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Abstract

Global models comprising the sixth generation Coupled Climate Model Intercomparison Project
(CMIP6) are downscaled using a very high resolution but simplified coupled atmosphere-ocean
tropical cyclone model, as a means of estimating the response of global tropical cyclone activity
to increasing greenhouse gases. As with a previous downscaling of CMIP5 models, the results
show an increase in both the frequency and severity of tropical cyclones, robust across the
models downscaled, in response to increasing greenhouse gases. The increase is strongly
weighted to the northern hemisphere, and especially noteworthy is a large increase in the
higher latitudes of the North Atlantic. Changes are insignificant in the South Pacific across
metrics. Although the largest increases in track density are far from land, substantial increases
in global landfalling power dissipation are indicated. The incidence of rapid intensification
increases rapidly with warming, as predicted by existing theory. Measures of robustness across
downscaled climate models are presented, and comparisons to tropical cyclones explicitly

simulated in climate models are discussed.
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1. Introduction

The cost to society of climate change is driven largely by the costs associated with extreme
climate events such as droughts, floods, wildfires, and storms. Slow changes in long-term
average conditions, such as annual mean temperature and sea level, can often be
accommodated through an equivalently slow adaptation, but adaptation to changes in
infrequent events is notoriously flawed and often unduly influenced by politics and special

interests (Gaul, 2019), making each event disproportionately expensive.

The long-term average annual cost, C, of discrete climate events can be defined as the integral

of the cost of each event multiplied by the annual probability density of that event, over the

whole range of possible costs:

C= j: (i) p(i)di, (1)

where c is the cost of an event of intensity i, and p(i) is the probability density (probability

per unit intensity) associated with that cost.

For extreme events such as tropical cyclones, the cost typically rises steeply and nonlinearly
with the intensity of the event, and at the same time the probability of the event drops with its
intensity. For this reason, the integral in (1) is usually dominated by costs associated with
intensities greater, and possibly much greater, than the intensity associated with the peak of

the probability distribution.
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This simple point is illustrated in Figure 1 which is based on damage caused to a portfolio of U.S.
properties by 6,200 synthetic tropical cyclones making landfall on the U.S. East and Gulf coasts
in two different climate states. These tracks were generated using the technique described in
Emanuel et al. (2008) applied to a particular CMIP6-generation climate model, and the damage
function and portfolio of property values used by Emanuel et al. (2012). The details of the
downscaling methodology are described later in this paper but are not so important here; the

point is to illustrate the nature of the problem.

The green curves in Figure 1 show the annual probability densities of losses as a function of the
loss amount; here these are defined as probabilities per unit base 10 log of the cost. The solid
curves are for the climate of the late 20t century, while the dashed curves pertain to the
climate of the late 21° century under global warming. The most likely event will incur between
$100 thousand and S1 million in losses to this portfolio. The warmer climate has fewer weak
events and more strong events; for this illustration the overall frequency is held constant?. The
violet curves show the probability density multiplied by the cost. The areas under these violet
curves are proportional to the total cost. Thus the long-term cost of this hazard is coming from
the low-probability, high-intensity tail of the distribution, and the climate shift is causing an

appreciable increase in cost even though the shift in the probability distribution is small.

Conversely, almost no damage is contributed by the median (most frequent) event. Thus the

most frequent question asked by politicians and the media, and many scientists: How will the

2 The overall frequency includes some events that cause no damage, thus the areas under the probability curves in
Fig 1 are not equal.
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intensity and frequency of tropical cyclones change? is essentially meaningless, because
frequency is dominated by events that cause very little damage. What we must concern
ourselves with is the frequency of the most damaging events. While this illustration pertains

only to wind damage, the same is qualitatively the case for water damage.

The climate shift in probability density and damage is not simply a matter of changing
frequency and/or intensity but also depends crucially on shifting storm tracks; at the end of the
day, all meaningful climate change is local. The damage done by a tropical cyclone is also a
strong function of its size, including inner dimensions usually characterized by the radius of
maximum winds, and the outer wind field. High category tropical cyclones may have radii of
maximum winds as small as 10 km and as large as 100 km while their destructiveness varies
between the first and second power of this length scale3. Moreover, much of the damage done
by tropical cyclones is accomplished by water; specifically, by storm surge, which is sensitive to
wind speed, storm size, and translation speed, and by torrential rains which are sensitive to a

variety of storm structural characteristics, intensity, and movement.

For all these reasons, tropical cyclones simulated by most of today’s generation of coupled
climate models are unsuitable for direct estimation of tropical cyclone damage. Indeed, the
majority of coupled models reviewed by Knutson et al. (2020) have grid spacings of 50 km or

greater, whereas numerical convergence experiments (e.g. Rotunno et al. 2009) suggest that

3 A stationary, steady cyclone just offshore will affect an area proportional the square of its diameter, while a
steady storm moving at constant translation speed will affect a swath proportional to the first power of the
diameter, but the duration of winds at fixed points will also depend on storm diameter.

5
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grid spacing on the order of a few kilometers is needed to achieve numerical convergence of

azimuthal mean variables.

An alternative to using poorly resolved tropical cyclones from climate models is to downscale
such models by embedding within them regional or local models with far greater spatial
resolution. A straightforward approach is to drive such embedded high-resolution models with
time-evolving boundary conditions supplied from the global models. Examples of this approach
are comprehensively reviewed in Knutson et al. (2020). A disadvantage of this approach is that
the total number of events simulated is limited by the length of time spanned by the global
model simulation and/or by computational cost. Furthermore, in designing the geometries of
the high-resolution subdomains, one must take into account the possibility that the regions

affected by tropical cyclones might shift with climate change.

