
properties of the solutions u (see also Fig. 9).

We have now reduced the problem to finding regular
solutions u to the elliptic equation (55), subject to the Robin
boundary condition u# « 1/r for large r. Since the equation

D*u = =2x{(yns + wpn +u)>*"

0.005 +

0.004 -

0.003 1

M?pq,

0.002 1

0.001

0.000 +

FIG. 2. Profiles of the initial rest-mass density p, as a function
of isotropic radius r, for our fiducial neutron star model (see
Table II) with different black hole puncture masses M. Here and
throughout we choose m = —6 in (48) unless stated otherwise.
Even for tiny black hole masses, the logarithmic radial variable
allows us to resolve the vastly different length scales of the black
hole and the neutron star.

is nonlinear, we adopt an iterative approach. Once we have
obtained this solution we can compute the new (physical)
energy density p from
m
p=y"p= <—WNS Ve u) PNS- (56)
¥Ns
Note that we will have p — 0 as r — 0 with m < 0 initially.

We have implemented the above approach in the code
described in [25,26], which solves Einstein’s equations in
spherical polar coordinates. We use a logarithmic radial
coordinate, which allows us to resolve both the black hole
and the neutron star with modest numerical resources, even
when M < M (see Sec. IIIB for details). We show
examples of density profiles for black holes with different
masses embedded in our fiducial neutron star model
in Fig. 2.

While our initial data depend on our choice of m in
Eq. (48), they quickly settle into a quasiequilibrium
configuration soon after matter marginally bound to the
black hole begins to flow inward at # ~ r, /a. ~ TMgy. The
system thus relaxes to a state of quasistatic accretion onto
the black hole that is independent of m (see Figs. 3 as well
as the discussion in III B below).

B. Numerical evolution

We evolve our initial data with a code that solves the
Baumgarte-Shapiro-Shibata-Nakamura (BSSN) formu-
lation of Einstein’s equations [32-34]. We adopt a refer-
ence-metric formulation (see, e.g., [35-38]) in order to
implement the equations in spherical polar coordinates (see
[25,26] for details and tests; see also [39] for tests
with Bondi accretion as well as [40-42] for other
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FIG. 3. The rest-mass density p, as a function of isotropic radius

r for different values of the conformal exponent m in (48) for
M =103, so Myy(0) = 1.267 x 1073, and My (0)/M(0) =
8.03 x 1073, Although the initial density profiles, shown in the
inset, clearly depend on m, they all evolve to the same density
profile, shown in the large plot, once a quasiequilibrium has been
reached. Here and in several of the following graphs we suppress
the innermost few grid points well inside the horizon, since they are
affected by numerical noise caused by the puncture singularity at
the origin.

implementations of this approach). The latest version of our
code uses fourth-order finite differencing for all spatial
derivatives in Einstein’s equations, together with a fourth-
order Runge-Kutta time integrator.

We impose coordinates using the “1 + log” slicing
condition

(0, — f9;)a = —2aK (57)

(see [43]) for the lapse function a, and a “Gamma-driver”
condition for the shift vector ' (see [44,45]). On our initial
slice we choose a “precollapsed” lapse with a = =2 and
zero shift.

For all simulations reported in this paper we used a
numerical grid of N, = 512 radial grid points with the outer
boundary at 7, = 4, corresponding to about 5.7 times the
isotropic radius of our fiducial neutron star. We allocate the
radial grid points using a sinh function, resulting in a grid
that becomes logarithmic asymptotically and allows us to
resolve the vastly different length scales associated with the
black hole and the neutron star. We adjust the parameters of
this sinh function for each black hole mass so that the black
hole is resolved by approximately 50 grid points, and the
smallest grid spacing (at the center of the black hole) is
approximately 1% of the black hole’s isotropic radius
or less.

We similarly implement the equations of relativistic
hydrodynamics in spherical polar coordinates adopting a
reference-metric formulation [46]. We solve the resulting
equations using an Harten-Lax-van Leer-Einfeldt approxi-
mate Riemann solver [47,48], together with a simple

monotonized central-difference limiter reconstruction
scheme [49]. We solve these equations adopting an ideal
gas law

P = (I' = 1)pge, (58)

where ¢ is the specific internal energy density, in terms of
which the total mass energy density is given by
p =po(l +¢€). While Eq. (58) allows for nonisentropic
flow, e.g., shocks, we have found in our numerical
simulations that the relation between P and p, remains
very close to the polytropic relation (3), indicating that the
accretion flow is laminar and nearly adiabatic. As before we
focus on I = 2 and we refer to [7] for a survey of different
EOSs. We also note that, for stiff EOSs with polytropic
index 0.5 < n < 1.5 (or 5/3 <T < 3), there exists a maxi-
mum accretion timescale that is nearly independent of the
polytropic index; see [24].

As an example of our evolution calculations, we show in
Fig. 3 profiles of the density p, for our fiducial neutron
star model hosting a black hole with puncture mass
M =1x103. We show results for different values of
the conformal exponent m in (48). Evidently, the initial
density profiles, shown in the inset of Fig. 3, show large
differences, as one might expect. However, once the
evolution reaches quasiequilibrium, shown in the main
graph in Fig. 3, the profiles are all very similar. This gives
us confidence that, except for a small initial transient, our
evolution calculations are largely independent of our choice
of m, and quickly settle down into a solution describing a
steady-state accretion onto the endoparasitic black hole.

