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STABILIZATION OF THE RESPONSE OF CYCLICALLY LOADED LATTICE

SPRING MODELS WITH PLASTICITY ∗

Ivan Gudoshnikov1 and Oleg Makarenkov1

Abstract. This paper develops an analytic framework to design both stress-controlled and displacement-
controlled T -periodic loadings which make the quasistatic evolution of a one-dimensional network of
elastoplastic springs converging to a unique periodic regime. The solution of such an evolution problem
is a function t 7→ (e(t), p(t)), where ei(t) is the elastic elongation and pi(t) is the relaxed length of
spring i, defined on [t0,∞) by the initial condition (e(t0), p(t0)). After we rigorously convert the prob-
lem into a Moreau sweeping process with a moving polyhedron C(t) in a vector space E of dimension
d, it becomes natural to expect (based on a result by Krejci) that the elastic component t 7→ e(t)
always converges to a T -periodic function as t → ∞. The achievement of this paper is in spotting a
class of loadings where the Krejci’s limit doesn’t depend on the initial condition (e(t0), p(t0)) and so
all the trajectories approach the same T -periodic regime. The proposed class of sweeping processes
is the one for which the normals of any d different facets of the moving polyhedron C(t) are linearly
independent. We further link this geometric condition to mechanical properties of the given network
of springs. We discover that the normals of any d different facets of the moving polyhedron C(t)
are linearly independent, if the number of displacement-controlled loadings is two less the number
of nodes of the given network of springs and when the magnitude of the stress-controlled loading is
sufficiently large (but admissible). The result can be viewed as an analogue of the high-gain control
method for elastoplastic systems. In continuum theory of plasticity, the respective result is known as
Frederick-Armstrong theorem.
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1. Introduction

The classical theory of elastoplasticity offers comprehensive results, commonly known as shakedown theorems,
about the maximal magnitude of the applied loading (shakedown load limit) beyond which the response of
elastoplastic material necessarily involves plastic deformation regardless of the initial distribution of stresses
in the material, see [31, §10]. In other words, shakedown theorems measure the distance between the current
stress distribution in the material to a certain boundary (called yield surface) built of the spatially distributed
elastic limits. The fundamental result by Frederick and Armstrong [19] says that, if the amplitude of a T -
periodic loading exceeds the shakedown limit, then the stress distribution asymptotically approaches a unique
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T -periodic steady cycle which doesn’t depend on the initial stress distribution (uniqueness of the response).
Frederick-Armstrong highlight that convergence to a unique cyclic state is guaranteed when the yield surface
contains no lines of zero curvature [19, p. 159]. Assuming this or another restriction on the geometry of the
yielding surface (such as von Mises, Tresca, or Mohr-Coulomb criteria), many authors computed the steady cycle
by discretizing the problem spatially [21, 24, 41] and/or temporarily [47, 48, 56], and by solving the associated
minimization problems for the successive discrete states. For the convergence of the discretized problem as
the mesh gets smaller, see Crismale [18], Jakabcin [30], and references therein. Applications included the
performance of various structures and metal matrix composites under cyclic loadings, see [28,54].

Aiming to design materials with better properties, there has been a great deal of work lately where a discrete
structure comes not from an associated model of continuum mechanics, but from a certain microstructure
formulated through a lattice of elastic springs [5,42] (metals), [27,55] (polymers), [14] (titanium alloys), [32,51,52]
(biological materials). Despite of the fact that fatigue crack initialization in heterogeneous materials strongly
depends on local micro-plasticity (see e.g. Blechman [6]), the current literature features only numeric results
about the dynamics of the lattices of elastoplastic springs. Important papers in this direction are e.g. Buxton
et al [13] and Chen et al [15].

The goal of the present paper is to initiate the development of a qualitative theory of the lattices of elastoplastic
springs and to offer an analogue of the Frederick-Armstrong theorem for such systems.

We stick to the setting of ideal plasticity (the stress of each spring is constrained within so-called elastic limits
beyond which plastic deformation begins) and investigate the asymptotic distribution of the stresses s(t) =
(s1(t), ..., sm(t)) of a network of m elastoplastic springs. Starting with a graph of m connected elastoplastic
springs, the paper takes Moreau’s approach [45] to write down the equation for stress si of spring i without
any knowledge about plastic deformation of the spring and relying entirely on the geometry of the graph and
elastic limits [c−i , c

+
i ] of the springs. The plasticity is accounted through the m-dimensional parallelepiped-

shaped constraint C(t), whose boundary can be viewed as discretized yield surface, see Fig. 3. Beneficially for
the performance of computational routines, Moreau concluded that the stress-vector s(t) = (s1(t), ..., sm(t)) of
springs is confined within a time-independent low-dimensional hyperplane V . It is also due to Moreau that
external time-varying loadings enter the equations of dynamics through a time-varying vector c(t) that acts
as displacement of the parallelepiped C (Fig. 3). The only obstacle towards practical implementation of the
Moreau approach [45] in the context of spring network modeling is that [45] deals with abstract configuration
spaces. This paper clears this obstacle and fully adapts Moreau sweeping process framework to the modeling
of networks of elastoplastic springs.

After a suitable change of variables that we rigorously incorporate in the next section of the paper, the equations
of Moreau (Moreau’s sweeping process) can be formulated as

−y′(t) ∈ N(C+c(t))∩V (y(t)), y(t) ∈ Rm, (1)

where

NC(x) =

{
{ζ ∈ Rn : 〈ζ, c− x〉 6 0, for any c ∈ C} , if x ∈ C,
∅, if x 6∈ C (2)

is a normal cone to the set C at point x and V is a subspace of Rm. For Lipschitz-continuous t 7→ c(t) (which
we show to be the case when the external loading is Lipschitz-continuous) sweeping process (1) possesses usual
properties of the existence and continuous dependence of solutions on the initial conditions, see e.g. Kunze and
Monteiro Marques [38] (the interested reader can e.g. consult Adly et al [2] and Recupero [49] for the existence
of solutions under more relaxed assumptions about the regularity of C(·)).

An alternative approach that uses sweeping process for studying evolution of networks of elastoplastic springs
is offered in Bastien et al [3] (see also Brogliato [8, §2.3]). The approach of [3] leads to a sweeping process with
a parallelepipedal constraint while the constraint (C + c(t)) ∩ V can be a simplex (even though C + c(t) is a
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parallelepiped), which shape is in the heart of our stabilization analysis. We discuss this in Remark 3.6 in more
details.

When sweeping process (1) includes a vector field on top of the normal cone (so-called perturbed sweeping
process), multiple results are available to stabilize the dynamics of a sweeping process. Important results in this
direction are obtained in Leine and van de Wouw [39,40], Brogliato [9], and Brogliato-Heemels [10], Kamenskiy
et al [33].

As for the regular sweeping process (1), very limited tools to control the asymptotic response are currently
available (in contrast to optimal control results developed e.g. in Colombo et al [16]). The asymptotic behavior
of sweeping process (1) with T -periodic excitation t 7→ c(t) was studied in Krejci [36], who proved the convergence
of solutions of (1) to a T -periodic attractor in the case V = Rm, i.e. (C+c(t))∩V = C+c(t). If sweeping process
(1) decomposes into a Cartesian product of several sweeping processes (1) with m = 1, the global asymptotic
stability can be concluded from the theory of Prandtl-Ishlinskii operators (Brokate-Sprekels [12], Krasnosel’skii-
Pokrovskii [35], Visintin [53]). In the case of an arbitrary T -periodic polyhedron t 7→ (C + c(t)) ∩ V , it looks
possible to follow the ideas of Adly et al [1] and obtain global asymptotic stability of a periodic solution by
assuming that g(t) lies strictly inside the normal cone N(C+c(t))∩V (y) for at least one y and t ∈ [0, T ]. The
present paper takes a different route and establishes convergence of solutions to a unique T -periodic regime in
terms of the shape of the moving constraint (C + c(t)) ∩ V only.

The paper is organized as follows. The next section rigorously formulates the system of laws of quasistatic
evolution for a one-dimensional network of m elastoplastic springs on n nodes. In section 3 we construct the
vector c(t) and the hyperplane V for arbitrary networks of elastoplastic springs of 1-dimensional nodes. We
discover that the functions g(t) ∈ V and h(t) ⊥ V in the orthogonal decomposition of c(t) (see Fig. 3) correspond
to displacement-controlled and stress-controlled loadings respectively (as termed in [28]). The achievement of
Section 2 makes it possible to link the dynamics of networks of elastoplastic springs to the dynamics of sweeping
processes.

In Section 4 we consider a general sweeping process with a moving set of a form ∩Mj=1(Cj + cj(t)), where Cj
are closed convex sets, and prove (Theorem 4.3) the convergence of all solutions to a T -periodic attractor X(t).
Section 4.2 (Theorem 4.8) sharpens the conclusion of Theorem 4.3 for the case when ∩Mj=1(Cj + cj(t)) is the
polyhedron Π(t) ∩ V. Theorem 4.8 shows that even though X(t) may consist of a family of functions, all those
functions exhibit certain similar dynamics. Specifically, we prove that any two function x1, x2 ∈ X reach (leave)
any of the facets of Π(t) ∩ V at the same time. Section 4.3 (Theorem 4.10) reformulates the conclusion of
Theorem 4.8 in terms of the sweeping process of a network of elastoplastic springs.

Section 5 introduces a class of networks of elastoplastic springs whose stresses converge to a unique T -periodic
regime regardless of applied T -periodic loadings as long as the magnitudes of those loadings are sufficiently large.
We begin Section 5 by addressing a general sweeping process in a vector space E of dimension d with a T -periodic
polyhedral moving set with no connection to networks of springs. Theorem 5.1 of Section 5.1 states that the
periodic attractor of such a sweeping process contains at most one non-constant solution, if normals of any d
different facets of the moving polyhedron C(t) are linearly independent. Section 5.2 is the main achievement of
this paper, where we introduce a class of networks of elastoplastic springs for which the condition of Theorem 5.1
can be easily expressed in terms of the magnitudes of the periodic loadings. We discovered (Theorem 5.4) that
global stability of a unique periodic regime occurs when both displacement-controlled and stress-controlled
loadings are large enough. A conclusions sections concludes the paper.

Appendixes A-D follow the main text of the paper. In Appendix A we clarify how our system (3)-(7) for
quasi-static evolution of the elastic elongations and relaxed lengths of springs can be obtained from the abstract
framework by Moreau [45]. Appendix B quotes some standard results from graph theory, linear algebra, and
convex analysis, that are used in the paper. Appendix C is devoted to the proof of the above-mentioned Krejci
convergence theorem (following [36]). Finally, Appendix D includes a figure that illustrates the structure of
configuration space Rm and the construction of the variables used in Theorem 3.1.
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2. Laws of quasistatic evolution for one-dimensional networks of
elastoplastic springs

We consider a one-dimensional network of m elastoplastic springs of lengths ej +pj , j ∈ 1,m, where ej is elastic
elongation and pj is the relaxed length respectively. Spring j is elastoplastic in the sense that the relaxed length
pj changes when the stress of the spring attempts to exceed certain bounds. The bounds of the stress of spring
j are denoted by [c−j , c

+
j ] and aj stays for the Hooke’s coefficient of this spring. Each spring connects two of n

nodes according to ej + pj = ξψj
− ξφj

, where φj and ψj are the indices of the left and right nodes of spring j
respectively and ξi is the position of node i. So defined, the one-dimensional network of springs is an oriented
graph on n nodes, where spring j is a directed edge of the graph that points from node φj to node ψj (i.e.
always points to the right).

The paper investigates the evolution of the stresses under the influence of two types of loadings being displacement-
controlled loading and stress-controlled loading.

2.1. Displacement-controlled loading

Displacement-controlled loading lj(t) locks the distance between nodes Φk and Ψk through k ∈ 1, q according
to the rule

ξΨk
− ξΦk

= lk(t).

Since we will work with connected graphs of springs only, we assume that for each displacement-controlled
loading k ∈ 1, q, there exists a directed path of springs which connects the left node Φk of constraint k with
its right node Ψk. Assume that spring j belongs to the path. We say that spring j agrees with the direction
of the path, if one passes node φj before passing node ψj , when following the path in positive direction. And
we say that spring j disagrees with the direction of the path, if one passes node ψj before passing node φj ,
when following the path in positive direction. With each displacement-controlled loading k we can, therefore,
associate a so-called incidence vector Rk ∈ Rm whose j-th component Rkj is −1, 0, or 1, according to whether
spring j belongs to the path and disagrees with the direction of the path, doesn’t belong to the path, or belongs
to the path and agrees with the direction of the path, see Fig. 1 (we refer the reader to Appendix B for an
analytic definition based on Bapat [4, p. 57]).

  

Figure 1. Illustration of the signs of the components of the incidence vector Rk ∈ Rm. The dotted contour
stays for the directed path of springs associated with the vector Rk. This figure also illustrates that, by
construction, the orientation of the cycle obtained by replacing lk(t) by a virtual spring on nodes Φk < Ψk

(used in the proof of Theorem 3.1) always disagrees with the orientation of the virtual spring (which by our
convention points from node Φk to node Ψk, see the beginning of Section 2). In what follows, we call the axis

of spatial dimension directed from left to right a “ξ-axis”.
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Since the length of spring j equals ej + pj , we can use the incidence vector Rk to write the following equation
of displacement-controlled loading which takes into account the given length lk(t):

(Rk)T (e+ p) = lk(t).

Note, the constant Rkj is computed based on the order in which nodes φj and ψj are encountered when following
some path of springs from node Φk to node Ψk. Since this order doesn’t depend on the direction of the ξ-axis,
we conclude that the value of Rkj doesn’t depend on the direction of the ξ-axis either.

2.2. Stress-controlled loading and quasi-static balance

Stress-controlled loading fi(t) models external forces applied at node i. The resultant force at node i is a sum
of 3 forces:

(a) the resultant of the stresses of all springs applied at node i,
(b) the resultant force of all displacement-controlled loadings applied at node i,
(c) the stress-controlled loading fi(t).

In contrast with section 2.1, the constructions of the current section do depend on the direction of the ξ-axis.
In what follows, saying “to the right (respectively left)” means “in the positive (respectively negative) direction
of the ξ-axis”. The force fi(t) is drawn pointing to the right or to the left according to whether the sign of fi(t)
is positive or negative. In particular, the force fi(t) drawn in Fig. 2 is of positive sign.

  
Figure 2. The 3 possible types of forces applied at node i : (a) elastoplastic spring number j, (b) displacement-

controlled loading number k, and (c) stress-controlled loading number i. The figure also illustrates the definition

of sji and rki that we use to write down the equation of quasi-static balance. The circled “i” means “node i”

in the figure. Networks of elastoplastic systems combine several of the 5 configurations mentioned at one node,

see e.g. Fig. 6 below.

