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Assessing and restoring “traffic-state order” in open,
irreversible, dynamically routed, zone-controlled

guidepath-based transport systems
Spyros Reveliotis

Abstract—The notion of the “h-ordered” traffic state provides
an efficient approach for maintaining liveness in an open,
irreversible, dynamically routed zone-controlled guidepath-based
transport system. The restriction of these transport systems in
their class of h-ordered states can be performed with polynomial
complexity with respect to the size of these systems, while
the resulting supervisory control policy retains high levels of
operational latitude. The work presented in this paper provides
novel efficient algorithms for the following two problems: (i)
assessing whether a given traffic state is h-ordered, and (ii)
bringing the underlying transport system from some general
traffic state to the class of its h-ordered states in a way that
minimizes a certain measure of “operational disruption”. The
developed algorithms are motivated by, and find immediate
applicability, in the Model Predictive Control (MPC) scheme for
the considered transport systems that was developed in [1].

Note to Practitioners – Open and irreversible, zone-controlled,
guidepath-based transport systems is a natural abstraction of
the traffic dynamics taking place in many unit-load material
handling systems (MHSs), like the automated guided vehicle
(AGV) systems and the overhead monorail systems that are used
in many industrial facilities. In these environments, vehicles are
circulating in a “guidepath network” that is defined either by
the physical structure of the corresponding MHS (as in the case
of the overhead monorail systems) or more artificially, in an
effort to isolate the traffic of these vehicles from the surrounding
environment (as in the case of the AGV systems). Furthermore,
in order to ensure collision-free motion for the traveling vehicles,
the edges of this guidepath network are divided into zones,
and it is stipulated that each zone is allocated to at most one
vehicle at any time. This restriction renders the considered
transport systems susceptible to deadlock, and therefore, their
traffic controller must control the generated traffic for ensuring
a high productivity, but also for ensuring “traffic liveness”, i.e.,
the ability of every vehicle to complete successfully its current
assignment and engage in similar assignments in the future.
An effective and computationally efficient manner to maintain
traffic liveness is by restricting the considered transport systems
within a particular subclass of traffic states that is known as h-
ordered. The considered paper provides streamlined, customized
algorithms for effecting this restriction.
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I. INTRODUCTION

The zone-controlled guidepath-based transport system (ZC-
GBTS) is an established abstraction for modeling the traffic
dynamics that take place in many popular unit-load material
handling systems (MHS), like the automated guided vehicle
(AGV) systems and the overhead monorail systems that are
used in many production and distribution facilities [2]. The
vehicles traveling in such a system serve transport requests
between different pairs of pick-up and drop-off locations by
moving through a network of interconnected corridors that is
known as the underlying “guidepath network”. Furthermore, in
order to avoid collisions among these vehicles, the corridors of
the guidepath network are split into zones, and it is stipulated
that these zones cannot be occupied simultaneously by two or
more vehicles at any timepoint. Hence, a vehicle can move
from its current zone to a neighboring one only when the
claimed zone is currently free, and such a zone transition by
any given vehicle must be authorized by a traffic coordinator.

Some additional features that characterize the ZC-GBTSs
considered in this work, and are crucial for the presented
results, are as follows: (i) The considered transport systems
avail of a “home” zone that accommodates all idle vehicles,
and provides additional maintenance services to them, like
the recharging of their batteries [3], [4]. From the standpoint
of the operational analysis that is pursued in this work,
vehicles located in this “home” zone can be perceived as
being outside the primary guidepath network, and therefore,
the corresponding ZC-GBTSs are characterized as “open”.
(ii) In addition, the narrowness of the aisles that define the
various zones of the guidepath network and other safety
considerations prevent the reversal of the motion of a vehicle
within its current zone. Hence, the considered ZC-GBTSs
are characterized as “irreversible”. (iii) Finally, the routing
of the vehicles to their destinations is resolved by the traffic
coordinator in an incremental manner that accounts for the
currently experienced congestion within the network and the
routing flexibility that is provided by the overall connectivity
of this network. Hence, the considered ZC-GBTSs are also
characterized as “dynamically routed”.

The considered ZC-GBTSs must be controlled in a way
that maximizes the executed transports and minimizes the
experienced delays. The resulting problem is a hard combina-
torial optimization problem that becomes further aggravated
by the dynamic arrival of the transport requests [4], [5], [6].
In view of this very high complexity, the work of [1] has
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proposed a Model Predictive Control (MPC) [7] framework for
an effective and efficient resolution of this traffic management
problem. This MPC framework assumes that, at any timepoint,
every agent is assigned a (possibly empty) sequence of trans-
port tasks, and decomposes the overall routing and scheduling
problem to a series of subproblems that seek to efficiently
route the system agents to their most immediate destinations.
Every time that an agent reaches its current destination, it is re-
assigned to its next destination (possibly the “home” zone, if
it currently has no further assignments), and the routing plans
of all agents are revised in order to accommodate this new
development, by formulating and solving a new subproblem.

An issue that arises in the above MPC scheme, but also
in any other traffic management scheme for the considered
class of transport systems, is the preservation of the traffic
“liveness”, i.e., of the ability of every agent to complete
successfully its current transport assignment and engage in
similar transport requests in the future. Loss of liveness in the
operations of the considered ZC-GBTS can result from the
formation of deadlocks and livelocks within a subset of the
traveling agents [8].

In [8] it is shown that traffic liveness can be attained
by modeling the qualitative dynamics of the considered ZC-
GBTSs through a finite state automaton (FSA) [9], and re-
stricting the system traffic within a particular class of states
of this FSA. These states satisfy a well-defined property with
respect to (w.r.t.) the dynamics of the underlying FSA, and are
characterized as “live”.1 Also, the resulting supervisor is the
maximally permissive “liveness-enforcing supervisor (LES)”.
In the MPC scheme of [1], maximally permissive liveness-
enforcing supervision can be attained by ensuring that the
traffic states that are defined by the immediate destinations
of the traveling agents as the target traffic states for the
subproblems that are formulated and solved in the context of
this MPC scheme, are live.