C. Diagnostics

We invoke a number of different diagnostics in order to
evaluate our numerical simulations.

1. Black hole mass

A black hole’s isolated horizon, or irreducible, mass is

given by
AN\ 1/2
= (5) (59)

where A is the proper area of the black hole’s event horizon
at a given instant of time.

In practice, we locate in our numerical evolution calcu-
lations the black hole’s apparent horizon rather than the event
horizon, since the former requires data at one instant of time
only, rather than the entire spacetime (see, e.g., [30] for a
textbook discussion). The two horizons should coincide for
quasistatic evolution. We then compute the apparent hori-
zon’s proper area, and use this value in (59). For many
situations, in particular for stationary or nearly stationary
spacetimes, this yields an excellent approximation.
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We can also compute the approximate initial black-hole
mass as follows. Since our initial data are conformally flat
and describe a moment of time-symmetry with zero shift,
we may write the spacetime metric at that instant as

ds* = —a?dt* + y*(dr* + r*dQ?). (60)

The expansion of a bundle of outgoing null geodesics
orthogonal to a spherical surface of radius r is then given by

V2 d
0="—(ry? 61

) (61)
(see, e.g., Eq. (7.22) in [30] with A? = B? = y*). We will
assume that u in (52) is small compared to the other terms
(see Appendix C) so that we may approximate

M
W YNs T WBH = WNs T 5 (62)

2r”
For r much smaller than the neutron star radius we may
approximate yyg as constant.

We now find the black hole’s apparent horizon by setting
the expansion (61) to zero, which yields

d M2 M?
E(”(WNS"‘Z) )ﬁ’//%vs—ﬁzo (63)

or

M

TAH & . (64)
Al 2yNs
At the apparent horizon, we then have
Wan =W (ran) = 2@xs. (65)

We now compute the apparent horizon’s proper area from
A = dayhyriy = 16myigM?, (66)

where have used both (64) and (65). Inserting (66) into (59)
we obtain our result

Mgy =~ yns M, (67)

where yng may be estimated by the central value of the
unperturbed neutron star’s conformal factor. We have found
that, for M <« M, Eq. (67) provides an excellent approxi-
mation to our numerical values for the initial black hole
masses (see Table III).

2. Accretion rates: Black hole growth

We measure the rates at which the black hole accretes
neutron star matter in two different ways (see also Fig. 1
and Table III).

In one approach, we directly measure the black hole
mass Mgy from (59) as a function of coordinate time, and
then determine the accretion rate from the slope of this
function. We show an example in Fig. 4. We also included
in Fig. 4 results for a black hole of the same initial mass

TABLE III.  Accretion rates for different black hole masses embedded in our fiducial neutron star model (see Table II). The accretion

rates MBH and F(rpy) represent rates as measured by a static observer at infinity. To compare these rates with those measured by a
“local asymptotic” static observer in the neutron star core, Mgy, we divide the former by the lapse a, of the local observer. The
numerically measured rest-mass flux F(ray)/a, (see Sec. III C 3) agrees very well with the analytical value Mgy given by Bondi

accretion (see Eq. (44). Measuring the growth of the black hole horizon M BH/ @, (see Sec. III C 2) results in somewhat larger values,
presumably because it includes internal thermal energy in addition to rest-mass energy. Results in this table are also shown in Fig. 1.

M My (0)° Mgy (0)/My* a,’ Mpy/a,° F(ran)/a,' Mt

1073 1.267 x 1073 7.12 x 1073 0.616 4.58 x 1073 3.44 x 107 3.41 x 1073
10~ 1.267 x 1074 7.12 x 1074 0.619 4.67 x 1077 3.42 x 1077 3.41 x 1077
1073 1.267 x 1073 7.12 x 1073 0.622 e 3.41 x 10~° 3.41 x 1072
1076 1.267 x 10© 7.12 x 107° 0.623 3.40 x 107! 3.41 x 1071
1077 1.267 x 1077 7.12 x 1077 0.623 342 x 10713 341 x 10713
108 1.267 x 1078 7.12x 1078 0.623 343 x 1071 341 x 10715
10~ 1.267 x 107° 7.12 x 107° 0.623 3.43 x 10777 3.41 x 1077
10710 1.267 x 10710 7.12 x 10710 0.623 343 x 1071 341 x 1071

“Black hole puncture mass M = K~'/2M in our initial data; see Sec. IIT A.

PInitial irreducible mass Mgy (0) = K~'/2Mpy(0) of the black hole; see Sec. IIIC 1.
‘Ratio between Myp(0) and the neutron star rest mass M.
Lapse of a “local asymptotic” static observer; see, e.g., Fig. 5 for an example.
“Mass-energy accretion rate from measurements of Mpyyy; see Sec. III C 2.

Rest-mass accretion rate from flux across horizon; see Sec. II1 C 3.
fRest-mass accretion rate from Bondi expressions; see Eq. (44).
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FIG. 4. Growth of the black hole’s irreducible mass (59) as a
function of time, for Mpy(0) = 1.26 x 1073 (the solid orange
line). The dashed-dotted (green) line shows a linear fit, whose
slope we identify with the accretion rate MBH. For comparison,
we also include as the dashed (red) line the irreducible mass of a
black hole with the same initial mass Mgy (0) in vacuum, i.e.,
without a neutron star.