To compute the resultant of the forces of springs applied at nodes, we introduce n-dimensional vectors sj =
(sj1, . . . s

j
n)T , j ∈ 1,m, where sji = −1, sji = 0, or sji = 1, according to whether spring j is applied to the left

from node i, not applied to node i, or applied to the right from node i. Recalling that the stresses of the springs
are s1, ..., sm, the resultant force of all springs applied at node i reads as

s1s
1
i + . . .+ sms

m
i .

Similarly, to compute the resultant force of the displacement-controlled loadings at nodes, we introduce the
n-dimensional vectors rk = (rk1 , . . . r

k
n)T , k ∈ 1, q, where rki = −1, rki = 0, or rki = 1, according to whether

the displacement-controlled loading k is applied to the left from node i, not applied to node i, or applied to
the right from node i (see Fig. 2). Denoting by rk the reaction of the displacement-controlled loading k, the
resultant force of all displacement-controlled loadings applied at node i can be computed as

r1r
1
i + . . .+ rqr

q
i .
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Therefore, the assumption of quasi-static balance at node i reads as

s1s
1
i + . . .+ sms

m
i + r1r

1
i + . . .+ rqr

q
i + fi(t) = 0

or, in the vector form, for all nodes simultaneously

s1s
1 + . . .+ sms

m + r1r
1 + . . .+ rqr

q + f(t) = 0.

2.3. The combined system for the evolution of elastic elongations and relaxed lengths

With the notations introduced the quasistatic evolution of the stresses sk of springs and reactions rk of
displacement-controlled loadings can be described by the following variational system (which corresponds to
equations (6.1)-(6.6) in the abstract framework by Moreau [45], see Appendix A)

Elastic elongation: s = Ae, (3)

Relaxed length (plastic deformation): ṗ ∈ NC(s), (4)

Geometric constraint: e+ p ∈ DRn, DRn = {Dξ : ξ ∈ Rn} (5)

Displacement-controlled loading: RT (e+ p) = l(t), (6)

Static balance under stress-controlled loading: s1s
1 + . . .+ sms

m + r1r
1 + . . .+ rqr

q + f(t) = 0, (7)

where

s = (s1, . . . sm)T — stresses of springs,

r = (r1, . . . rq)
T — reactions of displacement-controlled loadings,

e = (e1, . . . em)T — elastic elongations of springs,

p = (p1, . . . pm)T — relaxed lengths of springs,

l(t) = (l1(t), . . . , lq(t))
T

— enforced lengths between the nodes Φk and Ψk, k ∈ 1, q,

f(t) = (f1(t), . . . , fn(t))
T

— stress-controlled loadings acting at nodes 1, ..., n,

A = diag(a1, ..., am) — matrix of Hooke’s coefficients, aj > 0, j ∈ 1,m,

C =
m∏
j=1

[c−j , c
+
j ] — set of vectors within bounds c−j 6 c

+
j , j ∈ 1,m, i.e. admissible stress values,

NC(s) =
m∏
j=1

N[c−j ,c
+
j ](s) — the normal cone to C at s,

Dξ =
(
ξψj
− ξφj

)m
j=1

— a linear map (represented by an m× n-matrix D of elements from {−1, 0, 1})
that defines the graph of springs,

R =
(
R1, . . . , Rq

)
— m× q-matrix of the incidence vectors (of elements from {−1, 0, 1})

of displacement-controlled loadings.

Our construction of equations (3)-(7) above is inspired by the ideas of Moreau [45, §3] and follows some of
Moreau’s constructions (specifically, the definition of matrix D and quasi-static balance (7)), who considered
so-called lattices of “bars”. Moreau discusses different types of bars in [45, §3], but not elastoplastic springs.
Plasticity is discussed in [45, §4], but in the context of frictional contacts. In [45, §6] Moreau setups an abstract
framework [45, formulas (6.1)-(6.6)] that he calls an elastoplastic system and which includes our system (3)-(7),
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see Appendix A. In particular, the law of plastic deformation (4) is taken from Moreau [45, §6, p. 303], see also
Han-Reddy [23, p. 109]. Moreau mentions that his abstract framework is applicable when the bars of [45, §3] are
elastoplastic springs, but only a short paragraph is devoted to the details of this approach, see [45, §6, p. 304].
In particular, understanding that, for the case of lattices of springs, the term g(t) corresponds to displacement-
controlled loadings, is one of the findings of the present paper (as far as the modeling side is concerned).

The m × n-matrix D will be termed the kinematic matrix of the one-dimensional network of m springs on n
nodes. Note, the matrix −DT is the incidence matrix of the associated oriented graph of n nodes and m edges,
see Appendix B.

Following Moreau [45], we term system (3)-(7) an elastoplastic system.

3. Casting the elastoplastic system as sweeping process

3.1. Derivation of the sweeping process

In order for (6) to be solvable in e + p we assume that the displacement-controlled loadings {lk(t)}qk=1 are
independent in the sense that

rank
(
DTR

)
= rank

(
RTD

)
= q. (8)

Mechanically, condition (8) ensures that the displacement-controlled loadings don’t contradict one another. For
example, (8) rules out the situation where two displacement-controlled loadings connect same pair of nodes. It
follows from condition (8) that the matrix equation

RTDL = Iq×q. (9)

has a n× q matrix solution L. Furthermore, as we show in the proof of Theorem 3.1, in order for equation (7)
to be solvable in s ∈ Rm and r ∈ Rq, the function f(t) must satisfy f(t) ∈ DTRm, see formula (30). That is
why we assume f(t) to be given as

f(t) = −DT h̄(t) (10)

for a known function h̄ : [0,∞)→ Rm. As we further clarify in Remark 3.5, assumption (10) is equivalent to

f1(t) + ...+ fn(t) = 0. (11)

Introducing

U =
{
x ∈ DRn : RTx = 0

}
, V = A−1U⊥, (12)

where

U⊥ = {y ∈ Rm : 〈x, y〉 = 0, x ∈ U} , (13)

the space V will be the orthogonal complement of the space U in the sense of the scalar product

(u, v)A = 〈u,Av〉 . (14)

Therefore, any element x ∈ Rm can be uniquely decomposed as

x = PUx+ PV x,
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where PU and PV are linear (orthogonal in sense of (14)) projection maps on U and V respectively. Define

g(t) = PVDLl(t), (15)

h(t) = PUA
−1h̄(t), (16)

NA
C (x) =

{
{ξ ∈ Rm : 〈ξ, A(c− x)〉 6 0, for any c ∈ C} , if x ∈ C,
∅, if x 6∈ C,

Π(t) = A−1C+h(t)− g(t), (17)

and consider the following differential inclusions

−ẏ ∈ NA
Π(t)∩V (y), (18)

ż ∈
(
NA

Π(t)(y) + ẏ
)
∩ U, (19)

with initial conditions

y(0) ∈ Π(0) ∩ V, (20)

z(0) ∈ U. (21)

The function g(t) will be termed the effective displacement-controlled loading. Similarly, h(t) is termed the
effective stress-controlled loading.

In what follows we are going to establish an equivalence between systems (3)-(7) and (18)-(21). Solvability of
sweeping process (18) is discussed in Section 4.1. Solvability of the sweeping process (18) that comes from an
abstract infinite-dimensional elastoplastic model (rather than from a discretized version modeling a network of
springs) is addressed in Crismale [18].

According to Moreau [45, Proposition of §6.d], the problem (19), (21) admits an absolutely continuous (possibly
non-unique) solution z on [0, T ] for any absolutely continuous solution y of (18), (20) defined on [0, T ]. The
analysis of the dynamics of the elastic elongation e(t) therefore reduces to the analysis of the solution y of the
sweeping process (18). In particular, stabilization of (18) will imply stabilization of both elastic elongations
e(t) = (e1(t), ..., em(t))T and stresses s(t) = (s1(t), ..., sm(t))T of springs.

Theorem 3.1. Let D be the kinematic matrix of a connected network of m elastoplastic springs on n nodes. Let
R be a matrix of incidence vectors of q displacement-controlled constraints, which are independent in the sense
of (8). Assume that stress-controlled loading t 7→ h(t) and displacement-controlled loading t 7→ l(t) are both
absolutely continuous functions. Assume that the stress-controlled loading doesn’t exceed the safe load bounds,
i.e.

(C+Ah(t)) ∩ U⊥ 6= ∅, for all t ∈ [0, T ], (22)

holds for C, U and h as defined in (4), (12), and (16). If absolutely continuous functions (s(t), e(t), p(t), r(t))
satisfy (3)-(7) a.e. on [0, T ], then the absolutely continuous functions

y(t) = e(t)+h(t)− g(t),
z(t) = e(t) + p(t)+h(t)− g(t)

(23)

satisfy (18)-(21) a.e. on [0, T ]. Conversely, if absolutely continuous functions (y(t), z(t)) satisfy (18)-(21) a.e.
on [0, T ], then (e(t), p(t)) found from (23) solve (3)-(7) a.e. on [0, T ] with s(t) = Ae(t) and with some suitable
r(t).

We refer the reader to Han-Reddy [23] for formulations of the safe load condition (22) in the context of classical
(continuum) theory of plasticity.
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Remark 3.2. Since PUg(t) = 0, assuming (22) is equivalent to assuming Π(t) ∩ V 6= ∅, t ∈ [0, T ].

Remark 3.3. Since 0 ∈ U⊥, condition (22) always holds when h(t) ≡ 0 and 0 ∈ C. Geometrically, condition
(22) means that the parallelepiped Π(t) and the hyperplane V in Fig. 3 do intersect. Mechanically, condition
(22) accounts for the fact that the stresses of the elastoplastic springs are bounded and cannot balance arbitrary
large stress-controlled loadings.

C(t1)

C(t)П(t)
0

h(t)

Vg(t)

Figure 3. Moving constraint for different values of time. Vectors g(t) ∈ V, h(t) ∈ U are
orthogonal in the sense of (14).

Remark 3.4. The function g(t) and the matrix PVDL don’t depend on the choice of matrix L. Indeed, let

g̃(t) be the function g(t) obtained by replacing L by L̃. Then using (9) and (12) we get

0q×q = RTD(L− L̃) = RT (PUD(L− L̃) + PVD(L− L̃)) = RTPVD(L− L̃),

so PVD(L− L̃)Rq ⊂ U . Therefore, PVD(L− L̃) = 0m×q and PVDL = PVDL̃. The conclusion g(t)− g̃(t) = 0
follows from (15).

Remark 3.5. Note, the existence of representation (10) is equivalent to the validity of (11). Indeed, since
dim KerD + rankD = n, by the rank-nullity theorem ( [20, Theorem 2.3], see also Appendix B) and rankD =
n − 1 by Bapat [4, Lemma 2.2] (the rank of the incidence matrix of a connected graph is one less the number
of nodes, see also Lemma B.2 in Appendix B), one has dim KerD = 1. Since, by definition, every row of D
contains exactly two nonzero elements 1 and -1, it holds D(1, ..., 1)T = 0. Therefore, DTRm = (KerD)⊥ =
{x∈ Rn : (1, ..., 1)x = 0} . In other words, if f(t) = −DT h̄(t) for some h̄(t) then (1, ..., 1)f(t) = 0. Conversely, if
(1, ..., 1)f(t) = 0, then f(t) ∈ DTRm, which means the existence of h̄(t) such that f(t) = −DT h̄(t).

Remark 3.6. An alternative framework that associates a sweeping process with the relations (3)-(7) is offered in
Bastien et al [3]. This alternative approach describes the elastic component e(t) through a differential inclusion
of the form

−ζ̇ ∈ NC+c(t)(ζ) + F (ζ), (24)

where C is a parallelepiped and c(t) is a single-valued vector-function. Sweeping process (24) can be converted
to

−σ̇ ∈ NC(σ) +G(t, σ). (25)

To investigate the existence and uniqueness of solutions to (25) Bastien et al [3] uses the theory of differential
inclusions with time-independent maximal monotone operators (specifically [3, Theorem 2.11]). The sweeping
process (18) (coming from the approach by Moreau [45]) cannot be converted to (24) or (25). At the same
time, [3, Theorem 2.11] can probably be extended to differential inclusions with time-varying maximal monotone
operators and applied to the analysis of the existence and uniqueness of solutions to (18). Considering a moving
constraint of the form Π(t) ∩ V as opposed to C + c(t) is essential for the present paper because we achieve
stabilization of (18) by providing a class of elastoplastic systems where the parallelepiped Π(t) reduces to a
simplex upon an intersection with V (see Theorem 5.4). As a matter of fact, the parallelepiped C + c(t) of (24)
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is a simplex only in dimension 1. We stress that for the purpose of mere existence and uniqueness of the elastic
elongation e(t) of elastoplastic system (3)-(7) both Bastien et al [3] and Moreau [45] approaches work equally
well.

Remark 3.7. The work by Brogliato-Thibault [11] may serve as a framework as for how sweeping process
(18) can be converted into an equivalent complementarity system, which will provide a connection between
elastoplastic systems and complementarity problems.

In Appendix D we offer a diagram (Fig. 11) that illustrate the construction of the spaces U, V and the moving
set Π(t) ∩ V .

Proof of Theorem 3.1. The system of (5) and (6) is equivalent to

e(t) + p(t) ∈ U l(t), where U l(t) =
{
x ∈ DRn : RTx = l(t)

}
. (26)

Applying the both sides of (9) to l(t), we get RTDLl(t) = l(t), which implies DLl(t) ∈ U l(t). Therefore,

U l(t) = U +DLl(t)

and (26) can be rewritten as

e(t) + p(t) ∈ U +DLl(t),

or, equivalently,

e+ p ∈ U + g(t). (27)

We will now make use of the quasi-static balance (7), which is currently formulated at nodes. We will now
rewrite it at springs to obtain a new inclusion for the elongations of springs complementary to (27).

By the definition of matrix D, the j-th column of DT has +1 (respectively −1) for the line i, if i-th node is the

right (respectively left) endpoint of spring j, see the illustration at fig. 4. On the other hand sji = +1, if node i

is the left end of spring j and sji = −1 if node i is the right end of spring j, see Fig. 2. Therefore,

s1s
1 + . . .+ sms

m = −DT s. (28)

 

 

 

 

 

j-th
 sp

rin
g

 























TD
i-th node +1 

j-th
 sp

rin
g

 























TD
i-th node –1 

aj 

i-th node i-th node 

aj 

Figure 4. The meaning of the columns and rows of matrix DT . The cell equals +1, if the i-th node is the

right endpoint for spring j. Conversely, the cell equals −1, if the i-th node is the left endpoint for spring j.