However, the computational complexity of assessing the
liveness of any given traffic state from the considered class
of ZC-GBTS is an open problem. In view of this reality,
the literature has tried to develop non-maximally permissive
LES for ZC-GBTS that are computationally efficient. Some
of the most indicative examples of these endeavors can be
found in [10], [11], [12], [13], [14]. Among these approaches,
a method of particular interest to this work tries to restrict
the considered ZC-GBTS within a sub-class of their live
states that is polynomially recognizable w.r.t. the size of the
corresponding ZC-GBTS, and is known as “h-ordered” [10].
The corresponding LES essentially constitutes an adaptation
of Banker’s algorithm that has been proposed as an efficient
LES for more general sequential resource allocation systems
(RAS) [15], [16], [17]. Collective past experience with the
application of Banker’s algorithm in the liveness-enforcing
supervision of sequential RAS indicates that the algorithm can
provide a significant coverage of the behavioral space of the
corresponding maximally permissive LES. On the other hand,
the adaptation of this algorithm in the operational context of

1We provide more formal characterizations of all these concepts and results
in the next section.

the considered ZC-GBTS, in a way that preserves the com-
putational efficiency of the original algorithm, is a nontrivial
task due to the implicit representation of the available routes
to the traveling vehicles by means of the underlying guidepath
network [10].

This work exploits a graphical representation of the traffic
state of the considered transport systems, in order to efficiently
assess whether a given traffic state from the considered ZC-
GBTS class is h-ordered. Furthermore, it provides additional
algorithms that can construct an h-ordered traffic state from a
traffic state that does not possess this property; the h-ordered
state is obtained from the original traffic state by relocating
some of the traveling agents to the “home” zone, in way that
some “disruption” cost that will result from this relocation is
minimized. Both of these problems are motivated by, and have
immediate application in the MPC scheme of [1], since they
enable a pertinent evaluation, and the potential redefinition, of
the target traffic states that are employed in the subproblems
that are solved in the context of this MPC scheme.

In view of the above positioning of the paper content and
its intended contribution, the rest of it is organized as follows:
The next section provides a more formal description of (i)
the considered ZC-GBTS, (ii) the problem of the liveness-
enforcing supervision for its generated traffic, and (iii) the
notion of the h-ordered traffic state. Section III introduces the
novel algorithm for the decision problem of assessing whether
a given traffic state of an open, irreversible, dynamically
routed ZC-GBTS is h-ordered. Section IV introduces the
additional problem of bringing an open and irreversible ZC-
GBTS in its class of h-ordered states with minimal dis-
ruption for the underlying operation, and the corresponding
algorithms for its solution. Finally, Section V concludes the
paper and suggests some directions for potential future work.
Furthermore, due to the imposed limits on the length of
this manuscript, we are providing the formal proofs of the
technical results of this paper, and some of the support-
ing examples, in an electronic supplement that is accessi-
ble at: https://www2.isye.gatech.edu/∼spyros/
ho-sup.pdf.

II. THE CONSIDERED ZC-GBTS AND THE PROBLEM OF
THE LIVENESS-ENFORCING SUPERVISION OF ITS

GENERATED TRAFFIC

This section provides a formal description of the open, irre-
versible, dynamically routed ZC-GBTS, the notion of liveness
of the corresponding traffic, and the problem of the liveness-
enforcing supervision that is defined in this context. Due to
the imposed length limitations for this document, the provided
material is the minimum necessary for ensuring the integrity
of this document; more expansive treatments can be found in
[8], [1].

A. Formal characterization of the structure and the traffic
dynamics of the considered ZC-GBTS

An open, irreversible, dynamically routed ZC-GBTS is
formally represented by a pair (A, G), where: (a) A denotes
the set of the system vehicles – or, more generally, “agents” –
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Fig. 1: An abstracting representation of an AGV system and
an AGV deadlock.

circulating in it, and (b) G = (V,E ∪ {h}) is a multi-graph2

representing the guidepath network that is traversed by these
agents.

Graph G is assumed to be undirected and connected. Also,
the minimum vertex degree of G is 2, since, under the
presumed irreversibility of the considered transport systems,
an agent a reaching a vertex v of degree 1 would deadlock at
that vertex.

The edges e ∈ E of G model the “zones” of the underlying
guidepath network. These edges can be traversed by a traveling
agent a ∈ A in either direction, but they can hold no more
than one agent at a time.

On the other hand, edge h models the “home” zone of the
guidepath network. Edge h is connected to the rest of the
guidepath network through a single vertex vh (i.e., edge h is a
self-loop of G), and it can hold an arbitrary number of agents.

A “mission” trip for an agent a ∈ A is defined by a sequence
of edges Σa = 〈ei ∈ E \ {h}〉 that must be visited by agent
a in the specified order. The edges ei in sequence Σa are
the successive destinations for agent a, and the agent can
follow any feasible walk3 on guidepath graph G when moving
from edge ei to edge ei+1. Furthermore, “home” edge h is an
implicit last edge in every sequence Σa, since each agent a
that has completed its mission trip, must retire at this location.

An agent a traversing an edge e ∈ E with e = {vi, vj} has a
certain direction of motion on this edge that is indicated by the
corresponding ordered pair (vi, vj) or (vj , vi). Furthermore,
the presumed irreversibility of the agent motion stipulates that
an agent a entering edge e = {vi, vj} from vertex vi must
leave this edge through vertex vj , and vice versa.

Finally, an agent a cannot move in an edge e from a
neighboring edge e′, unless edge e is currently empty. This
stipulation seeks to establish adequate separation among the
traveling agents even during the transitional phases that an
agent is moving between two different but neighboring edges.
It also implies that two agents cannot “swap” the occupation
of two neighboring edges.

