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Abstract 

 

Global models comprising the sixth generation Coupled Climate Model Intercomparison Project 1 

(CMIP6) are downscaled using a very high resolution but simplified coupled atmosphere-ocean 2 

tropical cyclone model, as a means of estimating the response of global tropical cyclone activity 3 

to increasing greenhouse gases. As with a previous downscaling of CMIP5 models, the results 4 

show an increase in both the frequency and severity of tropical cyclones, robust across the 5 

models downscaled, in response to increasing greenhouse gases. The increase is strongly 6 

weighted to the northern hemisphere, and especially noteworthy is a large increase in the 7 

higher latitudes of the North Atlantic. Changes are insignificant in the South Pacific across 8 

metrics. Although the largest increases in track density are far from land, substantial increases 9 

in global landfalling power dissipation are indicated. The incidence of rapid intensification 10 

increases rapidly with warming, as predicted by existing theory. Measures of robustness across 11 

downscaled climate models are presented, and comparisons to tropical cyclones explicitly 12 

simulated in climate models are discussed.  13 

  14 
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1. Introduction 15 

The cost to society of climate change is driven largely by the costs associated with extreme 16 

climate events such as droughts, floods, wildfires, and storms. Slow changes in long-term 17 

average conditions, such as annual mean temperature and sea level, can often be 18 

accommodated through an equivalently slow adaptation, but adaptation to changes in 19 

infrequent events is notoriously flawed and often unduly influenced by politics and special 20 

interests (Gaul, 2019), making each event disproportionately expensive.  21 

The long-term average annual cost, ,C  of discrete climate events can be defined as the integral 22 

of the cost of each event multiplied by the annual probability density of that event, over the 23 

whole range of possible costs: 24 

 
0
( ) ( ) ,C c i p i di



=    (1) 25 

where c  is the cost of an event of intensity i , and ( )p i  is the probability density (probability 26 

per unit intensity) associated with that cost.  27 

For extreme events such as tropical cyclones, the cost typically rises steeply and nonlinearly 28 

with the intensity of the event, and at the same time the probability of the event drops with its 29 

intensity. For this reason, the integral in (1) is usually dominated by costs associated with 30 

intensities greater, and possibly much greater, than the intensity associated with the peak of 31 

the probability distribution.  32 



4 
 

This simple point is illustrated in Figure 1 which is based on damage caused to a portfolio of U.S. 33 

properties by 6,200 synthetic tropical cyclones making landfall on the U.S. East and Gulf coasts 34 

in two different climate states. These tracks were generated using the technique described in 35 

Emanuel et al. (2008) applied to a particular CMIP6-generation climate model, and the damage 36 

function and portfolio of property values used by Emanuel et al. (2012). The details of the 37 

downscaling methodology are described later in this paper but are not so important here; the 38 

point is to illustrate the nature of the problem. 39 

The green curves in Figure 1 show the annual probability densities of losses as a function of the 40 

loss amount; here these are defined as probabilities per unit base 10 log of the cost. The solid 41 

curves are for the climate of the late 20th century, while the dashed curves pertain to the 42 

climate of the late 21st century under global warming. The most likely event will incur between 43 

$100 thousand and $1 million in losses to this portfolio. The warmer climate has fewer weak 44 

events and more strong events; for this illustration the overall frequency is held constant2. The 45 

violet curves show the probability density multiplied by the cost. The areas under these violet    46 

curves are proportional to the total cost. Thus the long-term cost of this hazard is coming from                                47 

the low-probability, high-intensity tail of the distribution, and the climate shift is causing an 48 

appreciable increase in cost even though the shift in the probability distribution is small.  49 

Conversely, almost no damage is contributed by the median (most frequent) event. Thus the 50 

most frequent question asked by politicians and the media, and many scientists:  How will the 51 

                                                      
2 The overall frequency includes some events that cause no damage, thus the areas under the probability curves in 
Fig 1 are not equal.  
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intensity and frequency of tropical cyclones change? is essentially meaningless, because 52 

frequency is dominated by events that cause very little damage. What we must concern 53 

ourselves with is the frequency of the most damaging events. While this illustration pertains 54 

only to wind damage, the same is qualitatively the case for water damage.  55 

The climate shift in probability density and damage is not simply a matter of changing 56 

frequency and/or intensity but also depends crucially on shifting storm tracks; at the end of the 57 

day, all meaningful climate change is local. The damage done by a tropical cyclone is also a 58 

strong function of its size, including inner dimensions usually characterized by the radius of 59 

maximum winds, and the outer wind field. High category tropical cyclones may have radii of 60 

maximum winds as small as 10 km and as large as 100 km while their destructiveness varies 61 

between the first and second power of this length scale3. Moreover, much of the damage done 62 

by tropical cyclones is accomplished by water; specifically, by storm surge, which is sensitive to 63 

wind speed, storm size, and translation speed, and by torrential rains which are sensitive to a 64 

variety of storm structural characteristics, intensity, and movement.  65 

For all these reasons, tropical cyclones simulated by most of today’s generation of coupled 66 

climate models are unsuitable for direct estimation of tropical cyclone damage. Indeed, the 67 

majority of coupled models reviewed by Knutson et al. (2020) have grid spacings of 50 km or 68 

greater, whereas numerical convergence experiments (e.g. Rotunno et al. 2009) suggest that 69 

                                                      
3 A stationary, steady cyclone just offshore will affect an area proportional the square of its diameter, while a 
steady storm moving at constant translation speed will affect a swath proportional to the first power of the 
diameter, but the duration of winds at fixed points will also depend on storm diameter.  
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grid spacing on the order of a few kilometers is needed to achieve numerical convergence of 70 

azimuthal mean variables.  71 

An alternative to using poorly resolved tropical cyclones from climate models is to downscale 72 

such models by embedding within them regional or local models with far greater spatial 73 

resolution. A straightforward approach is to drive such embedded high-resolution models with 74 

time-evolving boundary conditions supplied from the global models. Examples of this approach 75 

are comprehensively reviewed in Knutson et al. (2020). A disadvantage of this approach is that 76 

the total number of events simulated is limited by the length of time spanned by the global 77 

model simulation and/or by computational cost. Furthermore, in designing the geometries of 78 

the high-resolution subdomains, one must take into account the possibility that the regions 79 

affected by tropical cyclones might shift with climate change.  80 

For this reason, we adapt the approach described in Emanuel et al. (2008) in which the essential 81 

statistical properties of the time-evolving environment are culled from global reanalyses or 82 

climate models and used to drive a simple coupled ocean-atmosphere tropical cyclone intensity 83 

model along tracks produced by random seeding and a beta-and-advection displacement 84 

model. The intensity model has very high spatial resolution in the storm core, owing to the use 85 

of an angular momentum radial coordinate, and had been previously shown to produce skillful 86 

real-time intensity forecasts (Emanuel and Rappaport, 2000). The random seeding is a ‘natural 87 

selection’ algorithm; the vast majority of seed disturbances dissipate quickly owing to having 88 

been placed in unfavorable environments, leaving a few survivors that had been placed in 89 

favorable environments. 90 
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There are several advantages to this technique in comparison to conventional downscaling. The 91 

use of angular momentum coordinates allows increasing spatial resolution of the storm core as 92 

its intensity increases, thus each storm’s intensity is limited by the physical properties of its 93 

environment rather than by numerical resolution. Because the tropical cyclone model is driven 94 

by the statistics of the global model or reanalysis, an arbitrarily large number of events can be 95 

simulated in a given climate, and the seeding is global so there is no need to pre-select sub-96 

domains.  97 

Yet there are a number of disadvantages to this approach. The intensity model is axisymmetric, 98 

so the dynamical interaction with sheared environments must be parameterized. The shear 99 

parameterization used was developed by Emanuel et al. (2004) to optimize the quality of real-100 

time intensity forecasts and is a function of the 250-850 hPa shear magnitude (but not 101 

direction) and the saturation deficit of the large-scale environment at 600 hPa. There is no 102 

feedback from the simulated cyclones to the regional environment, as there is in conventional 103 

downscaling, so the simulation of the extratropical transition of simulated storms is 104 

compromised. (The simulated cyclones do respond to the statistics of middle latitude baroclinic 105 

systems but they cannot feedback on such systems.) Finally, in previous work and in what 106 

follows here, there has been no attempt to alter the statistics of the random seed disturbances 107 

in response to climate change, except that we allow the horizontal scale of the seed 108 

disturbances to vary with the deformation radius based on the large-scale environment. Thus 109 

we operate under the assumption that the climatology of tropical cyclones is entirely dictated 110 

by the large-scale thermodynamic and kinematic environment and not by the climatology of 111 

potential initiating disturbances.  112 
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Since most tropical cyclones are triggered by pre-existing disturbances, the notion that cyclone 113 

climatology is independent of the climatology of such disturbances is counter-intuitive. Yet 114 

there is an abundance of evidence that spatial, seasonal, and interannual variability of tropical 115 

cyclones is controlled mostly by variations in the large-scale environment. In the first place, 116 

genesis potential indices (Gray, 1979; DeMaria et al., 2001; Emanuel and Nolan, 2004; Emanuel, 117 

