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Human microbiome studies are increasingly incorporating macroecological
approaches, such as community assembly, network analysis and functional
redundancy to more fully characterize the microbiome. Such analyses
have not been applied to ancient human microbiomes, preventing insights
into human microbiome evolution. We address this issue by analysing
published ancient microbiome datasets: coprolites from Rio Zape (n=7;
700 CE Mexico) and historic dental calculus (n =44; 1770-1855 CE, UK), as
well as two novel dental calculus datasets: Maya (n=7; 170 BCE-885 CE,
Belize) and Nuragic Sardinians (n = 11; 1400-850 BCE, Italy). Periodontitis-
associated bacteria (Treponema denticola, Fusobacterium nucleatum and
Eubacterium saphenum) were identified as keystone taxa in the dental calculus
datasets. Coprolite keystone taxa included known short-chain fatty acid
producers (Eubacterium biforme, Phascolarctobacterium succinatutens) and
potentially disease-associated bacteria (Escherichia, Brachyspira). Overlap in
ecological profiles between ancient and modern microbiomes was indicated
by similarity in functional response diversity profiles between contemporary
hunter—gatherers and ancient coprolites, as well as parallels between ancient
Maya, historic UK, and modern Spanish dental calculus; however, the
ancient Nuragic dental calculus shows a distinct ecological structure. We
detected key ecological signatures from ancient microbiome data, paving
the way to expand understanding of human microbiome evolution.

This article is part of the theme issue ‘Insights into health and disease
from ancient biomolecules’.

1. Introduction

Host-associated microbiomes are complex ecosystems with diverse sets of inter-
actions between microbes, the host and abiotic features. Human microbiome
research has primarily focused on documenting the genes/organisms present in
a sample and differentiating microbiome communities using presence/absence
and relative abundance data [1-5]. Such contributions have undoubtedly advanced
the understanding of human biology; however, a stronger focus on taxonomic co-
occurrence, identification of taxa with disproportionate influence on community
function, as well as overall resilience of metabolic pathways will provide a more
nuanced view of the microbiome. An analogy can be drawn from mammalian ecol-
ogy in the United States’ Yellowstone National Park, where a focus on the role that
wolves play as a keystone species yields greater clarification on cross-species inter-
actions and dependencies. Wolves are not an abundant species in the ecosystem,
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yet their predator—prey relationships have tremendous down-
stream impacts on ecosystem production and stability [6-8]. A
simple taxonomic inventory does not present the full picture
of the wolves’ impact on the ecosystem, but an approach
focused on their network of interactions demonstrates how
they function as a keystone species that reshapes resource allo-
cation and alters interspecies relationships throughout the
ecosystem [6-8]. In the absence of deeper modelling, wolves
would remain a rare biome variant, without a sophisticated
understanding of their role as a keystone species.

Human microbiome research can clearly benefit from a
similar approach but the momentum in applying ecological
theory to the microbiome has only recently gained traction.
In this vein, microbiome focus is slowly shifting from describing
what is present in a microbiome to understanding the factors
that drive community membership, polyspecies interactions,
functional variation and ecosystem stability. While there is no
unified or singular approach, ecological concepts such as
community assembly, succession, response to disturbance,
restoration, functional redundancy, response diversity, keystone
taxa and genes, and co-occurring networks have made inroads
in human microbiome research [9-19]. Each of these concepts
leads to estimating ecological variables, providing a more
nuanced view of human microbiomes, including how they
are formed, what factors drive change, and which bacteria
play important roles in maintaining homeostasis or stable con-
ditions. It may appear that such a heavy focus on microbial
ecology takes the focus away from human biology; however,
there is growing support for the holobiont paradigm. Holo-
biontism posits that macro-organismal development, health,
and general function relies on microorganisms, and therefore,
microbes play a role in macro-organism ecology and evolution
[20-23]; in other words, human-associated microbial ecology
and human biology are inextricably intertwined.