For this reason, we adapt the approach described in Emanuel et al. (2008) in which the essential
statistical properties of the time-evolving environment are culled from global reanalyses or
climate models and used to drive a simple coupled ocean-atmosphere tropical cyclone intensity
model along tracks produced by random seeding and a beta-and-advection displacement
model. The intensity model has very high spatial resolution in the storm core, owing to the use
of an angular momentum radial coordinate, and had been previously shown to produce skillful
real-time intensity forecasts (Emanuel and Rappaport, 2000). The random seeding is a ‘natural
selection’ algorithm; the vast majority of seed disturbances dissipate quickly owing to having
been placed in unfavorable environments, leaving a few survivors that had been placed in

favorable environments.
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There are several advantages to this technique in comparison to conventional downscaling. The
use of angular momentum coordinates allows increasing spatial resolution of the storm core as
its intensity increases, thus each storm’s intensity is limited by the physical properties of its
environment rather than by numerical resolution. Because the tropical cyclone model is driven
by the statistics of the global model or reanalysis, an arbitrarily large number of events can be
simulated in a given climate, and the seeding is global so there is no need to pre-select sub-

domains.

Yet there are a number of disadvantages to this approach. The intensity model is axisymmetric,
so the dynamical interaction with sheared environments must be parameterized. The shear
parameterization used was developed by Emanuel et al. (2004) to optimize the quality of real-
time intensity forecasts and is a function of the 250-850 hPa shear magnitude (but not
direction) and the saturation deficit of the large-scale environment at 600 hPa. There is no
feedback from the simulated cyclones to the regional environment, as there is in conventional
downscaling, so the simulation of the extratropical transition of simulated storms is
compromised. (The simulated cyclones do respond to the statistics of middle latitude baroclinic
systems but they cannot feedback on such systems.) Finally, in previous work and in what
follows here, there has been no attempt to alter the statistics of the random seed disturbances
in response to climate change, except that we allow the horizontal scale of the seed
disturbances to vary with the deformation radius based on the large-scale environment. Thus
we operate under the assumption that the climatology of tropical cyclones is entirely dictated
by the large-scale thermodynamic and kinematic environment and not by the climatology of

potential initiating disturbances.
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Since most tropical cyclones are triggered by pre-existing disturbances, the notion that cyclone
climatology is independent of the climatology of such disturbances is counter-intuitive. Yet
there is an abundance of evidence that spatial, seasonal, and interannual variability of tropical
cyclones is controlled mostly by variations in the large-scale environment. In the first place,
genesis potential indices (Gray, 1979; DeMaria et al., 2001; Emanuel and Nolan, 2004; Emanuel,
2010), which are based exclusively on large-scale variables such as potential intensity and wind
shear, capture much of the climatology of observed tropical cyclones, including their spatial and
seasonal distributions, and interannual variability, at least in the Atlantic region (e.g. Camargo
et al., 2007a; Camargo et al., 2007b; Bruyére et al., 2012; Camargo et al., 2014). Classical
regional downscaling simulations (e.g. Vitart and co-authors, 2007) for the Atlantic region also
capture much of the observed interannual variability of tropical cyclone activity when driven by
initial and boundary conditions supplied from reanalysis data, but in this case, potential
initiating disturbances such as African Easterly Waves (AEWs) are usually present in the
reanalyses and thereby exert an influence on the downscaled tropical cyclones. Yet in one such
study (Patricola et al., 2018), AEWs entering the regional domain from the east were artificially
suppressed, but the frequency and interannual variability in tropical cyclogenesis was hardly
affected. In this case, the AEWs determined the timing and location of genesis events, but not

their existence.

The random seeding approach applied here has been shown to capture reasonably well the
spatial and seasonal variations of tropical cyclones around the world, and the interannual
variability in the Atlantic region, at least as well as classical regional downscaling does (Emanuel

et al., 2008). But because the global warming signal is probably not yet detectable in historical

8
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tropical cyclone counts (Knutson et al., 2019), there is no way to definitively test this

technique’s (or any other’s) ability to capture the possibly unique character of the global

climate change signal. We will return to this point in Section 4.

2. Methods and Data

We use the same downscaling technique original developed by Emanuel et al. (2006) and

Emanuel et al. (2008) and applied to the CMIP5 generation of models by Emanuel (2013). We

have made some minor modifications to the technique since its application to CMIP5 models.

These include:

Scaling the radii of maximum winds of the seed disturbances by the deformation radius,
based on dry stratification along moist adiabats as determined by the environmental
temperature at 600 hPa. This causes a modest increase in the average size of simulated

tropical cyclones with warming of the free troposphere.

Slightly modifying the coefficients governing beta-drift

Calculating the monthly mean ocean mixed layer depths and sub-mixed layer thermal
stratification from the global model output rather than from historical climatology; the

effect of this is to modestly reduce the number of very intense storms (Emanuel, 2015)

Adding detection of secondary eyewalls that occur in the CHIPS model and modifying
the canonical radial profiles of wind speed to account for them. This does not affect the
global statistics presented here but does affect the calculation of winds speeds at fixed
points and thereby, for example, the damage calculations such as those mentioned in

the Introduction
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e Appling a database of surface roughness over land used to calculate the neutral drag
coefficients, replacing the crude parameterization based on topography used before.
The new drag coefficients over land are applied to both the CHIPS model and the post-
processing algorithms that calculate rainfall. This change does not affect storms over

water unless they have previously passed over land.

For the current study, we applied the technique to nine global climate models and to two

climate regimes: The period 1850-2014 from historical simulations, and an arbitrary 151-year
period from simulations in which atmospheric CO; increases by 1% yr™". In each case, 150

synthetic tracks were generated for each year, yielding 24,750 events for the historical period,
and 22,650 events for the increasing CO; simulations. The random seeding rate is calibrated for
each model to yield an 1850-2014 average annual global frequency of 84 storms, close to the

post-1980 observed mean. The global climate models used are listed in Table 1.