We now claim that the resultant force of the displacement-controlled loadings can be rewritten through the
matrix DT as follows

r1r
1 + . . .+ rqr

q = −DTRr, where r = (r1, . . . , rq)
T
. (29)
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Indeed, by the definition of vector rk ∈ Rn, the matrix

(
−D

(rk)T

)T
is the incidence matrix of the oriented

graph of springs s1, ..., sm on nodes 1, ..., n supplemented with a virtual spring connecting the nodes of the
displacement-controlled loading k (see Appendix B for the definition of incidence matrix). We can now use this
virtual spring in order to close the path of springs given by the incidence vector Rk and to obtain an oriented
cycle whose orientation disagrees with the direction of the virtual spring, see Fig. 1. The incidence vector of this

cycle is

(
Rk

−1

)
(see Appendix B for the definition of incidence vector). Therefore, according to Bapat [4, p. 57]

(see also Lemma B.1 in Appendix B), we now have(
−D

(rk)T

)T (
Rk

−1

)
= 0, k ∈ 1, q,

from which (29) follows. Using representations (28) and (29) the equation of quasi-static balance (7) can be
rewritten as

−DT s−DTRr + f(t) = 0, (30)

which proves that the stress-controlled loading f(t) always needs to admit a representation (10) for the equation
of quasi-static balance (7) to hold. Using (10) the equation (30) further transforms to

−DT s−DTRr −DT h̄(t) = 0, (31)

which has a solution (s(t), r(t)) if and only if

s(t) +Rr(t) + h̄(t) ∈ Ker DT .

Keeping s(t) fixed, the latter inclusion can be solved for r(t) ∈ Rq if and only if

s(t)+h̄(t) ∈ Ker DT +RRq = (DRn)
⊥

+
{
x ∈ Rm : RTx = 0

}⊥
=
(
DRn ∩

{
x ∈ Rm : RTx = 0

})⊥
= U⊥, (32)

see e.g. Friedberg et al [20, Exercise 17, p. 367] for the property Ker DT = (DRn)
⊥

. If s(t) satisfies (32), then
by (16)

s(t) + Ah̄(t) = s(t) + A
(
PUA

−1h̄(t) + PVA
−1h̄(t)− PVA−1h̄(t)

)
∈

∈ s(t) + AA−1h̄(t) + AV = s(t) + h̄(t) + U⊥ ∈ U⊥. (33)

Vice versa, if s(t) satisfies (33) then

s(t) + h̄(t) = s(t) + A
(
PUA

−1h̄(t) + PVA
−1h̄(t)

)
= s(t) + Ah(t) + APVA

−1h̄(t) ∈ U⊥,

which is (32). By applying A−1 to (33), we get

e+ h(t) ∈ V. (34)

In the remainder of the proof we use derivatives of absolutely continuous functions which exist a.e. on [0, T ].
When using the derivative we implicitly assume that the derivative is being computed at a point of [0, T ] where
it exists. Since g(t) ∈ V and h(t) ∈ U we can rewrite (27), (34) and (4) as

e+ p− g(t) + h(t) ∈ U,

e+ h(t)− g(t) ∈ V,

ṗ ∈ NC(Ae).
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Introducing the change of the variables and using the substitutions p = z − y and e = y − h(t) + g(t),

ż − ẏ ∈ NA
A−1C(y − h(t) + g(t)),

z ∈ U,
y ∈ V.

(35)

Let (y, z) be a solution of (35). Since z ∈ U we have −ż ∈ −U = U = V ⊥A = NA
V (y), where V ⊥A is the

orthogonal complement of V in the sense of the scalar product (·, ·)A, and the inclusion (18) computes as
follows:

−ẏ ∈ NA
A−1C(y − h(t) + g(t))− ż ∈ NA

A−1C+h(t)−g(t)(y) +NA
V (y) = NA

(A−1C+h(t)−g(t))∩V (y),

where the last equality holds due to (22) (where both intersecting sets are polyhedral, we use Rockafellar [50,
Corollary 23.8.1], see also Appendix B). The inclusion (19) follows by combining

ż = ż − ẏ + ẏ ∈ NA
A−1C+h(t)−g(t)(y) + ẏ,

with the property z(t) ∈ U observed in (35). Vice versa, if (y, z) is a solution of (18)-(19), then

−y ∈ V,
ż ∈ NA

A−1C+h(t)−g(t)(y) + ẏ,

ż ∈ U,

which implies (35) when combined with (21). �

We acknowledge that the ideas of the proof of Theorem 3.1 are due to Moreau [45], who however worked in
abstract configuration spaces and only briefly mentions how to relate sweeping process (18) to networks of
elastoplastic springs (3)-(7). In Appendix A we show how our system (3)-(7) can be derived from the Moreau’s
framework.

Formulas (15)-(17) establish a connection between mechanical properties of applied loading and geometric
properties of the moving constraint Π(t) ∩ V . Specifically, varying the stress-controlled loading f(t) moves
Π(t) in the direction perpendicular to V in the sense of the scalar product (14). In contrast, varying the
displacement-controlled loading l(t) moves Π(t) in the direction parallel V. We also see that the variety of
possible perpendicular motions coming from f(t) is limited by the dimension of the space U, which will be
computed in section 3.3 (Lemma 3.8). The dimension of possible directions for the parallel motion in V is not
always dimV, but is related to the rank of matrix L̄, which we compute in section 3.5, see formula (53).

3.2. A polyhedral description of moving sets for elastoplastic systems and reduction to
subspace V

In this section we rewrite the moving set Π(t) ∩ V and sweeping process (19) in a slightly different form which
is more suitable for further analysis. From

A−1C =
m⋂
j=1

{
x ∈ Rm :

1

aj
c−j 6 xj 6

1

aj
c+j

}

we have

A−1C + h(t)− g(t) =
m⋂
j=1

{
x ∈ Rm : c−j + ajhj(t) 6 〈ej , Ax+Ag(t)〉 6 c+j + ajhj(t)

}
,
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where ej ∈ Rm is the vector with 1 in the j-th component and zeros elsewhere. Since g(t) ∈ V, one has

〈ej , Ax+Ag(t)〉 = 〈PUej + PV ej , Ax+Ag(t)〉 = 〈PV ej , Ax+Ag(t)〉 , x ∈ V,

and we conclude

Π(t) ∩ V =
m⋂
j=1

{
x ∈ V : c−j +ajhj(t)6 〈nj , Ax+Ag(t)〉6 c+j +ajhj(t)

}
, (36)

where nj = PV ej , i.e. nj are the columns of the projection matrix PV .

Furthermore, since y(t) ∈ V for all t and y′(t) ∈ V for a.a. t we can restrict the normal cone from (18) to the
normal cone defined within the subspace V , which also appears to be the intersection of the original normal
cone with V :

NV
C (x) := NA

C (x) ∩ V =

{
{ξ ∈ V : 〈ξ, A(c− x)〉 6 0, for any c ∈ C} , if x ∈ C,
∅, if x 6∈ C.

Therefore we can restrict sweeping process (18) to the following one which is defined solely within V :

−ẏ ∈ NV
Π(t)∩V (y). (37)

In the following chapters we are going to analyze the dynamics of sweeping process (37) with the moving set in
form (36).

3.3. Sweeping processes of particular elastoplastic systems

In this section we consider a particular network of elastoplastic springs and offer a guideline that can be used
to derive the associated sweeping process (18) in closed form.

The following lemma will be used to compute the dimension of U.

Lemma 3.8. If (8) is satisfied, then
dimU = n− q − 1. (38)

Proof. Let E = DRn. Viewing RT as a linear map from E to Rq the rank-nullity theorem (Friedberg et
al [20, Theorem 2.3], see also Appendix B) gives

dim KerRT + rankRT = dimE,

where dim KerRT = dimU by (12), rankRT = q by (8), and dimE = n− 1 by Bapat [4, Lemma 2.2] (see also
Lemma B.2 in Appendix B). �

  
Figure 5. The minimal elastoplastic system with dim U = 0.

Lemma 3.8 highlights that if the displacement-controlled loadings are independent in the sense of condition (8)
and if the number q of displacement-controlled loadings is 1 less the number of nodes n, then dim U = 0 and so
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the stress-controlled loadings have no influence on the dynamics of the system. The minimal elastoplastic system
that illustrates the situation dim U = 0 is drawn at Fig. 5 (resembling Brogliato [8, p. 258, Example 5.3]). The
stress-controlled loading l(t) locks the dynamics completely and the forces f1(t) and f2(t) have no influence on
the system. To construct the sweeping process (18) we compute that

D = (−1, 1), R = 1, U = {0}, V = R, h(t) = 0, g(t) = 1 · (−1, 1)(0, 1)T l(t) = l(t),

where we used that the matrix L satisfying (9) can be taken as L = (0, 1)T . Therefore,

Π(t) ∩ V =
(
(1/a)[c−, c+]− g(t)

)
∩ R = (1/a)[c−, c+]− l(t)

and sweeping process (18) corresponding to elastoplastic system of Fig. 5 takes the form

−ẏ ∈ N[
c−
a −l(t),

c+

a −l(t)
](y), where y(t) = e(t)− l(t),

and e(t) denotes the elastic elongation of the spring of Fig. 5.

For the rest of the paper we work with an example where dim U > 0 (and we are particularly interested in the
situation where dim U = 1 as it will satisfy the condition of our main result Theorem 5.4).

Example. Consider a one-dimensional network of 3 springs on 4 nodes with the kinematic matrix D provided
by the map

Dξ =

ξ2 − ξ1ξ3 − ξ2
ξ4 − ξ3

 =

−1 1 0 0
0 −1 1 0
0 0 −1 1



ξ1
ξ2
ξ3
ξ4

 , (39)

some 3× 3 diagonal matrix A of Hooke’s coefficients and some intervals [c−j , c
+
j ], j ∈ 1, 3, of elasticity bounds.

Assume that displacement-controlled loading l(t) ∈ R2 is given by the incidence vectors

(R1, R2) = R =

 0 1
1 1
1 0

 , (40)

i.e. springs 2 and 3 connect the ends of l1(t) and springs 1 and 2 connect the ends of l2(t), see Fig. 6. To
examine the shapes of the associated moving set Π(t) ∩ V , we find out the eligible values of the function h(t).

From (16) we conclude that eligible stress-controlled loading f(t) leads to h(t) given by

h(t) = UbasisH(t), (41)

where Ubasis is the m× dimU−matrix of the vectors of a basis of U and H : [0, T ] → RdimU is any absolutely
continuous function. By (38) and (12), there should exist an n× (n− q − 1)−matrix M such that

RTDM = 0 and rank(DM) = n− q − 1 (42)

which allows to introduce Ubasis as

Ubasis = DM. (43)

Getting back to the matrices D and R given by (39) and (40) one has dimU = n− q− 1 = 4− 2− 1 = 1, which
means that even though the stress-controlled loading is comprised by four forces (one per node of the system
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Figure 6. A one-dimensional network of 3 springs on 4 nodes with 2 length locking constraints. The circled
figures stays for numbers of nodes. The regular figures are the numbers of springs. The figure shows just one

possible option for the directions (and magnitudes) of the forces in gray color.

from Fig. 6), only a scalar 1-dimensional parameter of these forces matters. A possible 4×1−matrix that solves
(42), the respective Ubasis found from (43), and the respective function h(t) given by (41) are then read as

M =


0
1
0
1

 , Ubasis =

 1
−1
1

 , h(t) =

 1
−1
1

H(t), (44)

where H is an arbitrary absolutely continuous function from [0, T ] to R. Fig. 7 illustrates the shapes of Π(t)∩V
for different constant values of H(t), where according to (12) we considered

V = Ker
(
UTbasisA

)
=

 a1

−a2

a3

⊥ . (45)

 

 

 

 

 

g(t) 

h(t) 

(a) (b) (c) (d) 

Figure 7. Shapes of the moving constraint Π(t) ∩ V for the sweeping process of the network of Fig. 6 with

parameters c+1 = −c−1 = 1, c+2 = −c−2 = 1.3, c+3 = −c−3 = 1.6, a1 = a2 = a3 = 1 for different values of stress-

controlled loading h(t) = (1,−1, 1)T t: a) t = 0, b) t = 0.32, c) t = 0.5, d) t = 0.8. Figure (a) also features
the possible directions of the function g(t) (dotted vectors) and the possible direction of the function h(t) (solid
vector) that represent displacement-controlled and stress-controlled loading respectively.
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3.4. Bounds on the stress-controlled loading to satisfy the safe load condition

Computational algorithms to verify safe load condition (22) for particular systems is a standard topic of com-
putational geometry, see e.g. Bremner et al [7]. In this section we derive analytic conditions which allow to
spot classes of elastoplastic systems for which the safe load condition holds.

Proposition 3.9. In order for the safe load condition (22) of Theorem 3.1 to hold for some t ∈ [0, T ], it is
sufficient to assume that

−Ah(t) ∈ C. (46)

Proof. In order to show that (46) implies (22), it is sufficient to observe that 0 ∈ U⊥ and that (46) yields
0 ∈ C +Ah(t). �

Definition 3.10. We will say that a spring i is blocked by displacement-controlled loadings, if the family of
displacement-controlled loadings {lj}qj=1 contains a chain that connects one end of spring i with its other end.

For example, in the elastoplastic system of Fig. 8, the chain of displacement-controlled loadings l1(t) and l2(t)
connects the right end of spring 3 with its left end. Spring 3 is, therefore, blocked by displacement-controlled
loadings in the sense of Definition 3.10.

  
Figure 8. Illustration of a spring (spring 3) blocked by displacement-controlled loadings (l1(t) and l2(t)).

Lemma 3.11. Assume that in a given elastoplastic system the number q of displacement-controlled loadings is
2 less the number of nodes. If none of the springs of the elastoplastic system (3)-(7) is blocked by displacement-
controlled loadings, then

xj 6= 0 for any j ∈ 1,m, x ∈ U\{0}.

Proof. Recall, that ξΦk
and ξΨk

are the left and right endpoints respectively of the displacement-controlled
constraint lk(t). Consider the matrix D1 obtained from matrix D by combining the column Φk and the column
Ψk as follows: 1) add the values of column Ψk to the respective values of column Φk, 2) delete the column Ψk.
Then, {

D1ξ : ξ ∈ Rn−1
}

=
{
Dξ : (Rk)TDξ = 0, ξ ∈ Rn

}
.

Moreover, each row of D has exactly one element 1 and −1 and none of the springs are blocked therefore at
least one of each pair of summands at step 1) is zero. Matrix D1 is the kinematic matrix for a new elastoplastic
system that is obtained from elastoplastic system (3)-(7) by merging the nodes Φk and Ψk together and,
thus, by reducing the number of nodes by 1. Accordingly, the new elastoplastic system features only q − 1
displacement-controlled loadings and the indices {Φk,Ψk}q−1

k=1 are now from 1, n− 1.