2010), which are based exclusively on large-scale variables such as potential intensity and wind 118 

shear, capture much of the climatology of observed tropical cyclones, including their spatial and 119 

seasonal distributions, and interannual variability, at least in the Atlantic region (e.g. Camargo 120 

et al., 2007a; Camargo et al., 2007b; Bruyère et al., 2012; Camargo et al., 2014). Classical 121 

regional downscaling simulations (e.g. Vitart and co-authors, 2007) for the Atlantic region also 122 

capture much of the observed interannual variability of tropical cyclone activity when driven by 123 

initial and boundary conditions supplied from reanalysis data, but in this case, potential 124 

initiating disturbances such as African Easterly Waves (AEWs) are usually present in the 125 

reanalyses and thereby exert an influence on the downscaled tropical cyclones. Yet in one such 126 

study (Patricola et al., 2018), AEWs entering the regional domain from the east were artificially 127 

suppressed, but the frequency and interannual variability in tropical cyclogenesis was hardly 128 

affected. In this case, the AEWs determined the timing and location of genesis events, but not 129 

their existence.  130 

The random seeding approach applied here has been shown to capture reasonably well the 131 

spatial and seasonal variations of tropical cyclones around the world, and the interannual 132 

variability in the Atlantic region, at least as well as classical regional downscaling does (Emanuel 133 

et al., 2008). But because the global warming signal is probably not yet detectable in historical 134 
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tropical cyclone counts (Knutson et al., 2019), there is no way to definitively test this 135 

technique’s (or any other’s) ability to capture the possibly unique character of the global 136 

climate change signal. We will return to this point in Section 4.  137 

2. Methods and Data 138 

We use the same downscaling technique original developed by Emanuel et al. (2006) and 139 

Emanuel et al. (2008) and applied to the CMIP5 generation of models by Emanuel (2013). We 140 

have made some minor modifications to the technique since its application to CMIP5 models. 141 

These include: 142 

• Scaling the radii of maximum winds of the seed disturbances by the deformation radius, 143 

based on dry stratification along moist adiabats as determined by the environmental 144 

temperature at 600 hPa. This causes a modest increase in the average size of simulated 145 

tropical cyclones with warming of the free troposphere. 146 

• Slightly modifying the coefficients governing beta-drift 147 

• Calculating the monthly mean ocean mixed layer depths and sub-mixed layer thermal 148 

stratification from the global model output rather than from historical climatology; the 149 

effect of this is to modestly reduce the number of very intense storms (Emanuel, 2015) 150 

• Adding detection of secondary eyewalls that occur in the CHIPS model and modifying 151 

the canonical radial profiles of wind speed to account for them. This does not affect the 152 

global statistics presented here but does affect the calculation of winds speeds at fixed 153 

points and thereby, for example, the damage calculations such as those mentioned in 154 

the Introduction 155 
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• Appling a database of surface roughness over land used to calculate the neutral drag 156 

coefficients, replacing the crude parameterization based on topography used before. 157 

The new drag coefficients over land are applied to both the CHIPS model and the post-158 

processing algorithms that calculate rainfall. This change does not affect storms over 159 

water unless they have previously passed over land.  160 

For the current study, we applied the technique to nine global climate models and to two 161 

climate regimes:   The period 1850-2014 from historical simulations, and an arbitrary 151-year 162 

period from simulations in which atmospheric CO2 increases by 11% yr− . In each case, 150 163 

synthetic tracks were generated for each year, yielding 24,750 events for the historical period, 164 

and 22,650 events for the increasing CO2 simulations. The random seeding rate is calibrated for 165 

each model to yield an 1850-2014 average annual global frequency of 84 storms, close to the 166 

post-1980 observed mean. The global climate models used are listed in Table 1.  167 

3. Results 168 

We begin by presenting selected time series of global tropical cyclone activity from the 169 

historical period, 1850-2014 and from the 11% yr−  CO2 experiment. The latter is carried out 170 

over an arbitrary 151-year period, but for purposes of comparison we display the results as 171 

extending from 1970 to 2120. But note that the measured rate of increase of atmosphere CO2 172 

has been closer to 10.2% yr− . Our intent here is to examine the general response of global 173 

tropical cyclone activity to rising greenhouse gas concentrations, uncomplicated by other 174 

climate influences, not to make actual projections. Since the radiative forcing by atmospheric 175 

CO2 over this range of values is nearly proportional to the logarithm of the concentration, we 176 
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expect trends in global tropical cyclone activity to scale nearly with the annual percentage 177 

increase in CO2 concentration in the absence of other climate forcings.  178 

In the figures that follow, the solid curves show the multi-model means and the shadings show 179 

one standard deviation up and down from the mean. Dashed lines indicate the linear regression 180 

trends of the multi-model means. Blue represents the historical period and red shows the 181 

11% yr− CO2 increase experiment.  182 

Figure 2 shows the annual frequency of all tropical cyclones over the globe. The global 183 

frequency increases by about 9% over the historical period, 1850-2014, but more rapidly in the 184 

last few decades4. Over the 151 years of the increasing CO2 experiment, the frequency 185 

increases by about 25% per doubling of CO2. Linear trends and associated p-values are given for 186 

the annual frequency and other tropical cyclone metrics in Table 2.  187 

The previous downscaling of CMIP5 models yielded an increase of roughly 20% per doubling of 188 

CO2, although those results are not directly comparable to these because the trajectory of CO2 189 

concentration in the Representative Concentration Pathway (RCP) 8.5 is not the same at that 190 

used here.  191 

The green curves in Figure 2 show the values of a genesis potential index (GPI) summed over 192 

the globe (weighted by the cosine of the latitude) for each climate model and then averaged to 193 

produce the multi-model mean. The GPI is that of Emanuel (2010) except that the absolute 194 

                                                      
4 This more rapid increase amounts to around 10 events over the period of good global observations, 1980 – 2018. 
Given the Poisson random variability of about 9 storms over this period, such a trend would not be statistically 
detectable at the 5% level, even without considering the effects of natural climate variability on global tropical 
cyclone frequency.  
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vorticity contribution is capped at 5 15 10 ,s− −  following Tippett et al. (2011). This GPI was 195 

developed largely independently of the tropical cyclone downscaling algorithm, so this provides 196 

a somewhat independent check, though both the CHIPS model and the GPI use potential 197 

intensity and a nondimensional measure of mid-tropospheric specific humidity, ,  as variables.   198 

Figure 3a shows the multi-model mean global frequency of tropical cyclones categorized by  199 

Saffir-Simpson intensity and compares them to observations (IBTrACS, Knapp et al., 2010)5 200 

made over the period 1980-2018. Note here that the tropical storm (TS) category only includes 201 

synthetic and observed events whose lifetime intensity exceeds 40 kts. 202 

The comparison of the observed frequencies with the events downscaled from the historical 203 

period is reasonable, but there are too few Category 4 storms and too many Category 5 storms. 204 

This may reflect a bias in the downscaling methodology or in the climate models, but it is also 205 

likely that the observations, which are overwhelmingly based on satellite remote sensing 206 

imagery, underestimate the intensity of the most intense events, shifting them artificially from 207 

Category 5 to Category 4 (Kossin et al., 2013). Figure 3b shows the same comparison but 208 

increasing the intensities of the observed storms by 10%. This increase brings the observed and 209 

historically simulated Saffir-Simpson categories into much better alignment, though the 210 

partitioning between tropical storms and Category 1 storms deteriorates, perhaps because of 211 

the ambiguity of Dvorak method when eyes are beginning to form (Olander and Velden, 2019). 212 

The observed and historically simulated combined numbers of tropical storms and Category 1 213 

