

Response of Global Tropical Cyclone Activity to Increasing CO₂: Results from Downscaling CMIP6 Models

Kerry Emanuel¹

Lorenz Center

Massachusetts Institute of Technology

Revised July, 2020

¹ Corresponding author address and email: Rm 54-1814, MIT; 77 Massachusetts Avenue, Cambridge, MA 02139.
Phone: 617-253-2462. Email: emanuel@mit.edu

Abstract

1 Global models comprising the sixth generation Coupled Climate Model Intercomparison Project
2 (CMIP6) are downscaled using a very high resolution but simplified coupled atmosphere-ocean
3 tropical cyclone model, as a means of estimating the response of global tropical cyclone activity
4 to increasing greenhouse gases. As with a previous downscaling of CMIP5 models, the results
5 show an increase in both the frequency and severity of tropical cyclones, robust across the
6 models downscaled, in response to increasing greenhouse gases. The increase is strongly
7 weighted to the northern hemisphere, and especially noteworthy is a large increase in the
8 higher latitudes of the North Atlantic. Changes are insignificant in the South Pacific across
9 metrics. Although the largest increases in track density are far from land, substantial increases
10 in global landfalling power dissipation are indicated. The incidence of rapid intensification
11 increases rapidly with warming, as predicted by existing theory. Measures of robustness across
12 downscaled climate models are presented, and comparisons to tropical cyclones explicitly
13 simulated in climate models are discussed.

14

15 1. Introduction

16 The cost to society of climate change is driven largely by the costs associated with extreme
17 climate events such as droughts, floods, wildfires, and storms. Slow changes in long-term
18 average conditions, such as annual mean temperature and sea level, can often be
19 accommodated through an equivalently slow adaptation, but adaptation to changes in
20 infrequent events is notoriously flawed and often unduly influenced by politics and special
21 interests (Gaul, 2019), making each event disproportionately expensive.

22 The long-term average annual cost, C , of discrete climate events can be defined as the integral
23 of the cost of each event multiplied by the annual probability density of that event, over the
24 whole range of possible costs:

25
$$C = \int_0^\infty c(i)p(i)di, \quad (1)$$

26 where c is the cost of an event of intensity i , and $p(i)$ is the probability density (probability
27 per unit intensity) associated with that cost.

28 For extreme events such as tropical cyclones, the cost typically rises steeply and nonlinearly
29 with the intensity of the event, and at the same time the probability of the event drops with its
30 intensity. For this reason, the integral in (1) is usually dominated by costs associated with
31 intensities greater, and possibly much greater, than the intensity associated with the peak of
32 the probability distribution.

33 This simple point is illustrated in Figure 1 which is based on damage caused to a portfolio of U.S.
34 properties by 6,200 synthetic tropical cyclones making landfall on the U.S. East and Gulf coasts
35 in two different climate states. These tracks were generated using the technique described in
36 Emanuel et al. (2008) applied to a particular CMIP6-generation climate model, and the damage
37 function and portfolio of property values used by Emanuel et al. (2012). The details of the
38 downscaling methodology are described later in this paper but are not so important here; the
39 point is to illustrate the nature of the problem.

40 The green curves in Figure 1 show the annual probability densities of losses as a function of the
41 loss amount; here these are defined as probabilities per unit base 10 log of the cost. The solid
42 curves are for the climate of the late 20th century, while the dashed curves pertain to the
43 climate of the late 21st century under global warming. The most likely event will incur between
44 \$100 thousand and \$1 million in losses to this portfolio. The warmer climate has fewer weak
45 events and more strong events; for this illustration the overall frequency is held constant². The
46 violet curves show the probability density multiplied by the cost. The areas under these violet
47 curves are proportional to the total cost. Thus the long-term cost of this hazard is coming from
48 the low-probability, high-intensity tail of the distribution, and the climate shift is causing an
49 appreciable increase in cost even though the shift in the probability distribution is small.

50 Conversely, *almost no damage is contributed by the median (most frequent) event*. Thus the
51 most frequent question asked by politicians and the media, and many scientists: How will the

² The overall frequency includes some events that cause no damage, thus the areas under the probability curves in Fig 1 are not equal.

52 intensity and frequency of tropical cyclones change? is essentially meaningless, because
53 frequency is dominated by events that cause very little damage. What we must concern
54 ourselves with is the frequency of the most damaging events. While this illustration pertains
55 only to wind damage, the same is qualitatively the case for water damage.

56 The climate shift in probability density and damage is not simply a matter of changing
57 frequency and/or intensity but also depends crucially on shifting storm tracks; at the end of the
58 day, all meaningful climate change is local. The damage done by a tropical cyclone is also a
59 strong function of its size, including inner dimensions usually characterized by the radius of
60 maximum winds, and the outer wind field. High category tropical cyclones may have radii of
61 maximum winds as small as 10 km and as large as 100 km while their destructiveness varies
62 between the first and second power of this length scale³. Moreover, much of the damage done
63 by tropical cyclones is accomplished by water; specifically, by storm surge, which is sensitive to
64 wind speed, storm size, and translation speed, and by torrential rains which are sensitive to a
65 variety of storm structural characteristics, intensity, and movement.

66 For all these reasons, tropical cyclones simulated by most of today's generation of coupled
67 climate models are unsuitable for direct estimation of tropical cyclone damage. Indeed, the
68 majority of coupled models reviewed by Knutson et al. (2020) have grid spacings of 50 km or
69 greater, whereas numerical convergence experiments (e.g. Rotunno et al. 2009) suggest that

³ A stationary, steady cyclone just offshore will affect an area proportional the square of its diameter, while a steady storm moving at constant translation speed will affect a swath proportional to the first power of the diameter, but the duration of winds at fixed points will also depend on storm diameter.

70 grid spacing on the order of a few kilometers is needed to achieve numerical convergence of
71 azimuthal mean variables.

72 An alternative to using poorly resolved tropical cyclones from climate models is to downscale
73 such models by embedding within them regional or local models with far greater spatial
74 resolution. A straightforward approach is to drive such embedded high-resolution models with
75 time-evolving boundary conditions supplied from the global models. Examples of this approach
76 are comprehensively reviewed in Knutson et al. (2020). A disadvantage of this approach is that
77 the total number of events simulated is limited by the length of time spanned by the global
78 model simulation and/or by computational cost. Furthermore, in designing the geometries of
79 the high-resolution subdomains, one must take into account the possibility that the regions
80 affected by tropical cyclones might shift with climate change.

81 For this reason, we adapt the approach described in Emanuel et al. (2008) in which the essential
82 statistical properties of the time-evolving environment are culled from global reanalyses or
83 climate models and used to drive a simple coupled ocean-atmosphere tropical cyclone intensity
84 model along tracks produced by random seeding and a beta-and-advection displacement
85 model. The intensity model has very high spatial resolution in the storm core, owing to the use
86 of an angular momentum radial coordinate, and had been previously shown to produce skillful
87 real-time intensity forecasts (Emanuel and Rappaport, 2000). The random seeding is a ‘natural
88 selection’ algorithm; the vast majority of seed disturbances dissipate quickly owing to having
89 been placed in unfavorable environments, leaving a few survivors that had been placed in
90 favorable environments.

91 There are several advantages to this technique in comparison to conventional downscaling. The
92 use of angular momentum coordinates allows increasing spatial resolution of the storm core as
93 its intensity increases, thus each storm's intensity is limited by the physical properties of its
94 environment rather than by numerical resolution. Because the tropical cyclone model is driven
95 by the statistics of the global model or reanalysis, an arbitrarily large number of events can be
96 simulated in a given climate, and the seeding is global so there is no need to pre-select sub-
97 domains.

98 Yet there are a number of disadvantages to this approach. The intensity model is axisymmetric,
99 so the dynamical interaction with sheared environments must be parameterized. The shear
100 parameterization used was developed by Emanuel et al. (2004) to optimize the quality of real-
101 time intensity forecasts and is a function of the 250-850 hPa shear magnitude (but not
102 direction) and the saturation deficit of the large-scale environment at 600 hPa. There is no
103 feedback from the simulated cyclones to the regional environment, as there is in conventional
104 downscaling, so the simulation of the extratropical transition of simulated storms is
105 compromised. (The simulated cyclones do respond to the statistics of middle latitude baroclinic
106 systems but they cannot feedback on such systems.) Finally, in previous work and in what
107 follows here, there has been no attempt to alter the statistics of the random seed disturbances
108 in response to climate change, except that we allow the horizontal scale of the seed
109 disturbances to vary with the deformation radius based on the large-scale environment. Thus
110 we operate under the assumption that the climatology of tropical cyclones is entirely dictated
111 by the large-scale thermodynamic and kinematic environment and not by the climatology of
112 potential initiating disturbances.

113 Since most tropical cyclones are triggered by pre-existing disturbances, the notion that cyclone
114 climatology is independent of the climatology of such disturbances is counter-intuitive. Yet
115 there is an abundance of evidence that spatial, seasonal, and interannual variability of tropical
116 cyclones is controlled mostly by variations in the large-scale environment. In the first place,
117 genesis potential indices (Gray, 1979; DeMaria et al., 2001; Emanuel and Nolan, 2004; Emanuel,
118 2010), which are based exclusively on large-scale variables such as potential intensity and wind
119 shear, capture much of the climatology of observed tropical cyclones, including their spatial and
120 seasonal distributions, and interannual variability, at least in the Atlantic region (e.g. Camargo
121 et al., 2007a; Camargo et al., 2007b; Bruyère et al., 2012; Camargo et al., 2014). Classical
122 regional downscaling simulations (e.g. Vitart and co-authors, 2007) for the Atlantic region also
123 capture much of the observed interannual variability of tropical cyclone activity when driven by
124 initial and boundary conditions supplied from reanalysis data, but in this case, potential
125 initiating disturbances such as African Easterly Waves (AEWs) are usually present in the
126 reanalyses and thereby exert an influence on the downscaled tropical cyclones. Yet in one such
127 study (Patricola et al., 2018), AEWs entering the regional domain from the east were artificially
128 suppressed, but the frequency and interannual variability in tropical cyclogenesis was hardly
129 affected. In this case, the AEWs determined the timing and location of genesis events, but not
130 their existence.

131 The random seeding approach applied here has been shown to capture reasonably well the
132 spatial and seasonal variations of tropical cyclones around the world, and the interannual
133 variability in the Atlantic region, at least as well as classical regional downscaling does (Emanuel
134 et al., 2008). But because the global warming signal is probably not yet detectable in historical

135 tropical cyclone counts (Knutson et al., 2019), there is no way to definitively test this
136 technique's (or any other's) ability to capture the possibly unique character of the global
137 climate change signal. We will return to this point in Section 4.

138 [2. Methods and Data](#)

139 We use the same downscaling technique original developed by Emanuel et al. (2006) and
140 Emanuel et al. (2008) and applied to the CMIP5 generation of models by Emanuel (2013). We
141 have made some minor modifications to the technique since its application to CMIP5 models.

142 These include:

- 143 • Scaling the radii of maximum winds of the seed disturbances by the deformation radius,
144 based on dry stratification along moist adiabats as determined by the environmental
145 temperature at 600 hPa. This causes a modest increase in the average size of simulated
146 tropical cyclones with warming of the free troposphere.
- 147 • Slightly modifying the coefficients governing beta-drift
- 148 • Calculating the monthly mean ocean mixed layer depths and sub-mixed layer thermal
149 stratification from the global model output rather than from historical climatology; the
150 effect of this is to modestly reduce the number of very intense storms (Emanuel, 2015)
- 151 • Adding detection of secondary eyewalls that occur in the CHIPS model and modifying
152 the canonical radial profiles of wind speed to account for them. This does not affect the
153 global statistics presented here but does affect the calculation of winds speeds at fixed
154 points and thereby, for example, the damage calculations such as those mentioned in
155 the Introduction

156 • Applying a database of surface roughness over land used to calculate the neutral drag
157 coefficients, replacing the crude parameterization based on topography used before.

158 The new drag coefficients over land are applied to both the CHIPS model and the post-
159 processing algorithms that calculate rainfall. This change does not affect storms over
160 water unless they have previously passed over land.