3. Results
We begin by presenting selected time series of global tropical cyclone activity from the
historical period, 1850-2014 and from the 1% yr~' CO experiment. The latter is carried out

over an arbitrary 151-year period, but for purposes of comparison we display the results as

extending from 1970 to 2120. But note that the measured rate of increase of atmosphere CO;
has been closer to 0.2% yr~". Our intent here is to examine the general response of global

tropical cyclone activity to rising greenhouse gas concentrations, uncomplicated by other
climate influences, not to make actual projections. Since the radiative forcing by atmospheric

CO; over this range of values is nearly proportional to the logarithm of the concentration, we

10
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expect trends in global tropical cyclone activity to scale nearly with the annual percentage

increase in CO2 concentration in the absence of other climate forcings.

In the figures that follow, the solid curves show the multi-model means and the shadings show
one standard deviation up and down from the mean. Dashed lines indicate the linear regression

trends of the multi-model means. Blue represents the historical period and red shows the

1% yr~' CO; increase experiment.

Figure 2 shows the annual frequency of all tropical cyclones over the globe. The global
frequency increases by about 9% over the historical period, 1850-2014, but more rapidly in the
last few decades®. Over the 151 years of the increasing CO, experiment, the frequency
increases by about 25% per doubling of CO,. Linear trends and associated p-values are given for

the annual frequency and other tropical cyclone metrics in Table 2.

The previous downscaling of CMIP5 models yielded an increase of roughly 20% per doubling of
CO,, although those results are not directly comparable to these because the trajectory of CO;
concentration in the Representative Concentration Pathway (RCP) 8.5 is not the same at that

used here.

The green curves in Figure 2 show the values of a genesis potential index (GPI) summed over
the globe (weighted by the cosine of the latitude) for each climate model and then averaged to

produce the multi-model mean. The GPl is that of Emanuel (2010) except that the absolute

4 This more rapid increase amounts to around 10 events over the period of good global observations, 1980 — 2018.
Given the Poisson random variability of about 9 storms over this period, such a trend would not be statistically
detectable at the 5% level, even without considering the effects of natural climate variability on global tropical
cyclone frequency.

11
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vorticity contribution is capped at 5x107°s™", following Tippett et al. (2011). This GPI was
developed largely independently of the tropical cyclone downscaling algorithm, so this provides
a somewhat independent check, though both the CHIPS model and the GPI use potential

intensity and a nondimensional measure of mid-tropospheric specific humidity, y, as variables.

Figure 3a shows the multi-model mean global frequency of tropical cyclones categorized by
Saffir-Simpson intensity and compares them to observations (IBTrACS, Knapp et al., 2010)°
made over the period 1980-2018. Note here that the tropical storm (TS) category only includes

synthetic and observed events whose lifetime intensity exceeds 40 kts.

The comparison of the observed frequencies with the events downscaled from the historical
period is reasonable, but there are too few Category 4 storms and too many Category 5 storms.
This may reflect a bias in the downscaling methodology or in the climate models, but it is also
likely that the observations, which are overwhelmingly based on satellite remote sensing
imagery, underestimate the intensity of the most intense events, shifting them artificially from
Category 5 to Category 4 (Kossin et al., 2013). Figure 3b shows the same comparison but
increasing the intensities of the observed storms by 10%. This increase brings the observed and
historically simulated Saffir-Simpson categories into much better alignment, though the
partitioning between tropical storms and Category 1 storms deteriorates, perhaps because of
the ambiguity of Dvorak method when eyes are beginning to form (Olander and Velden, 2019).

The observed and historically simulated combined numbers of tropical storms and Category 1

5> Data for the North Atlantic and eastern and Central North Pacific originated from the National Oceanographic
and Atmospheric Administration’s National Hurricane Center, and elsewhere from the U.S. Navy’s Joint Typhoon
Warning Center.

12
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storms are in very good agreement. Thus it is likely that either the actual storm intensities are
underestimated or the simulated storm intensities are overestimated. We note that the 10%
adjustment does not improve the agreement in the Atlantic region (not shown), perhaps
because storms are better observed there. CO—induced warming brings about increases in the
frequency of all categories, but the increases in Category 2 and 3 events are small. These are in
a flat minimum in the frequency distribution among categories, so that a shift to higher
intensities at constant overall frequency would lead to little change in the frequencies of those

categories.

Figure 4 is in the same format as Figure 2, but shows the evolution over time of the power
dissipation index, which is the sum over each track and over all tracks in a given year of the
cube of the maximum surface wind. The power dissipation increases at a rate of about 30% per
doubling of CO,. This is lower than the CMIP5 result (Emanuel, 2013) of closer to 40%. Note
also, from Table 2, the statistically significant increase of about 15% through the period 1850-

2014.

We also consider a landfall power dissipation index, which is the cube of the wind speed at
landfall summed over all landfalling events in each year. Here landfall is determined using a % x
% degree bathymetry/topography data set, and we consider all landfalls, even if a storm makes
landfall more than once. Figure 5 and Table 2 show that the multi-model mean landfall power
dissipation increases by about 9% over the historical period and the projected increase is about

25% per doubling of CO,, a bit less than the open-ocean increase in power dissipation.
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The spatial patterns of three multi-model mean tropical cyclone metrics and their changes with
increasing CO; are shown in Figure 6. The top row shows genesis density —the number of
genesis events per 1-degree latitude square per year — while the middle row shows the track
density and the bottom row shows the power dissipation density. In the case of track density,
each track is counted only once in any lat-long box used to grid the data, whereas the power
dissipation is summed over all 2-hour points along each track in each box. The left side of Figure
6 is based on IBTrACS data from 1979-2015 while the middle column shows multi-model mean
guantities from the historical downscaling. The right-hand side of figure 6 shows the
percentage change between the mean over this historical period and the mean over the

1% yr~" increasing CO; simulations. The change is displayed only where at least 7 of the 9

models agree with each other on the sign of the change.