                                                      
5 Data for the North Atlantic and eastern and Central North Pacific originated from the National Oceanographic 
and Atmospheric Administration’s National Hurricane Center, and elsewhere from the U.S. Navy’s Joint Typhoon 
Warning Center. 
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storms are in very good agreement. Thus it is likely that either the actual storm intensities are 214 

underestimated or the simulated storm intensities are overestimated. We note that the 10% 215 

adjustment does not improve the agreement in the Atlantic region (not shown), perhaps 216 

because storms are better observed there. CO2–induced warming brings about increases in the 217 

frequency of all categories, but the increases in Category 2 and 3 events are small. These are in 218 

a flat minimum in the frequency distribution among categories, so that a shift to higher 219 

intensities at constant overall frequency would lead to little change in the frequencies of those 220 

categories.  221 

Figure 4 is in the same format as Figure 2, but shows the evolution over time of the power 222 

dissipation index, which is the sum over each track and over all tracks in a given year of the 223 

cube of the maximum surface wind. The power dissipation increases at a rate of about 30% per 224 

doubling of CO2. This is lower than the CMIP5 result (Emanuel, 2013) of closer to 40%. Note 225 

also, from Table 2, the statistically significant increase of about 15% through the period 1850-226 

2014.  227 

We also consider a landfall power dissipation index, which is the cube of the wind speed at 228 

landfall summed over all landfalling events in each year. Here landfall is determined using a ¼ x 229 

¼ degree bathymetry/topography data set, and we consider all landfalls, even if a storm makes 230 

landfall more than once. Figure 5 and Table 2 show that the multi-model mean landfall power 231 

dissipation increases by about 9% over the historical period and the projected increase is about 232 

25% per doubling of CO2, a bit less than the open-ocean increase in power dissipation.  233 
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The spatial patterns of three multi-model mean tropical cyclone metrics and their changes with 234 

increasing CO2 are shown in Figure 6. The top row shows genesis density – the number of 235 

genesis events per 1-degree latitude square per year – while the middle row shows the track 236 

density and the bottom row shows the power dissipation density. In the case of track density, 237 

each track is counted only once in any lat-long box used to grid the data, whereas the power 238 

dissipation is summed over all 2-hour points along each track in each box. The left side of Figure 239 

6 is based on IBTrACS data from 1979-2015 while the middle column shows multi-model mean 240 

quantities from the historical downscaling. The right-hand side of figure 6 shows the 241 

percentage change between the mean over this historical period and the mean over the  242 

11% yr−  increasing CO2 simulations. The change is displayed only where at least 7 of the 9 243 

models agree with each other on the sign of the change.  244 

The historical mean fields in Figure 6 shows some of the same biases noted in the CMIP5 245 

downscaling and also present in the climatologies of storms explicitly simulated in many of 246 

these models (e.g. Camargo, 2013) and in CMIP6 models (Roberts et al., 2020). There are too 247 

many storms in the southern hemisphere, including the South Atlantic, and too few tropical 248 

cyclones in the eastern North Pacific.  Genesis is too active in the central North Pacific, and 249 

there are too few storms in the North Atlantic. Some of these biases are also present in tropical 250 

cyclones downscaled from climate reanalyses (not shown), so these are probably an artifact of 251 

the downscaling technique. It is evident from the track density maps that the downscaled 252 

tracks extend somewhat further poleward than the IBTrACS storm tracks, except in the North 253 

Atlantic. This is likely owing to differing conventions on when to terminate tracks of tropical 254 

cyclones undergoing extratropical transition. Most forecasting agencies terminate tropical 255 
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cyclone tracks when the storm is deemed to have become mostly extratropical. Termination of 256 

the downscaled tracks, on the other hand, is based only on the intensity having fallen below a 257 

set threshold. Thus we expect that downscaled extratropical transitioning storms will be carried 258 

somewhat further poleward than IBTrACS events.  259 

Turning attention to the percentage changes between the historical to the global warming 260 

simulations (right-hand column of Figure 6), note that there is essentially no change in any 261 

metric in the South Pacific, as was the case in downscaling the CMIP5 models. There is little 262 

change in the genesis rate in the South Indian Ocean, but the power dissipation increases and 263 

the tracks extend somewhat further poleward, suggesting that the tropical cyclones in this part 264 

of the world become more intense and are able to travel further poleward before dissipating.  265 

The most profound changes occur in the northern hemisphere. The genesis maps show a 266 

northward expansion of the North Atlantic genesis region and the central and western North 267 

Pacific genesis belts. The eastern North Pacific and Arabian Sea genesis regions both expand 268 

westward. Partially as a result of these changes in genesis, there are large increases in track 269 

density and power dissipation throughout much of the northern hemisphere, especially in the 270 

central North Pacific and the subtropical to high latitude North Atlantic. The largest percentage 271 

increases are, fortunately, away from land. Especially noteworthy is the large increase in track 272 

density in the high latitudes of the North Atlantic, suggesting that the northward expansion of 273 

the Atlantic genesis region and the increase in storm intensity there lead to a greater incidence 274 

of extratropical transition. This is consistent with recent projections of extratropical transition 275 
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that suggest increases in the western North Pacific and North Atlantic (Liu et al., 2017; 276 

Michaelis and Lackmann, 2019). 277 

The large increase in tropical cyclone activity in the northern hemisphere relative to the 278 

southern hemisphere is consistent with explicitly simulated storms in CMIP6 models (Roberts et 279 

al., 2020) and the pattern of changes in track density resembles both observed changes over 280 

the period 1980-2018 and changes simulated by a suite of high-resolution coupled models over 281 

the same period (Murakami et al., 2020), with large increases in the North Atlantic and central 282 

North Pacific. But the same models, forced by increasing CO2 alone, show decreasing track 283 

density in the North Atlantic.  284 

The poleward expansion of both the track and power dissipation density in the northern 285 

hemisphere and South Indian Ocean is consistent with recent observations of the poleward 286 

migration of the latitudes at which tropical cyclones are observed to reach peak intensity 287 

(Kossin et al., 2014) and with projected poleward migration in the western North Pacific (Kossin 288 

et al., 2016).  289 

In forecasting individual tropical storms, the intensification rate is an important consideration 290 

because rapidly intensifying events near the time of landfall can catch forecasters and 291 

emergency managers off guard. Theoretically, intensification rates should scale as the square of 292 

the potential intensity, so they are more sensitive to climate change than the intensity itself 293 

(Emanuel, 2017). Figure 7a shows the base 10 logarithm of the probability densities of the 294 

multi-model mean and standard deviation of intensification rates based on two-hourly fixes of 295 

the downscaled tropical cyclones. These probability densities are independent of overall storm 296 
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frequency. Figure 7b shows the percentage difference between the historical period and the 297 

11% yr− simulations. There are large percentage increases in intensification rates exceeding 298 

about 13kts hr− , and this percentage change increases with intensification rate. There is also a 299 

smaller increase in extreme dissipation rates, likely owing to the faster decay rates of initially 300 

more intense storms over land and cold water, because the decay rates scale roughly with the 301 

square of the surface wind speed.  302 

The flooding potential, and to some extent the wind damage, caused by tropical cyclones can 303 

be strongly affected by their translation speed. Slower moving storms will affect a given region 304 

for a longer period, producing more rain and perhaps more wind damage. On the other hand, 305 

slow-moving storms are not likely to travel as far inland, sparing regions away from coastlines.  306 

Figure 8 shows the multi-model average translation speed of downscaled tropical cyclones for 307 

the historical period (a) and the change in translation speed (b) for a transient doubling of CO2. 308 

The latter is displayed only where at least 7 of the 9 GCMs agree on the sign of the change in 309 

downscaled translation speed. Remarkably, there is no significant change in translation speed in 310 

the deep tropics, but there is a substantial decrease in mean translation speed at the 311 

subtropical peripheries of the tropical belt, affecting the U.S. east and Gulf coasts, the central 312 

coast of China, Korea, southern Japan, and Australia. This is perhaps a consequence of the 313 

projected poleward expansion of the Hadley circulation. This result can be compared and 314 

contrasted to recent global modeling results that show , reductions in the subtropics and 315 

middle and high latitudes (Yamaguchi et al., 2020), and reductions primarily in middle latitudes 316 
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(Zhang et al., 2020). Lee et al. (2020) used a downscaling method similar to that employed here 317 

to examine translations speeds of storms near land, finding a slight reduction.  318 