Repeating this process through all the incidence vectors {Rk}qk=1, where q = n− 2 by Lemma 3.8, we obtain

U =
{
Dξ : RTDξ = 0, ξ ∈ Rn

}
=
{
D̄ξ : ξ ∈ Rn−q

}
=
{
D̄ξ : ξ ∈ R2

}
,

where D̄ is the kinematic matrix of the reduced elastoplastic system that is obtained from the original one by
merging node Φk with node Ψk trough k ∈ 1, q.

Since the reduced elastoplastic system has only two nodes (q = n−2), all the displacement-controlled constraints
of the original system split into at most two connected components, which shrink into these two nodes under the



TITLE WILL BE SET BY THE PUBLISHER 17

proposed reduction process. If spring j is not blocked by displacement-controlled loadings, then the endpoints
of spring j belong to different connected components introduced. Therefore, the endpoints of spring j are two
different nodes of the reduced elastoplastic system, which implies

uj 6= 0, i ∈ 1,m, for any u = D̄ξ such that ξ ∈ R2, ξ1 6= ξ2.

If ξ1 = ξ2 then u = D̄ξ = 0. The proof of the lemma is complete. �

Proposition 3.12. Assume that the conditions of Lemma 3.11 hold. Let ū be an arbitrary nonzero fixed vector
of U (dimU = 1 by Lemma 3.8) and consider

c̄+ =


c
sign(ū1)
1

...

c
sign(ūm)
m

 , c̄− =


c
−sign(ū1)
1

...

c
−sign(ūm)
m

 ,

where c−1
j denotes c−j and c+1

j denotes c+j . Then, for each fixed t > 0, the safe load condition (22) holds if and
only if 〈

ū, c̄+ +Ah(t)
〉
·
〈
ū, c̄− +Ah(t)

〉
6 0. (47)

Proof. We first show that (47) implies (22). Assume that (22) doesn’t hold for some t ∈ [0, T ]. Therefore, by
convexity of C, either 〈ū, x+Ah(t)〉 > 0 for all x ∈ C or 〈ū, x+Ah(t)〉 < 0 for all x ∈ C. In either case we
conclude 〈ū, c̄+ +Ah(t)〉 · 〈ū, c̄− +Ah(t)〉 > 0 because c̄+, c̄− ∈ C, which contradicts (47).

Let us now show that (22) implies (47). Indeed, since

ūj c̄
−
j 6 ūjc

α
j 6 ūj c̄

+
j , for any j ∈ 1,m, α ∈ {−1,+1}, (48)

we have 〈
ū, c̄− +Ah(t)

〉
6 〈ū, x+Ah(t)〉 6

〈
ū, c̄+ +Ah(t)

〉
, for any x ∈ C.

The latter inequality takes the required form (47) when one plugs x satisfying 〈ū, x+Ah(t)〉 = 0, which exists
because of (22). �

Remark 3.13. Considering the left-hand-side of (47) as a polynomial P (〈ū, Ah(t)〉) in 〈ū, Ah(t)〉, we see that
the branches of the polynomial are pointing upwards. Therefore, condition (47) is the requirement for 〈ū, Ah(t)〉
to stay strictly between the roots of the polynomial. The roots of P (〈ū, Ah(t)〉) are given by 〈ū, Ah(t)〉 =
−〈ū, c̄−〉 and 〈ū, Ah(t)〉 = −〈ū, c̄+〉, where 〈ū, c̄−〉 6 〈ū, c̄+〉 by (48). Therefore, (47) is equivalent to

−
〈
ū, c̄+

〉
6 〈ū, Ah(t)〉 6 −

〈
ū, c̄−

〉
,

which highlights that (47) is a restriction on the magnitude of 〈ū, Ah(t)〉 .

Proposition 3.12 can be e.g. applied to the one-dimensional network of Fig. 6, where dimU = 1 as we noticed
earlier.

Example (continued). For the elastoplastic system of Fig. 6 one can consider ū = (1,−1, 1)T and using (44)
obtain

c̄+ =

 c+1
c−2
c+3

 , c̄− =

 c−1
c+2
c−3

 , 〈ū, Ah(t)〉 = (a1 + a2 + a3)H(t). (49)

Based on Remark 3.13 the necessary and sufficient condition for safe load condition (47) to hold is then

−c+1 + c−2 − c
+
3 6 (a1 + a2 + a3)H(t) 6 −c−1 + c+2 − c

−
3 . (50)
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3.5. Condition on the displacement-controlled loading to eliminate constant solutions

Next proposition gives conditions to ensure that any point x which belongs to the moving set Π(t) ∩ V of
sweeping process (18) at some time t = t1 will lie outside Π(t) ∩ V at time t = t2. These conditions will,
therefore, rule out the existence of constant solutions.

Proposition 3.14. Assume that conditions of Theorem 3.1 hold. If∥∥A−1c− −A−1c+
∥∥
A
< ‖g(t1)− g(t2)‖A , (51)

for some 0 6 t1 < t2 6 T , where

‖x‖A =
√
〈x,Ax〉, c− = (c−1 , ..., c

−
m)T , c+ = (c+1 , ..., c

+
m)T ,

then sweeping process (18) doesn’t have any solutions that are constant on [t1, t2]. In other words, any solution
y of (18) on [t1, t2] with the initial condition y(t1) ∈ Π(t) ∩ V sticks to the boundary of Π(t) ∩ V and stays
sliding along this boundary beginning some time t∗ ∈ [t1, t2).

Proof. The claim follows by showing that

(Π(t1) ∩ V ) ∩ (Π(t2) ∩ V ) = ∅
Since h(t) ∈ U we have

Π(t) ∩ V =
(
A−1C + h(t)− g(t)

)
∩ V ⊂ PVA−1C − g(t), t ∈ [t1, t2],

and it is sufficient to prove that the sets

PVA
−1C − g(t1) and PVA

−1C − g(t2) don’t intersect.

The latter will hold, if the diameter of the set PVA
−1C is smaller than the distance between g(t1) and g(t2),

which fact will now be established.

Since PV is the orthogonal projection in the sense of the scalar product (x, y)A = 〈x,Ay〉 , we have (see e.g.
Conway [17, Theorem 2.7 b)])

‖PV x‖A 6 ‖x‖A, x ∈ Rm.
Fix c1, c2 ∈ C and denote by c1,j , c2,j , j ∈ 1,m, the components of these vectors. By the definition of C, we
have

|c1,j − c2,j | 6 |c−j − c
+
j |, j ∈ 1,m.

Therefore, for any c1, c2 ∈ C,

∥∥PV (A−1c1 −A−1c2
)∥∥
A
6
∥∥A−1c1 −A−1c2

∥∥
A

=
m∑
j=1

1

aj
|c1,j − c2,j |2 6

6
m∑
j=1

1

aj
|c−j − c

+
j |

2 =‖A−1c− −A−1c+‖A

The proof of the proposition is complete.

Remark 3.15. Note, the left-hand-side in the squared inequality (51) from the statement of Proposition 3.14
can be computed as

‖A−1c− −A−1c+‖2A =
〈
c− − c+, A−1(c− − c+)

〉
.
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In what follows we show which kind of computations is required to verify the condition of Proposition 3.14 in
practice.

Example (continued). Given the elastoplastic system of Fig. 6, our goal is to compute the effective displacement-
controlled loading g(t) of (15).

For the term PVDL of (15) observe, that there exists a dim V × q-matrix L̄ such that

VbasisL̄ = PVDL, (52)

where Vbasis is the m× dimV−matrix of the vectors of a basis of V . The i-th column of matrix L̄ is the vector
of the coordinates of the respective vector PVDL

i ∈ V in the basis Vbasis, where Li stays for the i-th column
on matrix L. Formula (15) can therefore be rewritten as

g(t) = VbasisL̄l(t). (53)

Computing the effective displacement-controlled loading g(t) has hereby been turned into computing Vbasis and
L̄.

By (38),

dimV = m− n+ q + 1, (54)

and according to (45), Vbasis is an arbitrary matrix of dim V linearly independent columns that solves

(Ubasis)
TAVbasis = 0. (55)

For the particular matrices (39), using the earlier computed Ubasis, see (44), one gets dim V = 2, (Ubasis)
T =

(1 − 1 1), and a possible solution to (55) is

Vbasis =

 1/a1 0
1/a2 1/a2

0 1/a3

 .

To find L̄, we observe that by (9), for any ξ ∈ Rq, we have

PVDLξ = DLξ − PUDLξ ∈ DRn,

as PUDLξ ∈ DRn by definition of U. Combining this relation with (9) and (52) one gets the following equations
for L̄:

RTVbasisL̄ = Iq×q, (56)

VbasisL̄Rq ⊂ DRn, (57)

from which L̄ can be found. In Appendix D we offer a diagram (fig. 11) showing the construction of VbasisL̄
graphically.

For a specific matrix D given by (39), one has DR4 = R3 (i.e. there is no geometric constraint coming from
the graph of springs in this case) and so (57) holds for any matrix L̄. The matrix L̄ is therefore a 2× 2−matrix
that solves (56), which has a unique solution

L̄ =

(
1/a2 1/a2 + 1/a3

1/a1 + 1/a2 1/a2

)−1

.
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Formula (53), in particular, implies that, for the network of springs of Fig. 6 (where dim V = q = 2), the
displacement-controlled constraints are capable to execute any desired motion of C(t) in V.

Applying Proposition 3.14 and Remark 3.15, we obtain the following condition for non-existence of constant
solutions. The elastoplastic system of Fig. 6 cannot have constant solutions on [0, T ], if there exist t1, t2 ∈ [0, T ]
such that

3∑
j=1

1

aj
(c+j − c

−
j )2 <

∥∥VbasisL̄ (l(t1)− l(t2))
∥∥2

A
. (58)

4. Convergence to a periodic attractor

4.1. Convergence in the case of a moving constraint given by an intersection of transla-
tionally moving convex sets

In this section we establish convergence properties of a general sweeping process

−ẋ ∈ N0
C(t)(x), x ∈ E, (59)

where E is a d-dimensional linear vector space, C(t) ⊂ E is convex closed set for any t, and

N0
C(x) =

{
{ξ ∈ E : (ξ, c− x)0 6 0, for any c ∈ C} , if x ∈ C,
∅, if x 6∈ C, (60)

where (·, ·)0 is some inner product in E. These convergence properties are then refined in section 4.3 in the
context of the particular sweeping process (18).

A set-valued function t 7→ C(t), t ∈ [0,∞), is called globally Lipschitz continuous, if

dH(C(t1), C(t2)) 6 LC |t1 − t2|, for all t1, t2 ≥ 0, and for some LC > 0, (61)

where dH(C1, C2) is the Hausdorff distance between two closed sets C1, C2 ∈ E defined as

dH(C1, C2) = max

{
sup
x∈C2

dist(x,C1), sup
x∈C1

dist(x,C2)

}
(62)

with dist(x,C) = inf {|x− c| : c ∈ C} .

Recall, if C(t) is a globally Lipschitz continuous function with nonempty closed convex values from E, then the
solution x(t) of sweeping process (59) with any initial condition x(t0) = x0 is uniquely defined on [t0,∞) in
the sense that x(t) is a Lipschitz continuous function that verifies (59) for a.a. t ∈ [t0,∞) (see e.g. Kunze and
Monteiro Marques [38]).

Let us use t 7→ X(t, x0) to denote the solution of sweeping process (59) that takes the value x0 at time 0. In
what follows, we consider the set of T -periodic solutions of (59)

X = {X(·, x0) : x0 = X(T, x0)} ⊂ C([0,∞), E) (63)

X(t) = {X(t, x0) : x0 = X(T, x0)} ⊂ E (64)

and prove that, for T -periodic moving constraint C(t), the set X(t) attracts all the solutions of (59).

Remark 4.1. Note, if t 7→ C(t) is T -periodic, then it holds X(T,C(0)) ⊂ C(0) and so the continuous map
x0 7→ X(T, x0) has at least one fixed point in C(0) by the Brouwer fixed point theorem (see [34, Theorem 3.1]).
In particular, if t 7→ C(t) is T -periodic, then X 6= ∅.
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Definition 4.2. A set-valued function t 7→ Y (t) is a global attractor of sweeping process (59), if dist(x(t), Y (t))→
0 as t→∞ for any solution x of sweeping process (59).

Finally, we denote by ri(C) the relative interior of a convex set C ⊂ E, see Rockafellar [50, §6].

Theorem 4.3. Let t 7→ C(t) be a Lipschitz continuous uniformly bounded T -periodic set-valued function with
nonempty closed convex values from E. Let t 7→ X(t) be the set of T -periodic solutions of sweeping process (59)
as defined in (64). Then, X(t) is closed and convex for all t ∈ [0, T ]. If, in addition, C(t) is an intersection of
closed convex sets Cj (some of them, say, first p sets, may be polyhedral) that undergo just translational motions

C(t) =
M⋂
j=1

(Cj + cj(t)), (65)

where cj(t) are single-valued T -periodic Lipschitz functions such that

p⋂
j=1

(Cj + cj(t)) ∩
M⋂

j=p+1

(ri(Cj) + cj(t)) 6= ∅, t ∈ [0, T ], (66)

then
ẋ(t) = ẏ(t), for any x, y ∈ X and for a.a. t ∈ [0, T ], (67)

and X(t) is a global attractor of (59).

The theorem, in particular, implies that X(t) cannot contain non-constant solutions, if it contains at least one
constant solution.

The proof of theorem 4.3 is split into 3 lemmas. Lemma 4.4 establishes the convexity of X (closedness of
X(t) follows from the continuous dependence of solutions of (59) on the initial condition, see [38, Corollary 1]).
Lemma 4.5 proves the statement (67). Finally, the global attractivity of X(t) is given by Theorem 4.6 which is
an extension of a result from Krejci [36] for convex sets (65).

In what follows, ‖ · ‖0 is the norm induced by the scalar product in E, i.e.

‖x‖0 =
√

(x, x)0. (68)

Lemma 4.4. Let t 7→ C(t) be a Lipschitz continuous set-valued function with nonempty closed convex values
from E. Then, both X(t) ⊂ E and X ⊂ C([0,∞), E) are convex. In addition, for any x, y ∈ X ⊂ C([0,∞), E)

‖x(t)− y(t)‖0 is constant in t. (69)

Proof. Let x, y ∈ X. Due to monotonicity of N0
C(t)(x) in x for each t > 0, the distance t 7→ ‖x(t) − y(t)‖0

cannot increase (see e.g. [38, Corollary 1]). Notice, that t 7→ ‖x(t)− y(t)‖0 cannot decrease, otherwise it cannot
be periodic, so (69) follows.

For any θ ∈ (0, 1) the initial condition θx(0) + (1 − θ)y(0) belongs C(0) by convexity of C. Let xθ be the
corresponding solution. Since t 7→ ‖x(t)− xθ(t)‖0 and t 7→ ‖xθ(t)− y(t)‖0 are also non-increasing, then

‖x(t)− xθ(t)‖0 + ‖y(t)− xθ(t)‖0 6 ‖x(0)− xθ(0)‖0 + ‖y(0)− xθ(0)‖0 = ‖x(0)− y(0)‖0 = ‖x(t)− y(t)‖0.