161 For the current study, we applied the technique to nine global climate models and to two
162 climate regimes: The period 1850-2014 from historical simulations, and an arbitrary 151-year
163 period from simulations in which atmospheric CO₂ increases by 1% yr⁻¹. In each case, 150
164 synthetic tracks were generated for each year, yielding 24,750 events for the historical period,
165 and 22,650 events for the increasing CO₂ simulations. The random seeding rate is calibrated for
166 each model to yield an 1850-2014 average annual global frequency of 84 storms, close to the
167 post-1980 observed mean. The global climate models used are listed in Table 1.

168 3. Results

169 We begin by presenting selected time series of global tropical cyclone activity from the
170 historical period, 1850-2014 and from the 1% yr⁻¹ CO₂ experiment. The latter is carried out
171 over an arbitrary 151-year period, but for purposes of comparison we display the results as
172 extending from 1970 to 2120. But note that the measured rate of increase of atmosphere CO₂
173 has been closer to 0.2% yr⁻¹. Our intent here is to examine the general response of global
174 tropical cyclone activity to rising greenhouse gas concentrations, uncomplicated by other
175 climate influences, not to make actual projections. Since the radiative forcing by atmospheric
176 CO₂ over this range of values is nearly proportional to the logarithm of the concentration, we

177 expect trends in global tropical cyclone activity to scale nearly with the annual percentage
178 increase in CO₂ concentration in the absence of other climate forcings.

179 In the figures that follow, the solid curves show the multi-model means and the shadings show
180 one standard deviation up and down from the mean. Dashed lines indicate the linear regression
181 trends of the multi-model means. Blue represents the historical period and red shows the
182 1% yr⁻¹ CO₂ increase experiment.

183 Figure 2 shows the annual frequency of all tropical cyclones over the globe. The global
184 frequency increases by about 9% over the historical period, 1850-2014, but more rapidly in the
185 last few decades⁴. Over the 151 years of the increasing CO₂ experiment, the frequency
186 increases by about 25% per doubling of CO₂. Linear trends and associated p-values are given for
187 the annual frequency and other tropical cyclone metrics in Table 2.

188 The previous downscaling of CMIP5 models yielded an increase of roughly 20% per doubling of
189 CO₂, although those results are not directly comparable to these because the trajectory of CO₂
190 concentration in the Representative Concentration Pathway (RCP) 8.5 is not the same at that
191 used here.

192 The green curves in Figure 2 show the values of a genesis potential index (GPI) summed over
193 the globe (weighted by the cosine of the latitude) for each climate model and then averaged to
194 produce the multi-model mean. The GPI is that of Emanuel (2010) except that the absolute

⁴ This more rapid increase amounts to around 10 events over the period of good global observations, 1980 – 2018. Given the Poisson random variability of about 9 storms over this period, such a trend would not be statistically detectable at the 5% level, even without considering the effects of natural climate variability on global tropical cyclone frequency.

195 vorticity contribution is capped at $5 \times 10^{-5} s^{-1}$, following Tippett et al. (2011). This GPI was
196 developed largely independently of the tropical cyclone downscaling algorithm, so this provides
197 a somewhat independent check, though both the CHIPS model and the GPI use potential
198 intensity and a nondimensional measure of mid-tropospheric specific humidity, χ , as variables.

199 Figure 3a shows the multi-model mean global frequency of tropical cyclones categorized by
200 Saffir-Simpson intensity and compares them to observations (IBTrACS, Knapp et al., 2010)⁵
201 made over the period 1980-2018. Note here that the tropical storm (TS) category only includes
202 synthetic and observed events whose lifetime intensity exceeds 40 kts.

203 The comparison of the observed frequencies with the events downscaled from the historical
204 period is reasonable, but there are too few Category 4 storms and too many Category 5 storms.
205 This may reflect a bias in the downscaling methodology or in the climate models, but it is also
206 likely that the observations, which are overwhelmingly based on satellite remote sensing
207 imagery, underestimate the intensity of the most intense events, shifting them artificially from
208 Category 5 to Category 4 (Kossin et al., 2013). Figure 3b shows the same comparison but
209 increasing the intensities of the observed storms by 10%. This increase brings the observed and
210 historically simulated Saffir-Simpson categories into much better alignment, though the
211 partitioning between tropical storms and Category 1 storms deteriorates, perhaps because of
212 the ambiguity of Dvorak method when eyes are beginning to form (Olander and Velden, 2019).
213 The observed and historically simulated combined numbers of tropical storms and Category 1

⁵ Data for the North Atlantic and eastern and Central North Pacific originated from the National Oceanographic and Atmospheric Administration's National Hurricane Center, and elsewhere from the U.S. Navy's Joint Typhoon Warning Center.

214 storms are in very good agreement. Thus it is likely that either the actual storm intensities are
215 underestimated or the simulated storm intensities are overestimated. We note that the 10%
216 adjustment does not improve the agreement in the Atlantic region (not shown), perhaps
217 because storms are better observed there. CO₂-induced warming brings about increases in the
218 frequency of all categories, but the increases in Category 2 and 3 events are small. These are in
219 a flat minimum in the frequency distribution among categories, so that a shift to higher
220 intensities at constant overall frequency would lead to little change in the frequencies of those
221 categories.

222 Figure 4 is in the same format as Figure 2, but shows the evolution over time of the power
223 dissipation index, which is the sum over each track and over all tracks in a given year of the
224 cube of the maximum surface wind. The power dissipation increases at a rate of about 30% per
225 doubling of CO₂. This is lower than the CMIP5 result (Emanuel, 2013) of closer to 40%. Note
226 also, from Table 2, the statistically significant increase of about 15% through the period 1850-
227 2014.

228 We also consider a landfall power dissipation index, which is the cube of the wind speed at
229 landfall summed over all landfalling events in each year. Here landfall is determined using a $\frac{1}{4} \times$
230 $\frac{1}{4}$ degree bathymetry/topography data set, and we consider all landfalls, even if a storm makes
231 landfall more than once. Figure 5 and Table 2 show that the multi-model mean landfall power
232 dissipation increases by about 9% over the historical period and the projected increase is about
233 25% per doubling of CO₂, a bit less than the open-ocean increase in power dissipation.

234 The spatial patterns of three multi-model mean tropical cyclone metrics and their changes with
235 increasing CO₂ are shown in Figure 6. The top row shows genesis density – the number of
236 genesis events per 1-degree latitude square per year – while the middle row shows the track
237 density and the bottom row shows the power dissipation density. In the case of track density,
238 each track is counted only once in any lat-long box used to grid the data, whereas the power
239 dissipation is summed over all 2-hour points along each track in each box. The left side of Figure
240 6 is based on IBTrACS data from 1979-2015 while the middle column shows multi-model mean
241 quantities from the historical downscaling. The right-hand side of figure 6 shows the
242 percentage change between the mean over this historical period and the mean over the
243 1% yr^{-1} increasing CO₂ simulations. The change is displayed only where at least 7 of the 9
244 models agree with each other on the sign of the change.

245 The historical mean fields in Figure 6 shows some of the same biases noted in the CMIP5
246 downscaling and also present in the climatologies of storms explicitly simulated in many of
247 these models (e.g. Camargo, 2013) and in CMIP6 models (Roberts et al., 2020). There are too
248 many storms in the southern hemisphere, including the South Atlantic, and too few tropical
249 cyclones in the eastern North Pacific. Genesis is too active in the central North Pacific, and
250 there are too few storms in the North Atlantic. Some of these biases are also present in tropical
251 cyclones downscaled from climate reanalyses (not shown), so these are probably an artifact of
252 the downscaling technique. It is evident from the track density maps that the downscaled
253 tracks extend somewhat further poleward than the IBTrACS storm tracks, except in the North
254 Atlantic. This is likely owing to differing conventions on when to terminate tracks of tropical
255 cyclones undergoing extratropical transition. Most forecasting agencies terminate tropical

256 cyclone tracks when the storm is deemed to have become mostly extratropical. Termination of
257 the downscaled tracks, on the other hand, is based only on the intensity having fallen below a
258 set threshold. Thus we expect that downscaled extratropical transitioning storms will be carried
259 somewhat further poleward than IBTrACS events.

260 Turning attention to the percentage changes between the historical to the global warming
261 simulations (right-hand column of Figure 6), note that there is essentially no change in any
262 metric in the South Pacific, as was the case in downscaling the CMIP5 models. There is little
263 change in the genesis rate in the South Indian Ocean, but the power dissipation increases and
264 the tracks extend somewhat further poleward, suggesting that the tropical cyclones in this part
265 of the world become more intense and are able to travel further poleward before dissipating.

266 The most profound changes occur in the northern hemisphere. The genesis maps show a
267 northward expansion of the North Atlantic genesis region and the central and western North
268 Pacific genesis belts. The eastern North Pacific and Arabian Sea genesis regions both expand
269 westward. Partially as a result of these changes in genesis, there are large increases in track
270 density and power dissipation throughout much of the northern hemisphere, especially in the
271 central North Pacific and the subtropical to high latitude North Atlantic. The largest percentage
272 increases are, fortunately, away from land. Especially noteworthy is the large increase in track
273 density in the high latitudes of the North Atlantic, suggesting that the northward expansion of
274 the Atlantic genesis region and the increase in storm intensity there lead to a greater incidence
275 of extratropical transition. This is consistent with recent projections of extratropical transition

276 that suggest increases in the western North Pacific and North Atlantic (Liu et al., 2017;
277 Michaelis and Lackmann, 2019).

278 The large increase in tropical cyclone activity in the northern hemisphere relative to the
279 southern hemisphere is consistent with explicitly simulated storms in CMIP6 models (Roberts et
280 al., 2020) and the pattern of changes in track density resembles both observed changes over
281 the period 1980-2018 and changes simulated by a suite of high-resolution coupled models over
282 the same period (Murakami et al., 2020), with large increases in the North Atlantic and central
283 North Pacific. But the same models, forced by increasing CO₂ alone, show decreasing track
284 density in the North Atlantic.

285 The poleward expansion of both the track and power dissipation density in the northern
286 hemisphere and South Indian Ocean is consistent with recent observations of the poleward
287 migration of the latitudes at which tropical cyclones are observed to reach peak intensity
288 (Kossin et al., 2014) and with projected poleward migration in the western North Pacific (Kossin
289 et al., 2016).

290 In forecasting individual tropical storms, the intensification rate is an important consideration
291 because rapidly intensifying events near the time of landfall can catch forecasters and
292 emergency managers off guard. Theoretically, intensification rates should scale as the square of
293 the potential intensity, so they are more sensitive to climate change than the intensity itself
294 (Emanuel, 2017). Figure 7a shows the base 10 logarithm of the probability densities of the
295 multi-model mean and standard deviation of intensification rates based on two-hourly fixes of
296 the downscaled tropical cyclones. These probability densities are independent of overall storm

297 frequency. Figure 7b shows the percentage difference between the historical period and the
298 $1\% \text{ yr}^{-1}$ simulations. There are large percentage increases in intensification rates exceeding
299 about 3 kts hr^{-1} , and this percentage change increases with intensification rate. There is also a
300 smaller increase in extreme dissipation rates, likely owing to the faster decay rates of initially
301 more intense storms over land and cold water, because the decay rates scale roughly with the
302 square of the surface wind speed.

303 The flooding potential, and to some extent the wind damage, caused by tropical cyclones can
304 be strongly affected by their translation speed. Slower moving storms will affect a given region
305 for a longer period, producing more rain and perhaps more wind damage. On the other hand,
306 slow-moving storms are not likely to travel as far inland, sparing regions away from coastlines.

307 Figure 8 shows the multi-model average translation speed of downscaled tropical cyclones for
308 the historical period (a) and the change in translation speed (b) for a transient doubling of CO₂.
309 The latter is displayed only where at least 7 of the 9 GCMs agree on the sign of the change in
310 downscaled translation speed. Remarkably, there is no significant change in translation speed in
311 the deep tropics, but there is a substantial decrease in mean translation speed at the
312 subtropical peripheries of the tropical belt, affecting the U.S. east and Gulf coasts, the central
313 coast of China, Korea, southern Japan, and Australia. This is perhaps a consequence of the
314 projected poleward expansion of the Hadley circulation. This result can be compared and
315 contrasted to recent global modeling results that show , reductions in the subtropics and
316 middle and high latitudes (Yamaguchi et al., 2020), and reductions primarily in middle latitudes

317 (Zhang et al., 2020). Lee et al. (2020) used a downscaling method similar to that employed here
318 to examine translations speeds of storms near land, finding a slight reduction.