2In general, two vertices v1, v2 of graph G may be connected by more
than one zones. But this feature does not impact substantially our subsequent
developments, and we shall keep referring to G as a graph in the sequel.

3We remind the reader that a walk in an undirected graph G is a sequence
〈v0, e1, v1, . . . , vi−1, ei, vi, . . . , vk−1, ek, vk〉 where, for all i = 1, . . . , k,
edge ei is incident upon the vertices vi−1 and vi.

B. Traffic deadlock, traffic state liveness, and the need for
liveness-enforcing supervision

The motion irreversibility and the other traffic restrictions
for the system agents that were defined in the previous
subsection, when combined with the arbitrary topology of
the guidepath graph G and the bidirectional traversal of its
edges by the traveling agents, can give rise to the formation
of deadlocking situations similar to that depicted in Figure 1,
where each of the three depicted AGVs is blocked in its further
advancement by the presence of the other two vehicles.

The problem of preventing these deadlock formations is
known as the problem of the liveness-enforcing supervision
(LES) for the considered transport systems. Next, we overview
some important concepts and results for this supervisory con-
trol problem following the corresponding developments of [8],
which constitutes an effort to collect and organize the major
results that are currently available for this problem. Central
to all these developments, is the following characterization of
the “traffic state”:

Definition 1: For the needs of the subsequent developments,
the state s(t) of any open, irreversible, dynamically routed ZC-
GBTS, at some timepoint t, is defined by (i) the distribution
of the agents a ∈ A to the zones E ∪ {h} of the underlying
guidepath network G, together with (ii) the information about
the direction of the agents a ∈ A that are located in zones
e ∈ E.

It is further assumed that state s(t) is valid, i.e., every edge
e ∈ E is allocated to no more than one agent.

Finally, the “home” state sh is the state where every agent
a ∈ A is located in the “home” zone h. �

In the following, we shall use the notation s instead of
s(t) for the traffic state, and we shall denote the entire set of
valid traffic states s by S. Clearly, state set S is finite. Also,
state s will be represented graphically by a labeled partially
directed digraph (PDG), Ĝ(s). This PDG is induced from the
original undirected graph G through (i) the labeling of each
zone e ∈ E that is allocated to some agent a ∈ A by the
name of the corresponding agent, and (ii) the turning of edge
e into a directed edge with its sense of direction indicating the
direction of motion of agent a in the corresponding zone.

We shall also use the notation γ(a; s) to denote the zone
of agent a ∈ A in state s. In the PDG-based representation
of state s, γ(a; s) should be understood as a directed edge, if
agent a is located in a zone other than the “home” zone h; in
the opposite case, γ(a; s) corresponds to an undirected edge.

Finally, state s evolves by advancing a subset of agents
Â ⊆ A from their current zones, γ(a; s), to some neighboring
zones that are empty in s. Furthermore, the advancing agents
must be selected in a way that ensures the validity of the
resulting state s′.

In the FSA that results from the above characterizations, the
notion of “traffic liveness” for the considered class of transport
systems implies the preservation of the ability of every agent
a ∈ A to reach each edge e ∈ E ∪ {h} of G ad infinitum. In
[8] it is shown that, for these systems, traffic liveness can be
equivalently characterized through the following result:
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Proposition 1: An open ZC-GBTS is live if and only if (iff )
every reachable traffic state s is co-reachable4 to the “home”
state sh. �

Proposition 1 also motivates the following definition.
Definition 2: A traffic state s of an open ZC-GBTS is

characterized as live iff it is co-reachable to the “home” state
sh. The entire set of live traffic states will be denoted by Sl.
�

At any traffic state s of an open ZC-GBTS, the maximally
permissive LES will allow the transition of an agent a ∈ A
from its current zone γ(a; s) to a neighboring free zone e iff
the traffic state s′ that will result from this transition is live.
But, as discussed in the introductory section, in the ZC-GBTSs
considered in this work, the deployment of the maximally
permissive LES is challenged by the lack of an efficient algo-
rithm for assessing state liveness. Hence, we usually seek the
deployment of a suboptimal – i.e., non-maximally permissive
– LES, based on some alternative property that will define the
admissibility of any given traffic state s; this property (i) must
preserve traffic liveness, and (ii) its assessment on any given
traffic state s ∈ S must incur a polynomial computational
cost w.r.t. the size of the underlying transport system. Such a
property is provided by the notion of the “h-ordered” traffic
state for open and irreversible ZC-GBTS, which is defined as
follows [1]:

Definition 3: A traffic state s of an open, irreversible,
dynamically routed ZC-GBTS is “h-ordered” iff there exists
an ordering [·] : {1, . . . , |A|} → A, of the agent set A, such
that, for each agent a[i], i = 1, . . . , |A|, there is a feasible
route Ra[i]

, under the agent-separation rules of Section II-A,
that can take agent a[i] from its original zone γ(a[i]; s) to
the “home” zone h, while agents a[j], j = i + 1, . . . , |A|,
maintain their original positions in state s. Also, the entire
set of h-ordered traffic states of any given ZC-GBTS will be
denoted by Sho. �

In more plain terms, a traffic state s of an open, irreversible,
dynamically routed ZC-GBTS is h-ordered iff it is possible to
order the system agents that are not located in the “home” zone
h, in a way that each agent a can advance from its current zone
γ(a; s) to the “home” zone h using only edges that are free in
state s or have been freed by the advancement of the previous
agents in this ordering.

It is clear from the above definition that every h-ordered
state is live. Also, any state s with only one agent a having
γ(a; s) 6= h is h-ordered, and, therefore, the restriction of
the operation of any open, irreversible, dynamically routed
ZC-GBTS in the corresponding set Sho will preserve traffic
liveness. On the other hand, [1] outlined only very briefly
an algorithm for assessing whether s ∈ Sho, for any given
traffic state s ∈ S. The next section employs the PDG-based
representation of the traffic state of Definition 1 in order to
provide a complete and much more streamlined algorithm for
this decision problem.