The approaches for estimating and characterizing human
microbiomes through ecological concepts are in an early
stage of research but there have been numerous valuable
insights. Community assembly- and succession-focused
research has demonstrated that early life human gut micro-
biome composition is dynamic and strongly influenced by a
variety of factors, including birth mode, nutrition and exposure
to antibiotics [3,9,24,25], which can lead to downstream health
effects [26]. Network analysis has been used to identify poten-
tial therapeutic avenues for Clostridium difficile infections in the
gut [27] and evaluate gut microbiome structure and stability
[19]. Taxonomic composition fluctuates over time in gut micro-
biomes [28,29] but evidence suggests there is stability in
metabolic activity [30] that may be driven by functional redun-
dancy [9,10,25]. Importantly, one should not consider resilience
(and stability) as resilience to remain in a healthy state; eco-
systems, and thus microbiomes, can be resilient to change
when they are in an alternative state [31-34]. Similarly, key-
stone taxa need not be important for promoting a healthy
state. For example, Porphyromonas gingivalis has been suggested
as a keystone taxon for periodontitis because it alters immune
system defence mechanisms and thus promotes a resilient
periodontitis-inducing biofilm [35-37].

Stronger focus on ecological functions and interactions
paints a more detailed picture of the role that taxa and functions
play in different microbiome states. A logical next step is to
apply these approaches to archaeological and palaeogenomic
microbiome data. These data are in a most unique position to
impact the ecological understanding of the human microbiome

as they permit exploration of how human microbiomes have n

responded to major changes in the human condition, such as
epidemiological transitions, colonialism, biogeographic range
expansions, and industrialization [38—46]. In fact, the popular-
ized roles the microbiome plays in human biology are deeply
connected to ‘diseases of civilization’, such as allergies, obesity,
chronic inflammation, emerging infectious diseases, and the
evolution of antibiotic resistance [1,47-51]. To understand
the mechanisms behind these changes, we must know exactly
what has changed in functional redundancy, keystone taxa,
resilience and assembly of human microbiomes. While datasets
from non-human primates and extant non-industrialized
people provide some progress towards that goal, there is
simply no line more intuitive to understanding ancestral
microbiomes than to study ancient populations.

Ecologically focused microbiome research with ancient
biomaterials (primarily coprolites and dental calculus) will
present unique challenges, such as DNA degradation, small
sample size, contamination and lack of time-series data. How-
ever, coprolites (i.e. desiccated faeces) and dental calculus
(i.e. calcified dental plaque) have a long history of providing
important information on human health and practices of the
past and, in ideal conditions, preserve a record of the human
microbiome [38,40,52-55]. The first ancient microbiome study
to apply the next-generation DNA sequencing technology was
largely centered around the premise of whether detailed taxo-
nomic information from ancient human gut microbiome was
retrievable, and if so, whether these resembled the contemporary
human gut [56]. From an assemblage of pre-colonial coprolites
from Mexico (Rio Zape), they observed a similar taxonomic pro-
file to contemporary gastrointestinal (GI) tract microbiomes at
the phylum level, as well concordance with contemporary
non-industrialized populations at the genus level owing to pres-
ence of Treponema and Prevotella, both of which are nearly absent
from gut microbiomes of industrialized populations [56]. A
follow-up study [41] noted that the Rio Zape assemblage may
be a rare find because coprolites from other archaeological
sites, including coprolites directly extracted from well-preserved
mummies, had very poor gut microbiome preservation, includ-
ing a taxonomic profile that is not expected from any
mammalian gut, let alone a human gut. Additionally, the Rio
Zape coprolites are unique because of the relatively high
number (1 =8) of samples with human GI microbiome signa-
tures as compared to those from other archaeological sites [57].

Dental calculus has proved to be more reliable in recon-
structing an accurate microbiome signature compared to
coprolites [42,43,58] primarily because mineralization during
life makes calculus a sturdy and rigid material lacking in
organic nutrients [59,60]. Thus, dental calculus is more resist-
ant to environmental contamination [59,60]. Often, more than
90% of the bacterial DNA found in dental calculus originates
from known oral bacteria, whereas less than half of coprolite
bacterial DNA originates from known gut microbes [41,58],
and many of the challenges associated with studying coprolite
microbiomes (including low DNA yields, soil contamination,
and lack of a true human microbiome community) are less
severe in ancient dental calculus. The first next-generation
sequencing study of ancient dental calculus demonstrated
that the oral microbiome could be reconstructed by amplifying
the 16S rRNA gene from samples ranging from 5500 BCE-1600
CE [61]; however, the use of 165 rRNA variable regions has
been shown to be problematic for ancient microbiome datasets
owing to primer bias [62]. Shotgun metagenomic approaches
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Table 1. Network properties of ancient microbiome ecology datasets. (Modularity was defined as: very low (<0.1), low (0.1-0.15), medium (0.15-0.2), high |JEJi}