319 [4. Discussion](#)

320 a. Changes in weak tropical cyclones

321 As was the case with downscaling the previous (CMIP5) generation of climate models, the
322 results of downscaling nine CMIP6 models show substantial increases in both the intensity and
323 frequency of tropical cyclones as greenhouse gas concentrations increase. The frequency

324 increase is at odds with most (though not all) results from explicit modeling of tropical cyclones.

325 According to a recent and comprehensive review by Knutson et al. (2020), “the vast majority of
326 individual studies (22 out of 27 studies) project a decrease in global TC frequency with
327 greenhouse warming.” It is both of inherent and practical interest to discover why these results
328 differ the way they do.

329 It should first be noted that the great majority of the studies done to date focused on tropical
330 cyclones explicitly simulated in global atmospheric or coupled general circulation models
331 (GCMs), whose effective horizontal grid spacings varies from 14 km to as much as 200 km. Most
332 of these models moderately to severely under-resolve tropical cyclones (e.g. see Rotunno et
333 al., 2009) and the mesoscale processes observed to be involved in their genesis (e.g.
334 Montgomery and Smith, 2012). Tropical cyclones that develop in such models must be detected
335 using an algorithm (e.g. Walsh et al., 2007) and the counts of tropical cyclones are known to be
336 sensitive to how that algorithm is formulated and to model characteristics (Raavi and Walsh,
337 2020).

338 In particular, climate change may alter the scale and other characteristics of simulated tropical
339 cyclones, pushing events across arbitrary detection thresholds and thereby leading to false
340 trends in counts of weak events. For example, weak tropical cyclone-like disturbances may
341 become broader as the climate warms, as they do in “TC-world” experiments (e.g.
342 Kharoutdinov and Emanuel, 2013), and while their circulation may stay the same or even
343 increase, their vorticity may decrease below the imposed vorticity thresholds that are a key
344 feature of most tropical cyclone detection algorithms. Indeed, in their analysis of 850 hPa
345 vorticity in two global models, Sugi et al. (2020) show that as climate warms, the vorticity of
346 disturbances of tropical storm strength decreases proportionally more than does their intensity
347 (compare their figures 2 and 3), suggesting that the pre-tropical cyclone disturbances may be
348 becoming broader.

349 To test the idea that this could bias trends in explicitly detected cyclones in GCMs, we re-
350 calculated time series of downscaled tropical cyclone metrics as before but this time imposing
351 an artificial vorticity-like detection threshold. Specifically, we discarded events whose ratio of
352 maximum circular wind speed to radius of maximum winds is less than $6 \times 10^{-4} s^{-1}$.

353 Figure 9 compares the evolution of total tropical cyclone frequency in this modified experiment
354 to the control, for both the historical and increasing CO₂ simulations of one of the 9 models we
355 use in this study. The substantial upward trend of the control frequency in this latter simulation
356 is greatly muted in the modified experiment. In both the control and the modified experiments,
357 the horizontal scale of the seed disturbances is determined by the local deformation radius,

358 which increases as the climate warms owing to the increase in dry static stability along moist
359 adiabats.

360 Thus it is possible that the frequency of disturbances detected by a vorticity threshold may
361 decrease relative to the frequency determined by a wind speed threshold. Almost all the GCM-
362 based studies reviewed by Knutson et al. (2020) imposed both vorticity and wind speed
363 detection thresholds, so further research would be necessary to confirm or reject the
364 hypothesis that warming-induced trends in tropical cyclone counts may be negatively biased
365 through the use of a fixed vorticity threshold that does not depend on the climate state.

366 There are also indications that explicitly simulated tropical cyclones and their sensitivity to
367 climate change may not be robust to changes in model physics or resolution. For example,
368 when the grid spacing of a coupled global climate model was decreased from 50 km to 25 km,
369 the sensitivity of tropical cyclone counts to global warming went from negative to neutral
370 (Vecchi et al., 2019). Moreover, in contrast to both observations (Tippett et al., 2011) and the
371 downscaling described here, the relationship between explicit tropical cyclone counts in GCMs
372 and environmental conditions is weak and/or of the wrong character (Camargo et al., 2020).

373 For these reasons, there is little basis for confidence in the projection by most climate models
374 that overall tropical cyclone frequency will decline. Indeed, 7 of the 11 authors of Knutson et al.
375 (2020) rated confidence in the projection of decreasing tropical cyclone frequency as low-to-
376 medium.

377 But how believable are the indications of increasing frequency across the spectrum of intensity
 378 resulting from this downscaling study (see Figure 3)? On the one hand, there is excellent
 379 correspondence between the downscaled tropical cyclone frequency and the genesis potential
 380 index calculated from the raw GCM output (Figure 2). The GPI was developed and tested
 381 largely independently of the development of the downscaling technique, though the variables
 382 used in the GPI were selected partly because they are variables that appear naturally in the
 383 CHIPS model⁶: Both the CHIPS model and the GPI depend strongly on potential intensity, wind
 384 shear, and the mid-tropospheric dryness parameter χ that is based on moist static energy.
 385 There is no a priori reason to think that variations in these parameters owing to global climate
 386 change would affect tropical cyclones differently from variations owing to spatial, annual and
 387 interannual variability, yet both the downscaling and the GPI capture such natural variations
 388 quite well. There are, of course, other empirically determined genesis potential indices (e.g.
 389 (Tippett et al., 2011; Tang and Camargo, 2014) and given that these produce different
 390 estimates, agreement with the downscaled frequencies presented here would likely be less.
 391 By examining each of the factors that make up the definition of GPI, it is possible to draw some
 392 inferences about which environmental factors lead to its increase. The definition of GPI used
 393 here is from Emanuel (2010):

$$394 \text{GPI} \equiv |\eta|^3 \chi^{-4/3} \text{MAX}\left(\left(V_{pot} - 35 \text{ ms}^{-1}\right), 0\right)^2 \times \quad (2) \\
 \left(25 \text{ ms}^{-1} + V_{shear}\right)^{-4},$$

⁶ This GPI is also dimensionally correct, yielding genesis number per unit area per unit time. Other genesis indices perform equally well during the historical period but yield very different trends in global warming scenarios (Lee et al., 2020).

395 where η is the absolute vorticity of the 850 hPa flow, capped by $5 \times$, V_{pot} is the potential
396 intensity, V_{shear} is the magnitude of the 850 hPa-250 hPa wind shear, and

397

$$\chi \equiv \frac{s_b - s_m}{s_0^* - s_b}, \quad (3)$$

398 where s_b , s_m , and s_0^* are the moist entropies of the boundary layer and middle troposphere, and
399 the saturation moist entropy of the sea surface, respectively. This is the quantity that is
400 summed over the globe and averaged among the 9 models to produce the green curves in
401 Figure 2. Were it not for that summation, it would be possible to fo a linear factor separation of
402 (2) by taking the logarithm of both sides:

403

$$\log(GPI) = 3\log(|\eta|) - \frac{4}{3}\log(\chi) + 2\log\left(MAX\left(\left(V_{pot} - 35 \text{ ms}^{-1}\right), 1\right)\right) - \quad (4)$$
$$4\log\left(25 \text{ ms}^{-1} + V_{shear}\right).$$

404 Unfortunately, the summation over the globe and the averaging among the 9 models does not
405 allow this: The logarithm of the summed, averaged value of GPI given by (2) is not equal to the
406 summed, averaged value of the logarithm of GPI. Since the tuning of the coefficients in (2) was
407 done by matching summed GPI to observations, one cannot willy-nilly use (4) instead of (3) as
408 the working definition of the GPI without re-turning. Since that re-tuning is beyond the scope of
409 this study, we attempt to use (4) anyway, using the summed, averaged quantities (GPI, η etc.)
410 before taking their logarithms.

411 Figure 10 shows, for the 1% per year increasing CO₂ experiment, the evolution with time of the
412 terms in (4), where it is understood that the quantities have first been summed and then
413 averaged among the 4 models. To avoid extratropical influences, we zero each individual term

414 wherever the potential intensity is 35 ms^{-1} or less, and each curve is relative to the initial value
415 of the quantity in question.

416 The black curve shows the sum of the terms whereas the green curve is the logarithm of the
417 actual GPI; the mismatch between these two curves reflects the problems alluded to above. But
418 for what it is worth, one sees that the potential intensity and saturation deficit are the
419 dominant terms and work in opposing directions. The negative contribution of the saturation
420 deficit χ is consistent with the results of Emanuel et al. (2008) and Lee et al. (2020) and
421 suggest that the main break on increasing tropical cyclone frequency in a warming climate is
422 the increasing saturation deficit of the middle troposphere. The vorticity and shear
423 contributions are smaller, but both terms act to increase the GPI trend.

424 To the extent that the GPI reflects the physics of the downscaled tropical cyclones, we would
425 infer that increasing potential intensity is the most important contributor to increasing cyclone
426 frequency, with small additional contributions from decreasing shear and increasing vorticity
427 (likely reflecting the poleward migration of genesis regions). Increasing saturation deficit works
428 in the opposite direction, acting to decrease storm frequency.

429 It should be noted, however, that changing the exponent of χ in (2) to -2 changes the sign of
430 the net response of the GPI to increasing CO₂ concentration while not strongly degrading the fit
431 to observed variability, so the good fit to the downscaled frequencies is somewhat coincidental.
432 Thus the agreement between the downscaled frequencies and the GPI should not be
433 interpreted as strong evidence for the correctness of either.

434 Returning to the downscaled tropical cyclones, their rate of genesis varies directly with the
435 specified seeding rate, which is held constant across the globe, seasonally, interannually, and
436 with global climate change. Arguments have been made that this seeding rate should decline as
437 the globe warms (Sugi et al., 2020). Yet the strong spatial, seasonal and interannual variation of
438 potential initiating disturbances in the current climate does not seem to preclude the ability of
439 either the GPI or the downscaling from capturing major features of natural tropical cyclone
440 variability (Camargo et al., 2007a; Emanuel et al., 2008). Moreover, Patricola et al. (2018)
441 showed that suppressing African easterly waves, a prominent catalyst for North Atlantic
442 hurricanes, did not change the level of tropical cyclone activity in a regional tropical North
443 Atlantic model, though the waves did determine the location and timing of genesis events. Thus
444 the seed disturbances, in this case, did not control the level of tropical cyclone activity.

445 A more serious deficiency of the downscaling method applied here is that there is no feedback
446 whatsoever between the downscaled tropical cyclones and the large-scale environment that is
447 driving them. Even regional downscaling models, such as that used by Patricola et al. (2018),
448 can simulate some regional feedbacks of cyclone activity within the regional model itself,
449 though they cannot influence the global model in which the regional model is embedded.

450 There are two known feedback mechanisms by which current tropical cyclone activity can
451 potentially influence future activity through modification of their large scale environment. The
452 first acts primarily through the ocean: Tropical cyclones cool the sea surface by mixing warmer
453 surface waters with cooler water below the mixed layer (Leipper, 1967; Price, 1981) and
454 subsequent re-heating of the cold wakes leads to a net export of heat away from the affected

455 region (Emanuel, 2001; Federov et al., 2010). This has the negative feedback of cooling the
456 ocean in tropical cyclone regions, reducing the genesis potential there, but it may lead to
457 increases in genesis in marginal regions outside the main tropical cyclone belts.

458 A second negative feedback acts through the atmosphere: It is the profound drying of the
459 atmosphere that occurs with any form of aggregation of convection (Bretherton and
460 Kharoutdinov, 2004; Wing et al., 2017). This will greatly increase the inhibition to tropical
461 cyclogenesis represented in the GPI by the χ parameter and known to strongly affect the
462 genesis rates in the downscaling technique applied here (Emanuel et al., 2008).

463 Both these mechanisms are, in principle, operating in fully coupled GCMs. To the extent that
464 the large-scale fields are affected by these feedbacks in the GCMs used here, they will also
465 decrease the number of downscaled genesis events, but owing to the severe under-resolution
466 of tropical cyclones in most GCMs, these negative feedbacks may be strongly muted.