4. Discussion 319 

a. Changes in weak tropical cyclones 320 

As was the case with downscaling the previous (CMIP5) generation of climate models, the 321 

results of downscaling nine CMIP6 models show substantial increases in both the intensity and 322 

frequency of tropical cyclones as greenhouse gas concentrations increase. The frequency 323 

increase is at odds with most (though not all) results from explicit modeling of tropical cyclones. 324 

According to a recent and comprehensive review by  Knutson et al. (2020), “the vast majority of 325 

individual studies (22 out of 27 studies) project a decrease in global TC frequency with 326 

greenhouse warming.” It is both of inherent and practical interest to discover why these results 327 

differ the way they do.  328 

It should first be noted that the great majority of the studies done to date focused on tropical 329 

cyclones explicitly simulated in global atmospheric or coupled general circulation models 330 

(GCMs), whose effective horizontal grid spacings varies from 14 km to as much as 200 km. Most 331 

of these models moderately to severely under-resolve tropical cyclones  (e.g. see Rotunno et 332 

al., 2009) and the mesoscale processes observed to be involved in their genesis (e.g. 333 

Montgomery and Smith, 2012). Tropical cyclones that develop in such models must be detected 334 

using an algorithm (e.g. Walsh et al., 2007) and the counts of tropical cyclones are known to be 335 

sensitive to how that algorithm is formulated and to model characteristics (Raavi and Walsh, 336 

2020).  337 



19 
 

In particular, climate change may alter the scale and other characteristics of simulated tropical 338 

cyclones, pushing events across arbitrary detection thresholds and thereby leading to false 339 

trends in counts of weak events. For example, weak tropical cyclone-like disturbances may 340 

become broader as the climate warms, as they do in “TC-world” experiments (e.g. 341 

Khairoutdinov and Emanuel, 2013), and while their circulation may stay the same or even 342 

increase, their vorticity may decrease below the imposed vorticity thresholds that are a key 343 

feature of most tropical cyclone detection algorithms. Indeed, in their analysis of 850 hPa 344 

vorticity in two global models, Sugi et al. (2020) show that as climate warms, the vorticity of 345 

disturbances of tropical storm strength decreases proportionally more than does their intensity 346 

(compare their figures 2 and 3), suggesting that the pre-tropical cyclone disturbances may be 347 

becoming broader.  348 

To test the idea that this could bias trends in explicitly detected cyclones in GCMs, we re-349 

calculated time series of downscaled tropical cyclone metrics as before but this time imposing 350 

an artificial vorticity-like detection threshold. Specifically, we discarded events whose ratio of 351 

maximum circular wind speed to radius of maximum winds is less than 4 16 10 .s− −   352 

Figure 9 compares the evolution of total tropical cyclone frequency in this modified experiment 353 

to the control, for both the historical and increasing CO2 simulations of one of the 9 models we 354 

use in this study. The substantial upward trend of the control frequency in this latter simulation 355 

is greatly muted in the modified experiment. In both the control and the modified experiments, 356 

the horizontal scale of the seed disturbances is determined by the local deformation radius, 357 
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which increases as the climate warms owing to the increase in dry static stability along moist 358 

adiabats.  359 

Thus it is possible that the frequency of disturbances detected by a vorticity threshold may 360 

decrease relative to the frequency determined by a wind speed threshold. Almost all the GCM-361 

based studies reviewed by Knutson et al. (2020) imposed both vorticity and wind speed 362 

detection thresholds, so further research would be necessary to confirm or reject the 363 

hypothesis that warming-induced trends in tropical cyclone counts may be negatively biased 364 

through the use of a fixed vorticity threshold that does not depend on the climate state.  365 

There are also indications that explicitly simulated tropical cyclones and their sensitivity to 366 

climate change may not be robust to changes in model physics or resolution. For example,  367 

when the grid spacing of a coupled global climate model was decreased from 50 km to 25 km, 368 

the sensitivity of tropical cyclone counts to global warming went from negative to neutral 369 

(Vecchi et al., 2019). Moreover, in contrast to both observations (Tippett et al., 2011) and the 370 

downscaling described here, the relationship between explicit tropical cyclone counts in GCMs 371 

and environmental conditions is weak and/or of the wrong character (Camargo et al., 2020).  372 

For these reasons, there is little basis for confidence in the projection by most climate models 373 

that overall tropical cyclone frequency will decline. Indeed, 7 of the 11 authors of Knutson et al. 374 

(2020) rated confidence in the projection of decreasing tropical cyclone frequency as low-to-375 

medium.  376 
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But how believable are the indications of increasing frequency across the spectrum of intensity 377 

resulting from this downscaling study (see Figure 3)? On the one hand, there is excellent 378 

correspondence between the downscaled tropical cyclone frequency and the genesis potential 379 

index calculated from the raw GCM output (Figure 2).  The GPI was developed and tested 380 

largely independently of the development of the downscaling technique, though the variables 381 

used in the GPI were selected partly because they are variables that appear naturally in the 382 

CHIPS model6: Both the CHIPS model and the GPI depend strongly on potential intensity, wind 383 

shear, and the mid-tropospheric dryness parameter   that is based on moist static energy. 384 

There is no a priori reason to think that variations in these parameters owing to global climate 385 

change would affect tropical cyclones differently from variations owing to spatial, annual and 386 

interannual variability, yet both the downscaling and the GPI capture such natural variations 387 

quite well. There are, of course, other empirically determined genesis potential indices (e.g. 388 

(Tippett et al., 2011; Tang and Camargo, 2014) and given that these produce different 389 

estimates, agreement with the downscaled frequencies presented here would likely be less.  390 

By examining each of the factors that make up the definition of GPI, it is possible to draw some 391 

inferences about which environmental factors lead to its increase. The definition of GPI used 392 

here is from Emanuel (2010): 393 
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6 This GPI is also dimensionally correct, yielding genesis number per unit area per unit time. Other genesis indices 
perform equally well during the historical period but yield very different trends in global warming scenarios (Lee et 
al., 2020). 



22 
 

where  is the absolute vorticity of the 850 hPa flow, capped by 5 15 10 s , 
potV is the potential 395 

intensity, shearV is the magnitude of the 850 hPa-250 hPa wind shear, and  396 
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where bs , ms , and *

0s are the moist entropies of the boundary layer and middle troposphere, and 398 

the saturation moist entropy of the sea surface, respectively.  This is the quantity that is 399 

summed over the globe and averaged among the 9 models to produce the green curves in 400 

Figure 2. Were it not for that summation, it would be possible to fo a linear factor separation of 401 

(2) by taking the logarithm of both sides: 402 
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Unfortunately, the summation over the globe and the averaging among the 9 models does not 404 

allow this: The logarithm of the summed, averaged value of GPI given by (2) is not equal to the 405 

summed, averaged value of the logarithm of GPI. Since the tuning of the coefficients in (2) was 406 

done by matching summed GPI to observations, one cannot willy-nilly use (4) instead of (3) as 407 

the working definition of the GPI without re-turning. Since that re-tuning is beyond the scope of 408 

this study, we attempt to use (4) anyway, using the summed, averaged quantities (GPI, ,  etc.) 409 

before taking their logarithms.  410 

Figure 10 shows, for the 1% per year increasing CO2 experiment, the evolution with time of the 411 

terms in (4), where it is understood that the quantities have first been summed and then 412 

averaged among the 4 models. To avoid extratropical influences, we zero each individual term 413 
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wherever the potential intensity is 135ms  or less, and each curve is relative to the initial value 414 

of the quantity in question.  415 

The black curve shows the sum of the terms whereas the green curve is the logarithm of the 416 

actual GPI; the mismatch between these two curves reflects the problems alluded to above. But 417 

for what it is worth, one sees that the potential intensity and saturation deficit are the 418 

dominant terms and work in opposing directions. The negative contribution of the saturation 419 

deficit  is consistent with the results of Emanuel et al. (2008) and Lee et al. (2020) and 420 

suggest that the main break on increasing tropical cyclone frequency in a warming climate is 421 

the increasing saturation deficit of the middle troposphere. The vorticity and shear 422 

contributions are smaller, but both terms act to increase the GPI trend.  423 

To the extent that the GPI reflects the physics of the downscaled tropical cyclones, we would 424 

infer that increasing potential intensity is the most important contributor to increasing cyclone 425 

frequency, with small additional contributions from decreasing shear and increasing vorticity 426 