Mgy (0), but evolved in vacuum, i.e., without a neutron star,
shown as the dashed (red) line. The latter appears nearly
horizontal, demonstrating that the growth observed for a
black hole embedded in a neutron star indeed results from
accretion of neutron star material, rather than numerical
noise. For small black hole masses, however, the accretion
becomes so slow (cf. Eq. (9) that it is no longer possible to
accurately determine the slope of the function Myy(7).
Therefore we have used this direct measure of the black
hole growth only for black holes with Mp(0) = 107 (see
Fig. 1 and Table III).

Measuring the slope of curves Mpgy(7) yields the
accretion rate MBH, where the derivative is taken with
respect to the coordinate time ¢. Since this coordinate time
agrees with proper time of a static observer at infinity, i.e.,
one at large distances from the neutron star with r > R, this
measure determines the accretion rate as observed by a
static observer at infinity. In Sec. I A 1, we introduced the
accretion rate M Eu as observed by a static “local asymp-
totic” observer far from the black hole, but well inside the
star, with My < r < R. In M4y, the derivative is there-
fore taken with respect to this local observer’s proper time
7, (see also Appendix A for a detailed discussion). We can
relate the two rates by recognizing that the proper time of
the static, local observer moving along a normal vector to
our spacelike hypersurfaces will advance at a rate
dr, = a,dt, where «a, is the lapse function of this local
observer. We then have

. dM gy .
Mgy = = =a,Mjp 68

BH dr Oy dr, A M BH (68)
(see also Eq. (A21). We may interpret this relation as

stating that the rate as observed by a distant observer, MBH,

< 0.021
U
=
0.00 ez
11
. //f ...........
0t . .
0.05 e =0
& — t =0642Mpy
—-— t=1286Mpn
(VR S ——_

100 100 10*  10°  10*  10°  10°
r/Mpn

FIG. 5. Profiles of the rest-mass density p,, lapse a and shift
vector " in an evolution of our fiducial neutron star with a black
hole of mass Mgy (0) = 1.267 x 107° at different (coordinate)
times. At the later times, all functions have settled down into a
(quasi) equilibrium. Note also that the density and lapse “plateau”
in a region Mpy < r < R, where they take the nearly constant
values pg, =~ po. = 0.2 and a, ~ 0.623 (marked by the horizontal
dotted lines). Note also that the shift is very close to zero in this
region. The black circles denote the location of the black hole
horizon.

is red-shifted by the lapse function a, with respect to the
rate as observed by a local observer, Mf;H, as one might
expect.

In Fig. 5 we show profiles of the rest-mass density p,, the
lapse function a and the shift vector " in one of our
simulations. This example shows how the density and lapse
function “plateau” in a region Mpy < r < R, so that their
values for a “local asymptotic” observer can be identified to
high accuracy as long as Mgy < M. Note also that, in this
region, the shift f# is very close to zero, so that in this
nearly static spacetime a static observer (i.e., one whose
four-velocity is aligned with the timelike Killing vector)
indeed coincides with a normal observer, as we had
assumed above.

We list results for accretion rates determined numerically
from the growth of the black hole mass in Table III.

3. Accretion rates: Rest-mass flux

An alternative approach to computing the accretion rate
is to measure the rate of fluid flow across the black hole
horizon. Assuming that the accretion is sufficiently slow so
that we can approximate the black hole as nearly static, we
can compute the flux F of rest-mass accretion through a
sphere H of radius r from

Flr) = - /H J=gpou’ d0dd, (69)

where ¢ is the determinant of the spacetime metric (see,
e.g., Appendix A in [50]). Assuming spherical symmetry
we may carry out the integration to obtain
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FIG. 6. Profiles of the flux (70) at different instants of time, for
a black hole with initial mass Mgy (0) = 1.267 x 10710, M =
1 x 10710 embedded in our fiducial neutron star model. In the
outer parts of the star, the nonzero flux reflects a numerical
adjustment of the star, resulting from the fact that the initial data
are not in perfect equilibrium on the numerical grid. In the inner
part, the flux approaches a value that becomes independent of
both space and time, resulting in an equilibrium accretion flow
onto the black hole. For comparison we also included, as the faint
lines, profiles for an evolution of the same neutron star but
without a black hole, which shows the same behavior in the outer
parts of the star, but very different behavior in the vicinity of the
black hole.

F(r) = —4na\/ypou’r?, (70)

where we have used /—g = a,/y, and where y is the
determinant of the spatial metric. This expression yields the
flux of rest-mass through any sphere of radius r, and
the accretion rate in particular when evaluated on the black
hole horizon,

MBH:f(Vhor)- (71)

For stationary flow we expect F to become independent of
radius. We demonstrate this behavior in Fig. 6, where we
show profiles of F at different instants of time, for a black
hole with initial mass Mgy(0)/M =7.12 x 10710
embedded in our fiducial neutron star. Note that F takes
a nearly constant value in an inner region that grows with
time, as the fluid flow settles down into steady-state
accretion onto the black hole.