467 But there are now some global coupled models with resolutions high enough to capture most
468 of the full spectrum of tropical cyclone numbers and intensities. One such model, the Model for
469 Prediction Across Scales–Atmosphere (MPAS-A), which was employed by Michaelis and
470 Lackmann (2019) to make global projections of the response of tropical cyclone activity to
471 global warming using a 15-km grid over the whole of the northern hemisphere. Notably, they
472 used a cyclone detection algorithm based on sea level pressure anomalies with no vorticity
473 threshold. They found increasing tropical cyclone frequency in the northern hemisphere,
474 especially in the Atlantic.

475 Another high-resolution global coupled model is the NOAA Geophysical Fluid Dynamics high
476 atmospheric resolution version of the Forecast-oriented Low Ocean Resolution version of the
477 GFDL global climate model (HiFLOR; Murakami et al., 2015). With an effective grid spacing of
478 about 25 km, this model explicitly simulates high intensity tropical cyclones (Vecchi et al.,
479 2019). Climate sensitivity experiments with HiFLOR show that increasing CO₂ concentrations
480 leads to a statistically insignificant change in global tropical cyclone counts but a substantial
481 increase in high intensity events (Vecchi et al., 2019). We downscaled 200 events globally per
482 year for 200 years of simulation in two different climates: the climate of the late 20th century
483 and a climate representing increased CO₂ concentrations. In the former, a single year
484 representing atmospheric greenhouse and aerosol conditions in the year 1990 was repeated
485 over 300 years; we used the last 200 years in the downscaling. The warming experiment starts
486 at year 100 of the control simulation and increases CO₂ at the rate of 1% per year until a
487 doubling has been reached after 70 years; thereafter the CO₂ concentration remains fixed for
488 another 230 years. We use the last 200 years of this simulation. Details may be found in Irvine
489 et al. (2019).

490 Figure 11 shows changes in global counts of tropical cyclones in each Saffir-Simpson category.
491 Note that the HiFLOR model produces about 90 tropical storms per year globally, close to the
492 observed frequency, while the downscaled results have been calibrated to an annual frequency
493 of 84 events in the 20th century. The distribution across categories of the response of the
494 downscaled tropical cyclones to doubling CO₂ is consistent with that resulting from downscaling
495 of the CMIP6 models (see Figure 2) but substantially muted in comparison. At the same time,
496 there are substantial increases in the explicitly simulated high intensity (Cat 4-5) tropical

497 cyclones in HiFLOR, while the number of weak events (tropical storms and CAT1 hurricanes)
498 decreases. We speculate that the increase in explicitly simulated intense storm activity in
499 HiFLOR may have led to the aforementioned negative feedbacks, which muted the response of
500 the downscaled storms.

501 In the author's opinion, the limitations of CMIP6 model simulations of tropical cyclones
502 preclude any robust projection of the response of weak tropical cyclone activity to global
503 warming, either from their explicitly simulated storms or from events downscaled from their
504 output.

505 b. Changes in high intensity tropical cyclones

506 In contrast to the case of marginal storms, detection of cyclones in GCMs becomes less of an
507 issue for intense storms, particularly in the case of high resolution models that can simulate the
508 full intensity spectrum. Perhaps for this reason, there is much better agreement on projected
509 changes in intense (Category 4-5) tropical cyclones, both among the explicitly simulated storms
510 and between them and the downscaled storms (see Figure 2c and compare to Figure 2a of
511 Knutson et al. 2020).

512

513 5. Summary

514 The application of a downscaling technique to 9 CMIP6-generation climate models suggests
515 potentially large increases in various measures of tropical cyclone activity in response to
516 anthropogenic climate change, particularly in the northern hemisphere. These results are
517 broadly consistent with those from downscaling CMIP5 models (Emanuel, 2013).

518 As reviewed by Knutson et al. (2020), there is a moderately strong consensus on an increase in
519 high intensity tropical cyclones and in tropical cyclone rainfall. There is little agreement on how
520 the frequency of weak storms might change, but with the possible exception of rainfall, these
521 are of little consequence. The fact that most explicit modeling studies agree that tropical
522 cyclone frequency will decrease with climate warming may be an artifact of low resolution and
523 the use of non-climate-dependent detection thresholds. Their agreement with each other is
524 only *prima facie* evidence of robustness of the trend. In the author's opinion, though, the
525 increases in overall tropical cyclone frequency predicted by our downscaling would be muted
526 and perhaps even eliminated by feedbacks from the cyclones to their large-scale environment
527 in two-way coupled simulations that adequately resolve tropical cyclones.

528 The large increase in the probability of rapid intensification rates is perhaps one of the more
529 worrying aspects of the effect of climate change on tropical cyclones. Given the level of
530 uncertainty in contemporary tropical cyclone intensity forecasts, increasing rates of
531 intensification increase the chances of surprises (Emanuel, 2017).

532 Consistent with some observational studies (Kossin, 2018), there is a robust projected decrease
533 in tropical cyclone translation speed in the subtropics, though not in the deep tropics. This may
534 increase the probability of stalling storms, such as Harvey of 2017 and Dorian of 2019. These
535 storms can be especially destructive because of prolonged rain and/or wind.

536 While the jury may still be out on the effects of climate change on the incidence of weak
537 storms, the growing consensus on substantial increases in high-intensity storms and rainfall
538 paints a robust picture of increasing tropical cyclone risk as the climate continues to warm.

539 *Acknowledgements:* The author is grateful for the support from the National Science
540 Foundation under grant ICER-1854929. CMIP6 climate model data was downloaded from a
541 website operated by the Earth System Grid Federation.

542

543 *Data availability statement:* The downscaled tropical cyclone data used in this study is freely
544 available from the author for research purposes only. Recipients will be asked to sign and
545 return a data non-redistribution agreement.

546 **References**

547 Bretherton, C. S., and M. F. Khairoutdinov, 2004: Convective self-aggregation in large cloud-
548 resolving model simulations of radiative convective equilibrium. *AMS Conference on*
549 *Hurricanes and Tropical Meteorology*, Miami, Amer. Meteor. Soc.,

550 Bruyère, C. L., G. J. Holland, and E. Towler, 2012: Investigating the use of a genesis potential
551 index for tropical cyclones in the North Atlantic basin. *J. Climate*, **25**, 8611-8626,
552 doi:10.1175/jcli-d-11-00619.1.

553 Camargo, S., 2013: Global and regional aspects of tropical cyclone activity in the CMIP5 models.
554 *J. Climate*, **26**, 9880–9902.

555 Camargo, S. J., K. A. Emanuel, and A. H. Sobel, 2007a: Use of a genesis potential index to
556 diagnose ENSO effects on tropical cyclone genesis. *J. Climate*, **20**, 4819-4834,
557 doi:10.1175/Jcli4282.1.

558 Camargo, S. J., A. H. Sobel, A. G. Barnston, and K. A. Emanuel 2007b: Tropical cyclone genesis
559 potential index in climate models. *Tellus A*, **59**, 428-443, doi:10.1111/j.1600-
560 0870.2007.00238.x.

561 Camargo, S. J., M. K. Tippett, A. H. Sobel, G. A. Vecchi, and M. Zhao, 2014: Testing the
562 performance of tropical cyclone genesis indices in future climates using the HIRAM
563 model. *J. Climate*, **27**, 9171-9196, doi:10.1175/jcli-d-13-00505.1.

564 Camargo, S. J., and co-authors, 2020: Characteristics of model tropical cyclone climatology and
565 the large-scale environment. *J. Climate*, **33**, 4463-4487, doi:10.1175/jcli-d-19-0500.1.

566 Danabasoglu, G., and Coauthors, 2020: The community earth system model version 2 (CESM2).
567 *JAMES*, **12**, e2019MS001916, doi:10.1029/2019ms001916.

568 DeMaria, M., J. A. Knaff, and B. H. Connell, 2001: A tropical cyclone genesis parameter for the
569 tropical Atlantic. *Wea. Forecast.*, 219-233.

570 Emanuel, K., and E. Rappaport, 2000: Forecast skill of a simplified hurricane intensity prediction
571 model. *Preprints of the 24th Conf. Hurricanes and Trop. Meteor.*, Ft. Lauderdale, FL,
572 Amer. Meteor. Soc., Boston, 236-237,

573 Emanuel, K., C. DesAutels, C. Holloway, and R. Korty, 2004: Environmental control of tropical
574 cyclone intensity. *J. Atmos. Sci.*, **61**, 843-858.

575 Emanuel, K., and D. Nolan, 2004: Tropical cyclone activity and global climate. *26th Conference*
576 *on Hurricanes and Tropical Meteorology*, Miami, Amer. Meteor. Soc., 240-241,

577 Emanuel, K., R. Sundararajan, and J. Williams, 2008: Hurricanes and global warming: Results
578 from downscaling IPCC AR4 simulations. *Bull. Amer. Meteor. Soc.*, **89**, 347-367.

579 Emanuel, K., 2010: Tropical cyclone activity downscaled from NOAA-CIRES reanalysis, 1908-
580 1958. *J. Adv. Model. Earth Sys.*, **2**, 1-12.

581 Emanuel, K., F. Fondriest, and J. Kossin, 2012: Potential economic value of seasonal hurricane
582 forecasts. *Weather, Climate, and Society*, **4**, 110-117, doi:10.1175/wcas-d-11-00017.1.

583

584 Emanuel, K., 2013: Downscaling CMIP5 climate models shows increased tropical cyclone activity
585 over the 21st century. *Proc. Nat. Acad. Sci.*, **110**, 12219–12224,
586 doi:/10.1073/pnas.1301293110.

587 ——, 2015: Effect of upper-ocean evolution on projected trends in tropical cyclone activity. *J.*
588 *Climate*, **28**, 8165-8170.

589 ——, 2017: Will global warming make hurricane forecasting more difficult? . *Bull. Amer.*
590 *Meteor. Soc.*, **98**, 495-501.

591 Emanuel, K. A., 2001: The contribution of tropical cyclones to the oceans' meridional heat
592 transport. *J. Geophys. Res.*, **106**, 14,771-714,782.

593 Emanuel, K. A., S. Ravela, E. Vivant, and C. Risi, 2006: A statistical-deterministic approach to
594 hurricane risk assessment. *Bull. Amer. Meteor. Soc.*, **19**, 299-314.

595 Federov, A. V., C. M. Brierley, and K. Emanuel, 2010: Tropical cyclones and permanent El Niño in
596 the early Pliocene epoch. *Nature*, **463**, 1066-1070.

597 Gaul, G. M., 2019: *The geography of risk: Epic storms, rising seas, and the cost of America's*
598 *coasts*. Farrar, Straus and Giroux, New York, 304 pp., translator, 9780374160807.

599 Gray, W. M., 1979: Hurricanes: Their formation, structure, and likely role in the tropical
600 circulation. *Meteorology over the tropical oceans*, D. B. Shaw, Ed., Roy. Meteor. Soc.,
601 155-218 pp.

602

603 Hourdin, F., and Coauthors, 2016: Lmdz6a: The atmospheric component of the IPSL climate
604 model with improved and better tuned physics. *JAMES*, **n/a**, e2019MS001892,
605 doi:10.1029/2019ms001892.

606 Irvine, P., K. Emanuel, J. He, L. W. Horowitz, G. Vecchi, and D. Keith, 2019: Halving warming with
607 idealized solar geoengineering moderates key climate hazards. *Nat Clim Change*, **9**, 295-
608 299, doi:10.1038/s41558-019-0398-8.

609 Khairoutdinov, M. F., and K. Emanuel, 2013: Rotating radiative-convective equilibrium
610 simulated by a cloud-resolving model. *J. Adv. Model. Earth Sys.*, **5**, 816-825,
611 doi::10.1002/2013MS000253.

612 Knapp, K. R., M. C. Kruk, D. H. Levinson, H. J. Diamond, and C. J. Neumann, 2010: The
613 international best track archive for climate stewardship (IBTrACS). *Bull. Amer. Meteor.*
614 *Soc.*, **91**, 363-376, doi:10.1175/2009bams2755.1.

615 Knutson, T., and Coauthors, 2019: Tropical cyclones and climate change assessment: Part I:
616 Detection and attribution. *Bull. Amer. Meteor. Soc.*, **100**, 1987-2007, doi:10.1175/bams-
617 d-18-0189.1.