The historical mean fields in Figure 6 shows some of the same biases noted in the CMIP5
downscaling and also present in the climatologies of storms explicitly simulated in many of
these models (e.g. Camargo, 2013) and in CMIP6 models (Roberts et al., 2020). There are too
many storms in the southern hemisphere, including the South Atlantic, and too few tropical
cyclones in the eastern North Pacific. Genesis is too active in the central North Pacific, and
there are too few storms in the North Atlantic. Some of these biases are also present in tropical
cyclones downscaled from climate reanalyses (not shown), so these are probably an artifact of
the downscaling technique. It is evident from the track density maps that the downscaled
tracks extend somewhat further poleward than the IBTrACS storm tracks, except in the North
Atlantic. This is likely owing to differing conventions on when to terminate tracks of tropical

cyclones undergoing extratropical transition. Most forecasting agencies terminate tropical
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cyclone tracks when the storm is deemed to have become mostly extratropical. Termination of
the downscaled tracks, on the other hand, is based only on the intensity having fallen below a
set threshold. Thus we expect that downscaled extratropical transitioning storms will be carried

somewhat further poleward than IBTrACS events.

Turning attention to the percentage changes between the historical to the global warming
simulations (right-hand column of Figure 6), note that there is essentially no change in any
metric in the South Pacific, as was the case in downscaling the CMIP5 models. There is little
change in the genesis rate in the South Indian Ocean, but the power dissipation increases and
the tracks extend somewhat further poleward, suggesting that the tropical cyclones in this part

of the world become more intense and are able to travel further poleward before dissipating.

The most profound changes occur in the northern hemisphere. The genesis maps show a
northward expansion of the North Atlantic genesis region and the central and western North
Pacific genesis belts. The eastern North Pacific and Arabian Sea genesis regions both expand
westward. Partially as a result of these changes in genesis, there are large increases in track
density and power dissipation throughout much of the northern hemisphere, especially in the
central North Pacific and the subtropical to high latitude North Atlantic. The largest percentage
increases are, fortunately, away from land. Especially noteworthy is the large increase in track
density in the high latitudes of the North Atlantic, suggesting that the northward expansion of
the Atlantic genesis region and the increase in storm intensity there lead to a greater incidence

of extratropical transition. This is consistent with recent projections of extratropical transition
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that suggest increases in the western North Pacific and North Atlantic (Liu et al., 2017,

Michaelis and Lackmann, 2019).

The large increase in tropical cyclone activity in the northern hemisphere relative to the
southern hemisphere is consistent with explicitly simulated storms in CMIP6 models (Roberts et
al., 2020) and the pattern of changes in track density resembles both observed changes over
the period 1980-2018 and changes simulated by a suite of high-resolution coupled models over
the same period (Murakami et al., 2020), with large increases in the North Atlantic and central
North Pacific. But the same models, forced by increasing CO; alone, show decreasing track

density in the North Atlantic.

The poleward expansion of both the track and power dissipation density in the northern
hemisphere and South Indian Ocean is consistent with recent observations of the poleward
migration of the latitudes at which tropical cyclones are observed to reach peak intensity
(Kossin et al., 2014) and with projected poleward migration in the western North Pacific (Kossin

et al.,, 2016).

In forecasting individual tropical storms, the intensification rate is an important consideration
because rapidly intensifying events near the time of landfall can catch forecasters and
emergency managers off guard. Theoretically, intensification rates should scale as the square of
the potential intensity, so they are more sensitive to climate change than the intensity itself
(Emanuel, 2017). Figure 7a shows the base 10 logarithm of the probability densities of the
multi-model mean and standard deviation of intensification rates based on two-hourly fixes of

the downscaled tropical cyclones. These probability densities are independent of overall storm

16



297  frequency. Figure 7b shows the percentage difference between the historical period and the
298 1% yr~'simulations. There are large percentage increases in intensification rates exceeding
299  about 3ktshr~', and this percentage change increases with intensification rate. There is also a
300 smallerincrease in extreme dissipation rates, likely owing to the faster decay rates of initially

301 more intense storms over land and cold water, because the decay rates scale roughly with the

302 square of the surface wind speed.

303 The flooding potential, and to some extent the wind damage, caused by tropical cyclones can
304 be strongly affected by their translation speed. Slower moving storms will affect a given region
305 for alonger period, producing more rain and perhaps more wind damage. On the other hand,

306 slow-moving storms are not likely to travel as far inland, sparing regions away from coastlines.

307  Figure 8 shows the multi-model average translation speed of downscaled tropical cyclones for
308 the historical period (a) and the change in translation speed (b) for a transient doubling of CO..
309 The latter is displayed only where at least 7 of the 9 GCMs agree on the sign of the change in
310 downscaled translation speed. Remarkably, there is no significant change in translation speed in
311 the deep tropics, but there is a substantial decrease in mean translation speed at the

312  subtropical peripheries of the tropical belt, affecting the U.S. east and Gulf coasts, the central
313  coast of China, Korea, southern Japan, and Australia. This is perhaps a consequence of the

314  projected poleward expansion of the Hadley circulation. This result can be compared and

315 contrasted to recent global modeling results that show , reductions in the subtropics and

316  middle and high latitudes (Yamaguchi et al., 2020), and reductions primarily in middle latitudes
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(Zhang et al., 2020). Lee et al. (2020) used a downscaling method similar to that employed here

to examine translations speeds of storms near land, finding a slight reduction.

4. Discussion

a. Changes in weak tropical cyclones

As was the case with downscaling the previous (CMIP5) generation of climate models, the
results of downscaling nine CMIP6 models show substantial increases in both the intensity and
frequency of tropical cyclones as greenhouse gas concentrations increase. The frequency
increase is at odds with most (though not all) results from explicit modeling of tropical cyclones.
According to a recent and comprehensive review by Knutson et al. (2020), “the vast majority of
individual studies (22 out of 27 studies) project a decrease in global TC frequency with
greenhouse warming.” It is both of inherent and practical interest to discover why these results

differ the way they do.