Also included in Fig. 6 are profiles of the flux F for an
evolution of our fiducial neutron star model without a black
hole. While these profiles show the same behavior as the
neutron star with the black hole in the outer parts of the star,
where the flux is dominated by a numerical adjustment of
the near-equilibrium initial data to the numerical grid, the
profiles are very different in the vicinity of the black hole.
This demonstrates that the plateau in the flux observed for

the evolution with the black hole indeed represents steady-
state accretion onto the black hole, rather than a numerical
artifact.

We record our numerical results for these accretion rates
in Table III. Note that, just like the accretion rate computed
in Sec. II1 C 2, the rate (71) represents a rate as measured by
an observer at a large distance from the neutron star, i.e., at
r> R. Comparing this rate with the rates computed in
Sec. II, which represented those measured by a “local
asymptotic” observer at Mgy < r < R, again requires this
local observer’s lapse function a, (see also Appendix A).

Also note that the accretion rate discussed in IIIC 2
measures changes in the black hole’s gravitational mass,
while the flux (71) measures the accretion of rest mass. In
our numerical simulations we find that the black hole’s
gravitational mass grows at a rate somewhat larger than the
rate of rest-mass accretion, which is presumably because
the former includes the accretion of other forms of energy
(in particular, internal thermal energy) in addition to rest-
mass energy.

IV. RESULTS

In this Section we compare our numerical results in
Sec. III for our fiducial neutron star model hosting black
holes with a wide range of different masses to our analytical
estimates in Sec. II.

A. Comparison with Bondi flow

We start with a comparison of fluid flow profiles. In our
numerical simulations, we focus on data in the vicinity of
the black hole, at sufficiently late times so that the fluid has
had enough time to settle down into steady-state accretion.
We compare these numerical results with those resulting
from a direct integration of the “relativistic Bondi-equa-
tions”, i.e., the equations describing spherically symmetric,
steady-state, adiabatic fluid flow in a Schwarzschild space-
time (see, e.g., Appendix G in ST and [23]).

Since the coordinates used in our code are different from
the Schwarzschild coordinates used in the usual construc-
tion of the steady-state Bondi solution, only scalar quan-
tities—for example the rest-mass density pp—can be easily
compared directly. In order to compare an invariant
measure of the fluid four-velocity u¢, we compute the
“gamma-factor” between an observer comoving with the
fluid and a “Killing observer”, i.e., a static observer whose
four-velocity is aligned with a timelike Killing-vector

& = 9/on,

o &uy, o Uy
Wé o (_fafa)lﬂ o (_g”)l/Z'

(72)

In Schwarzschild coordinates, this can be expressed as
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2M 1/2
We = agu'’s = (1 —£> u's

while, in our code, we evaluate

W —_ r
(a® = p.p")Y
with W = au’ and
1 ur ﬂr
T=_yryt = _— 42 75
o=t =+ 75)

where v’ is the spatial projection of the four-velocity u¢,
divided by W. Here we assume not only that the spacetime
is indeed approximately static, but also that the lapse a and
the shift #” render this spacetime in a coordinate system that
leaves the metric quantities nearly time-independent. Note
also that static observers exist only outside the black hole,
so that we can evaluate W, only for r 2 2Myy.

Finally, we can compare the flux (70) computed in our
code with the accretion rate (9) as predicted from the Bondi
solution. ~

We show such a comparison for M = 107 at (coor-
dinate) time ¢ = 1.59 x 103Mgy in Fig. 7. For the rest-mass
density py and the gamma-factor W, the curves agree so
well that they can hardly be distinguished in the figure. The
graphs for the accretion appear to differ more, but, at least
in part, that is because the scale of the y-axis spans a much
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FIG. 7. Comparison of our numerical fluid flow profiles

(dashed red lines) with those obtained from integrating the Bondi
equations (solid blue lines), for our fiducial neutron star model
hosting a black hole of initial mass Mpy(0) = 1.267 x 1070, at
time ¢ = 1.59 x 10°Mpy (see text for details). The open black
circles denote the location of the black hole horizon at r = 2Mpy,
where r is the areal radius, while the solid green dots mark the
location of the critical radius (which, in the Newtonian limit,
reduces to the location at which the fluid flow becomes
Supersonic).

smaller range for the (almost) constant functions displayed
in this panel. In fact, even the accretion rates agree to within
a small fraction of a percent in the vicinity of the black hole,
demonstrating that the accretion onto an endoparasitic
black hole inside a neutron star is well described by
relativistic Bondi accretion.

B. Final fate: Total consumption

For small initial black hole masses, the total accretion
times are far too long for us to simulate the consumption of
the entire neutron star numerically. We have therefore
performed simulations of such a complete consumption
only for sufficiently large initial black hole masses.

As an example, we show in Fig. 8 results from a simulation
with an initial black hole mass of Mg (0) = 0.0126. These
initial data have a total gravitational Arnowitt-Deser-Misner
(ADM) mass of M ypy = 0.1655, so that My (0)/M apy =
0.0761. Atearly times, the black hole mass grows steadily, at
arate similar to those predicted by the analytical estimates of
Sec. [T A 1. At around ¢ ~ 25M ,py\, however, the consump-
tion becomes dynamical, as described in Sec. I A 2. Once the
black hole has consumed the entire neutron star, its mass
settles down to a value that agrees to within less than 0.1%
with the initial ADM mass of the system, which confirms the
accuracy of our numerical simulations.