618 ——, 2020: Tropical cyclones and climate change assessment: Part II: Projected response to
619 anthropogenic warming. *Bull. Amer. Meteor. Soc.*, **101**, E303-E322, doi:10.1175/bams-d-
620 18-0194.1.

621 Kossin, J. P., T. L. Olander, and K. R. Knapp, 2013: Trend analysis with a new global record of
622 tropical cyclone intensity. *J. Climate*, **26**, 9960-9976, doi:10.1175/jcli-d-13-00262.1.

623 Kossin, J. P., K. A. Emanuel, and G. A. Vecchi, 2014: The poleward migration of the location of
624 tropical cyclone maximum intensity. *Nature*, **509**, 349, doi:10.1038/nature13278.

625 Kossin, J. P., K. A. Emanuel, and S. J. Camargo, 2016: Past and projected changes in western
626 North Pacific tropical cyclone exposure. *J. Climate*, **29**, 5725-5739, doi:10.1175/jcli-d-16-
627 0076.1.

628 Kossin, J. P., 2018: A global slowdown of tropical-cyclone translation speed. *Nature*, **558**, 104-
629 107, doi:10.1038/s41586-018-0158-3.

630 Lee, C.-Y., S. J. Camargo, A. H. Sobel, and M. K. Tippett, 2020: Statistical–dynamical downscaling
631 projections of tropical cyclone activity in a warming climate: Two diverging genesis
632 scenarios. *J. Climate*, **33**, 4815-4834, doi:10.1175/jcli-d-19-0452.1.

633 Leipper, D. F., 1967: Observed ocean conditions and Hurricane Hilda, 1964. *J. Atmos. Sci.*, **24**,
634 182-196.

635 Liu, M., G. A. Vecchi, J. A. Smith, and H. Murakami, 2017: The present-day simulation and
636 twenty-first-century projection of the climatology of extratropical transition in the North
637 Atlantic. *J. Climate*, **30**, 2739-2756, doi:10.1175/jcli-d-16-0352.1.

638 Michaelis, A. C., and G. M. Lackmann, 2019: Climatological changes in the extratropical
639 transition of tropical cyclones in high-resolution global simulations. *J. Climate*, **32**, 8733-
640 8753, doi:10.1175/jcli-d-19-0259.1.

641

642 Montgomery, M. T., and R. K. Smith, 2012: The genesis of Typhoon Nuri as observed during the
643 tropical cyclone structure 2008 (TCS08) field experiment. Part 2: Observations of the
644 convective environment. *Atmos. Chem. Phys.*, **12**, 4001-4009, doi:10.5194/acp-12-4001-
645 2012.

646 Müller, W. A., and Coauthors, 2018: A higher-resolution version of the Max Planck Institute
647 earth system model (mpi-esm1.2-hr). *JAMES*, **10**, 1383-1413,
648 doi:10.1029/2017ms001217.

649 Murakami, H., and Coauthors, 2015: Simulation and prediction of category 4 and 5 hurricanes in
650 the high-resolution GFDL HiFLOR coupled climate model. *J. Climate*, **28**, 9058-9079,
651 doi:10.1175/jcli-d-15-0216.1.

652 Murakami, H., T. L. Delworth, W. F. Cooke, M. Zhao, B. Xiang, and P.-C. Hsu, 2020: Detected
653 climatic change in global distribution of tropical cyclones. *Proc. Nat. Acad. Sci.*, **117**,
654 10706-10714, doi:10.1073/pnas.1922500117.

655 Olander, T. L., and C. S. Velden, 2019: The advanced Dvorak technique (ADT) for estimating
656 tropical cyclone intensity: Update and new capabilities. *Wea. Forecast.*, **34**, 905-922,
657 doi:10.1175/waf-d-19-0007.1.

658 Patricola, C. M., R. Saravanan, and P. Chang, 2018: The response of Atlantic tropical cyclones to
659 suppression of African easterly waves. *Geophys. Res. Lett.*, **45**, 471-479,
660 doi::10.1002/2017GL076081.

661 Price, J. F., 1981: Upper ocean response to a hurricane. *J. Phys. Ocean.*, **11**, 153-175, doi:
662 10.1175/1520-0485.

663 Raavi, P. H., and K. J. E. Walsh, 2020: Sensitivity of tropical cyclone formation to resolution-
664 dependent and independent tracking schemes in high-resolution climate model
665 simulations. *Earth and Space Science*, **7**, e2019EA000906, doi:10.1029/2019ea000906.

666 Roberts, M. J., and Coauthors, 2020: Projected future changes in tropical cyclones using the
667 CMIP6 HighResMIP multi-model ensemble. *Geophys. Res. Lett.*, **n/a**, e2020GL088662,
668 doi:10.1029/2020gl088662.

669 Rotunno, R., Y. Chen, W. Wang, C. Davis, J. Dudhia, and C. L. Holland, 2009: Large-eddy
670 simulation of an idealized tropical cyclone. *Bull. Amer. Meteor. Soc.*, **90**, 1783-1788.

671 Sellar, A. A., and Coauthors, 2020: Implementation of U.K. Earth system models for CMIP6.
672 *JAMES*, **12**, e2019MS001946, doi:10.1029/2019ms001946.

673 Sugi, M., Y. Yamada, K. Yoshida, R. Mizuta, M. Nakano, C. Kodama, and M. Satoh, 2020: Future
674 changes in the global frequency of tropical cyclone seeds. *SOLA*, **16**, 70-74,
675 doi:10.2151/sola.2020-012.

676 Swart, N. C., and Coauthors, 2019: The Canadian earth system model version 5 (CANESM5.0.3).
677 *Geosci. Model Dev.*, **12**, 4823-4873, doi:10.5194/gmd-12-4823-2019.

678 Tang, B., and S. J. Camargo, 2014: Environmental control of tropical cyclones in CMIP5: A
679 ventilation perspective. *JAMES*, **6**, 115-128, doi:10.1002/2013ms000294.

680 Tatebe, H., and Coauthors, 2019: Description and basic evaluation of simulated mean state,
681 internal variability, and climate sensitivity in MIROC6. *Geoscientific Model Development*,
682 **12**, 2727-2765, doi:10.5194/gmd-12-2727-2019.

683 Tippett, M. K., S. Camargo, and A. H. Sobel, 2011: A Poisson regression index for tropical
684 cyclone genesis and the role of large-scale vorticity in genesis. *J. Climate*, **24**, 2335-2357.

685 Vecchi, G. A., and Coauthors, 2019: Tropical cyclone sensitivities to CO₂ doubling: Roles of
686 atmospheric resolution, synoptic variability and background climate changes. *Clim. Dyn.*,
687 **53**, 5999-6033, doi:10.1007/s00382-019-04913-y.

688 Vitart, and co-authors, 2007: Dynamically-based seasonal forecasts of Atlantic tropical storm
689 activity issued in june by eurosip. *Geophys. Res. Lett.*, **34**, L16815.

690 Volodire, A., and Coauthors, 2019: Evaluation of CMIP6 deck experiments with CNRM-cm6-1.
691 *JAMES*, **11**, 2177-2213, doi:10.1029/2019ms001683.

692 Walsh, K., M. Fiorino, C. W. Landsea, and K. L. McInnes, 2007: Objectively determined
693 resolution-dependent threshold criteria for the detection of tropical cyclones in climate
694 models and reanalyses. *J. Climate*, **20**, 2307-2314.

695 Wing, A. A., K. Emanuel, C. E. Holloway, and C. Muller, 2017: Convective self-aggregation in
696 numerical simulations: A review. *Surv. Geophys.*, doi: 10.1007/s10712-017-9408-4.

697 Yamaguchi, M., J. C. L. Chan, I.-J. Moon, K. Yoshida, and R. Mizuta, 2020: Global warming
698 changes tropical cyclone translation speed. *Nat Commun*, **11**, 47, doi:10.1038/s41467-
699 019-13902-y.

700 Zhang, G., H. Murakami, T. R. Knutson, R. Mizuta, and K. Yoshida, 2020: Tropical cyclone motion
701 in a changing climate. *Sci Adv*, **6**, eaaz7610, doi:10.1126/sciadv.aaz7610.

702

703

704

Table 1

705 List of CMIP6 models used in the downscaling of tropical cyclones, including resolution of
 706 atmospheric data and principal references

Institution	Model	Atmospheric Resolution ⁷	Reference
Canadian Centre for Climate Modelling and Analysis	CanESM5	2.8 x 2.8 degrees	(Swart et al., 2019)
Centre National de Recherches Météorologiques	CNRM-CM6-1	1.4 x 1.4 degrees	(Volodioire et al., 2019)
National Center for Atmospheric Research	CESM2	1.25 x 0.93 degrees	(Danabasoglu et al., 2020)
EC-Earth consortium	EC-Earth3	0.7 x 0.7 degrees	
United Kingdom Met Office Hadley Centre	HadGEM3-GC31-LL	1.25 x 1.88 degrees	(Sellar et al., 2020)
Institut Pierre Simon Laplace	IPSL-CM6A-LR	1.25 x 2.5 degrees	(Hourdin et al., 2016)
Center for Climate System Research; University of Tokyo; Japan Agency for Marine-Earth Science and Technology; National Institute for Environmental Studies	MIROC6	1.4 x 1.4 degrees	(Tatebe et al., 2019)
Max Planck Institute	MPI-ESM1-2-HR	0.94 x 0.94 degree	(Müller et al., 2018)
United Kingdom Met Office	UKESM1-0-LL	1.25 x 1.875 degrees	(Sellar et al., 2020)

707

708

⁷ This is the resolution of the output used to drive the downscaling; it may not correspond exactly with the native resolution of the GCM.

709 **Table 2**

710 Historical periods mean and linear trends over the historical period and over the $1\% \text{ yr}^{-1}$ CO_2
711 increase experiment, expressed in percent change per CO_2 doubling. P-values less than 0.01 for
712 all trends except Cat 2 frequencies, where they are both 0.02.

713

Quantity	Historical Mean	Change over historical period	$1\% \text{ yr}^{-1}$ CO_2 (change per doubling)
Overall Frequency (yr⁻¹)	84	9%	18%
Hurricane Frequency (yr⁻¹)	57	10%	17%
Cat 1 Frequency (yr⁻¹)	17	5%	8%
Cat 2 Frequency (yr⁻¹)	10	5%	4%
Cat 3 Frequency (yr⁻¹)	10	8%	7%
Cat 4 Frequency (yr⁻¹)	10	13%	26%
Cat 5 Frequency (yr⁻¹)	11	20%	44%
Major Hurricanes (yr⁻¹)	32	14%	26%
Overall Landfall Frequency (yr⁻¹)	48	7%	17%
Power Dissipation Index (m³s⁻²)	3.9×10^{12}	15%	29%
Landfalling power dissipation (m³s⁻³)	3.3×10^{10}	9%	25%
Radius of Maximum Winds (km)	59	2%	11%
Outer Radius (km)	630	3%	7%

714

715

716 **Figure Captions**

717

718 Figure 1: Annual probability density (green) and damage multiplied by probability density
719 (violet) based on 6200 U.S. landfalling synthetic tropical cyclones downscaled from the
720 MIROC 6 global coupled climate model for each of two periods: 1984-2014 from
721 historical simulations (solid) and 2070-2100 from the Shared Socioeconomic Pathway
722 (SSP) 5 (dashed). The probability density is per unit base 10 log of the damage. The
723 damage is to a portfolio of insured property in the eastern U.S. and is proportional to
724 the area under the violet curves.

725 Figure 2: Annual global frequency of downscaled tropical cyclones. Solid curves represent multi-
726 model means and shading indicates one standard deviation up and down. Dashed lines
727 show linear regression trends. Blue indicates the historical period 1850-2014 while red
728 shows the $1\% \text{ yr}^{-1}$ CO_2 increase experiment arbitrarily beginning in 1970. Green curves
729 show the multi-model mean, globally summed genesis potential index (GPI).