(0.2-0.3) and very high (>0.3). Similarly, transitivity was defined as: very low (<0.4), low (0.4-0.5), medium (0.5-0.6), high (0.6—0.7) and very high (>0.7).
All ancient datasets have low or very low modularity and high or very high transitivity.)

population sample type

Rio Zape (n =38) coprolites 2.09 (
Maya (n=7) dental calculus 2.64 (
Nuragic (n=11) dental calculus 271 (
Radcliffe (n = 44) dental calculus 14.14 (3.3)

face fewer biases for taxonomic identification and additionally
allow for the reconstruction of genomes and functional charac-
terization [45]. Along this line, metagenomics has been used
to reconstruct genomes from Tannerella forsythia [45] and
Methanobrevibacter oralis [46] as well as track diversity in
functional and taxonomic profiles in the mammalian oral
microbiome over time [43,61,63].

Here, we present an ecologically focused analysis on
previously published Rio Zape human coprolites (=8, 700
CE) [41,57] and historical dental calculus samples from the
Raddliffe Infirmary Burial Ground, UK (n =44, 1770-1855 CE)
[63], as well as novel metagenomic dental calculus data gener-
ated as part of this study (see the electronic supplementary
material, Methods) from Maya individuals from Belize (n =7,
170 BCE-885 CE) and Nuragic individuals from Sardinia, Italy
(n =11, 1400-850 BCE). To best adapt ecological approaches to
ancient coprolites and dental calculus, we focused on analysing
the structure and properties of microbiome networks, identifi-
cation of keystone taxa and functional diversity of specific
functions of interest. Each of these can be evaluated without
time-series data. Compositionally, corrected networks using
SpaRCC [64] were generated following the protocol suggested
by Layeghifard et al. [65] using species-level bacterial taxonomic
inventories from MetaPhlAn2 [66]. Each network was generated
100 times to estimate network properties (number of clusters,
modularity, transitivity and articulation points). Modularity
and transitivity values were categorized as very low, low,
medium, high and very high based on the distribution modular-
ity and transitivity values across the different networks we
generated. Keystone taxa were identified using three techniques
common to network evaluation: page rank [67,68], hubs
[69,70] and closeness centrality [71,72]. Functional redundancy
was evaluated with gene-level inventories generated by
HUMANN?2 [73] using the UniRef [50,74] database. Finally, we
compared the results from the ancient datasets to modern
human microbiome datasets to evaluate our ability to take a
deeper ecological approach with the former as well as to identify
possible changes in microbiome structure and resilience
between ancient and modern microbiomes. A more in-depth
discussion of our methods and the techniques used for network
analysis and keystone taxa identification can be found in the
electronic supplementary material.

2. Results

(a) Coprolites
(i) Network analysis

We find a mean of 2.09 clusters (table 1) across the network for
the Rio Zape coprolites (figure 1). Taking a broader view of

number of clusters
.d. = 0.43)

]
s.d. = 0.67)
s.d.=0.87)

modularity transitivity

0.111 (s.d. = 0.010)
0.052 (s.d. = 0.008)
0.102 (s.d. = 0.013) 0.704
0.063 (s.d. = 0.006)

0.667 (s.d. = 0.003
0.822 (s.d. = 0.004
(s.d.= 0.003
(

)
)
)
0.738 (s.d. = 0.002)
network properties, the low modularity (mean=0.11) in the
Rio Zape network, indicates that the two clusters are highly
interconnected. Similarly, the high transitivity (mean =0.67)
demonstrates that nodes are highly connected to each other
outside of central nodes. Eubacterium biforme and Phascolarcto-
bacterium succinatutens were identified as potential keystone
species in each of the approaches used to discover keystones
(table 2). Reads mapping to each keystone taxon were authenti-
cated as ancient using MarDamace 2.0 [75,76] (electronic
supplementary material, figure Sla—d). Escherichia and Brachy-
spira were also identified as keystone taxa; however, species-
level resolution could not be obtained. Using MetaPhlAn2,
we determined the presence of gut-associated members of
these genera, such as Escherichia coli and Brachyspira pilosicoli,
respectively, in addition to other unclassified species.