We also included in Fig. 8 the analytical estimates
resulting from the integrations of Sec. II C. Specifically,
the dashed line represents an estimate that includes the

1.04 .
i
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i
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i
i
2 {
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FIG. 8. The black hole mass Mgy as a function of coordinate
time ¢ in a simulation leading to complete collapse. The solid line
represents the numerical values of the black hole mass Mgy,
starting with the initial black hole mass Mgy (0) = 0.0126 and
Mgy (0)/Mspy = 0.0761. At late times, after the black hole has
consumed the entire neutron star, its mass agrees to high accuracy
with the initial total gravitational mass M spy. The dashed line
shows the analytical estimate (B16) that takes into account effects
of stellar evolution, while the dotted line shows the estimate (35)
that ignores these effects. In this comparison we have adopted the
value a, ~0.623, even though for these simulations the black-
hole mass is too large to identify a clean “plateau” like the one
shown in Fig. 5 (see text for details).
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effects of stellar evolution (see Sec. II C 2), while the dotted
line ignores stellar evolution (Sec. IIC 1).

We caution that these comparisons should be considered
qualitative for several reasons. Perhaps most importantly,
the initial ratio of the black hole to neutron star mass is too
large for the asymptotic region in the core just beyond where
the gas becomes bound to the black hole to be homogeneous,
as required by the Bondi model. In addition, the final phase of
accretion departs from secular to dynamical growth, and the
Bondi rates we adopted throughout break down. Also, all the
estimates of Sec. II are based on rates as observed by a “local
asymptotic”, static observer. Relating these “local” rates to
the “global” rates computed in the numerical simulations
requires the lapse function of a local observer, a, . While this
can be done rather well if Mgy < M, as shownin Fig. 5, such
alapse function can no longer be identified unambiguously if
Mgy < M. In fact, the entire notion of a local, static observer
in aregion with Mgy < r < R no longer applies during the
late stages. Finally, we used simple Newtonian arguments to
model effects of stellar evolution (see Sec. II B), which
clearly do not apply in the late-time, dynamical collapse.
Were we able to follow the entire evolution for an initial black
hole with Mgy < M the number of decades in both time and
increasing mass ratio during which the analytic curves
closely match the numerical tracks in Fig. 8 would be
considerably larger.

Despite all these disclaimers, we observe in Fig. 8 that
the qualitative agreement between the numerical results and
analytical estimates is reasonable. In particular, we see that
including the effects of stellar evolution does improve this
agreement. In these comparisons, we adopted the value
a, = 0.623 to convert from our analytic local to our
numerical global observers. This was the value that we
had identified for smaller black hole masses for this fiducial
neutron star. But as we discussed above, in reality this value
is no longer well defined at late times.

C. Accretion rates

We summarize in Table III results from our simulations
for a large range of initial black hole masses, spanning
seven orders of magnitude in Mgy /M. For each black hole
mass, we compute in our code the accretion rates MBH,
directly from the growth of the black hole mass (for
sufficiently large initial black holes) as discussed in
Sec. I C 2, and/or from the fluid flux, Mgy = F(ran),
as discussed in Sec. III C 3. We also identify the lapse a, of
a “local asymptotic” observer far inside the neutron star
(see Fig. 5 for an example), and then divide the above
“global” rates by this lapse in order to compute the rates
that such a local observer would measure. The latter can
also be estimated from the Bondi expression (44), the result
of which we list in the last column of Table III. The entries
in this Table are also shown in Fig. 1.

We clarify that, for the small black hole masses listed in
Table III, we do not track the evolution to completion, until

the entire star has been consumed, since doing so would
require following the star for many more dynamical time-
scales than is computationally feasible. Instead we evolve
the system for a coordinate time of approximately 10°M gy,
by which time the accretion has settled down into equi-
librium and we can accurately measure the accretion rate.

Most importantly we observe that the different measures
of the accretion rates agree well with each other. In our
numerical simulations of Sec. III, the flux of (baryon) rest
mass across the horizon agrees very well with the analytical
accretion rates computed from relativistic Bondi accretion
in Sec. II. Determining the accretion rate from the growth of
the black hole horizon, which provides a measure of the
increase in total gravitational mass, results in a somewhat
larger value, presumably because this includes internal
thermal energy in addition to rest-mass energy. Note,
however, that this observation holds only for early times,
while the accretion is described by Bondi accretion, and not
for the last dynamical phase, during which most of the mass
is accreted (see Fig. 8).

Finally, we note that the initial black hole mass Mgy (0)
agrees very well with the analytical estimate (67) with y. =
1.27 for our fiducial neutron star model (see Table II).

V. DISCUSSION

We study in detail the process by which a small
“endoparasitic” black hole, residing at the center of a
neutron star, consumes its host. While a number of aspects
of this problem have been studied before (see, e.g., [5,7.8]),
we expand on these treatments in a number of ways.

Building on our previous study of Bondi accretion for
stiff EOSs [23,24] we develop a quantitative analytical
description of this accretion process. In particular, this
allows us to determine the constant of proportionality in the
relation Mpy o Mz, that some previous authors had
adopted. We use these results to construct an approximate
analytic model that tracks the secular evolution of the
system as the black hole, assumed initially small, grows by
accretion and ultimately consumes the entire neutron star.