(likely reflecting the poleward migration of genesis regions). Increasing saturation deficit works 427 

in the opposite direction, acting to decrease storm frequency. 428 

 It should be noted, however, that changing the exponent of  in (2) to -2  changes the sign of 429 

the net response of the GPI to increasing CO2 concentration while not strongly degrading the fit 430 

to observed variability, so the good fit to the downscaled frequencies is somewhat coincidental. 431 

Thus the agreement between the downscaled frequencies and the GPI should not be 432 

interpreted as strong evidence for the correctness of either.  433 
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Returning to the downscaled tropical cyclones, their rate of genesis varies directly with the 434 

specified seeding rate, which is held constant across the globe, seasonally, interannually, and 435 

with global climate change. Arguments have been made that this seeding rate should decline as 436 

the globe warms (Sugi et al., 2020). Yet the strong spatial, seasonal and interannual variation of 437 

potential initiating disturbances in the current climate does not seem to preclude the ability of 438 

either the GPI or the downscaling from capturing major features of natural tropical cyclone 439 

variability (Camargo et al., 2007a; Emanuel et al., 2008). Moreover, Patricola et al. (2018) 440 

showed that suppressing African easterly waves, a prominent catalyst for North Atlantic 441 

hurricanes, did not change the level of tropical cyclone activity in a regional tropical North 442 

Atlantic model, though the waves did determine the location and timing of genesis events. Thus 443 

the seed disturbances, in this case, did not control the level of tropical cyclone activity.  444 

A more serious deficiency of the downscaling method applied here is that there is no feedback 445 

whatsoever between the downscaled tropical cyclones and the large-scale environment that is 446 

driving them. Even regional downscaling models, such as that used by Patricola et al. (2018), 447 

can simulate some regional feedbacks of cyclone activity within the regional model itself, 448 

though they cannot influence the global model in which the regional model is embedded.  449 

There are two known feedback mechanisms by which current tropical cyclone activity can 450 

potentially influence future activity though modification of their large scale environment. The 451 

first acts primarily though the ocean: Tropical cyclones cool the sea surface by mixing warmer 452 

surface waters with cooler water below the mixed layer (Leipper, 1967; Price, 1981) and 453 

subsequent re-heating of the cold wakes leads to a net export of heat away from the affected 454 
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region (Emanuel, 2001; Federov et al., 2010). This has the negative feedback of cooling the 455 

ocean in tropical cyclone regions, reducing the genesis potential there, but it may lead to 456 

increases in genesis in marginal regions outside the main tropical cyclone belts.  457 

A second negative feedback acts through the atmosphere:  It is the profound drying of the 458 

atmosphere that occurs with any form of aggregation of convection (Bretherton and 459 

Khairoutdinov, 2004; Wing et al., 2017). This will greatly increase the inhibition to tropical 460 

cyclogenesis represented in the GPI by the   parameter and known to strongly affect the 461 

genesis rates in the downscaling technique applied here (Emanuel et al., 2008).  462 

Both these mechanisms are, in principle, operating in fully coupled GCMs. To the extent that 463 

the large-scale fields are affected by these feedbacks in the GCMs used here, they will also 464 

decrease the number of downscaled genesis events, but owing to the severe under-resolution 465 

of tropical cyclones in most GCMs, these negative feedbacks may be strongly muted.  466 

But there are now some global coupled models with resolutions high enough to capture most 467 

of the full spectrum of tropical cyclone numbers and intensities. One such model, the Model for 468 

Prediction Across Scales–Atmosphere (MPAS-A), which was emplyed by Michaelis and 469 

Lackmann (2019) to make global projections of the response of tropical cyclone activity to 470 

global warming using a 15-km grid over the whole of the northern hemisphere. Notably, they 471 

used a cyclone detection algorithm based on sea level pressure anomalies with no vorticity 472 

threshold. They found increasing tropical cyclone frequency in the northern hemisphere, 473 

especially in the Atlantic.  474 
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Another high-resolution global coupled model is the NOAA Geophysical Fluid Dynamics high 475 

atmospheric resolution version of the Forecast-oriented Low Ocean Resolution version of the 476 

GFDL global climate model (HiFLOR; Murakami et al., 2015). With an effective grid spacing of 477 

about 25 km, this model explicitly simulates high intensity tropical cyclones (Vecchi et al., 478 

2019). Climate sensitivity experiments with HiFLOR show that increasing CO2 concentrations 479 

leads to a statistically insignificant change in global tropical cyclone counts but a substantial 480 

increase in high intensity events (Vecchi et al., 2019). We downscaled 200 events globally per 481 

year for 200 years of simulation in two different climates: the climate of the late 20th century 482 

and a climate representing increased CO2 concentrations. In the former, a single year 483 

representing atmospheric greenhouse and aerosol conditions in the year 1990 was repeated 484 

over 300 years; we used the last 200 years in the downscaling. The warming experiment starts 485 

at year 100 of the control simulation and increases CO2 at the rate of 1% per year until a 486 

doubling has been reached after 70 years; thereafter the CO2 concentration remains fixed for 487 

another 230 years. We use the last 200 years of this simulation. Details may be found in Irvine 488 

et al. (2019).  489 

Figure 11 shows changes in global counts of tropical cyclones in each Saffir-Simpson category. 490 

Note that the HiFLOR model produces about 90 tropical storms per year globally, close to the 491 

observed frequency, while the downscaled results have been calibrated to an annual frequency 492 

of 84 events in the 20th century. The distribution across categories of the response of the 493 

downscaled tropical cyclones to doubling CO2 is consistent with that resulting from downscaling 494 

of the CMIP6 models (see Figure 2) but substantially muted in comparison. At the same time, 495 

there are substantial increases in the explicitly simulated high intensity (Cat 4-5) tropical 496 



27 
 

cyclones in HiFLOR, while the number of weak events (tropical storms and CAT1 hurricanes) 497 

decreases. We speculate that the increase in explicitly simulated intense storm activity in 498 

HiFLOR may have led to the aforementioned negative feedbacks, which muted the response of 499 

the downscaled storms.  500 

In the author’s opinion, the limitations of CMIP6 model simulations of tropical cyclones 501 

preclude any robust projection of the response of weak tropical cyclone activity to global 502 

warming, either from their explicitly simulated storms or from events downscaled from their 503 

output.  504 

b. Changes in high intensity tropical cyclones 505 

In contrast to the case of marginal storms, detection of cyclones in GCMs becomes less of an 506 

issue for intense storms, particularly in the case of high resolution models that can simulate the 507 

full intensity spectrum. Perhaps for this reason, there is much better agreement on projected 508 

changes in intense (Category 4-5) tropical cyclones, both among the explicitly simulated storms 509 

and between them and the downscaled storms (see Figure 2c and compare to Figure 2a of 510 

Knutson et al. 2020).  511 

 512 

5. Summary 513 

The application of a downscaling technique to 9 CMIP6-generation climate models suggests 514 

potentially large increases in various measures of tropical cyclone activity in response to 515 

anthropogenic climate change, particularly in the northern hemisphere. These results are 516 

broadly consistent with those from downscaling CMIP5 models (Emanuel, 2013).  517 
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As reviewed by Knutson et al. (2020), there is a moderately strong consensus on an increase in 518 

high intensity tropical cyclones and in tropical cyclone rainfall. There is little agreement on how 519 

the frequency of weak storms might change, but with the possible exception of rainfall, these 520 

are of little consequence. The fact that most explicit modeling studies agree that tropical 521 

cyclone frequency will decrease with climate warming may be an artifact of low resolution and 522 

the use of non-climate-dependent detection thresholds. Their agreement with each other is 523 

only prima facie evidence of robustness of the trend. In the author’s opinion, though, the 524 

increases in overall tropical cyclone frequency predicted by our downscaling would be muted 525 

and perhaps even eliminated by feedbacks from the cyclones to their large-scale environment 526 

in two-way coupled simulations that adequately resolve tropical cyclones.  527 

The large increase in the probability of rapid intensification rates is perhaps one of the more 528 

worrying aspects of the effect of climate change on tropical cyclones. Given the level of 529 

uncertainty in contemporary tropical cyclone intensity forecasts, increasing rates of 530 

intensification increase the chances of surprises (Emanuel, 2017).  531 

Consistent with some observational studies (Kossin, 2018), there is a robust projected decrease 532 

in tropical cyclone translation speed in the subtropics, though not in the deep tropics. This may 533 

increase the probability of stalling storms, such as Harvey of 2017 and Dorian of 2019. These 534 

storms can be especially destructive because of prolonged rain and/or wind.  535 

While the jury may still be out on the effects of climate change on the incidence of weak 536 

storms, the growing consensus on substantial increases in high-intensity storms and rainfall 537 

paints a robust picture of increasing tropical cyclone risk as the climate continues to warm.  538 