4We remind the reader that in the FSA modeling framework, a state s is
co-reachable to a state s′ iff state s′ is reachable from state s through a
feasible event sequence.

Algorithm 1 An efficient algorithm for testing whether s ∈
Sho, for any traffic state s of an open, irreversible, dynamically
routed ZC-GBTS.
Input: The corresponding PDG Ĝ(s).
Output: ORDERED: a Boolean variable indicating whether
s ∈ Sho.

Construct the digraph Ĝ(s′) from the PDG Ĝ(s) according
to the construction procedure of Figure 2;
G := Ĝ(s′);
while G contains an edge e = (v1(e), v2(e)) with v2(e) =
vh do

Merge vertex v1(e) with vertex vh and remove edge e
from G;

end while
ORDERED := I{G is reduced to the single vertex vh};
return ORDERED.

III. AN EFFICIENT ALGORITHM FOR RECOGNIZING
h-ORDERED STATES

In this section we present a novel efficient algorithm for
the decision problem ‘s ∈ Sho?’, that was introduced in the
previous section. The corresponding pseudocode is presented
in Algorithm 1.

The execution of Algorithm 1 on any given traffic state s
evolves in two major phases: First, the algorithm constructs
from the input state s another state s′ that is h-ordered iff state
s is h-ordered. In addition, the new state s′ is constructed in a
way that (a) guarantees that state s′ is h-ordered iff it is live,
and (b) enables an efficient assessment of its liveness based
on some existing results; hence, the evaluation of the liveness
of state s′ constitutes the second phase of Algorithm 1. Next
we detail these two phases.

The construction of the aforementioned traffic state s′ from
the input state s must guarantee the following three properties:

1) State s′ involves the same set of traveling vehicles A
with the original state s.

2) It is h-ordered iff the original state s is h-ordered.
3) It has a PDG Ĝ(s′) with no undirected edges (i.e., the

PDG Ĝ(s′) is a digraph).
Properties 1 and 2 imply that we can assess whether the

original traffic state s is h-ordered by actually assessing the
same property for the induced traffic state s′. On the other
hand, Property 3 of the induced traffic state s′ enables the
more efficient assessment of this new traffic state according to
the logic that was discussed in the opening part of this section.

Algorithm 1 computes the sought traffic state s′ by con-
structing the corresponding PDG Ĝ(s′) from the original PDG
Ĝ(s), according to the procedure that is described in Figure 2.
The next example demonstrates this construction.

Example: This example demonstrates the state construction
of Figure 2 by means of the PDG Ĝ(s) that is presented at the
left part of Figure 3. The state s that corresponds to this PDG
involves five agents, a1, . . . , a5, located on the directed edges
of this graph that are labeled by the corresponding labels.
Each agent ai, i = 1, . . . , 5, is heading in the direction that
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1) Compute the maximal connected subgraphs of the PDG
Ĝ(s) that consist of undirected edges only. Let these
subgraphs be denoted by Ξ1, . . . ,Ξl.

2) For every subgraph Ξi that contains a cycle, identify the
directed edges e =

(
v1(e), v2(e)

)
of the PDG Ĝ(s) that

have their end-vertex v2(e) located on Ξi, and for every
such identified edge e, add in the original PDG Ĝ(s) an
undirected edge e′ =

{
v1(e), v2(e)

}
. Let Ĝ′′ denote the

PDG that results from this augmentation.
3) Compute the digraph Ĝ(s′), that is the graphical rep-

resentation of the constructed traffic state s′, from the
PDG Ĝ′′, by collapsing into a single node each maximal
connected subgraph of Ĝ′′ that consists of undirected
edges only.

Fig. 2: The construction of the traffic state s′ from the original
traffic state s.

Fig. 3: An example demonstrating the construction of Figure 2.

is defined by the corresponding edge. PDG Ĝ(s) also has
two maximal connected subgraphs consisting of undirected
edges only, that are respectively defined by the two vertex sets
{vh, A,B} and {D,E, F,G,H}, and the undirected edges
that are incident upon these vertices.

The PDG depicted in the left part of Figure 3 also depicts,
in dashed lines, the undirected edges that will be added to the
PDG Ĝ(s) by the second step in the procedure that is defined
in Figure 2. The addition of these undirected edges accounts
for the fact that the agents a located in the corresponding
directed edges e, can reverse the direction of their motion in
their current zones by using the cycles of free edges in the
corresponding subgraphs of free edges Ξi. A more detailed
explanation of the necessity and the role of these additional
edges in the pursued computation can be found in the proof
of Proposition 2 that is provided in the electronic supplement.

In the PDG that results from the addition of the undi-
rected edges, the maximal connected subgraph that consists
of undirected edges (including the added ones) involves all
the graph vertices. Therefore, Step 3 of the construction
procedure in Figure 2 will collapse the entire graph into a
new digraph Ĝ(s′) that consists of (i) a single vertex labeled
vhABCDEFGH , since it represents all of the original ver-
tices, and (ii) the directed edges of Ĝ(s), that correspond
to the traveling agents a1, . . . , a5; in the resulting digraph

Ĝ(s′) each of these directed edges is a self-loop of the vertex
vhABCDEFGH . �

The next proposition establishes the claimed Property 2 for
the state s′ that results from the construction procedure of
Figure 2. The proof of this proposition can be found at the
electronic supplement of this paper.

Proposition 2: Consider the traffic state s′ that is obtained
from a given traffic state s of an open and irreversible ZC-
GBTS through the construction procedure of Figure 2. Then,
the original traffic state s is h-ordered iff the constructed traffic
state s′ is h-ordered. �

Since the guidepath network of the constructed state s′ has
no free edges, state s′ is “totally congested” according to the
terminology of [18]. But then, we can apply to state s′ the
following proposition that was established in [18].