We also perform numerical simulations of this accretion
process, extending previous simulations (see [7]) to sig-
nificantly smaller ratios Mpy/M and simulating long
enough for the systems to achieve quasistationary accre-
tion. Our numerical code adopts spherical polar coordinates
(see [25,26]) with a logarithmic radial coordinate, which
allows us to adequately resolve the vastly different length
scales of the black hole and neutron star.

As shown in Fig. 1, our numerical results for the
accretion rates agree remarkably well with those computed
from relativistic Bondi accretion over many orders of
magnitude in Mgy /M. This establishes that the accretion
onto small black holes at the center of neutron stars is
indeed governed by secular Bondi accretion, and that the
lifetimes of such stars are determined by these accretion
rates. In particular, this supports our finding reported in
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[24] that this lifetime is close to a nearly universal
maximum lifetime that is roughly independent of the
properties of the neutron star and its EOS, and depends
on the initial black hole mass Mgy only.

As an important application, our results corroborate
arguments that use the current existence of neutron star
populations to constrain either the contribution of primordial
black holes to the dark matter content of the Universe, or that
of dark matter particles that may form black holes at the
center of neutron stars after they have been captured (see,
e.g., [1-8]). These constraints are based on the notion that,
given certain cosmological densities of these dark matter
constituents and their masses, neutron stars would capture
these objects and would then be consumed by the black holes
after times that are in conflict with the ages of old neutron star
populations. In particular, these arguments have been used to
constrain the contribution of PBHs in the mass range
10715 My < Mgy < 107° M, (see, e.g., [5,13]).
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APPENDIX A: BLACK HOLE METRIC AND
BONDI ACCRETION INSIDE A STAR

In this Appendix we generalize the Schwarzschild metric
so that it allows for an asymptotic region that is different
from the Minkowski metric. We then adopt this form of the
metric to describe approximately a small black hole
residing at the center of the neutron star, and to rederive
the equations governing Bondi flow in this context.

1. A general form of the Schwarzschild metric

Following Sec. 5.1 in [51], we write the spherically
symmetric, time-independent metric in vacuum as
ds* = —e*Adf* + e*BdR? + R*dQ?, (A1)

where, in this Appendix only, R is the areal radius (see 5.11
in [51], hereafter C5.11, except that we use A and B instead
of @ and S in order to avoid confusion with the lapse
function and the shift vector). We first evaluate the
combination e2(B~4)R. + Rpr, where R,, is the Ricci

tensor, in Einstein’s vacuum field equations. This yields
OrA + 0xB = 0 (see C5.16) and hence

A=-B+C, (A2)
where C is a constant of integration. We usually set this
constant to zero (see C5.17), which results in 7 being the
proper time of a static observer at R — oo, but here we will
allow C to remain nonzero, and will determine its value in
Sec. A 2 below.

We next evaluate Ry in Einstein’s equations, which now
takes the form

e? A (2RORA + 1) = &€ (A3)
(compare C5.18) and is solved by
e = 2 _ K (A4)
R

where x is another constant of integration. We usually
identify this constant with 2M, where M is the gravitational
mass of the black hole, but we will again postpone
determining this constant until Sec. A 2.

Using (A4) and (A2) in (A1) we now find

-2C -1
ds? = (e =5)a + (1-25) dr? + R2a0?
R R
(AS)

for the general form of the Schwarzschild metric. Evidently,
we recover the asymptotic-Minkowski form of the metric
for C =0 and x = 2M.

2. Identification of constants

We next identify the constants C and « in the metric (AS5)
by matching to our initial data describing a black hole
embedded inside a neutron star. We assume that the black
hole’s mass is small compared to the mass of the star,
Mgy < M, and will restrict our analysis to a region that is
large compared to My, but small compared to M (and the
radius of the neutron star). We may then approximate the
neutron star’s conformal factor as constant, yyg ~ .. (see
Table II and the discussion in Sec. III A), and may neglect u
in (52) (see Appendix C). We may also neglect the neutron
star’s contribution to the total mass-energy in this region, so
that the metric (A5) still provides an approximate solution
to Einstein’s equations, even though it was derived in
vacuum.

Recall that, in Sec. Il A, we construct the initial spatial
line element from

dli> = y*(dr* + r*dQ?), (A6)
where r is the isotropic radius, and, by our assumption
above, the conformal factor (52) reduces to
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M
y=vet s (A7)

Identifying (A6) with the spatial part of (AS), we obtain

rp? =R (A8)
and
20\ —1/2
<1—e ") dR = ydr=R™  (A9)
r
or
dR dr
Rl/2(R — e )12 - (A10)
Integration of both sides yields
e 2k
Dr:2<R+\/R2—Re‘2CK—2>, (A11)

where D is a constant of integration, which we can solve for

R to find
Dr e
R=—/1|1 . Al2
4 ( + Dr ) ( )
We next use (A8) to write
R\'/2  D'/? e 2Cxk
= |- =—11 Al3
() ) an
and compare this with (A7) to identify
D = 4y (A14)
and
e 2k = 2 M = 2M,,, (A15)

where we have used (67), derived under the same assump-
tions as our treatment here, in the last equality.