On the other hand, the triangle inequality yields

‖x(t)− xθ(t)‖0 + ‖y(t)− xθ(t)‖0 > ‖x(t)− y(t)‖0

and we have
‖x(t)− xθ(t)‖0 + ‖xθ(t)− y(t)‖0 = ‖x(t)− y(t)‖0 ≡ const. (70)
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Because none of the terms ‖x(t)−xθ(t)‖0, ‖xθ(t)−y(t)‖0 can increase, both of them remain constant and positive
(due to the choice of xθ(0)). Moreover, by strict convexity of the inner product space (Narici-Beckenstein [46,
Th 16.1.4(d) & Th 16.1.5)], see also Appendix B) there exists γ(t) > 0 such that

xθ(t)− y(t) = γ(t)(x(t)− xθ(t)).

We solve for xθ:

xθ(t) =
γ(t)

1 + γ(t)
x(t) +

1

1 + γ(t)
y(t). (71)

and substitute it to the second difference in (70):

‖x(t)− xθ(t)‖0 =
1

1 + γ(t)
‖x(t)− y(t)‖0,

Both distances ‖x(t)−xθ(t)‖0 and ‖x(t)− y(t)‖0 are constant, hence γ(t) is constant as well, which means that
γ(t) = γ(0) and due to the choice of xθ(0) expression (71) becomes

xθ(t) = θx(t) + (1− θ)y(t), for any θ ∈ [0, 1].

This formula, in particular, implies that xθ is T -periodic. The proof of convexity of X is complete.

Lemma 4.5. Let t 7→ C(t) be a set-valued function of the form (65)-(66) with convex closed Cj and Lipschitz-
continuous single valued cj(t). Let x and y be two solutions of sweeping process (59) defined on [0, T ] such that
(69) holds for them. Then for almost all t ∈ [0, T ]

ẋ(t) = ẏ(t).

Proof. The properties (65)-(66) imply ( [50, Corollary 23.8.1], see also Appendix B) that

N0
C(t)(x) =

M∑
j=1

N0
Cj+cj(t)(x), for all x ∈ C(t) and for all t ∈ [0, T ]. (72)

Let t ∈ (0, T ) be such that ẋ(t), ẏ(t), ċj(t), j ∈ 1,M , exist and (59) holds. Property (72) allows to spot ẋtj , ẏ
t
j ,

j ∈ 1,M , such that

ẋ(t) =
M∑
j=1

ẋtj , −ẋtj ∈ N0
Cj+cj(t)(x(t)), j ∈ 1,M,

ẏ(t) =
M∑
j=1

ẏtj , −ẏtj ∈ N0
Cj+cj(t)(y(t)), j ∈ 1,M.

To show that ‖ẋ(t)− ẏ(t)‖0 = 0, consider

‖ẋ(t)− ẏ(t)‖20 = (ẋ(t)− ẏ(t), ẋ(t)− ẏ(t))0 =

=
M∑
j=1

(
ẋtj , ẋ(t)− ċj(t)

)
0

+
M∑
j=1

(
ẏtj , ẏ(t)− ċj(t)

)
0
− (73)

−
M∑
j=1

(
ẋtj , ẏ(t)− ċj(t)

)
0
−

M∑
j=1

(
ẏtj , ẋ(t)− ċj(t)

)
0
. (74)
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For the value of t ∈ (0, T ) as fixed above, we now prove that each of sums in (73)-(74) vanish.

Step 1. Vanishing sums in (73). Fix j ∈ 1,M. By the definition of normal cone,(
ẋtj , z + cj(t)− x(t)

)
0
> 0 and

(
ẏtj , z + cj(t)− y(t)

)
0
> 0 for all z ∈ Cj . (75)

Considering z = x(t+ h)− cj(t+ h) ∈ Cj , we observe that the function

f(h) =
(
ẋtj , x(t+ h)− x(t)− (cj(t+ h)− cj(t))

)
0

is non-negative in a neighborhood of zero. Since f(0) = 0, we conclude that 0 = f ′(0) =
(
ẋtj , ẋ(t)− ċj(t)

)
0

(if f ′(0) 6= 0, then f would take negative values in the neighborhood of 0 due to f(0) = 0). The relation(
ẏtj , ẏ(t)− ċj(t)

)
0

= 0 can be proved by analogy using the second inequality of (75).

Step 2. Vanishing sums in (74). We claim that

M∑
j=1

(
ẋtj , zj + cj(t)− y(t)

)
0
> 0,

M∑
j=1

(
ẏtj , zj + cj(t)− x(t)

)
0
> 0, zj ∈ Cj , (76)

so that the arguments of Step 1 apply to

f(h) =
M∑
j=1

(
ẋtj , y(t+ h)− y(t) + cj(t)− cj(t+ h)

)
0

(similarly for the second sum of (76) with zj = x(t+ h)− cj(t+ h)) to show that the sums in (74) vanish. To
establish (76), we first rewrite it as

M∑
j=1

(
ẋtj , zj + cj(t)

)
0
− (ẋ(t), y(t))0 > 0,

M∑
j=1

(
ẏtj , zj + cj(t)

)
0
− (ẏ(t), x(t))0 > 0,

and then prove that

(ẋ(t), y(t))0 = (ẋ(t), x(t))0 and (ẏ(t), x(t))0 = (ẏ(t), y(t))0 , t ∈ [0, T ], (77)

so that (76) becomes a consequence of (75). To prove (77) we use (69) and observe that

0 =
d

dt
‖x(t)− y(t)‖20 = − (ẋ(t), y(t)− x(t))0 − (ẏ(t), x(t)− y(t))0

But x(t), y(t) ∈ C(t) and both these functions are solutions of sweeping process (59). Therefore,
(ẋ(t), y(t)− x(t))0 > 0 and (ẏ(t), x(t)− y(t))0 > 0, which implies (77).

The proof of the lemma is complete. �

We acknowledge that the idea of the proof of Step 1 of Lemma 4.5 has been earlier used by Krejci in the
proof of [36, Theorem 3.14], which would suffice for the proof when M = 1. The achievement of Lemma 4.5
is in considering M > 1, thus the new Step 2. Accordingly, the proof of the next theorem follows the lines
of [36, Theorem 3.14] with Lemma 4.5 used to justify (115), which is the place of the proof that needed further
arguments when moving to M > 1. We present a proof for completeness (Appendix C) also because [36] employs
slightly different notations. The theorem effectively states that any bounded solution of a T -periodic sweeping
process is asymptotically T -periodic, which facts is known in differential equations as Massera’s theorem [44].
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Theorem 4.6. (Massera-Krejci theorem for sweeping processes with a moving set of the form
C(t) = ∩M

j=1(Cj + cj(t))) Let t 7→ C(t) be a set-valued uniformly bounded function of the form (65)-(66)

with convex closed Cj and Lipschitz-continuous single-valued T -periodic cj(t). Then the set X(t) of T -periodic
solutions of (59) is a global attractor of (59).

The proof of Theorem 4.6 is given in Appendix C.

Lemma 4.5 implies that each set X(t), t ∈ [0, T ], is just a displacement of the set X(0) by a vector. Specifically,
the following statement holds.

Corollary 4.7. Let t 7→ C(t) be a Lipschitz continuous uniformly bounded T -periodic set-valued function with
nonempty closed convex values from E. Let t 7→ X(t) be the set of T -periodic solutions of sweeping process (59)
as defined in (64). Then, there exists a Lipschitz continuous T -periodic function x̄ : [0,∞)→ E such that

x(t) = x(0) + x̄(t), t ∈ [0, T ], x ∈ X.

In particular,
X(t) = X(0) + x̄(t), t ∈ [0, T ],

and
x(t) ∈ ri(X(t)) if and only if x(0) ∈ ri(X(0)).

Proof. Since any Lipschitz continuous function x(t) can be represented as x(t) = x(0)+
∫ t

0
ẋ(t)dt, the existence

of x̄ verifying the first two assertions of the corollary follows directly from Lemma 4.5. The assertion about the
relative interior follows by observing that, for any v ∈ E, x(t) ∈ ri(X(t)) if and only if x(t) + v ∈ ri(X(t) + v),
so one can take v = −x̄(t). �

An interested reader can note that sweeping process (59) with M = 1 converts to a perturbed sweeping process

−ξ̇ ∈ N0
C1

(ξ) + ċ1(t) with an immovable constraint by the change of the variables ξ(t) = y(t)− c1(t), while it is
not clear whether or not (59) converts to a perturbed sweeping process with a constant constraint when M > 1.
This further highlights the difference between the cases M = 1 and M > 1 as long as potential alternative
methods of analysis of the dynamics of (59) are concerned.

4.2. Strengthening of the conclusion of section 4.1 in the case of a moving constraint
given by a polyhedron with translationally moving facets

When applied to a one-dimensional network of elastoplastic springs (3)-(7), the existence of a periodic attractor
X(t) for the associated sweeping process (18) follows from Theorem 4.3. A new geometric property of X(t)
that comes with considering the sweeping process (18) is due to the polyhedral shape of the moving constraint
Π(t)∩V , see Section 3.2. Theorem 4.8 below states that even if X(t) consists of several periodic solutions, they
all exhibit certain identical behavior.

As earlier, let E be a finite-dimensional linear vector space equipped with a scalar product (·, ·)0 and let

ri(X) = {x ∈ X : x(0) ∈ ri(X(0))},

which notations is justified by Corollary 4.7.

Theorem 4.8. Assume that a uniformly bounded set-valued function t 7→ C(t) is given by

C(t) =
m⋂
j=1

{
x ∈ E : c−j (t) 6 (nj , x)0 6 c

+
j (t)

}
, t > 0, (78)

where c−j , c
+
j are single-valued T -periodic globally Lipschitz continuous functions, nj are given vectors from E.

Then the set X(t) of T -periodic solutions of sweeping process (59) is the global attractor of (59). Furthermore,
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X ⊂ C([0,∞), E) is closed and convex, and all the interior solutions of X follow the same pattern of motion
in the sense that

J(t, x(t)) = J(t, y(t)), for all x, y ∈ ri(X), t > 0, (79)

where J(t, x) is the active set of the polyhedron C(t) given by

J(t, x) =
{
j ∈ −m,−1 : (n−j , x)0 = c−−j(t)

}
∪
{
i ∈ 1,m : (nj , x)0 = c+j (t)

}
.

Theorem 4.8 is a corollary of Theorem 4.3 except for the property (79) which comes from the polyhedral shape
of the moving constraint C(t). The property (79) follows from the following general result.

1xx  21 xx 

  

x1 

x2 

{x: (yj,x) = bj} x2 x1 {x: (yj,x) = bj} 

B 
B

` 

(a) (b) 

Figure 9. Illustration of the statement of Lemma 4.9. (a) An impossible configuration, which is ruled

out by assumption (80). Assumption (80) forbids B to stick out from the polyhedron; (b) The only possi-

ble configuration within the restriction given by (80) and (yj , x1)0 = bj . The polyhedron in both figures is⋂M
j=1

{
x ∈ E : (yj , x)0 6 bj

}
.

Lemma 4.9. Consider an arbitrary convex set B embedded into a convex polyhedron:

B ⊂
M⋂
j=1

{
x ∈ E : (yj , x)0 6 bj

}
, (80)

where yj ∈ E and bj ∈ R. If x1, x2 ∈ ri(B), then, for all j ∈ 1,M,

(yj , x1)0 = bj if and only if (yj , x2)0 = bj . (81)

Geometrically, Lemma 4.9 is saying that if x1 belongs to a facet of the polyhedron
⋂M
j=1

{
x ∈ E : (yj , x)0 6 bj

}
and B doesn’t stick out from the polyhedron (i.e. Fig. 9a is not allowed), then x2 belongs to the same facet as
x1 (as in Fig. 9b).

Proof. Assume that (yj , x1)0 = bj for some x1 ∈ ri(B) and some j ∈ 1,M , i.e. assume that the point x1

belongs to the facet {x : (yj , x)0 = bj}. Let x2 be any other point such that x2 ∈ ri(B) as Fig. 9a illustrates.
We claim that if (80) holds (B doesn’t stick out from the polyhedron, see Fig. 9), then (yj , x2)0 = bj .

For any θ ∈ R, define xθ as

xθ = θx1 + (1− θ)x2.

Since x1, x2 ∈ ri(B), there exists ε > 0 such that x−ε ∈ ri(B) and x1+ε ∈ ri(B), see Fig. 9b. Put x̄1 = x−ε,
x̄2 = x1+ε. Then there exist θ1, θ2 ∈ (0, 1), θ1 6= θ2, such that

x1 = θ1x̄1 + (1− θ1)x̄2, x2 = θ2x̄1 + (1− θ2)x̄2. (82)
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Then, taking the scalar product of the first formula of (82) with yj , replacing bj by bj = θ1bj + (1− θ1)bj , and
redistributing the terms, one gets

θ1((yj , x̄1)0 − bj) = −(1− θ1)((yj , x̄2)0 − bj). (83)

Since x̄1, x̄2 ∈ B, one has (yj , x̄1)0 − bj 6 0 and (yj , x̄2)0 − bj 6 0. Therefore formula (83) can only hold when
both (yj , x̄1)0 − bj and (yj , x̄2)0 − bj vanish. Hence

(yj , x2)0 = θ2 (yj , x̄1)0 + (1− θ2) (yj , x̄2)0 = θ2bj + (1− θ2)bj = bj .

The reverse implication in (81) can be proved by analogy. �

4.3. Application: an analytic condition for the convergence of the stresses of elastoplastic
systems to an attractor

Let JC(x) be the active set of the parallelepiped C, i.e.

JC(x) =
{
j ∈ −m,−1 : x−j = c−−j

}
∪
{
j ∈ 1,m : xj = c+j

}
.

A direct consequence of Theorem 4.8 is the following result about asymptotic behavior of the stresses of the
elastoplastic system (3)-(7).

Theorem 4.10. Let the conditions of Theorem 3.1 hold and both displacement-controlled and stress-controlled
loadings are T -periodic. Then, for any initial condition at t = 0, the stress-vector s(t) = (s1(t), ..., sm(t))T of
the springs converge, as t→∞, to the attractor

S(t) = A (X(t)− h(t) + g(t)) ,

where X(t) is the set of all T -periodic solutions of sweeping process (18), and h(t) and g(t) are the effective
loadings given by (16) and (15). The functions of S(t) have equal derivatives for a.a. t > 0 as per (67) and,
moreover,

JC (s̄j(t)) = JC (ŝj(t)) , for all s̄, ŝ ∈ ri(S), t > 0. (84)

By analogy with Theorem 4.8, the meaning of ri(S) is

ri(S) = {s ∈ S : s(0) ∈ ri(S(0))}.