Proposition 3: Consider a traffic state s 6= sh of an
open, irreversible, dynamically routed ZC-GBTS such that the
corresponding graph Ĝ(s) contains no undirected edges. Then,
state s is live iff every vertex v ∈ V \ {vh} of the digraph
Ĝ(s) is co-reachable to vertex vh. �

Proposition 3 provides the following efficient algorithm for
assessing the liveness of a totally congested traffic state s: We
start with the corresponding digraph Ĝ(s), and iteratively we
merge into its node vh every edge e = (v, vh) in this digraph,
and also in all the digraphs that result from these mergers. If
this merging process manages to collapse the entire digraph
Ĝ(s) into a single vertex, then the considered state s is live;
otherwise, state s is not live.

It is clear from the semantics of the above algorithm that
every time that an edge (v, vh) is merged in the node vh,
the agent a that occupies this edge in the considered state s
is brought to the “home” edge h using the edges that have
been released from the previous mergers. Hence, the merging
process that is effected by this algorithm also defines an
ordering of the system agents that satisfies the requirements
of Definition 3. This remark implies the following corollary
of Proposition 3.

Corollary 1: The state s′ that is constructed by the procedure
of Figure 2 is h-ordered iff it is live. �

The combination of Propositions 2 and 3 and of Corollary 1
implies that we can address the problem ‘s ∈ Sho?’ by running
the above liveness-assessing algorithm for totally congested
traffic states on the state s′ that is obtained through the
construction of Figure 2; this computation constitutes the
second phase of Algorithm 1.

The next theorem recapitulates all the above discussion,
stating formally the correctness of Algorithm 1.

Theorem 1: When applied on any given traffic state s
coming from an open, irreversible, dynamically routed ZC-
GBTS, Algorithm 1 will execute in finite time, and it will
determine correctly whether s ∈ Sho. �

Examples: It is obvious that the execution of the second
part of Algorithm 1 on the digraph that is depicted in the
right part of Figure 3, will remove all the five edges of this
digraph, leading to a graph G that will consist only of the
vertex vhABCDEFGH . Hence, the traffic state s that is
defined by the PDG that is depicted in the left part of Figure 3,
is h-ordered.
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Fig. 4: The execution of Algorithm 1 on a traffic state s̃ that is not h-ordered.

On the other hand, Figure 4 presents the execution of
Algorithm 1 on another PDG, Ĝ(s̃), where the induced digraph
Ĝ(s̃′) cannot be reduced to a single vertex by the second
phase of this algorithm. Hence, s̃ 6∈ Sho in this case. The
complete parsing of Figure 4 is as follows: The left part of
the figure presents the original PDG Ĝ(s̃) and its augmentation
with the undirected edges e′, according to the representational
conventions that are also followed in Figure 3. The middle part
of Figure 4 depicts the digraph Ĝ(s̃′) that will be returned by
the first phase of Algorithm 1. The edges that are depicted
by dashed lines in this digraph are those that will be removed
through the execution of the second phase of the algorithm.
The final outcome of this second phase is the digraph G that
is depicted in the right part of the figure. �

We conclude the presentation of Algorithm 1 by noticing
that its worst-case computational complexity is O(|E|); this
result is systematically established in the electronic supple-
ment.

IV. RESTORING “TRAFFIC-STATE ORDER” IN THE
CONSIDERED ZC-GBTS

In this section we consider the second problem that is
addressed in this work. This problem concerns the construction
of an h-ordered traffic state s′ from a given traffic state s 6∈ Sho

by relocating some of the traveling agents in state s to the
“home” zone h of the underlying guidepath network. The
selection of the agents to be relocated to the “home” zone
h must be done in a way that minimizes some measure of
“disruption” of the operation of the underlying ZC-GBTS. The
first part of the section provides the formal characterization of
the resulting optimization problem, while the remaining parts
provide some algorithms for its resolution.

A. The “optimal order restoration” problem for the consid-
ered ZC-GBTS

A formal statement of the problem that is considered in this
section is as follows:

Definition 4: The problem of “optimal restoration of traffic-
state order”: Consider a traffic state s of an open and irre-
versible ZC-GBTS that is not h-ordered. Also, let A′ denote
the set of agents a ∈ A with γ(a; s) 6= h, and further assume a

function c : A′ → R+
0 , where R+

0 denotes the set of nonnega-
tive reals. Finally, let P (A′) denote the set of strict subsets of
the set A′ with the following property: For any A′′ ∈ P (A′),
the traffic state s′ that is induced from the traffic state s by
setting

(
γ(a; s′) := h, ∀a ∈ A′′

)
∧
(
γ(a; s′) := γ(a; s), ∀a ∈

A \ A′′
)
, belongs in Sho. We want to compute A∗ ∈ P (A′)

such that A∗ = arg minA′′∈P (A′)

{∑
a∈A′′ c(a)

}
. �

In the above problem statement, function c(·) defines a “dis-
ruption” cost for every agent that is relocated to the “home”
zone h. Hence, the considered problem seeks to restore traffic-
state order in a way that minimizes the total “disruption” cost
that will result from the effected relocations. In the rest of
this section, we shall refer to this optimization problem as the
“optimal order restoration” problem, for brevity.

In the MPC scheme of [1], that has provided the primary
motivation for this problem, the input traffic states s for the
addressed instances of the “optimal order restoration” problem
will be those target states s of the various subproblems that
are formulated by this MPC scheme, that are not h-ordered.
Furthermore, the agent relocations that will be determined by
the solution of the “optimal order restoration” problem in
this particular context, will not take place in an immediate,
physical sense, but they have the meaning of the redirection of
the corresponding traveling agents from their next destinations
to the “home” zone h, in the formulation of the corresponding
subproblem.