29 
 

Acknowledgements: The author is grateful for the support from the National Science 539 

Foundation under grant ICER-1854929. CMIP6 climate model data was downloaded from a 540 

website operated by the Earth System Grid Federation.  541 

 542 

Data availability statement:  The downscaled tropical cyclone data used in this study is freely 543 

available from the author for research purposes only. Recipients will be asked to sign and 544 

return a data non-redistribution agreement.   545 



30 
 

References 546 

Bretherton, C. S., and M. F. Khairoutdinov, 2004: Convective self-aggregation in large cloud-547 

resolving model simulations of radiative convective equilibrium. AMS Conference on 548 

Hurricanes and Tropical Meteorology, Miami, Amer. Meteor. Soc.,  549 

Bruyère, C. L., G. J. Holland, and E. Towler, 2012: Investigating the use of a genesis potential 550 

index for tropical cyclones in the North Atlantic basin. J. Climate, 25, 8611-8626, 551 

doi:10.1175/jcli-d-11-00619.1. 552 

Camargo, S., 2013: Global and regional aspects of tropical cyclone activity in the CMIP5 models. 553 

J. Climate, 26, 9880–9902. 554 

Camargo, S. J., K. A. Emanuel, and A. H. Sobel, 2007a: Use of a genesis potential index to 555 

diagnose ENSO effects on tropical cyclone genesis. J. Climate, 20, 4819-4834, 556 

doi:10.1175/Jcli4282.1. 557 

Camargo, S. J., A. H. Sobel, A. G. Barnston, and K. A. Emanuel 2007b: Tropical cyclone genesis 558 

potential index in climate models. Tellus A, 59, 428-443, doi:10.1111/j.1600-559 

0870.2007.00238.x. 560 

Camargo, S. J., M. K. Tippett, A. H. Sobel, G. A. Vecchi, and M. Zhao, 2014: Testing the 561 

performance of tropical cyclone genesis indices in future climates using the HIRAM 562 

model. J. Climate, 27, 9171-9196, doi:10.1175/jcli-d-13-00505.1. 563 

Camargo, S. J., and co-authors, 2020: Characteristics of model tropical cyclone climatology and 564 

the large-scale environment. J. Climate, 33, 4463-4487, doi:10.1175/jcli-d-19-0500.1. 565 



31 
 

Danabasoglu, G., and Coauthors, 2020: The community earth system model version 2 (CESM2). 566 

JAMES, 12, e2019MS001916, doi:10.1029/2019ms001916. 567 

DeMaria, M., J. A. Knaff, and B. H. Connell, 2001: A tropical cyclone genesis parameter for the 568 

tropical Atlantic. Wea. Forecast., 219-233. 569 

Emanuel, K., and E. Rappaport, 2000: Forecast skill of a simplified hurricane intensity prediction 570 

model. Preprints of the 24th Conf. Hurricanes and Trop. Meteor., Ft. Lauderdale, FL, 571 

Amer. Meteor. Soc., Boston, 236-237,  572 

Emanuel, K., C. DesAutels, C. Holloway, and R. Korty, 2004: Environmental control of tropical 573 

cyclone intensity. J. Atmos. Sci., 61, 843-858. 574 

Emanuel, K., and D. Nolan, 2004: Tropical cyclone activity and global climate. 26th Conference 575 

on Hurricanes and Tropical Meteorology, Miami, Amer. Meteor. Soc., 240-241,  576 

Emanuel, K., R. Sundararajan, and J. Williams, 2008: Hurricanes and global warming: Results 577 

from downscaling IPCC AR4 simulations. Bull. Amer. Meteor. Soc., 89, 347-367. 578 

Emanuel, K., 2010: Tropical cyclone activity downscaled from NOAA-CIRES reanalysis, 1908-579 

1958. J. Adv. Model. Earth Sys., 2, 1-12. 580 

Emanuel, K., F. Fondriest, and J. Kossin, 2012: Potential economic value of seasonal hurricane 581 

forecasts. Weather, Climate, and Society, 4, 110-117, doi:10.1175/wcas-d-11-00017.1. 582 

 583 



32 
 

Emanuel, K., 2013: Downscaling CMIP5 climate models shows increased tropical cyclone activity 584 

over the 21st century. Proc. Nat. Acad. Sci., 110, 12219–12224, 585 

doi:/10.1073/pnas.1301293110. 586 

——, 2015: Effect of upper-ocean evolution on projected trends in tropical cyclone activity. J. 587 

Climate, 28, 8165-8170. 588 

——, 2017: Will global warming make hurricane forecasting more difficult? . Bull. Amer. 589 

Meteor. Soc., 98, 495-501. 590 

Emanuel, K. A., 2001: The contribution of tropical cyclones to the oceans' meridional heat 591 

transport. J. Geophys. Res., 106, 14,771-714,782. 592 

Emanuel, K. A., S. Ravela, E. Vivant, and C. Risi, 2006: A statistical-deterministic approach to 593 

hurricane risk assessment. Bull. Amer. Meteor. Soc., 19, 299-314. 594 

Federov, A. V., C. M. Brierley, and K. Emanuel, 2010: Tropical cyclones and permanent El Niño in 595 

the early Pliocene epoch. Nature, 463, 1066-1070. 596 

Gaul, G. M., 2019: The geography of risk: Epic storms, rising seas, and the cost of America's 597 

coasts. Farrar, Straus and Giroux, New York, 304 pp., translator, 9780374160807. 598 

Gray, W. M., 1979: Hurricanes: Their formation, structure, and likely role in the tropical 599 

circulation. Meteorology over the tropical oceans, D. B. Shaw, Ed., Roy. Meteor. Soc., 600 

155-218 pp. 601 

 602 



33 
 

Hourdin, F., and Coauthors, 2016: Lmdz6a: The atmospheric component of the IPSL climate 603 

model with improved and better tuned physics. JAMES, n/a, e2019MS001892, 604 

doi:10.1029/2019ms001892. 605 

Irvine, P., K. Emanuel, J. He, L. W. Horowitz, G. Vecchi, and D. Keith, 2019: Halving warming with 606 

idealized solar geoengineering moderates key climate hazards. Nat Clim Change, 9, 295-607 

299, doi:10.1038/s41558-019-0398-8. 608 

Khairoutdinov, M. F., and K. Emanuel, 2013: Rotating radiative-convective equilibrium 609 

simulated by a cloud-resolving model. J. Adv. Model. Earth Sys., 5, 816-825, 610 

doi::10.1002/2013MS000253. 611 

Knapp, K. R., M. C. Kruk, D. H. Levinson, H. J. Diamond, and C. J. Neumann, 2010: The 612 

international best track archive for climate stewardship (IBTrACS). Bull. Amer. Meteor. 613 

Soc., 91, 363-376, doi:10.1175/2009bams2755.1. 614 

Knutson, T., and Coauthors, 2019: Tropical cyclones and climate change assessment: Part I: 615 

Detection and attribution. Bull. Amer. Meteor. Soc., 100, 1987-2007, doi:10.1175/bams-616 

d-18-0189.1. 617 

——, 2020: Tropical cyclones and climate change assessment: Part II: Projected response to 618 

anthropogenic warming. Bull. Amer. Meteor. Soc., 101, E303-E322, doi:10.1175/bams-d-619 

18-0194.1. 620 

Kossin, J. P., T. L. Olander, and K. R. Knapp, 2013: Trend analysis with a new global record of 621 

tropical cyclone intensity. J. Climate, 26, 9960-9976, doi:10.1175/jcli-d-13-00262.1. 622 



34 
 

Kossin, J. P., K. A. Emanuel, and G. A. Vecchi, 2014: The poleward migration of the location of 623 

tropical cyclone maximum intensity. Nature, 509, 349, doi:10.1038/nature13278. 624 

Kossin, J. P., K. A. Emanuel, and S. J. Camargo, 2016: Past and projected changes in western 625 

North Pacific tropical cyclone exposure. J. Climate, 29, 5725-5739, doi:10.1175/jcli-d-16-626 

0076.1. 627 

Kossin, J. P., 2018: A global slowdown of tropical-cyclone translation speed. Nature, 558, 104-628 