730 Figure 3: a) Global number of tropical cyclones by Saffir-Simpson category of lifetime maximum
731 intensity. Tropical storms here include only events with maximum intensities of at least
732 40 kts. Black indicates observed (IBTrACS) during the period 1980-2018, while
733 downscaled events are shown in blue for the historical period and red from the linear
734 regressions of trends in the $1\% \text{ yr}^{-1}$ simulations at the time of CO_2 doubling. The
735 downscaled events are multi-model means. b) As is a) but observed intensities have
736 been increased by 10%.

737 Figure 4: As in Figure 2 but showing the power dissipation index

738 Figure 5: As in Figure 2 but showing the landfall power dissipation index

739 Figure 6: Genesis density (top row), track density (middle row) and power dissipation density

740 (bottom row) from IBTrACS data, 1979-2015 (a-c), the multi-model mean over the

741 historical period (d-f) and percentage change from the historical period to the mean of

742 the $1\% \text{yr}^{-1}$ simulation (g-i). The changes are only displayed where 7 or more of the

743 models agree on the sign of the change.

744 Figure 7: a) Base 10 logarithm of the multi-model mean probability density of intensification

745 and dissipation rates of downscaled tropical cyclones over the historical period (blue)

746 and the $1\% \text{yr}^{-1}$ simulations (red). The shading shows one standard deviation up and

747 down from the mean among the models. b) Percentage change between the historical

748 and $1\% \text{yr}^{-1}$ simulations. Shading shows one standard deviation up and down from the

749 mean change among the models.

750 Figure 8: Multi-model mean translation speed (kts) for the historical period (a) and the change

751 after a doubling of CO_2 (b). The latter is displayed only where at least 7 of the 9

752 downscaled models agree on the sign of the change.

753 Figure 9: Time series of annual tropical cyclone counts for the standard downscaling of the

754 UKMO model (blue) and with the imposition of an artificial vorticity threshold (red).

755 Dashed lines show the linear regressions.

756 Figure 10: The terms on the right side of (4); respectively vorticity, χ , potential intensity (PI),
757 and shear. The black curve shows their sum while the green curve shows the logarithm
758 of the actual GPI. Each quantity is relative to its initial value.

759 Figure 11: Change in the annual global frequency of tropical cyclones of 6 Saffir-Simpson
760 categories. The blue bars show changes in explicitly simulated tropical cyclones in the
761 HiFLOR model and the red bars show changes in events downscaled from HiFLOR.

762

763
764
765

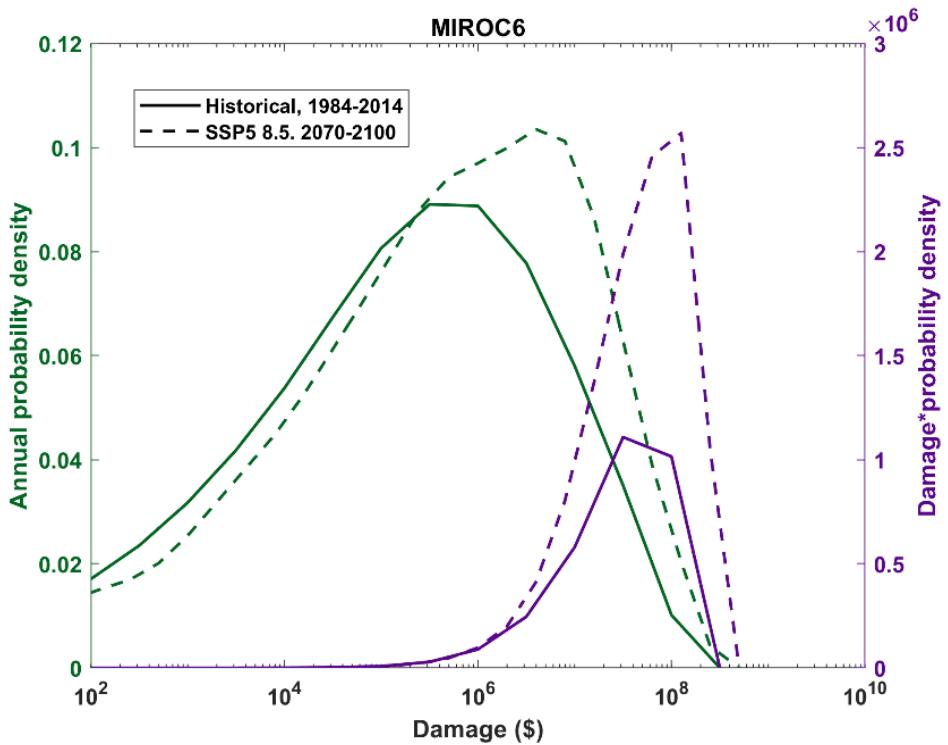
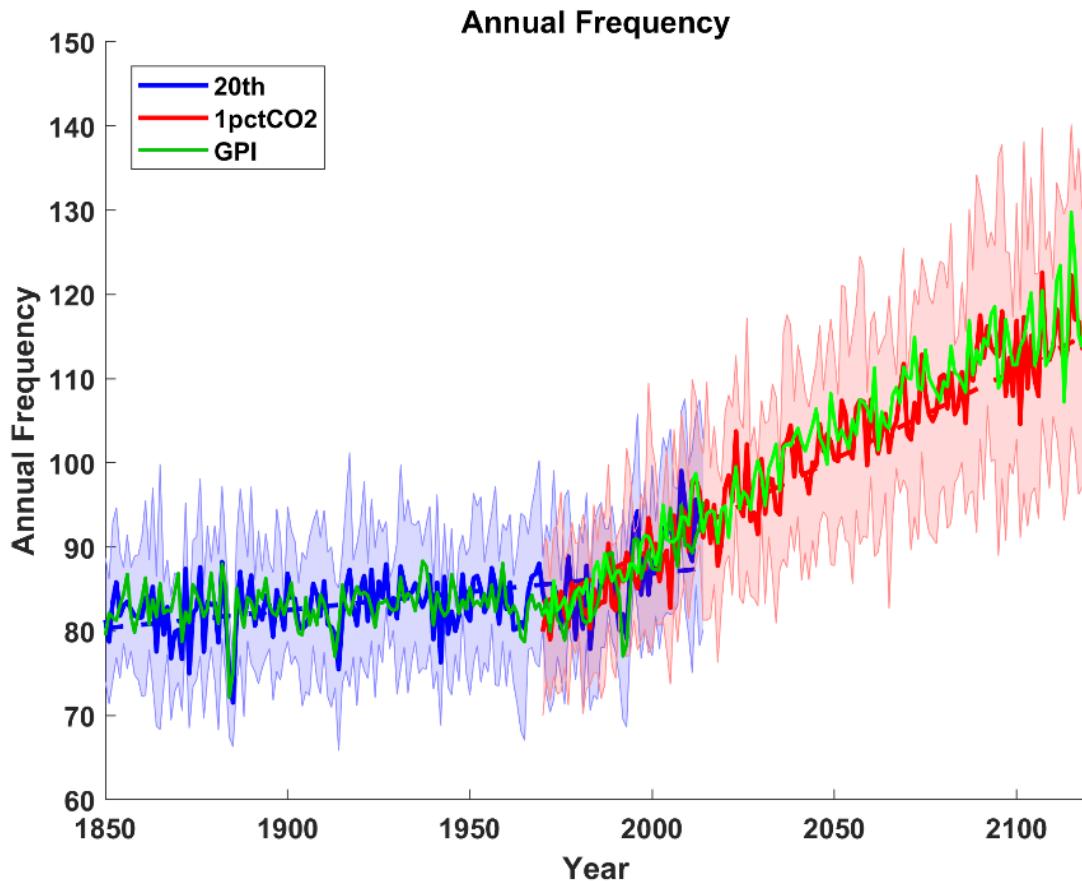
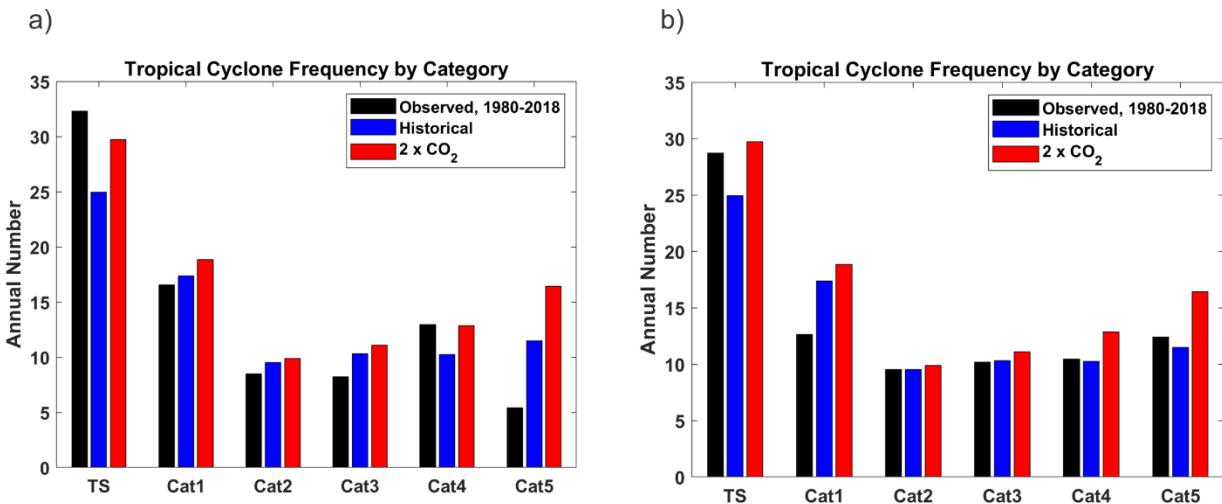


Figure 1: Annual probability density (green) and damage multiplied by probability density (violet) based on 6200 U.S. landfalling synthetic tropical cyclones downscaled from the MIROC 6 global coupled climate model for each of two periods: 1984-2014 from historical simulations (solid) and 2070-2100 from the Shared Socioeconomic Pathway (SSP) 5 (dashed). The probability density is per unit base 10 log of the damage. The damage is to a portfolio of insured property in the eastern U.S. and is proportional to the area under the violet curves.

788
789



790
791 Figure 2: Annual global frequency of downscaled tropical cyclones. Solid curves represent multi-
792 model means and shading indicates one standard deviation up and down. Dashed lines show linear
793 regression trends. Blue indicates the historical period 1850-2014 while red shows the $1\% \text{ yr}^{-1}$ CO_2
794 increase experiment arbitrarily beginning in 1970. Green curves show the multi-model mean,
795 increase experiment arbitrarily beginning in 1970. Green curves show the multi-model mean,
796 Globally Summed Genesis Potential Index (GPI).
797
798
799
800



804

805 Figure 3: a) Global number of tropical cyclones by Saffir-Simpson category of lifetime maximum

806 intensity. Tropical storms here include only events with maximum intensities of at least 40 kts. Black

807 indicates observed (IBTrACS) during the period 1980-2018, while downscaled events are shown in

808 blue for the historical period and red from the linear regressions of trends in the $1\% \text{ yr}^{-1}$

809 simulations at the time of CO₂ doubling. The downscaled events are multi-model means. b) As is a)

810 but observed intensities have been increased by 10%.