Then, setting the function c(·) uniformly equal to 1.0
implies that we seek to obtain an h-ordered target state for
the formulated subproblems while minimizing the number
of the agents that must be redirected from their immediate
destinations to the “home” zone h. Alternatively, function c(·)
can also assign more general values to the traveling agents, that
might express (a) the criticality of the various transport tasks
that are executed by these agents, (b) a time-based priority
that might be assigned to certain agents in an effort to prevent
the indefinite postponement of the corresponding tasks, (c)
the current proximity of the different agents to their prevalent
destinations, and/or (d) other similar considerations.
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Algorithm 2 A solution algorithm for the “optimal order
restoration” problem of Definition 4.

Input: The corresponding PDG Ĝ(s); the cost function
c(·) : A′ → R+

0 .
Output: ORDERED: a Boolean variable indicating whether
s ∈ Sho; A∗: an agent set defining an optimal solution for
the considered “optimal order restoration” problem.

ORDERED := Algorithm 1
(
Ĝ(s)

)
;

if ORDERED then
A∗ := ∅;
return ORDERED and A∗.

end if
QUEUE := NIL;
for each e ∈ G computed by Algorithm 1 do

create the corresponding candidate solution
〈{a(e)}, c(a(e)), Ĝ(a(e))〉 and enter it in QUEUE
preserving the desired ordering of the queue entries;

end for
while TRUE do〈
Â, c(Â), Ĝ(Â)

〉
:= Extract head entry from QUEUE;

ORDERED := Algorithm 1
(
Ĝ(Â)

)
;

if ORDERED then
A∗ := Â;
return ¬ORDERED and A∗.

else
for each e ∈ G(Â) computed by Algorithm 1 do

create the corresponding candidate solution
〈
Â ∪

{a(e)}, c(Â) + c(a(e)), Ĝ(Â(e))
〉

and enter it in
QUEUE preserving the desired ordering of the
queue entries and avoiding duplication;

end for
end if

end while

B. A general algorithm for the “optimal order restoration”
problem

In this subsection, we consider the “optimal order restora-
tion” problem with an arbitrary cost function c(·). The pseu-
docode for the basic algorithm that we propose for this
general version of the “optimal order restoration” problem
of Definition 4, is presented in Algorithm 2. This algorithm
executes in two phases: (i) In the first phase, Algorithm 2
executes Algorithm 1 on the input PDG Ĝ(s) in order to
identify the agent set A′′ ⊆ A′ containing those agents that are
in actual conflict in terms of the notion of the h-ordered state;
more specifically, the setA′′ contains all those agents that label
the edges of the digraph G that is computed by Algorithm 1.
(ii) Subsequently, the second phase of Algorithm 2 effects a
search over the elements of P (A′′) for an optimal solution.

This search is organized according to a “best first” scheme
that is facilitated by the following observations: Any given
element Â of P (A′′) is associated with the corresponding cost
c(Â) ≡

∑
a∈Â c(a). In addition, the agent set Â induces a

PDG Ĝ(Â); this PDG is obtained from the digraph G that
was computed during the first phase of the algorithm, by

turning the edges of G corresponding to the agents a ∈ Â
into undirected edges. Finally, if the execution of Algorithm 1
on the PDG Ĝ(Â) results in a digraph G(Â) consisting of
a single vertex only, then the considered set Â constitutes a
feasible solution to the “optimal order restoration” problem,
with corresponding cost c(Â).

In view of the above remarks, Algorithm 2 maintains
QUEUE, a priority queue of candidate solutions where each
candidate solution is represented by a triplet

〈
Â, c(Â), Ĝ(Â)

〉
and the stored candidates are ordered in increasing cost c(Â).
Entries of equal cost c(Â) can be stored in any arbitrary order
without compromising the correctness of the algorithm, but
for complete specificity, we shall further assume that entries of
equal cost are ordered “lexicographically”, according to some
order that is imposed on the elements of A′′.

At the beginning of phase 2 of Algorithm 2, QUEUE is
initialized with the triplets that correspond to the singleton
sets of the powerset P (A′′). Subsequently, at each iteration of
the conducted search process, Algorithm 2 extracts the head
element of QUEUE and tests whether the corresponding set
Â constitutes a feasible solution, as explained above. If Â
is feasible, the algorithm will exit, returning the set Â as an
optimal solution for the considered instance of the “optimal
order restoration” problem. Otherwise, the corresponding di-
graph G(Â) contains a number of directed edges. Each of these
edges, e, generates a candidate entry for QUEUE that is defined
as follows: (i) the agent set Â(e) for this candidate entry is
Â(e) = Â ∪ {a(e)}, where a(e) is the label of e in G(Â). (ii)
c(Â(e)) = c(Â)+c(a(e)). (iii) The PDG Ĝ(Â(e)) is obtained
from the digraph G(Â) by turning edge e into undirected.

The next theorem establishes the correctness of Algo-
rithm 2; its proof can be found in the electronic supplement.

Theorem 2: When executed on an instance of the “optimal
order restoration” problem of Definition 4, Algorithm 2 will
terminate in finite time, and it will return a correct solution
for this problem instance. �

Example: As an example on the algorithmic developments
of this section, we consider the execution of Algorithm 2 on
the traffic state s̃ that is defined by the PDG on the left side
of Figure 4. As already discussed in Section III, the digraph
G that will result from the execution of Algorithm 1 – or,
equivalently, the first phase of Algorithm 2 – on this state,
is that depicted on the right side of Figure 4. Hence, next
we discuss the execution of the second phase of Algorithm 2,
making use of the information that is provided in the digraph
G of Figure 4. Furthermore, in this example we assume that
c(a) = 1, ∀a; i.e., we try to restore order while minimizing
the number of the agents that will be relocated to the “home”
zone h by the derived solution.