107, doi:10.1038/s41586-018-0158-3. 629 

Lee, C.-Y., S. J. Camargo, A. H. Sobel, and M. K. Tippett, 2020: Statistical–dynamical downscaling 630 

projections of tropical cyclone activity in a warming climate: Two diverging genesis 631 

scenarios. J. Climate, 33, 4815-4834, doi:10.1175/jcli-d-19-0452.1. 632 

Leipper, D. F., 1967: Observed ocean conditions and Hurricane Hilda, 1964. J. Atmos. Sci., 24, 633 

182-196. 634 

Liu, M., G. A. Vecchi, J. A. Smith, and H. Murakami, 2017: The present-day simulation and 635 

twenty-first-century projection of the climatology of extratropical transition in the North 636 

Atlantic. J. Climate, 30, 2739-2756, doi:10.1175/jcli-d-16-0352.1. 637 

Michaelis, A. C., and G. M. Lackmann, 2019: Climatological changes in the extratropical 638 

transition of tropical cyclones in high-resolution global simulations. J. Climate, 32, 8733-639 

8753, doi:10.1175/jcli-d-19-0259.1. 640 

 641 



35 
 

Montgomery, M. T., and R. K. Smith, 2012: The genesis of Typhoon Nuri as observed during the 642 

tropical cyclone structure 2008 (TCS08) field experiment. Part 2: Observations of the 643 

convective environment. Atmos. Chem. Phys., 12, 4001-4009, doi:10.5194/acp-12-4001-644 

2012. 645 

Müller, W. A., and Coauthors, 2018: A higher-resolution version of the Max Planck Institute 646 

earth system model (mpi-esm1.2-hr). JAMES, 10, 1383-1413, 647 

doi:10.1029/2017ms001217. 648 

Murakami, H., and Coauthors, 2015: Simulation and prediction of category 4 and 5 hurricanes in 649 

the high-resolution GFDL HiFLOR coupled climate model. J. Climate, 28, 9058-9079, 650 

doi:10.1175/jcli-d-15-0216.1. 651 

Murakami, H., T. L. Delworth, W. F. Cooke, M. Zhao, B. Xiang, and P.-C. Hsu, 2020: Detected 652 

climatic change in global distribution of tropical cyclones. Proc. Nat. Acad. Sci., 117, 653 

10706-10714, doi:10.1073/pnas.1922500117. 654 

Olander, T. L., and C. S. Velden, 2019: The advanced Dvorak technique (ADT) for estimating 655 

tropical cyclone intensity: Update and new capabilities. Wea. Forecast., 34, 905-922, 656 

doi:10.1175/waf-d-19-0007.1. 657 

Patricola, C. M., R. Saravanan, and P. Chang, 2018: The response of Atlantic tropical cyclones to 658 

suppression of African easterly waves. Geophys. Res. Lett., 45, 471-479, 659 

doi::10.1002/2017GL076081. 660 



36 
 

Price, J. F., 1981: Upper ocean response to a hurricane. J. Phys. Ocean., 11, 153-175, doi: 661 

10.1175/1520-0485. 662 

Raavi, P. H., and K. J. E. Walsh, 2020: Sensitivity of tropical cyclone formation to resolution-663 

dependent and independent tracking schemes in high-resolution climate model 664 

simulations. Earth and Space Science, 7, e2019EA000906, doi:10.1029/2019ea000906. 665 

Roberts, M. J., and Coauthors, 2020: Projected future changes in tropical cyclones using the 666 

CMIP6 HighResMIP multi-model ensemble. Geophys. Res. Lett., n/a, e2020GL088662, 667 

doi:10.1029/2020gl088662. 668 

Rotunno, R., Y. Chen, W. Wang, C. Davis, J. Dudhia, and C. L. Holland, 2009: Large-eddy 669 

simulation of an idealized tropical cyclone. Bull. Amer. Meteor. Soc., 90, 1783-1788. 670 

Sellar, A. A., and Coauthors, 2020: Implementation of U.K. Earth system models for CMIP6. 671 

JAMES, 12, e2019MS001946, doi:10.1029/2019ms001946. 672 

Sugi, M., Y. Yamada, K. Yoshida, R. Mizuta, M. Nakano, C. Kodama, and M. Satoh, 2020: Future 673 

changes in the global frequency of tropical cyclone seeds. SOLA, 16, 70-74, 674 

doi:10.2151/sola.2020-012. 675 

Swart, N. C., and Coauthors, 2019: The Canadian earth system model version 5 (CANESM5.0.3). 676 

Geosci. Model Dev., 12, 4823-4873, doi:10.5194/gmd-12-4823-2019. 677 

Tang, B., and S. J. Camargo, 2014: Environmental control of tropical cyclones in CMIP5: A 678 

ventilation perspective. JAMES, 6, 115-128, doi:10.1002/2013ms000294. 679 



37 
 

Tatebe, H., and Coauthors, 2019: Description and basic evaluation of simulated mean state, 680 

internal variability, and climate sensitivity in MIROC6. Geoscientific Model Development, 681 

12, 2727-2765, doi:10.5194/gmd-12-2727-2019. 682 

Tippett, M. K., S. Camargo, and A. H. Sobel, 2011: A Poisson regression index for tropical 683 

cyclone genesis and the role of large-scale vorticity in genesis. J. Climate, 24, 2335-2357. 684 

Vecchi, G. A., and Coauthors, 2019: Tropical cyclone sensitivities to CO2 doubling: Roles of 685 

atmospheric resolution, synoptic variability and background climate changes. Clim. Dyn., 686 

53, 5999-6033, doi:10.1007/s00382-019-04913-y. 687 

Vitart, and co-authors, 2007: Dynamically-based seasonal forecasts of Atlantic tropical storm 688 

activity issued in june by eurosip. Geophys. Res. Lett ,, 34, L16815. 689 

Voldoire, A., and Coauthors, 2019: Evaluation of CMIP6 deck experiments with CNRM-cm6-1. 690 

JAMES, 11, 2177-2213, doi:10.1029/2019ms001683. 691 

Walsh, K., M. Fiorino, C. W. Landsea, and K. L. McInnes, 2007: Objectively determined 692 

resolution-dependent threshold criteria for the detection of tropical cyclones in climate 693 

models and reanalyses. J. Climate, 20, 2307-2314. 694 

Wing, A. A., K. Emanuel, C. E. Holloway, and C. Muller, 2017: Convective self-aggregation in 695 

numerical simulations: A review. Surv. Geophys., doi: 10.1007/s10712-017-9408-4. 696 

Yamaguchi, M., J. C. L. Chan, I.-J. Moon, K. Yoshida, and R. Mizuta, 2020: Global warming 697 

changes tropical cyclone translation speed. Nat Commun, 11, 47, doi:10.1038/s41467-698 

019-13902-y. 699 



38 
 

Zhang, G., H. Murakami, T. R. Knutson, R. Mizuta, and K. Yoshida, 2020: Tropical cyclone motion 700 

in a changing climate. Sci Adv, 6, eaaz7610, doi:10.1126/sciadv.aaz7610. 701 

 702 

  703 



39 
 

Table 1 704 

List of CMIP6 models used in the downscaling of tropical cyclones, including resolution of 705 

atmospheric data and principal references 706 

 707 

  708 

                                                      
7 This is the resolution of the output used to drive the downscaling; it may not correspond exactly with the native 
resolution of the GCM.  