Proof. We apply Theorem 4.8 with C(t) = Π(t)∩V, where Π(t) and V are those defined in Theorem 3.1. Since
Π(t) is uniformly bounded in t ∈ [0, T ], same holds for C(t). Thus, the conditions of Theorem 4.8 are satisfied
with c−j (t) = c−j + ajhj(t) and c+j (t) = c+j + ajhj(t), and Theorem 4.8 implies that

J(t, A−1s̄(t) + h(t)− g(t)) = J(t, A−1ŝ(t) + h(t)− g(t)), for all s̄, ŝ ∈ ri(S), t > 0,

which equivalent formulation is (84). Other statements of Theorem 4.10 follow from Theorem 4.8 just directly.
The proof of the theorem is complete. �

Property (84) says that, for any j ∈ 1,m, the spring i will asymptotically execute a certain pattern of elastic
deformation which doesn’t depend on the state of the network at the initial time.

Example (continued). For the elastoplastic system (3)-(7) of Fig. 6 with T -periodic displacement-controlled
and stress-controlled loadings l(t) and h(t), Theorem 4.10 implies the convergence of stresses s(t) to a T -periodic
attractor S(t) provided that property (50) holds. Furthermore, the functions of A−1S(t)+h(t)−g(t) are all non-
constant, if (58) is satisfied. In the next section of the paper we offer a general result which will, in particular,
imply that the attractor A−1S(t) + h(t)− g(t) consists of a single solution.
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5. Stabilization to a unique non-stationary periodic solution

In this section we first prove that the periodic attractor X(t) of a general sweeping process (59) in a vector space
E of dimension d consists of just one non-stationary T -periodic solution, when the normals of any d different
facets of the moving polyhedron C(t) are linearly independent. Then we give a sufficient condition for such a
requirement to hold for the sweeping process (18) coming from the elastoplastic system (3)-(7).

5.1. Stabilization of a general sweeping process with a polyhedral moving set

As earlier, let E be a linear vector space of dimension d and let (·, ·)0 be a scalar product in E.

In this subsection it will be convenient to rewrite the set (78) in the following form

C(t) =

M⋂
j=1

{x ∈ E : (x, nj)0 6 cj(t)} , t > 0, (85)

where cj are single-valued functions and nj are given vectors of E. The advantage of form (85) compared to
(78) is that any vector of N0

C(t)(x) has non-negative coordinates in the basis formed by the normals n1, ..., nM .

Then we establish the following result about the global asymptotic stability of sweeping processes.

Theorem 5.1. Let t 7→ C(t) be a uniformly bounded set-valued function given by (85), where the functions ci
are globally Lipschitz continuous and T -periodic, and M > dimE. Assume that any dimE vectors out of the
collection {nj}Mj=1 ⊂ E are linearly independent and the cardinality of the set

J(t, x) = {i ∈ 1,M : (x, nj)0 = cj(t)}

doesn’t exceed dimE for all x ∈ C(t) and t ∈ [0, T ]. Then the set X(t) of T -periodic solutions of sweeping
process (59) contains at most one non-constant T -periodic solution.

Note, nj in (85) are, generally speaking, different from nj in (78), but we use same notation as it shouldn’t
cause confusion. Accordingly, the active set J(t, x) of Theorem 5.1 is different from the active set J(t, x) of
Theorem 4.8.

Lemma 5.2. Assume, that for each t ∈ [0, T ] and x ∈ C(t) the collection of vectors {nj : j ∈ J(t, x)} is linearly
independent. Then for a solution x(t) of sweeping process (59) there is a collection of integrable non-negative
λj : [0, T ]→ [0,∞), j ∈ 1,M, such that

−ẋ(t) =
M∑
j=1

λj(t)nj , for a.a. t ∈ [0, T ]. (86)

Proof. Recall, that for a fixed t ∈ [0, T ], the normal cone (60) to the set C(t) of polyhedral form (85) can be
equivalently formulated as (see e.g. Hiriart-Urruty and Lemaréchal [26, Examples 5.2.6, p. 67])

N0
C(t)(x) =



{0}, if x ∈ intC(t),{( ∑
j∈J(t,x)

λj nj

)
: λj > 0

}
, if x ∈ ∂C(t),

∅, if x 6∈ C(t).

(87)
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Here intC(t) and ∂C(t) are respectively the interior and the boundary of C(t). Therefore, for a.a. fixed t ∈ [0, T ],
the existence of λ(t) ∈ RM , λj(t) > 0, j ∈ 1,M, verifying

−ẋ(t) =
∑

j∈J(t,x(t))

λj(t)nj (88)

follows from the inclusion (59). We set λj(t) = 0, if j 6∈ J(t, x(t)). The proof of Lebesgue measurability of λ(t)
will be split into several steps.

Step 1. First we observe that, for any t̂ ∈ [0, T ],

the set Tt̂ =
{
t ∈ [0, T ] : J(t, x(t)) = J(t̂, x(t̂))

}
is measurable.

This follows from the fact that the set {t ∈ [0, T ] : 〈x(t), nj(t)〉 − cj(t) = 0} is measurable for each fixed index

j ∈ 1,M and that J(t̂, x(t̂)) ⊂ 1,M.

Step 2. Now we fix some t̂ ∈ [0, T ] and prove that, for any Borel set B ⊂ RM ,

the set Tt̂(B) =
{
t∈[0, T ] : λ(t) ∈ B, J(t, x(t)) = J(t̂, x(t̂))

}
is measurable.

If inclusion (59) doesn’t hold at t̂ and mes(Tt̂) = 0, then Tt̂(B) is measurable and mes(Tt̂(B)) = 0. If (59) doesn’t
hold at t̂ and mes(Tt̂) > 0, then we can find t̃ ∈ Tt̂ such that (59) does hold at t̃. Since Tt̂ = Tt̃, we conclude
that one won’t restrict generality of the proof, if assume that (59) holds for the initially chosen t̂ ∈ [0, T ].

Let n̄1, ..., n̄d be any basis in E such that

n̄j = nj , for all j ∈ J(t̂, x(t̂)),

therefore it depends on t̂. Denote by St̂ : E → Rd the bounded linear map which maps every vector from E to
its coordinates in terms of {n̄j}dj=1. Then (88) necessarily means that

λ(t) = −St̂ẋ(t), for a.a. t ∈ [0, T ] such that J(t, x(t)) = J(t̂, x(t̂)).

Therefore, up to a subset of [0, T ] of zero measure,

Tt̂(B) =
{
t ∈ [0, T ] : −St̂ẋ(t) ∈ B, J(t, x(t)) = J(t̂, x(t̂))

}
= (−St̂ẋ)−1(B) ∩ Tt̂,

and the measurability of Tt̂(B) follows by combining the continuity of x and the conclusion of Step 1.

Step 3. We finally fix a Borel set B ⊂ Rk and prove the measurability of the set

λ−1(B) = {t ∈ [0, T ] : λ(t) ∈ B} . (89)

Since J(t̂, x(t̂)) can take only a finite number of (set-valued) values when t̂ varies from 0 to T, then there is a
finite sequence t1, ..., tK ∈ [0, T ] such that

[0, T ] =
⋃

i∈1,K

Tti ,

and so we can rewrite (89) as follows

λ−1(B) =
⋃

i∈1,K

Tti(B),

which is a finite union of measurable sets. The proof of the measurability of λ is complete.
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The integrability of λ on [0, T ] now follows from its boundedness. Indeed, since, ‖ẋ(t)‖0 6 L for a.a. t ∈ [0, T ]
and some L > 0 [38, p.13], one has

|λi(t)| 6 ‖λ(t)‖ = L max
i∈1,K

‖Sti‖, for a.a. t ∈ [0, T ].

The proof of the lemma is complete. �

Proof of Theorem 5.1. Let x(t) and y(t) be two non-constant distinct T -periodic solutions of (18). Theo-
rem 4.8 implies that we won’t lose generality by assuming that

J(t, x(t)) = J(t, y(t)). (90)

When applying Theorem 4.8 we used the fact that the set (85) can be expressed in the form (78) due to the
uniform boundedness of C(t).

The proof is by reaching a contradiction with the fact that x(t) and y(t) are distinct.

By replacing −ẋ(t) by its representation from Lemma 5.2 and using T -periodicity of x(t), one gets

0 =

∫ T

0

−ẋ(t)dt =

∫ T

0

M∑
i=1

λj(t)njdt =
M∑
i=1

∫ T

0

λj(t)dt nj , (91)

where λj(t) > 0. Since x(t) is non-constant and the moving constraint C(t) is the only force that influences the
value of ẋ(t), the set

Ĵ :=

{
j ∈ 1,M :

∫ T

0

λj(t)dt > 0

}
is non-empty. The following two cases can take place.

1)
{
nj : j ∈ Ĵ

}
is a linearly independent system. But property (91) yields

∑
j∈Ĵ

∫ T

0

λj(t)dt nj = 0,

that, for linearly independent vectors nj , can happen only when
∫ T

0
λj(t)dt ≡ 0, j ∈ 1,M. Therefore case 1)

cannot take place as x(t) is non-constant.

2) The vectors of
{
nj : j ∈ Ĵ

}
are linearly dependent. Since, by the assumption of the theorem, any d vectors

from
{
nj : j ∈ Ĵ

}
are linearly independent, one must have |Ĵ | > d. Let us show this leads to a contradiction

as well.

Since for each j∗ ∈ Ĵ , the function λj∗(t) is positive on a set of positive measure, there are time moments
{tj∗}j∗∈Ĵ , where (90) holds along with

−ẋ(ti) =
M∑
j=1

λj(ti)nj and λi(ti) > 0.

This and (87) imply

i ∈ J(ti, x(ti)) and by (90) i ∈ J(ti, y(ti)), i ∈ Ĵ ,
or, equivalently,

(x(ti), ni)0 = ci(ti) and (y(ti), ni)0 = ci(ti), i ∈ Ĵ .
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Therefore,
(x(ti)− y(ti), ni)0 = 0, i ∈ Ĵ ,

and, by Lemma 4.5,
(x(0)− y(0), ni)0 = 0, i ∈ Ĵ .

But |Ĵ | > d and so {nj : j ∈ Ĵ} contains d linearly independent vectors, which form a basis of Rd. Therefore,
x(0) = y(0), which is a contradiction. �

Theorem 5.1 can be used for stabilization of general sweeping process with polyhedral moving set such as those
considered e.g. in Colombo et al [16] and Krejci-Vladimirov [37].

A fundamental case where Theorem 5.1 allows to stabilize an elastoplastic system (3)-(7) to a single periodic
solution is when V cut Π(t) along a simplex. Indeed, the corollary below follows by observing that the conditions
of Theorem 5.1 about the number of facets k and about the cardinality of the set J(t, x) always hold when C(t)
is a simplex and regardless of whether C(t) is expressed in the form (78) or in the form (85).

Corollary 5.3. Let t 7→ C(t) be a uniformly bounded set-valued function given by (78), where the functions
ci(t) are globally Lipschitz continuous and T -periodic. If C(t) is a simplex for any t ∈ [0, T ], then the set X(t)
of T -periodic solutions of sweeping process (59) contains at most one non-constant T -periodic solution.

Testing the set Π(t)∩V for being a simplex can be executed for any given elastoplastic system (3)-(7) using the
algorithms of computational geometry (e.g. Bremner et al [7] can be used to compute the vertexes of Π(t) ∩ V
whose number needs to equal m+ 1).

At the same time, establishing analytic criteria for stabilization to occur could be of great use in materials
science. A simple criterion of this type is offered in the following section of the paper.

5.2. Application: an analytic condition for stabilization of elastoplastic systems to a
unique periodic regime

The following theorem is the main result of this paper. It can be viewed as an analogue of high gain feedback
stabilization in control theory. Indeed, one of the two central assumptions of the theorem is q = n − 2, which
means that the elastoplastic system has a sufficient number of control variables to be fully controllable and thus
stabilizable. The second central assumption is assuming that the magnitude of the stress-controlled loading is
high enough which literally resembles the high gain requirement of feedback control theory.

The idea of Theorem 5.4 is based on a simple fact that the moving parallelepiped Π(t) intersects the plane V
along a simplex, if the the plane V is close to the vertex of the parallelepiped, see Fig. 7(d). At the same time,
this geometric statement turned out to hold only if q = n− 2.

Theorem 5.4. In the settings of Proposition 3.12 assume that the stress-controlled loading h(t) satisfies

〈
ū,



c̄α1
...

c̄αj−1

c̄−αj
c̄αj+1

...
c̄αm


+Ah(t)

〉
· 〈ū, c̄α +Ah(t)〉 6 0, j ∈ 1,m, t ∈ [0, T ], (92)

for at least one α ∈ {−1,+1}. Further assume that the amplitude of the displacement-controlled loading g(t)
is large in the sense of (51). If both h(t) and g(t) are T -periodic and globally Lipschitz continuous, then there
exists a T -periodic function s0(t) such that ‖s(t) − s0(t)‖ → 0 as t → ∞ for the stress component s(t) of any
solution of the quasistatic evolution problem (3)-(7).
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Remark 5.6 below explains that, in the important case where the elasticity bounds of all springs are symmetric
about 0, condition (92) is a requirement for h(t) to be large enough, but not too large.

Remark 5.5. Following the lines of Remark 3.13, we consider the left-hand-side of (92) as a polynomial
P (〈ū, Ah(t)〉) in 〈ū, Ah(t)〉, so that the branches of the polynomial are pointing upwards. Therefore, condition
(92) is the requirement for 〈ū, Ah(t)〉 to stay between the roots of the polynomial. Note, one root of P (〈ū, Ah(t)〉)
is given by 〈ū, Ah(t)〉 = −〈ū, c̄α〉. By computing the derivative P ′ (−〈ū, c̄α〉) one concludes that 〈ū, Ah(t)〉 =
−〈ū, c̄α〉 is the smaller or larger root of P (〈ū, Ah(t)〉) according to whether α = +1 or α = −1. Therefore, a
sufficient condition for (92) to hold with α = +1 and α = −1 are

〈
ū,−c̄+

〉
6 〈ū, Ah(t)〉 6 min

j∈1,m

〈
ū,−



c̄+1
...

c̄+j−1

c̄−j
c̄+j+1

...
c̄+m


〉

(93)

and

max
j∈1,m

〈
ū,−



c̄−1
...

c̄−j−1

c̄+j
c̄−j+1

...
c̄−m


〉
6 〈ū, Ah(t)〉 6

〈
ū,−c̄−

〉
(94)

respectively. As we show in the proof, conditions (93) and (94) ensure that V cuts Π(t) either along the edges
adjacent to the A−1c̄+ +h(t)− g(t) vertex of Π(t) or along the edges adjacent to the A−1c̄−+h(t)− g(t) vertex
of Π(t). In particular (93)-(94) rule out the possibility of cross-section C(t) of Fig. 3 and allow for cross-section
C(t1) of the same figure.