It should first be noted that the great majority of the studies done to date focused on tropical
cyclones explicitly simulated in global atmospheric or coupled general circulation models
(GCMs), whose effective horizontal grid spacings varies from 14 km to as much as 200 km. Most
of these models moderately to severely under-resolve tropical cyclones (e.g. see Rotunno et
al., 2009) and the mesoscale processes observed to be involved in their genesis (e.g.
Montgomery and Smith, 2012). Tropical cyclones that develop in such models must be detected
using an algorithm (e.g. Walsh et al., 2007) and the counts of tropical cyclones are known to be
sensitive to how that algorithm is formulated and to model characteristics (Raavi and Walsh,

2020).
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In particular, climate change may alter the scale and other characteristics of simulated tropical
cyclones, pushing events across arbitrary detection thresholds and thereby leading to false
trends in counts of weak events. For example, weak tropical cyclone-like disturbances may
become broader as the climate warms, as they do in “TC-world” experiments (e.g.
Khairoutdinov and Emanuel, 2013), and while their circulation may stay the same or even
increase, their vorticity may decrease below the imposed vorticity thresholds that are a key
feature of most tropical cyclone detection algorithms. Indeed, in their analysis of 850 hPa
vorticity in two global models, Sugi et al. (2020) show that as climate warms, the vorticity of
disturbances of tropical storm strength decreases proportionally more than does their intensity
(compare their figures 2 and 3), suggesting that the pre-tropical cyclone disturbances may be

becoming broader.

To test the idea that this could bias trends in explicitly detected cyclones in GCMs, we re-
calculated time series of downscaled tropical cyclone metrics as before but this time imposing

an artificial vorticity-like detection threshold. Specifically, we discarded events whose ratio of

maximum circular wind speed to radius of maximum winds is less than 6x107*s™".

Figure 9 compares the evolution of total tropical cyclone frequency in this modified experiment
to the control, for both the historical and increasing CO; simulations of one of the 9 models we
use in this study. The substantial upward trend of the control frequency in this latter simulation
is greatly muted in the modified experiment. In both the control and the modified experiments,

the horizontal scale of the seed disturbances is determined by the local deformation radius,
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which increases as the climate warms owing to the increase in dry static stability along moist

adiabats.

Thus it is possible that the frequency of disturbances detected by a vorticity threshold may
decrease relative to the frequency determined by a wind speed threshold. AlImost all the GCM-
based studies reviewed by Knutson et al. (2020) imposed both vorticity and wind speed
detection thresholds, so further research would be necessary to confirm or reject the
hypothesis that warming-induced trends in tropical cyclone counts may be negatively biased

through the use of a fixed vorticity threshold that does not depend on the climate state.

There are also indications that explicitly simulated tropical cyclones and their sensitivity to
climate change may not be robust to changes in model physics or resolution. For example,
when the grid spacing of a coupled global climate model was decreased from 50 km to 25 km,
the sensitivity of tropical cyclone counts to global warming went from negative to neutral
(Vecchi et al., 2019). Moreover, in contrast to both observations (Tippett et al., 2011) and the
downscaling described here, the relationship between explicit tropical cyclone counts in GCMs

and environmental conditions is weak and/or of the wrong character (Camargo et al., 2020).

For these reasons, there is little basis for confidence in the projection by most climate models
that overall tropical cyclone frequency will decline. Indeed, 7 of the 11 authors of Knutson et al.
(2020) rated confidence in the projection of decreasing tropical cyclone frequency as low-to-

medium.
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But how believable are the indications of increasing frequency across the spectrum of intensity
resulting from this downscaling study (see Figure 3)? On the one hand, there is excellent
correspondence between the downscaled tropical cyclone frequency and the genesis potential
index calculated from the raw GCM output (Figure 2). The GPI was developed and tested
largely independently of the development of the downscaling technique, though the variables
used in the GPI were selected partly because they are variables that appear naturally in the
CHIPS model®: Both the CHIPS model and the GPI depend strongly on potential intensity, wind
shear, and the mid-tropospheric dryness parameter y that is based on moist static energy.
There is no a priori reason to think that variations in these parameters owing to global climate
change would affect tropical cyclones differently from variations owing to spatial, annual and
interannual variability, yet both the downscaling and the GPI capture such natural variations
quite well. There are, of course, other empirically determined genesis potential indices (e.g.
(Tippett et al., 2011; Tang and Camargo, 2014) and given that these produce different

estimates, agreement with the downscaled frequencies presented here would likely be less.

By examining each of the factors that make up the definition of GPI, it is possible to draw some
inferences about which environmental factors lead to its increase. The definition of GPI used

here is from Emanuel (2010):

GPI=lnf 7 MAX((V,, 35 ms™),0) x

4 (2)
25ms™ +V,...)
( 1 )

6 This GPI is also dimensionally correct, yielding genesis number per unit area per unit time. Other genesis indices
perform equally well during the historical period but yield very different trends in global warming scenarios (Lee et
al., 2020).
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where 7 is the absolute vorticity of the 850 hPa flow, capped by 5x , V _is the potential

pot

intensity, V.. is the magnitude of the 850 hPa-250 hPa wind shear, and
S, =S,
=L, (3)
So = Sp
wheres, , s, , and s, are the moist entropies of the boundary layer and middle troposphere, and

the saturation moist entropy of the sea surface, respectively. This is the quantity that is
summed over the globe and averaged among the 9 models to produce the green curves in
Figure 2. Were it not for that summation, it would be possible to fo a linear factor separation of

(2) by taking the logarithm of both sides:

log(GPI) =3log(| 7)) —glog( )+ 2log(MAX((V ~35 ms*l),l)) -

pot

(4)
410g(25 ms™ +V, )

Unfortunately, the summation over the globe and the averaging among the 9 models does not
allow this: The logarithm of the summed, averaged value of GPI given by (2) is not equal to the
summed, averaged value of the logarithm of GPI. Since the tuning of the coefficients in (2) was
done by matching summed GPI to observations, one cannot willy-nilly use (4) instead of (3) as
the working definition of the GPI without re-turning. Since that re-tuning is beyond the scope of

this study, we attempt to use (4) anyway, using the summed, averaged quantities (GPI,  etc.)

before taking their logarithms.