(ii) Keystone functions

The functional roles of these keystones were interpreted by
identifying the top 50 most abundant genes found in each
taxon. Each keystone taxon has a high abundance of typical
housekeeping genes, such as genes involved in synthesis of
ribosomal RNA, transferases and transcriptional regulators
(electronic supplementary material, table S1). We also identified
genes involved in antibiotic-resistance mechanisms (MATE
efflux proteins in Brachyspira, E. biforme, and P. succinatutens,
and acriflavin-resistance proteins in Brachyspira and P. succinatu-
tens). Toxin-antitoxin proteins were abundant in Escherichia,
and transposases were abundant in all the keystone taxa
(electronic supplementary material, table S1).

(iii) Functional redundancy

We used a gene-centric approach to evaluate functional
redundancy and response diversity as estimators of resilience
in the coprolite microbiome. Short-chain fatty acids (SCFAs)
such as acetate, butyrate and propionate, are critical for main-
taining a properly functioning human gut microbiome
[77-79] and therefore are an intuitive starting point for inves-
tigating gene-level functional diversity. We focused our
analysis on three SCFA synthesis genes: acetate kinase (acet-
ate), butyrate kinase (butyrate) and methylmalonyl-CoA
decarboxylase (propionate). We observe higher diversity for
acetate kinase in species richness (p-value <4 x 1077), phylo-
genetic diversity (p-value <2x107°) and Gini-Simpson
(p-value <0.003) (figure 2a—c). These results point towards
high response diversity (high number of phylogenetically
diverse species) and more evenly distributed production for
the taxa encoding acetate kinase, resulting in functionally
redundant production of acetate kinase in the Rio Zape
coprolites. Butyrate kinase and methylmalonyl-CoA decar-
boxylase are similar to each other in species richness
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1) Treponema_succinifaciens

2) Faecalibacterium_prausnitzii
3) Prevotella_copri

4) Eubacterium_rectale

5) Escherichia_coli

6) Subdoligranulum_unclassified
7) Ruminococcus_torques

8) Phascolarctobacterium_succinatutens

9) Eubacterium_eligens

10) Prevotella_stercorea

11) Bifidobacterium_longum
12) Eubacterium_siraeum

13) Butyrivibrio_crossotus

14) Roseburia_hominis

15) Methanobrevibacter_smithii
16) Bifidobacterium_breve

17) Bacteroides_uniformis

18) Eubacterium_biforme

19) Ruminococcus_bromii

20) Lactobacillus_ruminis

21) Catenibacterium_mitsuokai
22) Eubacterium_hallii

23) Ruminococcus_callidus
24) Coprococcus_catus

25) Collinsella_unclassified
26) Clostridium_bartlettii

27) Ruminococcus_obeum

28) Escherichia_unclassified

30) Collinsella_intestinalis

31) Veillonella_unclassified

32) Coprococcus_comes

33) Roseburia_inulinivorans

34) Bacteroides_plebeius

35) Bacteroides_dorei

36) Desulfovibrio_piger

37) Dorea_longicatena

38) Acinetobacter_unclassified
39) Roseburia_intestinalis

40) Bifidobacterium_bifidum

41) Lachnospiraceae_bacterium_8_1_57FAA
42) Collinsella_aerofaciens

43) Alistipes_unclassified

44) Anaerotruncus_unclassified
45) Enterococcus_faecium

46) Megasphaera_unclassified
47) Sordaria_macrospora

48) Lactobacillus_animalis

49) Providencia_rettgeri

50) Lachnospiraceae_bacterium_5_1_63FAA
51) Streptococcus_thermophilus
52) Bacillus_isronensis

53) Acinetobacter_Iwoffii

54) Alistipes_putredinis

55) Ruminococcus_lactaris

56) Paraprevotella_unclassified
57) Eubacterium_ramulus

59) Methanobrevibacter_unclassified

60) Parabacteroides_unclassified
61) Haemophilus_parainfluenzae
62) Bacteroides_pectinophilus
63) Oscillibacter_unclassified
64) Streptococcus_salivarius
65) Ruminococcus_gnavus
66) Campylobacter_upsaliensis
67) Solibacillus_silvestris

68) Bacteroides_cellulosilyticus
69) Barnesiella_intestinihominis
70) Parabacteroides_merdae
71) Veillonella_parvula