Remark 5.6. We note, that conditions (93)-(94) never hold for h(t) = 0 as long as the elastic bounds are
symmetric in the sense that

[c−i , c
+
i ] = [−ci, ci] and ci > 0, i ∈ 1,m, (95)

which is often the case in materials science applications (see e.g. Holmes [27, Fig. B.9]). Therefore, when the
symmetry condition (95) holds, the inequality (92) is a requirement for h(t) to be distant from 0, but not too
distant.

Indeed, let us show that, under condition (95), the right-hand-side of (93) is always negative when m = 3 (the
general case can be addressed by analogy). Property (95) implies that

c̄+ =

 sign(ū1)c1
sign(ū2)c2
sign(ū3)c3

 , c̄− =

 −sign(ū1)c1
−sign(ū2)c2
−sign(ū3)c3

 ,

so that the right-hand-side of (93) takes the form

Q = min{|u1|c1 − |u2|c2 − |u3|c3,−|u1|c1 + |u2|c2 − |u3|c3,−|u1|c1 − |u2|c2 + |u3|c3}. (96)
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Fix some order of the numbers |u1|c1, |u2|c2, |u3|c3, e.g. consider

|u1|c1 6 |u3|c3 6 |u2|c2 (97)

(the case of an arbitrary order can be dealt with by analogy). First, by (97) we have |u1|c1−|u3|c3 6 0, therefore

min{|u1|c1 − |u3|c3,−|u1|c1 + |u3|c3} = |u1|c1 − |u3|c3,

which allows to drop the 3rd term in (96) obtaining

Q = min{|u1|c1 − |u2|c2 − |u3|c3,−|u1|c1 + |u2|c2 − |u3|c3}. (98)

Now we use (97) again to observe that |u1|c1 − |u2|c2 6 0, therefore

min{|u1|c1 − |u2|c2,−|u1|c1 + |u2|c2} = |u1|c1 − |u2|c2,

and so to drop the second term in (98) obtaining

Q = |u1|c1 − |u2|c2 − |u3|c3, (99)

which is negative by (97). In the general case of m springs, the inequalities of (97) will successively reduce the
expression for Q (which is a min of m terms initially) until only one term remains. This single term will consist
of the first term of (97) with positive sign and the rest of the terms of (97) with negative signs, so that this
single term will be always negative by (97), as in (99).

Similarly, the left-hand-side in (94) is always positive, if the symmetry condition (95) holds.

The interested reader is referred to e.g. Grzesikiewicz et al [22] for an elastoplastic system where the symmetry
condition (95) doesn’t hold (Shape Memory Alloys).

Proof of Theorem 5.4. We are going to prove that, for the sweeping process (37) of the elastoplastic system
given, the moving constraint (36) is a simplex, so that the conclusion will follow by applying Theorem 4.10 and
Corollary 5.3.

Since the set

C(t) =
m⋂
j=1

{
x ∈ V : c−j +ajhj(t)6ajxj6 c

+
j +ajhj(t)

}
(100)

is just a parallel displacement of the polyhedron (36), the proof will be complete, if we establish that C(t) given
by (100) is a simplex.

Fix t ∈ [0, T ]. In what follows, we show that C(t) = conv
{
ξi, i ∈ 1,m

}
, where the vertices ξ1, ..., ξm are given

by the equations 〈
ū, Aξi

〉
= 0, (101)

ajξ
i
j = c̄αj + ajhj(t), j ∈ 1,m, i 6= j. (102)

The solution ξi is unique because none of the components of ū vanish as follows from Lemma 3.11. To clarify
the meaning of (101)-(102) we recall that assuming (102) for all j ∈ 1,m (including i = j) would mean that
ξj = A−1c̄αj + hj(t). Therefore, the presence of i 6= j in (102) allows ξj to vary along one of the edges of

A−1C + hj(t) adjacent to the vertex A−1c̄αj + hj(t). Among all such locations of ξj , condition (101) selects the
one for which ξj ∈ V.
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In our proof we will distinguish two cases: when the property

〈ū, A
(
A−1c̄α + h(t)

)
〉 = 0 (103)

holds and when the property (103) doesn’t hold. Let us show that (103) implies that C(t) is the singleton
C(t) = {A−1c̄α + h(t)}. Indeed, assume that there exists x ∈ C(t) such that x 6= A−1c̄α + h(t). Then x can
be expressed as x = A−1c + h(t) for some c ∈ C. On the other hand, x ∈ V implies 〈ū, Ax〉 = 0. Therefore,
〈ū, c̄α − c〉 = 0 and by just expanding the scalar product we get the existence of two indices j1, j2 ∈ 1,m, such
that

ūj1(c̄αj1 − cj1) > 0, ūj2(c̄αj2 − cj2) < 0. (104)

It remains to observe that (104) can never hold by the construction of c̄α (see formulation of Proposition 3.12),
that is seen by listing all possible cases as follows:

if α = −1, ūj < 0, then ūj(c̄
α
j − cj) = ūj(c

+
j − cj) 6 0,

if α = −1, ūj > 0, then ūj(c̄
α
j − cj) = ūj(c

−
j − cj) 6 0,

if α = 1, ūj < 0, then ūj(c̄
α
j − cj) = ūj(c

−
j − cj) > 0,

if α = 1, ūj > 0, then ūj(c̄
α
j − cj) = ūj(c

+
j − cj) > 0,

where we also used that c−j 6 cj 6 c
+
j , j ∈ 1,m. This list of cases shows that opposite signs in the two inequalities

of (104) can never occur. Therefore, if (103) holds, then C(t) is a singleton. But if C(t) is a singleton for at least
one t∗ ∈ [0, T ], then the statement of the theorem becomes trivial (all the solutions will stick to a single solution
at time t∗). That is why we now focus on the case where (103) doesn’t hold anywhere on [0, T ]. Assuming that
(103) doesn’t hold anywhere on [0, T ], we will prove that C(t) is a simplex given by C(t) = conv

{
ξi, i ∈ 1,m

}
.

Step 1: It holds ξi ∈ C(t), i ∈ 1,m. Based on formula (100), we have to show that

c−i + aihi(t) 6 aiξ
i
i 6 c

+
i + aihi(t), i ∈ 1,m. (105)

Fix i ∈ 1,m and consider the function

b(x) =

〈
ū,



c̄α1
...

c̄αi−1

x
c̄αi+1

...
c̄αm


+



a1h1(t)
...

ai−1hi−1(t)
0

ai+1hi+1(t)
...

amhm(t)


〉
.

By the definition, aiξ
i
i is the unique root of the equation b(x) = 0. On the other hand, condition (92) implies

that b(c̄−ki + aihi(t)) · b(c̄αi + aihi(t)) 6 0, so that the unique zero of b(x) must be located between the numbers
c̄−αi + aihi(t) and c̄αi + aihi(t).

Step 2: The vertices ξi, i ∈ 1,m, form an m − 1-simplex. For a given i ∈ 1,m, we need to show that m − 1
vectors

ζji = ξj − ξi, j ∈ 1,m, i 6= j,

are linearly independent. From (101) we have 〈
ū, Aζji

〉
= 0
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while from (102) we get

ζji = (0, ..., 0, ζjij , 0, ..., 0, ζ
ji
i , 0, ..., 0)T . (106)

Combining these two properties we conclude that

ujajζ
ji
j + uiaiζ

ji
i = 0.

By Lemma 3.11 ujaj 6= 0 and uiai 6= 0, therefore we either have ζjij = ζjii = 0 or ζjij ζ
ji
i 6= 0. Observe that the

former case is impossible. Indeed, if ξi1 = ξi2 for some i1 6= i2, then (102) implies ξi1 = ξi2 = A−1(c̄α +Ah(t)),
which leads to (103) when plugged to (101) which we already excluded.

It remains to notice that property ζjij ζ
ji
i 6= 0, i 6= j implies that the vectors (106) are linearly independent

through i 6= j, j ∈ 1,m.

Step 3: We claim that C(t) = conv
{
ξi, i ∈ 1,m

}
. From Step 1, C(t) ⊃ conv

{
ξi, i ∈ 1,m

}
, so it remains to

prove that C(t) ⊂ conv
{
ξi, i ∈ 1,m

}
.

We fix î ∈ 1,m and consider a facet conv
{
ξj , j 6= î,

}
of the simplex conv

{
ξj , j ∈ 1,m

}
. Observe from (102)

that all vertices of the facet share their î-th coordinate. Therefore the whole facet belongs to the plane

Lî = {x ∈ V : aixi = c̄k
î

+ aîhî(t)}.

Therefore,

conv
{
ξj , j ∈ 1,m

}
=

m⋂
i=1

{
x ∈ V : pi

(
aixi − c̄ki − aihi(t)

)
6 0
}
,

where pi ∈ {−1, 1} are suitable signs. On the other hand, by (100),

C(t) ⊂
m⋂
i=1

{x ∈ V : qi (aixi − c̄αi − aihi(t)) 6 0} , (107)

where qi ∈ {−1, 1} are suitable signs. Since by Step 2, conv{ξi, i ∈ 1,m} ⊂ C(t), we get pi = qi, i ∈ 1,m. But
then (107) takes the form C(t) ⊂ conv{ξi, i ∈ 1,m}.

To summarize, we proved that, when (103) doesn’t hold, the set C(t) is a simplex and the conclusion follows
by applying Proposition 3.14, Remark 4.1, Theorem 4.10 and Corollary 5.3. Specifically, the attractor S(t)
that is introduced in the formulation of Theorem 4.10 is non-empty by Remark 4.1. Corollary 5.3 then implies
that the set of T -periodic functions S(t) contains at most one non-constant T -periodic solution. On the other
hand, Proposition 3.14 says that S(t) cannot contain constant solutions. Therefore, S(t) consists of just one
T -periodic function, that we denote by s0. Finally, Theorem 4.10 ensures that ‖s(t)− s0(t)‖ → 0 as t→∞ for
any stress component s(t) (that we call “stress-vector” in the formulation of Theorem 4.10) of any solution of
the quasistatic evolution problem (3)-(7).

�

Example (continued). Applying Theorem 5.4 to the elastoplastic system of Fig. 6 (where we have q = n− 2)
we use earlier formulas (44) and (49) together with Remark 5.5 to obtain the following conclusion: if the T -
periodic displacement-controlled loading l(t) satisfies (58) and, for the T -periodic stress-controlled loading h(t),
one either has

−c̄+1 + c̄−2 − c̄
+
3 < a1h1(t) + a2h2(t) + a3h3(t) <

< min
{
−c̄−1 + c̄−2 − c

+
3 ,−c̄

+
1 + c̄+2 − c̄

+
3 ,−c̄

+
1 + c̄−2 − c̄

−
3

}
, t ∈ [0, T ],
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or

max
{
−c̄+1 + c̄+2 − c

−
3 ,−c̄

−
1 + c̄−2 − c̄

−
3 ,−c̄

−
1 + c̄+2 − c̄

+
3

}
<

< a1h1(t) + a2h2(t) + a3h3(t) < −c̄−1 + c̄+2 − c̄
−
3 , t ∈ [0, T ],

then the stresses of springs of the elastoplastic system of Fig. 6 converge, as t → ∞, to a unique T -periodic
regime that depends on l(t) and h(t), and doesn’t depend on the initial state of the system.

6. Conclusions

We used Moreau sweeping process framework to analyze the asymptotic properties of quasistatic evolution
of one-dimensional networks of elastoplastic springs (elastoplastic systems) under displacement-controlled and
stress-controlled loadings. This type of elastoplastic systems covers, in particular, rheological models of materials
science. We showed that displacement-controlled loading corresponds to parallel displacement of the moving
polyhedron C(t) of the respective sweeping process, but doesn’t influence the shape of C(t). We showed that
it is the stress-controlled loading which is capable to change the shape of C(t). Moreover, we proved that
increasing the magnitude of the stress-controlled loading always makes C(t) a simplex, if the number q of
displacement-controlled constraints is two less the number n of nodes of the network (q = n− 2).

The global asymptotic stability result established in this paper ensures convergence of the stresses of springs to
a unique periodic solution (output) when the magnitude of the displacement-controlled loading is large enough
and when the normal vectors of any d different facets of the moving polyhedron C(t) are linearly independent.
Here d is the dimension of the phase space of the polyhedron C(t), given by d = m− n+ q + 1, where m is the
number of springs, see (54). The most natural example where such a property holds is when C(t) is a simplex.

In establishing our results we use monotonicity of the normal cone to say that the distance between any two
solutions of a sweeping process doesn’t increase over time, see Lemma 4.4 of Section 4.1 (we don’t use maximal
monotonicity of the normal cone explicitly). Geometric and algebraic properties of the normal cone that come
from the polyhedral shape of the constraint play, however, the most crucial role in our proofs.

Our theory can be viewed as an analogue of the high gain feedback stabilization of the classical control theory,
see Isidori [29, §4.7]. The high gain assumption of the control theory corresponds to our condition (92) on
the magnitude of stress-controlled loading. Our assumption q = n − 2 on the network of elastoplastic springs
resembles the relative degree in control.

The advantage of the proposed restriction dimU = 1 is that it leads to simple analytic conditions (51) and
(92) for the convergence of an elastoplastic system, which can be used for the design of elastoplastic systems
that converge for the desired set of applied loadings. Extending Theorem 5.4 to the case where dimU > 1 is a
doable task, but the respective inequality (92) transforms into a list of groups of inequalities, where the number
of groups equals the number of selections of dimU from m (equation (101) gets replaced by the respective
combinations of dimU equations). We don’t see how such a condition can be useful in design of applied
loadings, thus we stick to dimU = 1.

The results of the paper can be extended to the case of dynamic evolution of elastoplastic systems with small
inertia forces along the lines of Martins et al [43].

We like to think that the present paper opens a new room of opportunities for researchers interested in applied
analysis and control.

Appendix A. Derivation of system (3)-(7) from Moreau’s abstract framework

In this section we show how system (3)-(7) can be derived from the abstract framework by Moreau [45]. This
abstract framework consists of the following 6 equations, that we quote directly from [45] keeping the numbering
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and placing the hat symbol “ ˆ ” above Moreau’s variables to distinguish them from the variables of the same
name defined earlier in the present paper:

ŝ = Âê, (6.1)

˙̂p ∈ ∂ψĈ(−f̂), (6.2)

L̂ = Û + ĝ(t), (6.3)

−r̂ ∈ ∂ψL̂(ê+ p̂), (6.4)

r̂ + ĉ(t)− ŝ = 0, (6.5)

ŝ+ f̂ = 0, (6.6)

where x 7→ ψB(x) is the indicator function of a set B, whose subdifferential ∂ψB(x) coincides with the normal

cone NB(x) (see Rockafellar [50, p. 215]). In [45], Û + ĝ(t) is a perfect affine constraint, which moves according
to ĝ(t). The function ĝ(t) is called guiding, and ĉ(t) is called load.