Institution Model Atmospheric Resolution7 Reference 

Canadian Centre for 
Climate Modelling and 
Analysis  

CanESM5 2.8 x 2.8 degrees (Swart et al., 
2019) 

Centre National de 
Recherches 
Météorologiques  

CNRM-CM6-1 1.4 x 1.4 degrees  (Voldoire et al., 
2019) 

National Center for 
Atmospheric Research 

CESM2 1.25 x 0.93 degrees (Danabasoglu et 
al., 2020) 

EC-Earth consortium  EC-Earth3 0.7 x 0.7 degrees  

United Kingsom Met 
Office Hadley Centre 

HadGEM3-GC31-LL 1.25 x 1.88 degrees (Sellar et al., 
2020) 

Institut Pierre Simon 
Laplace 

IPSL-CM6A-LR 1.25 x 2.5 degrees (Hourdin et al., 
2016) 

Center for Climate 
System Research; 
University of 
Tokyo;Japan Agency for 
Marine-Earth Science 
and Technology; 
National Institute for 
Environmental Studies 

MIROC6 1.4 x 1.4 degrees (Tatebe et al., 
2019) 

Max Planck Institute MPI-ESM1-2-HR 0.94 x 0.94 degree (Müller et al., 
2018) 

United Kingsom Met 
Office 

UKESM1-0-LL 1.25 x 1.875 degrees (Sellar et al., 
2020) 
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Table 2 709 

Historical periods mean and linear trends over the historical period and over the 11% yr−  CO2 710 

increase experiment, expressed in percent change per CO2 doubling. P-values less than 0.01 for 711 

all trends except Cat 2 frequencies, where they are both 0.02.  712 

 713 

Quantity Historical 
Mean 

Change over 
historical period 

-1
1%yr  CO2  

(change per doubling) 

    

Overall Frequency  (yr-1) 84 9%  18%  

Hurricane Frequency (yr-1) 57 10%  17%  

Cat 1 Frequency (yr-1) 17 5%  8%  

Cat 2 Frequency (yr-1) 10 5% 4% 

Cat 3 Frequency (yr-1) 10 8%  7%  

Cat 4 Frequency (yr-1) 10 13%  26%  

Cat 5 Frequency (yr-1) 11 20%  44%  

Major Hurricanes (yr-1) 32 14%  26%  

Overall Landfall Frequency (yr-1) 48 7%  17%  

Power Dissipation Index (m3s-2) 3.9x1012 15%  29%  

Landfalling power dissipation (m3s-3) 3.3x1010 9%  25%  

Radius of Maximum Winds (km) 59 2%  11%  

Outer Radius (km) 630 3%  7%  

 714 

  715 
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Figure Captions 716 

 717 

Figure 1: Annual probability density (green) and damage multiplied by probability density 718 

(violet) based on 6200 U.S. landfalling synthetic tropical cyclones downscaled from the 719 

MIROC 6 global coupled climate model for each of two periods: 1984-2014 from 720 

historical simulations (solid) and 2070-2100 from the Shard Socioeconomic Pathway 721 

(SSP) 5 (dashed). The probability density is per unit base 10 log of the damage. The 722 

damage is to a portfolio of insured property in the eastern U.S. and is proportional to 723 

the area under the violet curves.  724 

Figure 2: Annual global frequency of downscaled tropical cyclones. Solid curves represent multi-725 

model means and shading indicates one standard deviation up and down. Dashed lines 726 

show linear regression trends. Blue indicates the historical period 1850-2014 while red 727 

shows the 11% yr−  CO2 increase experiment arbitrarily beginning in 1970. Green curves 728 

show the multi-model mean, globally summed genesis potential index (GPI). 729 

Figure 3: a) Global number of tropical cyclones by Saffir-Simpson category of lifetime maximum 730 

intensity. Tropical storms here include only events with maximum intensities of at least 731 

40 kts. Black indicates observed (IBTrACS) during the period 1980-2018, while 732 

downscaled events are shown in blue for the historical period and red from the linear 733 

regressions of trends in the 11% yr−  simulations at the time of CO2 doubling. The 734 

downscaled events are multi-model means.  b) As is a) but observed intensities have 735 

been increased by 10%. 736 
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Figure 4: As in Figure 2 but showing the power dissipation index 737 

Figure 5: As in Figure 2 but showing the landfall power dissipation index 738 

Figure 6:  Genesis density (top row), track density (middle row) and power dissipation density 739 

(bottom row) from IBTrACS data, 1979-2015 (a-c), the multi-model mean over the 740 

historical period (d-f) and percentage change from the historical period to the mean of 741 

the 11% yr−  simulation (g-i). The changes are only displayed where 7 or more of the 742 

models agree on the sign of the change.  743 

Figure 7: a) Base 10 logarithm of the multi-model mean probability density of intensification 744 

and dissipation rates of downscaled tropical cyclones over the historical period (blue) 745 

and the 11% yr−  simulations (red). The shading shows one standard deviation up and 746 

down from the mean among the models. b) Percentage change between the historical 747 

and 11% yr−  simulations. Shading shows one standard deviation up and down from the 748 

mean change among the models.  749 

Figure 8:  Multi-model mean translation speed (kts) for the historical period (a) and the change 750 

after a doubling of CO2 (b). The latter is displayed only where at least 7 of the 9 751 

downscaled models agree on the sign of the change. 752 

Figure 9: Time series of annual tropical cyclone counts for the standard downscaling of the 753 

UKMO model (blue) and with the imposition of an artificial vorticity threshold (red). 754 

Dashed lines show the linear regressions.  755 
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Figure 10: The terms on the right side of (4); respectively vorticity, , potential intensity (PI), 756 

and shear. The black curve shows their sum while the green curve shows the logarithm 757 

of the actual GPI.  Each quantity is relative to its initial value.  758 

Figure 11: Change in the annual global frequency of tropical cyclones of 6 Saffir-Simpson 759 

categories. The blue bars show changes in explicitly simulated tropical cyclones in the 760 

HiFLOR model and the red bars show changes in events downscaled from HiFLOR.  761 

 762 

 763 

 764 
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Figure 1: Annual probability density (green) and damage multiplied by probability density (violet) based 

on 6200 U.S. landfalling synthetic tropical cyclones downscaled from the MIROC 6 global coupled climate 

model for each of two periods: 1984-2014 from historical simulations (solid) and 2070-2100 from the 

Shard Socioeconomic Pathway (SSP) 5 (dashed). The probability density is per unit base 10 log of the 

damage. The damage is to a portfolio of insured property in the eastern U.S. and is proportional to the 

area under the violet curves.  
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 799 

 800 

Figure 2: Annual global frequency of downscaled tropical cyclones. Solid curves represent multi-

model means and shading indicates one standard deviation up and down. Dashed lines show linear 

regression trends. Blue indicates the historical period 1850-2014 while red shows the 
11% yr−  CO2 

increase experiment arbitrarily beginning in 1970. Green curves show the multi-model mean, 

globally summed genesis potential index (GPI). 
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  814 

Figure 3: a) Global number of tropical cyclones by Saffir-Simpson category of lifetime maximum 

intensity. Tropical storms here include only events with maximum intensities of at least 40 kts. Black 

indicates observed (IBTrACS) during the period 1980-2018, while downscaled events are shown in 

blue for the historical period and red from the linear regressions of trends in the 
11% yr−  

simulations at the time of CO2 doubling. The downscaled events are multi-model means.  b) As is a) 

but observed intensities have been increased by 10%. 
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                                                        Figure 4: As in Figure 2 but showing the power dissipation index 
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 836 

Figure 5: As in Figure 2 but showing the landfall power dissipation index 837 

 838 

 839 

 840 

  841 



49 
 

 842 

 843 

 844 

 845 

 846 

  847 

Figure 6:  Genesis density (top row), track density (middle row) and power dissipation density (bottom 

row) from IBTrACS data, 1979-2015 (a-c), the multi-model mean over the historical period (d-f) and 

11% yr−percentage change from the historical period to the mean of the  simulation (g-i). The changes 

are only displayed where 7 or more of the models agree on the sign of the change.  
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 859 

 860 

Figure 7: a) Base 10 logarithm of the multi-model mean probability density of intensification and dissipation 861 

rates of downscaled tropical cyclones over the historical period (blue) and the 
11% yr−  simulations (red). The 862 

shading shows one standard deviation up and down from the mean among the models. b) Percentage change 863 

between the historical and 
11% yr−  simulations. Shading shows one standard deviation up and down from the 864 

mean change among the models.  865 

 866 

  867 
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 868 

 869 

Figure 8:  Multi-model mean translation speed (kts) for the historical period (a) and the change after a doubling 870 

of CO2 (b). The latter is displayed only where at least 7 of the 9 downscaled models agree on the sign of the 871 

change. 872 

  873 
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 874 

Figure 9: Time series of annual tropical cyclone counts for the standard downscaling of the UKMO model (blue) 875 

and with the imposition of an artificial vorticity threshold (red). Dashed lines show the linear regressions.  876 

877 
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Figure 10: The terms on the right side of (4); respectively vorticity, , potential 

intensity (PI), and shear. The black curve shows their sum while the green curve 

shows the logarithm of the actual GPI.  Each quantity is relative to its initial value.  
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 879 

Figure 11: Change in the annual global frequency of tropical cyclones of 6 Saffir-Simpson categories. The blue 880 

bars show changes in explicitly simulated tropical cyclones in the HiFLOR model and the red bars show changes 881 

in events downscaled from HiFLOR.  882 
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