Figure 10 shows, for the 1% per year increasing CO; experiment, the evolution with time of the
terms in (4), where it is understood that the quantities have first been summed and then

averaged among the 4 models. To avoid extratropical influences, we zero each individual term
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wherever the potential intensity is 35 ms™ or less, and each curve is relative to the initial value

of the quantity in question.

The black curve shows the sum of the terms whereas the green curve is the logarithm of the
actual GPI; the mismatch between these two curves reflects the problems alluded to above. But
for what it is worth, one sees that the potential intensity and saturation deficit are the

dominant terms and work in opposing directions. The negative contribution of the saturation

deficit x is consistent with the results of Emanuel et al. (2008) and Lee et al. (2020) and

suggest that the main break on increasing tropical cyclone frequency in a warming climate is
the increasing saturation deficit of the middle troposphere. The vorticity and shear

contributions are smaller, but both terms act to increase the GPI trend.

To the extent that the GPI reflects the physics of the downscaled tropical cyclones, we would
infer that increasing potential intensity is the most important contributor to increasing cyclone
frequency, with small additional contributions from decreasing shear and increasing vorticity
(likely reflecting the poleward migration of genesis regions). Increasing saturation deficit works

in the opposite direction, acting to decrease storm frequency.

It should be noted, however, that changing the exponent of x in (2) to -2 changes the sign of
the net response of the GPI to increasing CO; concentration while not strongly degrading the fit
to observed variability, so the good fit to the downscaled frequencies is somewhat coincidental.
Thus the agreement between the downscaled frequencies and the GPI should not be

interpreted as strong evidence for the correctness of either.
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Returning to the downscaled tropical cyclones, their rate of genesis varies directly with the
specified seeding rate, which is held constant across the globe, seasonally, interannually, and
with global climate change. Arguments have been made that this seeding rate should decline as
the globe warms (Sugi et al., 2020). Yet the strong spatial, seasonal and interannual variation of
potential initiating disturbances in the current climate does not seem to preclude the ability of
either the GPI or the downscaling from capturing major features of natural tropical cyclone
variability (Camargo et al., 2007a; Emanuel et al., 2008). Moreover, Patricola et al. (2018)
showed that suppressing African easterly waves, a prominent catalyst for North Atlantic
hurricanes, did not change the level of tropical cyclone activity in a regional tropical North
Atlantic model, though the waves did determine the location and timing of genesis events. Thus

the seed disturbances, in this case, did not control the level of tropical cyclone activity.

A more serious deficiency of the downscaling method applied here is that there is no feedback
whatsoever between the downscaled tropical cyclones and the large-scale environment that is
driving them. Even regional downscaling models, such as that used by Patricola et al. (2018),
can simulate some regional feedbacks of cyclone activity within the regional model itself,

though they cannot influence the global model in which the regional model is embedded.

There are two known feedback mechanisms by which current tropical cyclone activity can
potentially influence future activity though modification of their large scale environment. The
first acts primarily though the ocean: Tropical cyclones cool the sea surface by mixing warmer
surface waters with cooler water below the mixed layer (Leipper, 1967; Price, 1981) and

subsequent re-heating of the cold wakes leads to a net export of heat away from the affected
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region (Emanuel, 2001; Federov et al., 2010). This has the negative feedback of cooling the
ocean in tropical cyclone regions, reducing the genesis potential there, but it may lead to

increases in genesis in marginal regions outside the main tropical cyclone belts.

A second negative feedback acts through the atmosphere: It is the profound drying of the
atmosphere that occurs with any form of aggregation of convection (Bretherton and
Khairoutdinov, 2004; Wing et al., 2017). This will greatly increase the inhibition to tropical

cyclogenesis represented in the GPI by the y parameter and known to strongly affect the

genesis rates in the downscaling technique applied here (Emanuel et al., 2008).

Both these mechanisms are, in principle, operating in fully coupled GCMs. To the extent that
the large-scale fields are affected by these feedbacks in the GCMs used here, they will also
decrease the number of downscaled genesis events, but owing to the severe under-resolution

of tropical cyclones in most GCMs, these negative feedbacks may be strongly muted.

But there are now some global coupled models with resolutions high enough to capture most
of the full spectrum of tropical cyclone numbers and intensities. One such model, the Model for
Prediction Across Scales—Atmosphere (MPAS-A), which was emplyed by Michaelis and
Lackmann (2019) to make global projections of the response of tropical cyclone activity to
global warming using a 15-km grid over the whole of the northern hemisphere. Notably, they
used a cyclone detection algorithm based on sea level pressure anomalies with no vorticity
threshold. They found increasing tropical cyclone frequency in the northern hemisphere,

especially in the Atlantic.
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Another high-resolution global coupled model is the NOAA Geophysical Fluid Dynamics high
atmospheric resolution version of the Forecast-oriented Low Ocean Resolution version of the
GFDL global climate model (HiFLOR; Murakami et al., 2015). With an effective grid spacing of
about 25 km, this model explicitly simulates high intensity tropical cyclones (Vecchi et al.,
2019). Climate sensitivity experiments with HiFLOR show that increasing CO;, concentrations
leads to a statistically insignificant change in global tropical cyclone counts but a substantial
increase in high intensity events (Vecchi et al., 2019). We downscaled 200 events globally per
year for 200 years of simulation in two different climates: the climate of the late 20t century
and a climate representing increased CO; concentrations. In the former, a single year
representing atmospheric greenhouse and aerosol conditions in the year 1990 was repeated
over 300 years; we used the last 200 years in the downscaling. The warming experiment starts
at year 100 of the control simulation and increases CO; at the rate of 1% per year until a
doubling has been reached after 70 years; thereafter the CO; concentration remains fixed for
another 230 years. We use the last 200 years of this simulation. Details may be found in Irvine

et al. (2019).