Notice that ∂ψL̂(ê+ p̂) = NL̂(p̂+ ê) = Û⊥ = −Û⊥. Moreover, equation (6.4) necessarily means that ê+ p̂ ∈ L̂
by definition of normal cone. Therefore system (6.1)-(6.6) can be equivalently written as

ŝ = Âê, (6.1)

˙̂p ∈ NĈ(ŝ), (6.2)

ê+ p̂ ∈ Û + ĝ(t) (108)

ŝ− ĉ(t) ∈ Û⊥ (109)

To make a connection with the system (3)-(7) we plug the values of e, p, s, A, U, g(t) and −h̄(t) (all defined in

Section 2) as ê, p̂, ŝ, Â, Û , ĝ(t) and ĉ(t) respectively into the system (6.1)-(6.2),(108)-(109) and we get

s = Ae,

ṗ ∈ NC(s),

e+ p ∈ U + g(t)

s+ h̄(t) ∈ U⊥

This is exactly the system (3)-(4),(27),(32) which is equivalent to the (3)-(7) as discussed in the proof of Theorem
3.1.

To summarize, the abstract framework (6.1)-(6.6) of Moreau [45] takes the form of (6.1)-(6.2) and (108)-(109),
which, in its turn, is equivalent to (3)-(7) by formulas (27),(32) when the appropriate variables are used.

Appendix B. Some results from graph theory, linear algebra, convex analysis

This section contains some standard results that we use in the concepts and proofs of the paper. The notations
of this section follow those of the original sources, which are Bapat [4], Friedberg et al [20], Rockafellar [50],
and Narici-Beckenstein [46].

Incidence matrix. A graph of m oriented edges {e1, ..., em} on n nodes {1, ..., n} is described by an n ×m
incidence matrix Q according to the following rule, see [4, p. 11]. The i-th raw of QT contains only two non-zero
elements “1” and “-1”. The presence of “1” at j-th column of i-th raw means that the edge ei originates at
note j. The presence of “-1” at j-th column of i-th raw means that edge ei terminates at note j.
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e1 e2 
e3 

e4 
e5 e6 

 

Figure 10. An oriented graph of 6 edges on 5 nodes.

For example, for the graph of Fig. 10 (see [4, Example 2.1]) the matrices QT and Q read as

QT =


−1 1 0 0 0
1 0 −1 0 0
−1 0 0 1 0
0 −1 0 0 1
0 0 1 0 −1
0 0 0 −1 1

 , Q =


−1 1 −1 0 0 0
1 0 0 −1 0 0
0 −1 0 0 1 0
0 0 1 0 0 −1
0 0 0 1 −1 1

 .

Incidence vector, path, cycle. A finite sequence of successively connected edges {ej1 , ..., ejk} of the graph is
called a oriented path, if each node of the graph connects at most two edges of the path. The i-th component of
the incidence vector x ∈ Rm of the path is defined as -1, 0, or 1, according to whether the edge ei belongs to the
path and disagrees with the path in direction, doesn’t belong to the path, or belongs to the path and agrees with
the path in direction. The oriented path {ej1 , ..., ejk} is an oriented cycle if each of the two ends of any edge eji of
the path is connected with another edge of the path. For the example of Fig. 10, the incidence vector of the cycle
{e3, e2, e5, e6} is x = (0, 1, 1, 0, 1, 1)T , and the incidence of the cycle {e1, e4, e6, e3} is x = (−1, 0, 1,−1, 0, 1)T .

Lemma B.1. (see Bapat [4, p. 57]) If x is the incidence vector of a cycle {ej1 , ..., ejk}, then Qx = 0.

Lemma B.2. (see Bapat [4, Lemma 2.2]) If Q is an incidence matrix of a connected graph, then rankQ = n−1.

Rank-nullity theorem. (see e.g. Friedberg et al [20, Theorem 2.3]) Let V and W be vector spaces, and let
T : V 7→W be linear. If V is finite-dimensional, then

dim KerT + rankT = dimV.

Rockafellar [50, Corollary 23.8.1]. Let C1, ..., Cm be convex sets in Rn whose relative interiors have a point
in common. Then the normal cone to C1 ∩ ... ∩ Cm at any given point x is K1 + ... + Km, where Ki is the
normal cone to Ci at x. If certain of the sets, say C1, ..., Ck, are polyhedral, the conclusion holds if merely the
sets C1, ..., Ck, riCk+1, ..., riCm have a point in common.

Let 〈·, ·〉 be a standard scalar product in Rn and let A be an n × n-invertible matrix. We remind the reader

that a finite-dimensional vector space X = Rn equipped with the norm ‖x‖ =
√
〈x,Ax〉 is an inner product

space (see Narici-Beckenstein [46, §1.7.1]).

Corollary of Theorems 16.1.4 and 16.1.5 from Narici-Beckenstein [46]. If X is an inner product space,
then, for any nonzero x, y ∈ X, ‖x+ y‖ = ‖x‖+ ‖y‖ implies that there exists α > 0 such that y = αx.
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Appendix C. Proof of Theorem 4.6

Massera-Krejci Theorem for sweeping processes with a moving set of the form C(t) = ∩Mj=1(Cj + cj(t)).

We prove that every solution x of sweeping process (59), that is defined on [0,∞), satisfies

lim
t→∞

‖x(t)− x∗(t)‖0 = 0, (110)

where x∗ is a T -periodic solution of (59).

Notice, that in case of T−periodic input the function t 7→ x(t + T ) coincide with another solution of (59)
originating from the point x(T ) at t = 0. Due to monotonicity of N0

C(t)(x) in x the distance ‖x(t+ T )− x(t)‖0
is non-increasing (see e.g. [38, Corollary 1]) and there exists

r = lim
t→∞

‖x(t+ T )− x(t)‖0. (111)

Since x([0,∞)) is precompact, there is a subsequence {ni}i∈N ⊂ N and a point x∗0 such that

lim
i→∞

‖x(niT )− x∗0‖0 = 0. (112)

Moreover, since each x(niT ) ∈ C(niT ) = C(0) and C(0) is closed we have x∗0 ∈ C(0). Let x∗ be a solution of
(59) with the initial condition x∗(0) = x∗0. Consider the functions

xi(t) = x(t+ niT ), i ∈ N.

Since C(t) = C(niT + t), each function xi(t) is the solution of sweeping process (59) with the initial condition
xi(0) = x(niT ). The distance between solutions doesn’t increase, so for any t > 0,

0 6 ‖xi(t)− x∗(t)‖0 6 ‖x(niT )− x∗0‖0, (113)

and using (112) we obtain

lim
i→∞

‖x(t+ niT )− x∗(t)‖0 = lim
i→∞

‖xi(t)− x∗(t)‖0 = 0 (114)

Let us prove that x∗ is T -periodic. Combining (114) and (111) we get

r = lim
i→∞

‖x(t+ niT + T )− x(t+ niT )‖0 = ‖x∗(t+ T )− x∗(t)‖0.

Since x∗ and t 7→ x∗(t + T ) are two solutions of sweeping process (59) with the constant distance r between
them, lemma 4.5 yields

ẋ∗(t) = ẋ∗(t+ T ), t > 0. (115)

Thus,

x∗(n̄T )− x∗0 =

n̄T∫
0

ẋ∗(t)dt = n̄

T∫
0

ẋ∗(t)dt = n̄(x∗(T )− x∗0), n̄ ∈ N,

and so ‖x∗(n̄T )−x∗0‖ = n̄r, n̄ ∈ N. Since t 7→ x∗(t) is bounded, the latter is possible only when r = 0, i.e. when
x∗ is T -periodic.
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Now we finally prove (110). For each t > 0, we denote by j(t) the maximal j ∈ N such that nj(t)T 6 t. Then,
letting τ(t) = t− nj(t)T, we use T -periodicity of x∗ and the property (114) to conclude

lim
t→∞

‖x(t)− x∗(t)‖0 = lim
t→∞

‖x(τ(t) + nj(t)T )− x∗(τ(t) + nj(t)T )‖0 6 lim
t→∞

‖x(nj(t)T )− x∗(nj(t)T )‖0 =

= lim
t→∞

‖x(nj(t)T )− x∗(0)‖0 = lim
i→∞

‖x(niT )− x∗(0)‖0 = 0.

The proof of the theorem is complete. �

Similar to Theorem 4.6 results are obtained in Henriquez [25] (extension to Banach spaces) and in Kamenskii
et al [33] (extension to almost periodic solutions).

Appendix D. Structure of the configuration space

To illustrate the structure of the configuration space Rm and construction of the variables used in Theorem 3.1
we can plot a 3D diagram (Fig. 11) of a hypothetical situation when m = 3, q = 1, rankD = 2 whithout a
connection to any particular network of springs. In such a case we have dimU = 1, dimV = 2. Since q = 1 the
matrices R and L are single column-vectors and we illustrate the condition (9) on L by showing that

projR(DL) =
R

‖R‖

〈
R

‖R‖
, DL

〉
=

R

‖R‖2
RTDL =

R

‖R‖2

  

Figure 11. The structure of the configuration space Rm when q = 1, dimU = 1, dimV = 2. The right side
of the figure shows how the vector g(t) is obtained and the left side shows how the moving set Π(t) ∩ V is

defined.

Compliance with Ethical Standards

Conflict of Interest: The authors have no conflict of interest.



40 TITLE WILL BE SET BY THE PUBLISHER

References

[1] S. Adly, M. Ait Mansour, L. Scrimali, Sensitivity analysis of solutions to a class of quasi-variational inequalities. Boll. Unione

Mat. Ital. Sez. B Artic. Ric. Mat. (8) 8 (2005), no. 3, 767–771.
[2] S. Adly, F. Nacry, L. Thibault, Discontinuous sweeping process with prox-regular sets. ESAIM Control Optim. Calc. Var. 23

(2017), no. 4, 1293–1329.

[3] J. Bastien, F. Bernardin, C.-H. Lamarque, Non-smooth deterministic or stochastic discrete dynamical systems. Applications
to models with friction or impact. Mechanical Engineering and Solid Mechanics Series. ISTE, London; John Wiley & Sons,

Inc., Hoboken, NJ, 2013. xvi+496 pp.

[4] R. B. Bapat, Graphs and matrices. Universitext. Springer, London; Hindustan Book Agency, New Delhi, 2010. x+171 pp.
[5] T. R. Bieler, N. T. Wright, F. Pourboghrat, C. Compton, K. T. Hartwig, D. Baars, A. Zamiri, S. Chandrasekaran, P.

Darbandi, H. Jiang, E. Skoug, S. Balachandran, G. E. Ice, W. Liu, Physical and mechanical metallurgy of high purity Nb for

accelerator cavities, Physical Review Special Topics – Accelerators and Beams 13 (2010) 031002.
[6] I. Blechman, Paradox of fatigue of perfect soft metals in terms of micro plasticity and damage, Int. J. Fatigue 120 (2019)

353–375.
[7] D. Bremner, K. Fukuda, A. Marzetta, Primal-dual methods for vertex and facet enumeration. ACM Symposium on Compu-

tational Geometry (Nice, 1997). Discrete Comput. Geom. 20 (1998), no. 3, 333–357.

[8] B. Brogliato, Nonsmooth mechanics. Models, dynamics and control. Third edition. Communications and Control Engineering
Series. Springer, 2016. xxii+629 pp.

[9] B. Brogliato, Absolute stability and the Lagrange-Dirichlet theorem with monotone multivalued mappings, Syst. Control

Lett. 51 (2004) 343–353.
[10] B. Brogliato and W. P. M. H. Heemels, Observer Design for Lur’e Systems With Multivalued Mappings: A Passivity Approach,

IEEE Transactions on Automatic Control 54 (2009), no. 8, 1996–2001.

[11] B. Brogliato, L. Thibault, Existence and uniqueness of solutions for non-autonomous complementarity dynamical systems. J.
Convex Anal. 17 (2010), no. 3-4, 961–990.

[12] M. Brokate, J. Sprekels, Hysteresis and Phase Transitions, Springer, 1996.

[13] G. A. Buxton, C. M. Care, D. J. Cleaver, A lattice spring model of heterogeneous materials with plasticity. Modelling and
simulation in materials science and engineering, 9 (2001), no. 6, 485–497.

[14] R. Cang, Y. Xu, S. Chen, Y. Liu, Y. Jiao, M. Y. Ren, Microstructure Representation and Reconstruction of Heterogeneous
Materials via Deep Belief Network for Computational Material Design. Journal of Mechanical Design 139 (2017), no. 7,

071404.

[15] H. Chen, E. Lin, Y. Liu, A novel Volume-Compensated Particle method for 2D elasticity and plasticity analysis, International
Journal of Solids and Structures 51 (2014), no. 9, 1819–1833.

[16] G. Colombo, R. Henrion, N. D. Hoang, B. S. Mordukhovich, Optimal control of the sweeping process over polyhedral controlled

sets. J. Differential Equations 260 (2016), no. 4, 3397–3447.
[17] John B. Conway. A Course in Functional Analysis. Second Edition. Springer, 1997.

[18] V. Crismale, Globally stable quasistatic evolution for a coupled elastoplastic-damage model. ESAIM Control Optim. Calc.

Var. 22 (2016), no. 3, 883–912.
[19] C. O. Frederick, P. J. Armstrong, Convergent internal stresses and steady cyclic states of stress. J. Strain Anal. 1 (1966), no.

2, 154–159.

[20] S. H. Friedberg, A. J. Insel, L. E. Spence, Linear Algebra, 4th Edition, Prentice-Hall of India, New Delhi, 2004.
[21] G. Garcea, L. Leonetti, A unified mathematical programming formulation of strain driven and interior point algorithms for

shakedown and limit analysis. Internat. J. Numer. Methods Engrg. 88 (2011), no. 11, 1085–1111.
[22] W. Grzesikiewicz, A. Wakulicz A. Zbiciak, Mathematical modelling of rate-independent pseudoelastic SMA material, Inter-

national Journal of Non-Linear Mechanics 46 (2011), no. 6, 870–876.
[23] W. Han, B. D. Reddy, Plasticity. Mathematical theory and numerical analysis. Second edition. Interdisciplinary Applied

Mathematics, 9. Springer, New York, 2013. xvi+421 pp.
[24] M. Heitzer, G. Pop, M. Staat, Basis reduction for the shakedown problem for bounded kinematic hardening material. J.

Global Optim. 17 (2000), no. 1-4, 185–200.
[25] H. R. Henriquez, M. Pierri, P. Taboas, On S-asymptotically ω-periodic functions on Banach spaces and applications. J. Math.

Anal. Appl. 343 (2008), no. 2, 1119–1130.
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