We now evaluate the time part of the metric (AS). In
particular, consider a ‘‘static asymptotic” observer as
introduced in Sec. II A 1, i.e., an observer at areal radius
R > M,,, but far inside the neutron star so that our
assumptions above apply. According to (AS), the proper
time of such an observer advances at a rate dz, = eCdt,
meaning that we may identify e with the lapse function of
such an observer, a,.

Finally, we can insert our results into (AS5) to find the
metric describing the spacetime in the vicinity of a black
hole embedded in a neutron star,

oM DM\ -
ds® = —az<1 —%> dr + (1 —%) dR>

+ R2dQ?, (A16)
where we have identified the black hole mass with its
irreducible mass, Mgy = M.

3. Bondi accretion

The equations governing Bondi accretion, i.e., the
continuity equation and the Euler equation of relativistic
hydrodynamics for stationary, adiabatic, and spherically
symmetric fluid flow, are usually derived assuming a
Schwarzschild metric that asymptotes to a Minkowski
metric. While our metric (A16) takes a slightly different
form, both the continuity equation and the Euler equation
take the exact same form. That means that the results for
relativistic Bondi accretion (as presented, for example, in
Appendix G of ST or in [23]) can be adopted without
change, provided that the black hole mass My is identified
with its irreducible mass M;;. In particular, the accretion
rate is given by Eq. (9).

There remains one ambiguity, however, namely the
meaning of the time derivative in MBH in the accretion
rate, i.e., whose time we refer to in this derivative. In order
to clarify this, we compute the radial component of the fluid
flux as observed by a static observer at an arbitrary radius R
outside the black hole horizon (i.e., not necessarily at
R > Mgy, but well inside the neutron star). Specifically,
we take the dot product between the fluid flux J = pou
(where we use bold-face to denote a vector) with the
orthonormal basis one-form @K = (1 — 2Mpy/R)~/2&F
to find

5 R -1/2
JR=aR.J = <1 R ) JR. - (A17)
We now multiply with —47R? and define u = —u® (which
is positive for inflowing matter) to obtain the accretion rate

dM /dr as measured by this observer,

dMBH o
dr

) -1/2
—47R?JR = 4zR? (1 > pou. (A18)

Since, for this observer, dr = a, (1 — 2Myy/R)"/?dt, we
may rewrite the above expression as

dm
BH _ 4ﬂa*R2p0u,

(A19)

which implies

dM
— 1 — 472Rpgu, (A20)

*
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where 7, is again the proper time of a static “local
asymptotic” observer. We see that the “usual” expression
for the Bondi accretion rate (e.g., 14.3.18 or G.21 in ST)
refers to a time derivative with respect to the time as
observed by a static asymptotic observer, which, in our
case, means a “local asymptotic” observer—far from the
black hole, but well inside the neutron star. In (9) and
elsewhere we emphasize this by denoting the time deriva-
tive with a star, Mpy = dMpgy/dr,. We also see that the
accretion rates observed by a local asymptotic observer and
an observer at infinity are related by

as we have observed already in (68).

APPENDIX B: INTEGRATION OF EQ. (32)

In this Appendix we outline how the differential equa-
tion (32) can be solved analytically.
We first separate variables to obtain

7/2d
dT = _yiyz (B1)
(vo =)
and then integrate to find
T=-I, (B2)

where we have assumed that the initial time is chosen to
vanish, 7; = 0, and where [ is given by

I / y7/2dy
= .
(Yo —Y)

This integral can now be integrated as follows.
Using partial fractions, we rewrite (B3) as

I / y'2dy
= e
()’0 —)’)
_ 3/2 ¥+ (o= y)* = (o —v)?
=1y 3 dy
(Yo =)
_ / 372 (0 =) + 2yy0 — ¥
()’0 —Y)

— ¥o/2
= /y3/2dy+2yo/y3/27y 2012 gy,
(o—v)

(B3)

dy

(B4)

Repeating the process twice more, we obtain

I= /y3/2dy+2yo/y”2dy+3y%/y‘”2dy

—3yo/4
+4y3/y"/2 y—y0/2 dy. (B5)
(Yo =)
We now split the last integral into two terms,
4y — 3o
3 -1/2
y / y dy
’ (yo—)?
\ yi/2 ) y1/2
=4y /7@ -3y /7@ (B6)
°J Go-y)? °J Go-y)
and use a hyperbolic trig substitution
y = y tanh? x (B7)
in both integrals, resulting in
3 y1/2 5/2 2
4y /741 =8y /sinh xdx  (BS8)
’ (vo—»)? 0
and
3yd / Ll/zdy = 6y>/? / cosh’® xdx.  (B9)
’ (yo—)? 0
Since
) I . X
sinh” xdx = 3 sinh x cosh x — 3 (B10)
and
5 | X
cosh xdxzismhxcoshx—i-i, (B11)

as can be seen using integration by parts, we can combine
results to find

4y -3
yg/y_l/zudy:y(s)/z(sinhxcoshx—%c). (B12)

(yo—y)2

We now rewrite sinh x cosh x in terms of tanh x and insert
the substitution (B7) to obtain

4y -3
yS/y‘“ziy Y0 dy

(Yo —Y)z
yl/z 5/2
=% oy tanh™ (y/uo)'/?. (B13)

Finally we insert this expression into (B5), and carry out the
remaining integrations to find
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2 4
1=y +2y0y"2 + 635y

5
y1/2 5/2
+ Y5 =Ty “tanh~!(y/y) /2. (B14)
Yo—Y
Combining the first four terms and using
1 1+x
tanh™! (x) = =1 , B15
anh! () = 31n (157 (B15)
we can also write this result as
[y 6y + 14y,y* + 70y(2)y - 105y(3)
15(y = o)
7 5/2 <y(l]/2 + y1/2>
=5y Inl =5——. (B16)
2 vt =y

Recall that 1 —y = (Mgy — Mgy (0))/M(0) measures the
fractional increase in the black hole mass [see Egs. (29) and
(30)], and that T = —I is proportional to the time as measured
by a local asymptotic static observer [see Eq. (31)].