72) Bacteroides_coprophilus
73) Streptococcus_vestibularis
74) Helicobacter_bilis

75) Brachyspira_unclassified
76) Mitsuokella_unclassified
77) Akkermansia_muciniphila
78) Kurthia_sp_Dielmo

79) Odoribacter_splanchnicus
80) Dorea_unclassified

81) Enterococcus_hirae

82) Thiomonas_unclassified
83) Bacteroides_stercoris

84) Bacteroides_caccae

85) Clostridium_hiranonis

86) Alistipes_shahii

29) Dorea_formicigenerans

58) Malvastrum_leaf_curl_Philippines_betasatellite =~ 87) Bacteroides_thetaiotaomicron

Figure 1. Rio Zape coprolite network (n = 8) generated with SearCC. Clusters are differentially coloured, keystones are outlined in black, and edges between nodes
represent Pearson correlations greater than 0.3. Refer to legend for taxa corresponding to each numbered node. Clusters and nodes are highly interconnected, which

is consistent with the low modularity and transitivity values observed.

and phylogenetic diversity (p-value >0.05), while Gini-
Simpson is higher for taxa encoding butyrate kinase
(p-value <0.03). Higher Gini-Simpson index values for
butyrate production, compared to propionate, suggests a

more even distribution of taxa encoding butyrate kinase
and therefore greater protection against shifts in taxono-
mic abundance that may ultimately cause a decrease in
propionate production.
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Figure 2. Functional diversity in the Rio Zape coprolites for short-chain fatty acid synthesis. (a) High functional redundancy (richness), (b) response diversity
(phylogenetic diversity), and (c) evenness (Gini-Simpson) are observed for acetate, indicating production of acetate was more resilient than butyrate and propionate
in the Rio Zape population. Taxa encoding butyrate are more evenly distributed than those encoding propionate.

Table 2. Likely keystone taxa were identified using three approaches (page rank, closeness centrality and hubscore). (Each network was generated 100 times
and in each iteration the five most likely keystones from each approach were saved. The table below represents taxa that appear in at least 80 of the 100
iterations. There is strong agreement for each dataset’s keystones, regardless of approach used.)

population

Rio Zape (n =38)

Maya (n=7)

Nuragic (n=11)

Raddiffe (n = 44)

page rank
closeness centrality
hubscore

page rank
closeness centrality
hubscore

page rank
closeness centrality
hubScore

page rank
closeness centrality

ubScore

likely keystone taxa

Eubacterium biforme

Eubacterium biforme

Eubacterium biforme

Fusobacterium nucleatum
Fusobacterium nucleatum
Fusobacterium nucleatum

Eubacterium saphenum

Eubacterium saphenum

Eubacterium saphenum

Treponema socranskii
Treponema socranskii
Treponema socranskii

Phascolarctobacterium
succinatutens
Phascolarctobacterium
succinatutens
Phascolarctobacterium
succinatutens
Treponema denticola
Treponémd denticola
Treponema denticola
Olsenella unclassified
Olsenella unclassified
Olsenella unclassified

Tannerella forsythia

» »Tannere//a forsythia

Escherichia unclassified
Escherichia unclassified

Escherichia unclassified

Cardiobacterium_valvarum

Brachyspira
undlassified

Brachyspira
undlassified

Brachyspira
unclassified

Cardiobacterium_valvarum

Streptococcus gordonii

Neisseria elongata
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Figure 3. Networks for the three dental calculus datasets: (@) Maya, (b) Nuragic and (c) Raddliffe. Clusters are differentially coloured, keystones are outlined in black,
and edges between nodes represent Pearson correlations greater than 0.3. Refer to legend for taxa corresponding to each numbered node. The high number of
clusters in the Raddliffe network is probably related to increased sample size in this dataset. Highly interconnected clusters and nodes in each network is consistent
with the low modularity and transitivity values observed.