In the considered case, QUEUE will be initialized with the
entries

〈
{ai}, 1.0, Ĝ(ai(e))

〉
, for i ∈ {4, 6, 7, 8}. Furthermore,

since all these entries are of equal cost, we shall assume that
they are ordered lexicographically in QUEUE w.r.t. the agent
index i.

Hence, the first entry to be picked for processing from
this list is the entry

〈
{a4}, 1.0, Ĝ(a4(e))

〉
. The execution of

Algorithm 1 on the corresponding PDG Ĝ(a4(e)) is depicted
in Figure 5. As indicated in this figure, Algorithm 1 will reduce
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Fig. 5: The execution of Algorithm 1 on the PDG Ĝ(a4(e)) during the second phase of Algorithm 2, when Algorithm 2 is
applied on the traffic state s̃ of Figure 4.

Fig. 6: A digraph G for which the execution of the second
phase of Algorithm 2 will be of super-polynomial complexity
w.r.t. its size.

the original PDG Ĝ(a4(e)) into a single vertex, and therefore,
it can be deduced that the agent set {a4} constitutes an optimal
solution for the instance of the “optimal order restoration”
problem that is considered in this example. �

Complexity considerations: From the description of Algo-
rithms 1 and 2, it is clear that the (a) the first phase of
Algorithm 2 and also (b) the processing of any single entry
that is extracted from QUEUE, can be performed efficiently
w.r.t. the required computational time and memory. As a result,
Algorithm 2 can exhibit fast execution times on most practical
instantiations of the considered “optimal order restoration”
problem.

On the other hand, since Algorithm 2 conducts a “best-
first” search over the elements of the set P (A′′) for an
optimal solution, and the cardinality of this set is O(2|A

′′|),
its worst-case computational complexity is super-polynomial
w.r.t. the number of the system agents. A configuration of the
digraph G for which Algorithm 2 will exhibit such a super-
polynomial complexity, is depicted in Figure 6. The digraph G
depicted in Figure 6 involves n traveling agents, a1, . . . , an,
organized into two directed paths leading from vertex vh to a

terminal vertex D. The first path consists of the agent sequence
〈a1, . . . , an−1〉, while the second path involves only agent
an. Furthermore, the relocation cost c(ai), for each agent
ai, i = 1, . . . , n, is the number that is quoted in parentheses in
the corresponding label. The reader can easily check that the
optimal solution for this problem instance is the singleton {an}
with a corresponding optimal cost of 1.0. On the other hand,
even though Algorithm 2 will enter the set {an} in QUEUE,
as a candidate solution, during the initialization of this list
in phase 2, it will shift attention to this entry only after it
has processed all the elements of the powerset of the agent
set {a1, a2, . . . , an−2}, since all these agent subsets have an
associated cost of 0.0. Hence, in this case, Algorithm 2 will
consider 2|A

′′|−2 candidate solutions before it identifies the
optimal one.

C. A streamlined version of Algorithm 2 for the case of
uniform cost functions c.

As a potential “remedy” for the super-polynomial complex-
ity that is demonstrated by the example problem instance of
Figure 6, one can consider the possibility of synthesizing the
sets Â that define the entries of QUEUE so that they contain at
least one maximal directed path of the underlying digraph G
that emanates from vertex vh and has the in-degrees and the
out-degrees of its internal vertices equal to 1.0. The rationale
for such a restriction of the search process over the elements
of the powerset P (A′′) would be that the clearing of at least
one of these paths from its occupying agents is a necessary
condition for accessing the target vertex vh by any remaining
agents in digraph G. This is certainly true in the example case
of Figure 6, where the aforementioned maximal paths are the
two paths 〈a1, . . . , an−1〉 and 〈an〉 leading from vertex vh
to the terminal vertex D. But Figure 7 provides a counter-
example to the above conjecture.

Nevertheless, in the rest of this subsection we show that the
above conjecture is true, and it will result in a more efficient
version of Algorithm 2, in the particular case where the cost
function c(·) is uniform over its domain set A′.5 The key
result that underlies all these developments is established in
the following proposition.

5Without loss of generality, we shall assume that c(a) = 1.0, ∀a ∈ A′.
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Fig. 7: A digraph G for which the optimal solution A∗ for the
corresponding “optimal order restoration” problem will not
clear any maximal directed path that emanates from vertex vh
and possesses internal vertices with in-degree and out-degree
equal to one. In this case, the capability of the “expensive”
agent a2 to reach vertex vh is established by relocating to the
“home” zone h the “cheaper” agent a4.

Proposition 4: Consider an instance of the “optimal order
restoration” problem with the corresponding cost function
being c(a) = 1.0, ∀a ∈ A′′, and with the agent set A′′
being the labels of the edges of the digraph G that is obtained
from the execution of Algorithm 1 on the corresponding PDG
Ĝ(s). Then, there exists an optimal solution A∗ ⊂ A′′ for this
problem instance that contains all the agents that are located
on a maximal directed path of G that emanates from vertex
vh and has in-degree and out-degree equal to 1.0 for all of its
internal vertices. �

The proof of Proposition 4 is provided in the electronic
supplement. For those instances of the “optimal order restora-
tion” problem that possess a uniform cost function c(·),
Proposition 4 enables a much more focused and streamlined
search process for an optimal solution A∗; this search process
is implemented by the pseudocode of Algorithm 3.

The overall structure of Algorithm 3 is similar to that of
Algorithm 2. In particular, Algorithm 3 consists of two phases,
with phase 1 consisting of the execution of Algorithm 1 on the
input PDG Ĝ(s), and phase 2 conducting a “best-first” search
over the powerset P (A′′) that is defined from the result of
phase 1. Furthermore, this search is conducted by means of a
priority list QUEUE that is arranged in increasing cardinality of
the agent subsets that constitute the stored candidate solutions.