811

812

813

814

815
816
817
818

8

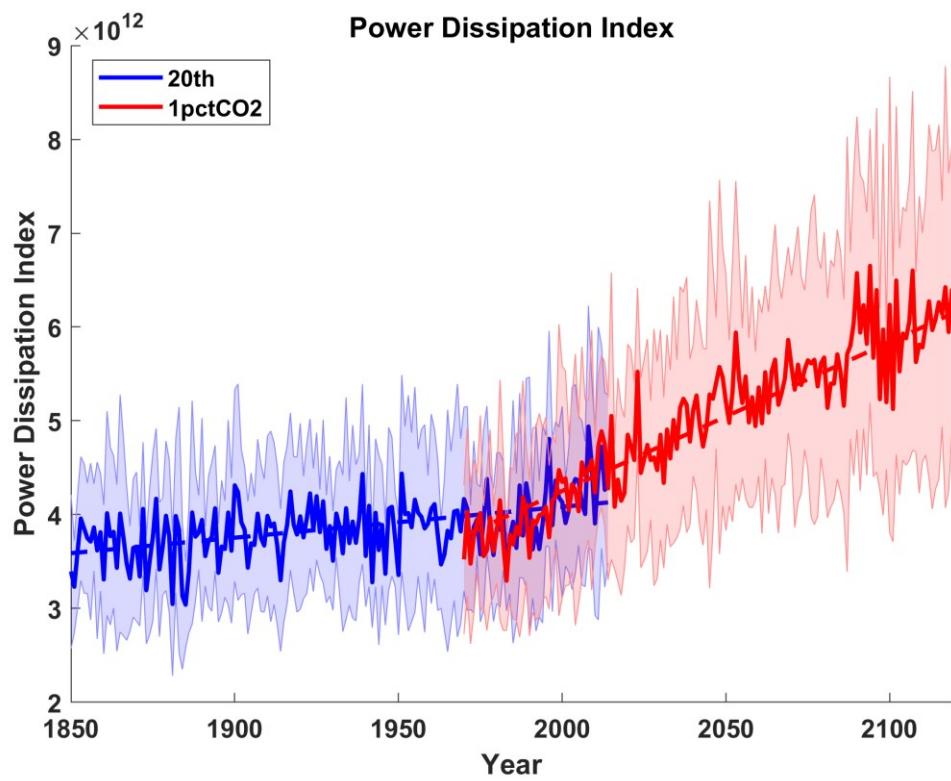
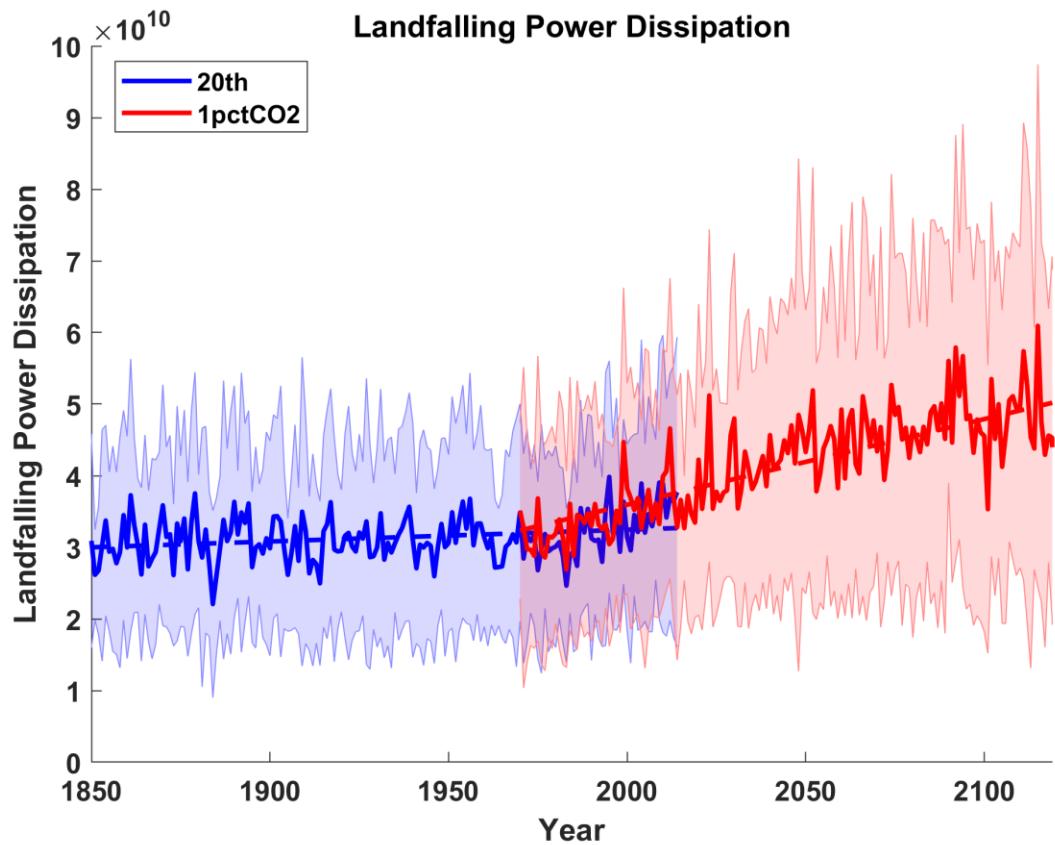


Figure 4: As in Figure 2 but showing the power dissipation index



836
837
838
839
840
841

Figure 5: As in Figure 2 but showing the landfall power dissipation index

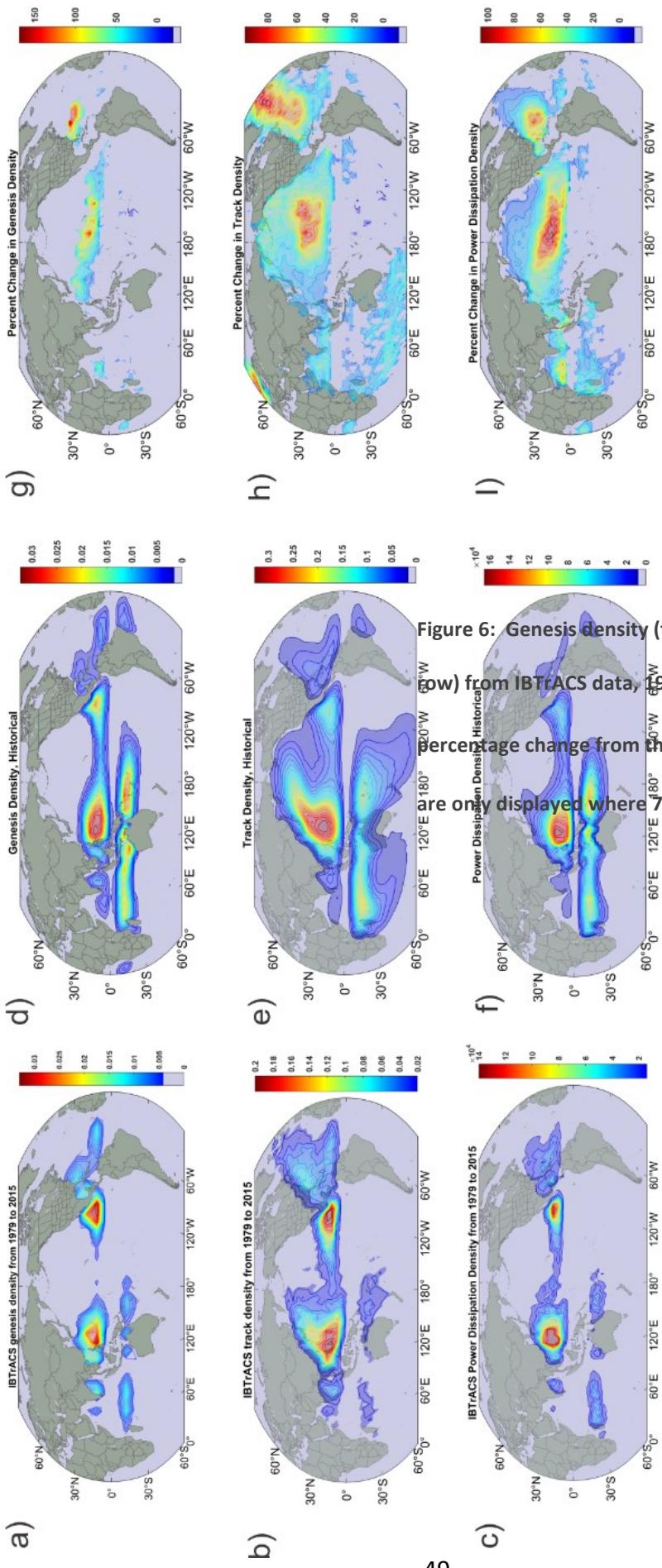
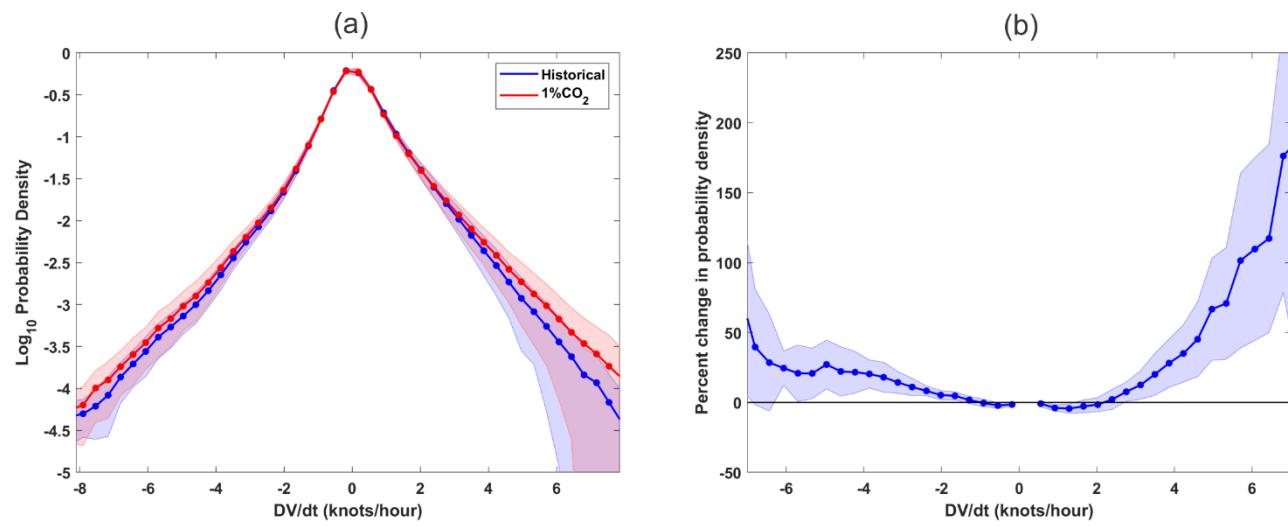


Figure 6: Genesis density (top row), track density (middle row) and power dissipation density (bottom row) from IBTrACS data, 1979-2015 (a-c), the multi-model mean over the historical period (d-f) and the percentage change from the historical period to the mean of the 1% yr^{-1} significant models (g-i). The maps are only displayed where 7 or more of the models agree on the sign of the change.