APPENDIX C: AN APPROXIMATE ANALYTICAL
SOLUTION TO THE HAMILTONIAN
CONSTRAINT

In this Appendix we present an approximate but ana-
lytical solution to the Hamiltonian constraint (55),
D?u = =2a{(wns +wen + u)™ —y§"}p. - (C1)
We have solved this equation to high precision in Sec. IIT A,
and our goal here is not to reproduce that solution
quantitatively; instead, we adopt some simple arguments
that allow us to understand the qualitative behavior of the
solution u. In particular, we will find that u approaches zero
everywhere as Mgy /M — 0, which justifies neglecting u,
for example, in (62) and (A7).

In fact, we start by assuming that u < yyg, so that we
may neglect this term on the right-hand side of (Cl),
ultimately verifying the validity of this step by showing that
it is well satisfied by our final solution. We further
approximate the neutron-star conformal factor ywyg by
using its central value throughout the entire interior of
the star, i.e., for all » < R, and we replace the density p by
its average value p,. =p./0, where we adopt the
Newtonian central condensation § = 3.29 for a ' =2
polytrope (see Table I). While we will see that u does
indeed become arbitrarily small as M approaches zero, the
latter approximation is rather crude and introduces dis-
crepancies, but only of order unity.

We next observe that, even in the interior of the star, the
right-hand side of (C1) behaves differently depending on
whether wpgy or wys is greater. If ygy = M/(2r) > wys,
and assuming n < —5, we have

5+n S5+n S5+n S5+n S5+n

— YRS EWeH — YRS =y (C2)

(Wns + WeH)
On the other hand, if ypy < wys, We may expand

(wns + wan) " —yE" = (5 + n)y i wen- (C3)

Recognizing that ypy = ywyg at the approximate location
of the apparent horizon

(C4)

identified in (64), we may approximate Eq. (C1) as

S r << rAH
D>u={5/r rau<r<R (C5)
0 r>R,
where we have defined
s = 2nyE'p (C6)
and
§=—a(5+nyE"Mp=—(5+n)srag.  (C7)

Since D? is the flat Laplace operator in spherical symmetry,

_ 1 d du
Du=——|(r—), C8
YT (r dr) (C8)
piece-wise solutions to (C5) are given by
%srz + Cl r < rag
u — %S‘r—f—CH—}—% VAHST<R (C9)
S r > R.

r

Here we have assumed regularity at the origin r = 0 and
u — 0 as r - oo, and the four constants Cj, Cy, Dy, and
Cp are constants of integration. We can determine the latter
by requiring that both u and its first derivative are
continuous at both rpy and R. Evaluating these four
conditions yields

. 1
CI = —S(R— rAH) _ESFIZ\H

CII - —ER

Dy = l§r2 ——sr
2 AH 3 AH

1
5(rag — R?) — = srig- (C10)

1
Cm = 3

2
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approx.

0% 1073 107! 10"

FIG. 9. The numerical solution u for our fiducial neutron-star
model and M = 1075 with n = —6 (dashed line), together with
the approximate solution (C9) (solid line). The two vertical dotted
lines mark the approximate locations of the apparent horizon and
the stellar surface.

In Fig. 9 we compare the numerical solution for u, for
our fiducial neutron-star model and M = 1073, with the
approximate analytical solution (C9). As expected, the two
solutions do not agree quantitatively, but they nevertheless
show very similar qualitative behavior. Based on this
qualitative agreement we may make the following obser-
vations about the properties of solutions u to the
Hamiltonian constraint (55):

(1) The largest value of u, in magnitude, occurs at the

center, where it is dominated by the term

u. ~—5R x —pMR. (C11)

We see that u is proportional to M, and vanishes
everywhere in the limit M — 0. This justifies our
above approximation to neglect # on the right-hand
side of (C1), as well as in (62) and (A7).

(ii) Similarly, u is proportional to M at r ~ r,y, while
wpy is of order unity there. This justifies our
approximation in Sec. Il C 1 to neglect # when
computing an approximate location and area of the
apparent horizon in the limit M — 0.

(ii1) In the exterior of the star, the contribution of u to the
conformal factor is proportional to

U~ . (C12)

We now assume that, in the far-field, we can write
w14+ Mapy/(2r), and adopt a weak-field
approximation M apy ~ M + Mgy + U, where U
is the interaction energy, i.e., the potential energy
resulting from having placed a black hole at the
center of the neutron star. We then have

UEMADM_M_MBH

= 2”(‘/’ —YNs — WBH)

MM

:2ru~—pR2M~—T, (C13)

in accordance with the Newtonian expression for the
interaction energy.
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