The main difference of Algorithm 3 w.r.t. Algorithm 2 is the
way that it generates the various entries to be stored in QUEUE.
In particular, every time that the processing by Algorithm 1
of the PDG Ĝ(Â), that corresponds to a candidate solution
set Â, results in a digraph G(Â) that is not a single vertex,
Algorithm 3 generates new candidate solutions for QUEUE by
emptying from their occupying agents the maximal directed
paths of the digraph G(Â) that emanate from vertex vh and
possess internal vertices with in-degrees and out-degrees equal
to one. The same logic also applies to the initialization of
QUEUE, based on the information that is provided by the

Algorithm 3 A solution algorithm for instances of the “opti-
mal order restoration” problem of Definition 4 with uniform
cost function c(a) = 1.0, ∀a ∈ A′.
Input: The corresponding PDG Ĝ(s).
Output: ORDERED: a Boolean variable indicating whether
s ∈ Sho; A∗: an agent set defining an optimal solution for
the considered “optimal order restoration” problem.

ORDERED := Algorithm 1
(
Ĝ(s)

)
;

if ORDERED then
A∗ := ∅;
return ORDERED and A∗.

end if
QUEUE := NIL;
for each maximal path p of the digraph G computed by
Algorithm 1 that emanates from vertex vh and has all its
internal vertices possessing an in-degree and an out-degree
equal to one do

create the corresponding candidate solution 〈Â(p) ≡
{a(e) : e ∈ p}, |Â(p)|, Ĝ(Â(p))〉 and enter it in
QUEUE preserving the desired ordering of the queue
entries;

end for
while TRUE do〈
Â, |Â|, Ĝ(Â)

〉
:= Extract head entry from QUEUE;

ORDERED := Algorithm 1
(
Ĝ(Â)

)
;

if ORDERED then
A∗ := Â;
return ¬ORDERED and A∗.

else
for each maximal path p of the digraph G(Â) computed
by Algorithm 1 that emanates from vertex vh and has
all its internal vertices possessing an in-degree and an
out-degree equal to one do

create the corresponding candidate solution
〈
Â ∪

Â(p)}, |Â| + |Â(p)|, Ĝ(Â(p))
〉

and enter it in
QUEUE preserving the desired ordering of the
queue entries and avoiding duplication;

end for
end if

end while

digraph G that is obtained from phase 1.
The correctness of Algorithm 3, that results from the modifi-

cations of Algorithm 2 that were described in the previous two
paragraphs, can be established through an argument similar to
that used for establishing the correctness of Algorithm 2, while
also considering the special structure of the optimal solution
set for the considered problem instances that is characterized
by Proposition 4. The next theorem is a formal statement of
this result.

Theorem 3: When executed on an instance of the “optimal
order restoration” problem of Definition 4 with uniform cost
function c(a) = 1.0, ∀a ∈ A′, Algorithm 3 will terminate in
finite time, and it will return a correct solution for this problem
instance.
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Complexity considerations: The search that is conducted by
Algorithm 3 for an optimal solution A∗ over the underlying
powerset P (A′′) is much more efficient than the corresponding
search that is conducted by Algorithm 2. This efficiency
results from (i) the more focused generation of the candidate
solutions Â by considering, in the corresponding digraphs
G, only the maximal directed paths that emanate from the
vertex vh and have in-degrees and out-degrees of their internal
vertices equal to one, and (ii) the augmentation of the tested
candidate sets Â that fail to provide a feasible solution, with
an entire subset of agents that is defined by the aforementioned
paths. Furthermore, the logic that drives the synthesis of the
candidate solution sets Â under Algorithm 3, implies that
entire subsets of A′′ will never be considered as parts of any
candidate solution; in particular, it is easy to see that any agent
a located in a strongly connected component of the digraph
G that is generated by the first phase of Algorithm 3, will not
be part of any set Â that is generated during the second phase
of this algorithm.

A detailed example that demonstrates the execution of
Algorithm 3, and concretizes the above remarks regarding the
computational efficiency of the algorithm, can be found in the
electronic supplement.

V. CONCLUSION

This paper has provided a thorough treatment for the two
problems of (i) assessing whether a given traffic state of
an open, irreversible, dynamically routed ZC-GBTS is h-
ordered, and (ii) returning the state of such a ZC-GBTS into
its subspace of h-ordered states, in a way that minimizes a
measure of the disruption that is incurred in the operation
of the underlying system. These two problems were first
introduced in [1], and the current paper presents complete and
computationally efficient algorithms for their solution.

The algorithmic developments and their supported analyses
that were presented in this paper, rely heavily on the graphical
structures that have been employed for the representation of
the traffic state of the considered transport systems, and of the
qualitative dynamics that will evolve this state in the context
of the presumed operational policies. When viewed from this
more methodological standpoint, the results of this paper also
define a novel and powerful framework for reasoning about
problems pertaining to traffic-state reachability and liveness
assessment and enforcement in the considered transport sys-
tems, and parallel the recent developments of [19].

Another pertinent remark regarding the presented develop-
ments is that, while Algorithms 1 and 3 are making explicit
use of the notion of the h-ordered state, the basic structure
of Algorithm 2 is much more generic. In fact, Algorithm 2
can be used for restoring optimally additional properties of
the traffic state s of the underlying transport system through
the relocation of some agents in the underlying guidepath
network. Hence, if we ever availed of an efficient algorithm for
assessing the liveness of any given traffic state s, Algorithm 2
can be used for restoring optimally traffic-state liveness by
invoking this new algorithm instead of Algotithm 1 during its
execution.

Finally, potential future work on the developments of this
paper can investigate (i) the worst-case computational com-
plexity of the “optimal oder restoration” problem of Defini-
tion 4, and (ii) the pertinent structuring of the cost function
c(·) that characterizes the disruption of the agent redirection to
the “home” zone h, so that it captures a number of attributes
regarding the current “progress” of the “mission” trips that are
executed by the traveling agents and the “criticality” of these
trips.
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