Figure 11 shows changes in global counts of tropical cyclones in each Saffir-Simpson category.
Note that the HiFLOR model produces about 90 tropical storms per year globally, close to the
observed frequency, while the downscaled results have been calibrated to an annual frequency
of 84 events in the 20™ century. The distribution across categories of the response of the
downscaled tropical cyclones to doubling CO; is consistent with that resulting from downscaling
of the CMIP6 models (see Figure 2) but substantially muted in comparison. At the same time,

there are substantial increases in the explicitly simulated high intensity (Cat 4-5) tropical
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cyclones in HiFLOR, while the number of weak events (tropical storms and CAT1 hurricanes)
decreases. We speculate that the increase in explicitly simulated intense storm activity in
HiFLOR may have led to the aforementioned negative feedbacks, which muted the response of

the downscaled storms.

In the author’s opinion, the limitations of CMIP6 model simulations of tropical cyclones
preclude any robust projection of the response of weak tropical cyclone activity to global
warming, either from their explicitly simulated storms or from events downscaled from their

output.

b. Changes in high intensity tropical cyclones

In contrast to the case of marginal storms, detection of cyclones in GCMs becomes less of an
issue for intense storms, particularly in the case of high resolution models that can simulate the
full intensity spectrum. Perhaps for this reason, there is much better agreement on projected
changes in intense (Category 4-5) tropical cyclones, both among the explicitly simulated storms
and between them and the downscaled storms (see Figure 2c and compare to Figure 2a of

Knutson et al. 2020).

5. Summary

The application of a downscaling technique to 9 CMIP6-generation climate models suggests
potentially large increases in various measures of tropical cyclone activity in response to
anthropogenic climate change, particularly in the northern hemisphere. These results are

broadly consistent with those from downscaling CMIP5 models (Emanuel, 2013).
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As reviewed by Knutson et al. (2020), there is a moderately strong consensus on an increase in
high intensity tropical cyclones and in tropical cyclone rainfall. There is little agreement on how
the frequency of weak storms might change, but with the possible exception of rainfall, these
are of little consequence. The fact that most explicit modeling studies agree that tropical
cyclone frequency will decrease with climate warming may be an artifact of low resolution and
the use of non-climate-dependent detection thresholds. Their agreement with each other is
only prima facie evidence of robustness of the trend. In the author’s opinion, though, the
increases in overall tropical cyclone frequency predicted by our downscaling would be muted
and perhaps even eliminated by feedbacks from the cyclones to their large-scale environment

in two-way coupled simulations that adequately resolve tropical cyclones.

The large increase in the probability of rapid intensification rates is perhaps one of the more
worrying aspects of the effect of climate change on tropical cyclones. Given the level of
uncertainty in contemporary tropical cyclone intensity forecasts, increasing rates of

intensification increase the chances of surprises (Emanuel, 2017).

Consistent with some observational studies (Kossin, 2018), there is a robust projected decrease
in tropical cyclone translation speed in the subtropics, though not in the deep tropics. This may
increase the probability of stalling storms, such as Harvey of 2017 and Dorian of 2019. These

storms can be especially destructive because of prolonged rain and/or wind.

While the jury may still be out on the effects of climate change on the incidence of weak
storms, the growing consensus on substantial increases in high-intensity storms and rainfall

paints a robust picture of increasing tropical cyclone risk as the climate continues to warm.
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704 Table 1
705 List of CMIP6 models used in the downscaling of tropical cyclones, including resolution of
706 atmospheric data and principal references
Institution Model Atmospheric Resolution’ Reference
Canadian Centre for CanESM5 2.8 x 2.8 degrees (Swart et al.,
Climate Modelling and 2019)
Analysis
Centre National de CNRM-CM6-1 1.4 x 1.4 degrees (Voldoire et al.,
Recherches 2019)
Météorologiques
National Center for CESM2 1.25 x 0.93 degrees (Danabasoglu et
Atmospheric Research al., 2020)
EC-Earth consortium EC-Earth3 0.7 x 0.7 degrees
United Kingsom Met HadGEM3-GC31-LL 1.25 x 1.88 degrees (Sellar et al.,
Office Hadley Centre 2020)
Institut Pierre Simon IPSL-CM6A-LR 1.25 x 2.5 degrees (Hourdin et al.,
Laplace 2016)
Center for Climate MIROC6 1.4 x 1.4 degrees (Tatebe et al.,
System Research; 2019)
University of
Tokyo;Japan Agency for
Marine-Earth Science
and Technology;
National Institute for
Environmental Studies
Max Planck Institute MPI-ESM1-2-HR 0.94 x 0.94 degree (Mdller et al.,
2018)
United Kingsom Met UKESM1-0-LL 1.25 x 1.875 degrees (Sellar et al.,
Office 2020)
707
708

7 This is the resolution of the output used to drive the downscaling; it may not correspond exactly with the native

resolution of the GCM.
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709 Table 2

710 Historical periods mean and linear trends over the historical period and over the 1% yr~' CO>
711 increase experiment, expressed in percent change per CO; doubling. P-values less than 0.01 for
712 all trends except Cat 2 frequencies, where they are both 0.02.
713
Quantity Historical Change over l%yr'l CO,
Mean historical period | (change per doubling)
Overall Frequency (yr?) 84 9% 18%
Hurricane Frequency (yr?) 57 10% 17%
Cat 1 Frequency (yr?) 17 5% 8%
Cat 2 Frequency (yr?) 10 5% 4%
Cat 3 Frequency (yr?) 10 8% 7%
Cat 4 Frequency (yr?) 10 13% 26%
Cat 5 Frequency (yr?) 11 20% 44%
Major Hurricanes (yr?) 32 14% 26%
Overall Landfall Frequency (yr?) 48 7% 17%
Power Dissipation Index (m3s2) 3.9x10%2 15% 29%
Landfalling power dissipation (m3s3) 3.3x101° 9% 25%
Radius of Maximum Winds (km) 59 2% 11%
Outer Radius (km) 630 3% 7%
714
715
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716 Figure Captions
717

718  Figure 1: Annual probability density (green) and damage multiplied by probability density

719 (violet) based on 6200 U.S. landfalling synthetic tropical cyclones downscaled from the
720 MIROC 6 global coupled climate model for each of two periods: 1984-2014 from

721 historical simulations (solid) and 2070-2100 from the Shard Socioeconomic Pathway
722 (SSP) 5 (dashed). The probability density is per unit base 10 log of the damage. The
723 damage is to a portfolio of insured property in the eastern U.S. and is proportional to
724 the area under the violet curves.