848

849

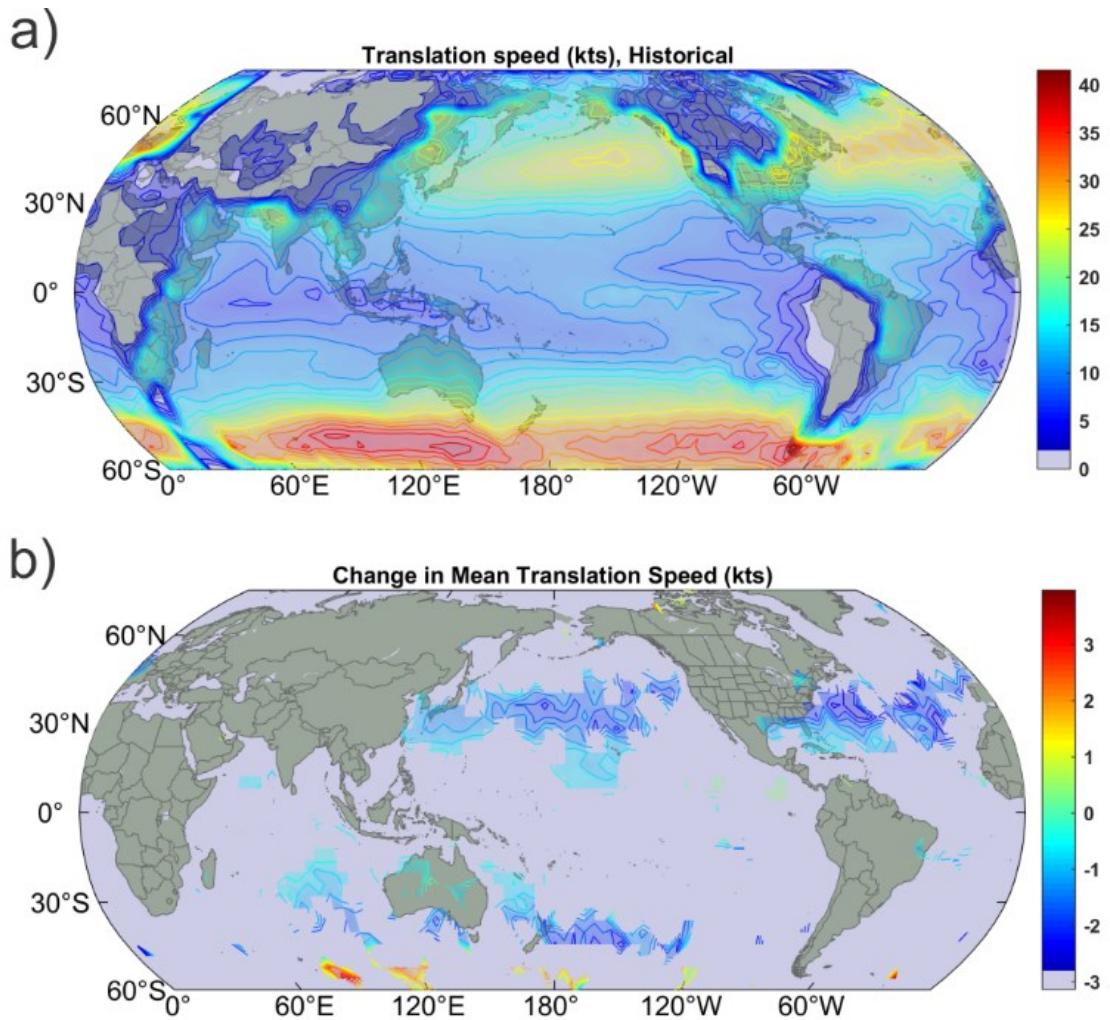


850

851 **Figure 7: a) Base 10 logarithm of the multi-model mean probability density of intensification and dissipation**852 **rates of downscaled tropical cyclones over the historical period (blue) and the $1\% \text{ yr}^{-1}$ simulations (red). The**853 **shading shows one standard deviation up and down from the mean among the models. b) Percentage change**854 **between the historical and $1\% \text{ yr}^{-1}$ simulations. Shading shows one standard deviation up and down from the**855 **mean change among the models.**

866

867



868

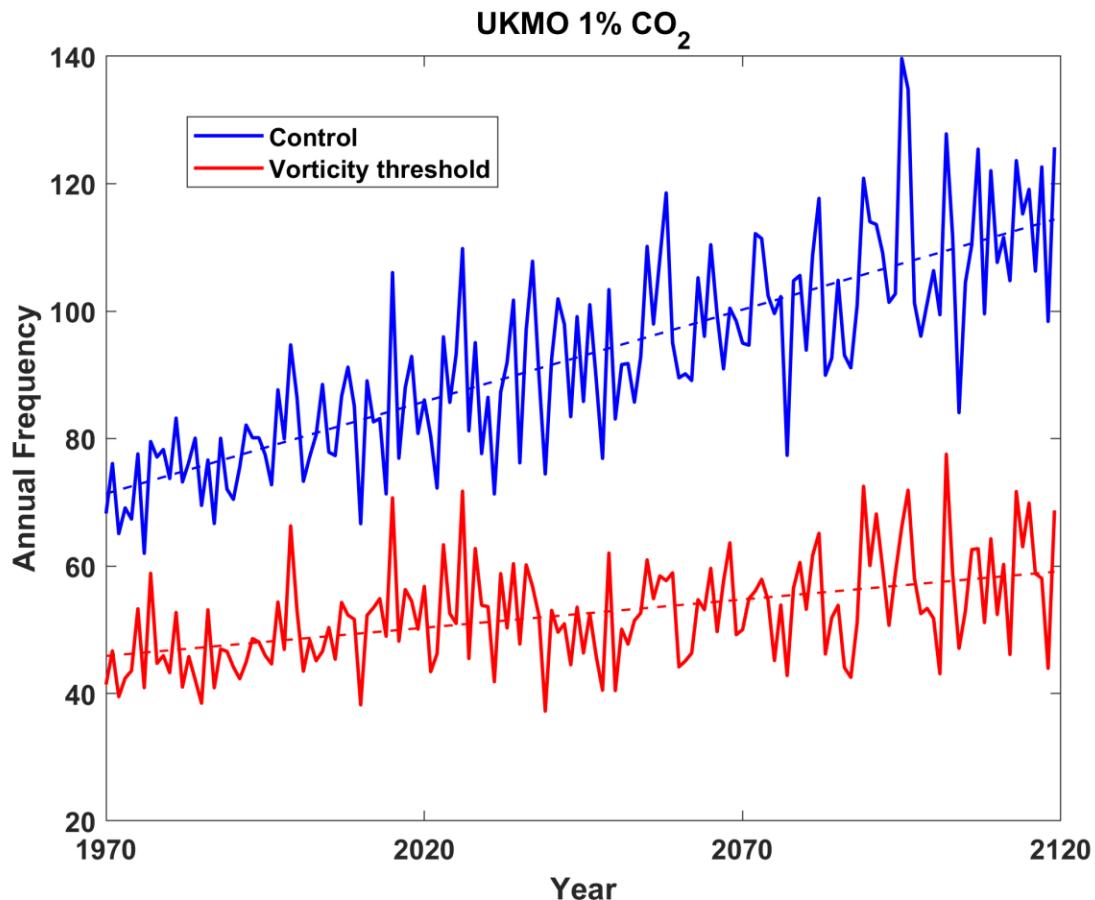
869

870 **Figure 8: Multi-model mean translation speed (kts) for the historical period (a) and the change after a doubling**

871 **of CO₂ (b). The latter is displayed only where at least 7 of the 9 downscaled models agree on the sign of the**

872 **change.**

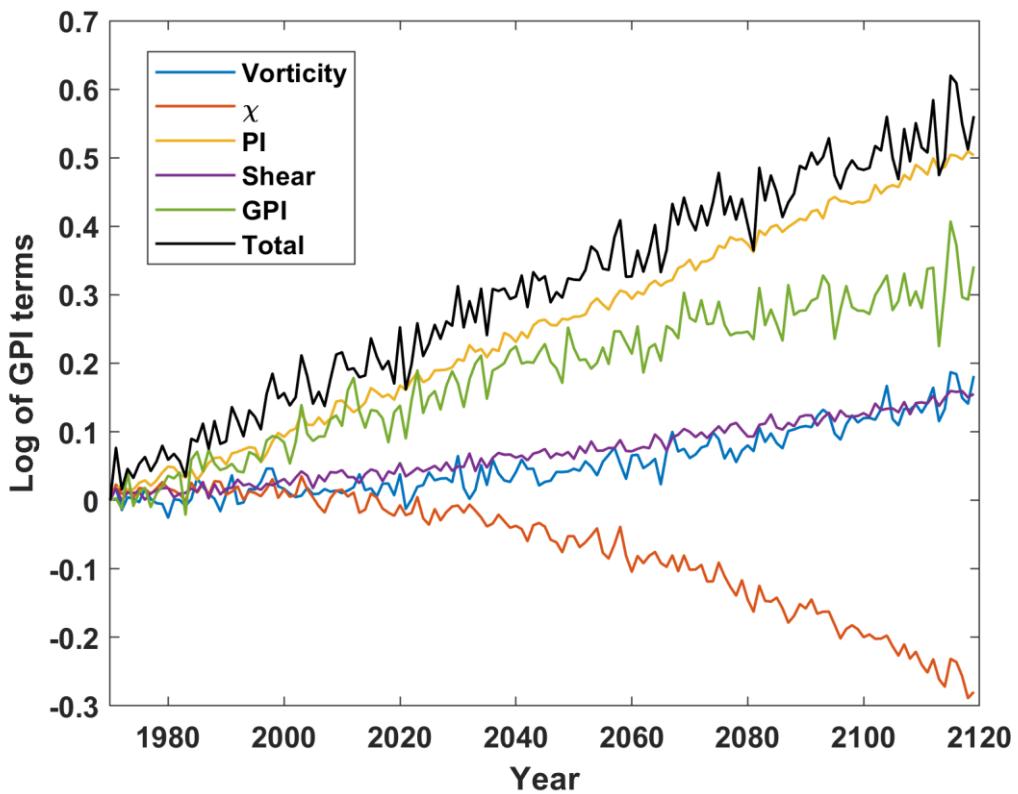
873



874

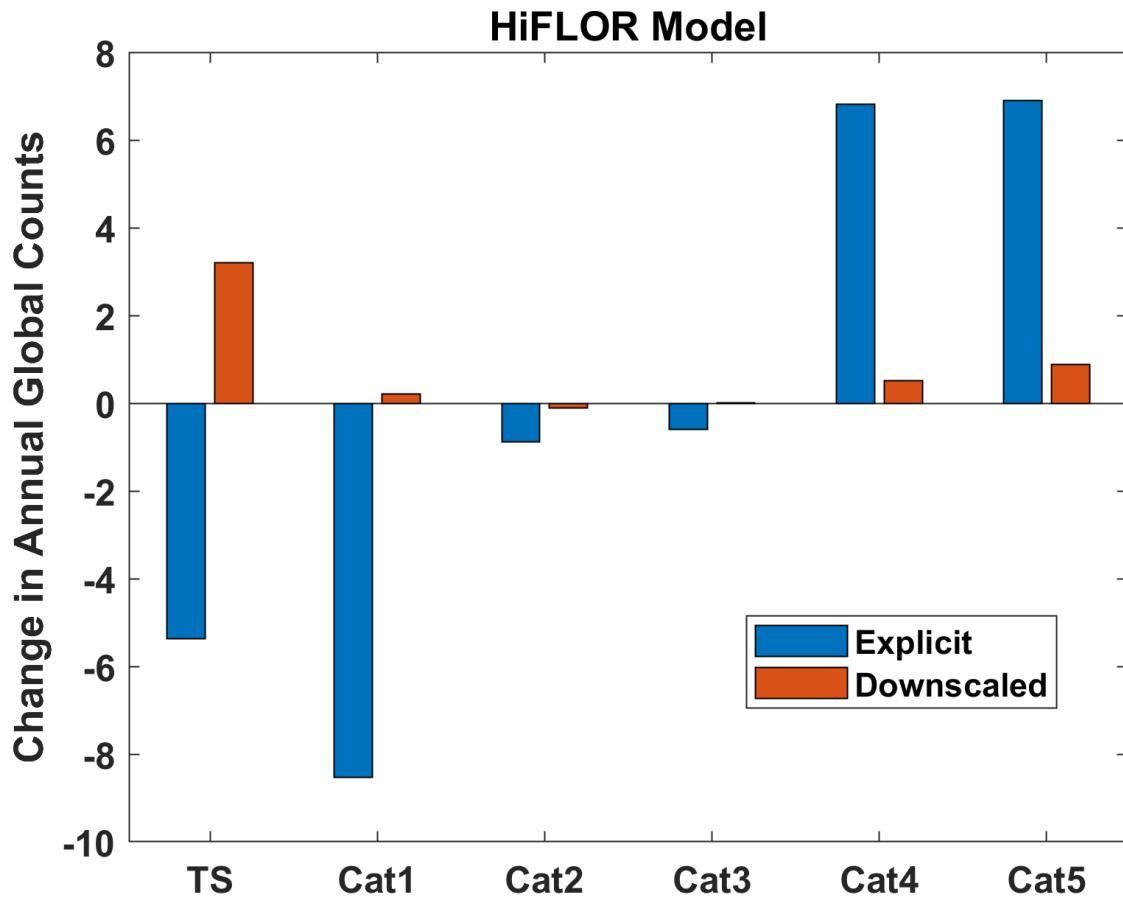
875 **Figure 9: Time series of annual tropical cyclone counts for the standard downscaling of the UKMO model (blue)**
876 **and with the imposition of an artificial vorticity threshold (red). Dashed lines show the linear regressions.**

877



878

Figure 10: The terms on the right side of (4); respectively vorticity, χ , potential intensity (PI), and shear. The black curve shows their sum while the green curve shows the logarithm of the actual GPI. Each quantity is relative to its initial value.



879

880 **Figure 11:** Change in the annual global frequency of tropical cyclones of 6 Saffir-Simpson categories. The blue
881 bars show changes in explicitly simulated tropical cyclones in the HiFLOR model and the red bars show changes
882 in events downscaled from HiFLOR.

883