725  Figure 2: Annual global frequency of downscaled tropical cyclones. Solid curves represent multi-

726 model means and shading indicates one standard deviation up and down. Dashed lines
727 show linear regression trends. Blue indicates the historical period 1850-2014 while red

728 shows the 1% y;f1 CO; increase experiment arbitrarily beginning in 1970. Green curves
729 show the multi-model mean, globally summed genesis potential index (GPI).

730  Figure 3: a) Global number of tropical cyclones by Saffir-Simpson category of lifetime maximum

731 intensity. Tropical storms here include only events with maximum intensities of at least
732 40 kts. Black indicates observed (IBTrACS) during the period 1980-2018, while

733 downscaled events are shown in blue for the historical period and red from the linear
734 regressions of trends in the 1% yr~' simulations at the time of CO2 doubling. The

735 downscaled events are multi-model means. b) As is a) but observed intensities have
736 been increased by 10%.
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Figure 4: As in Figure 2 but showing the power dissipation index

Figure 5: As in Figure 2 but showing the landfall power dissipation index

Figure 6: Genesis density (top row), track density (middle row) and power dissipation density
(bottom row) from IBTrACS data, 1979-2015 (a-c), the multi-model mean over the

historical period (d-f) and percentage change from the historical period to the mean of
the 1% yr~' simulation (g-i). The changes are only displayed where 7 or more of the

models agree on the sign of the change.

Figure 7: a) Base 10 logarithm of the multi-model mean probability density of intensification

and dissipation rates of downscaled tropical cyclones over the historical period (blue)
and the 1% yr~' simulations (red). The shading shows one standard deviation up and
down from the mean among the models. b) Percentage change between the historical
and 1% yr™' simulations. Shading shows one standard deviation up and down from the

mean change among the models.

Figure 8: Multi-model mean translation speed (kts) for the historical period (a) and the change
after a doubling of CO; (b). The latter is displayed only where at least 7 of the 9

downscaled models agree on the sign of the change.

Figure 9: Time series of annual tropical cyclone counts for the standard downscaling of the
UKMO model (blue) and with the imposition of an artificial vorticity threshold (red).

Dashed lines show the linear regressions.
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765

Figure 10: The terms on the right side of (4); respectively vorticity, y, potential intensity (Pl),

and shear. The black curve shows their sum while the green curve shows the logarithm

of the actual GPI. Each quantity is relative to its initial value.

Figure 11: Change in the annual global frequency of tropical cyclones of 6 Saffir-Simpson
categories. The blue bars show changes in explicitly simulated tropical cyclones in the

HiFLOR model and the red bars show changes in events downscaled from HiFLOR.
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Figure 1: Annual probability density (green) and damage multiplied by probability density (violet) based
on 6200 U.S. landfalling synthetic tropical cyclones downscaled from the MIROC 6 global coupled climate
model for each of two periods: 1984-2014 from historical simulations (solid) and 2070-2100 from the
Shard Socioeconomic Pathway (SSP) 5 (dashed). The probability density is per unit base 10 log of the

damage. The damage is to a portfolio of insured property in the eastern U.S. and is proportional to the

area under the violet curves.
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Figure 2: Annual global frequency of downscaled tropical cyclones. Solid curves represent multi-
792
model means and shading indicates one standard deviation up and down. Dashed lines show linear
793
794 regression trends. Blue indicates the historical period 1850-2014 while red shows the 1% yr_l CO:
795 increase experiment arbitrarily beginning in 1970. Green curves show the multi-model mean,
796 globally summed genesis potential index (GPI).
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805 Figure 3: a) Global number of tropical cyclones by Saffir-Simpson category of lifetime maximum
806 intensity. Tropical storms here include only events with maximum intensities of at least 40 kts. Black
807 indicates observed (IBTrACS) during the period 1980-2018, while downscaled events are shown in
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blue for the historical period and red from the linear regressions of trends in the 1% yr
809
310 simulations at the time of COz doubling. The downscaled events are multi-model means. b) As is a)
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Figure 7: a) Base 10 logarithm of the multi-model mean probability density of intensification and dissipation
rates of downscaled tropical cyclones over the historical period (blue) and the 1% ylf1 simulations (red). The

shading shows one standard deviation up and down from the mean among the models. b) Percentage change
between the historical and 1% yrfl simulations. Shading shows one standard deviation up and down from the

mean change among the models.
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870 Figure 8: Multi-model mean translation speed (kts) for the historical period (a) and the change after a doubling
871 of CO: (b). The latter is displayed only where at least 7 of the 9 downscaled models agree on the sign of the
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Figure 9: Time series of annual tropical cyclone counts for the standard downscaling of the UKMO model (blue)

and with the imposition of an artificial vorticity threshold (red). Dashed lines show the linear regressions.
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880 Figure 11: Change in the annual global frequency of tropical cyclones of 6 Saffir-Simpson categories. The blue
881 bars show changes in explicitly simulated tropical cyclones in the HiIFLOR model and the red bars show changes

882 in events downscaled from HiFLOR.
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