Table 3. Basic network properties of the ancient and modern microbiome ecology datasets. (Modularity was defined as: very low (<0.1), low (0.1-0.15),
medium (0.15-0.2), high (0.2-0.3) and very high (>0.3). Similarly, transitivity was defined as: very low (<0.4), low (0.4-0.5), medium (0.5-0.6), high (0.6—
0.7) and very high (>0.7). Modern gut microbiomes datasets have higher modularity and low transitivity than the Rio Zape coprolites. Modern dental calculus
is similar to ancient dental calculus. HMP, Human Microbiome Project.)

number of clusters

population

biological source

sample type modularity transitivity

0.111 (s.d. = 0.010
0.178 (s.d. = 0.017

Rio Zape (n=38) faeces
Matses (n = 26)

2,09 (s.d. =043
6.46 (s.d. = 1.57

ancient coprolites 0.667 (s.d. = 0.003)

modern faeces 0.465 (s.d. = 0.004)
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HMP, USA (n = 50)
Hadza (n = 25)
China (n=38)
Maya (n=7)
Nuragic (n = 11)
Raddiffe (n = 44)
Spanish (n = 10)

dental calculus

)
)
17.03 (s.d. =3.23)
7.79 (s.d. = 1.65)
9.77 (s.d. = 3.29)
2,64 (s.d. = 0.67)
2.71 (s.d. = 0.87)
14.14 (33)

2,67 (s.d. = 0.84)

ancient dental calculus

modern dental calculus

( )
( )
0.379 (s.d. = 0.021)
0.199 (s.d. = 0.014)
0.256 (s.d. = 0.015)
0.052 (s.d. = 0.008)
0.102 (s.d. = 0.013)
0.063 (s.d. = 0.006)
0.101 (s.d. = 0.008)

(

(
0268 (s.d. = 0.009)
0402 (s.d. = 0.009)
0377 (s.d. = 0.005)
0822 (s.d. = 0.004)
0.704 (s.d. = 0.003)
0738 (s.d. = 0.002)
0632 (4. = 0.002)

(b) Dental calculus

Shotgun metagenomic data were generated for Maya individ-
uals (1 =7) and Nuragic individuals (1 = 11). SOURCETRACKER2
[80] analysis showed preservation of the oral microbiome sig-
nature in all samples, as evidenced by the proportion of
reads attributed to taxa commonly found in subgingival or
supragingival plaque (electronic supplementary material,
figure S2).

(i) Network analysis

The two archaeological populations show similar network
properties: the Maya population (figure 3a) shows an average
of 2.64 clusters, modularity of 0.052 and transitivity of 0.822.
The Nuragic population (figure 3b) shows 2.71 clusters,
modularity of 0.102 and transitivity of 0.704 (table 1). Modu-
larity is significantly higher in the Nuragic population
(p-value <2x107'°) and transitivity is higher in the Maya
population (p-value <2 x 107'°), yet overall, both populations
show very low or low modularity and very high transitivity
compared to other networks generated in our analysis

(table 3). Low modularity values are consistent with a net-
work that has highly interconnected clusters; the clusters
lack independence. Similarly, the high transitivity values
reflect the diverse paths to connect the bacterial species in
each network, providing further evidence of high intercon-
nectivity in the network. The historical Radcliffe population
(figure 3c) has significantly more clusters (14.1) compared
to the Maya (2.64) and Nuragic (2.71) populations (p-value
<2 x 107'%), which is probably driven by higher sample size
in the Radcliffe dataset (see Sample Size Simulation section
in Results). Despite this, the Radcliffe dataset is similar to
the archaeological dental calculus in having very low modu-
larity and very high transitivity (table 1).

The keystone species identified in each population are
known oral taxa (table 2). Reads mapping to these taxa were
authenticated as ancient for the Maya and Nuragic datasets
on the basis of DNA damage patterns, generated using Map-
DAMAGE 2.0 (electronic supplementary material, figures S3
and S4), suggesting that the networks represent an accurate
ancient oral ecology. Additionally, keystone species were con-
sistent regardless of analytical approach used (table 2). Taxa
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associated with periodontitis progression were identified as
keystone in each of the populations: Treponerma socranskii and
T. forsythia in Radcliffe, Eubacterium saphenum and Olsenella
sp. in Nuragic Sardinians, and Fusobacterium nucleatum and
Treponema denticola in Maya. Cardiobacterium valvarum was
also identified as a keystone in the Maya population.

(ii) Co-occurring taxa

We next evaluated the co-occurrence patterns of selected taxa
of interest: early colonizing bacteria Streptococcus gordonii,
Streptococcus sanguinis and Actinomyces naeslundii [13,81,82],
as well as periodontitis-associated bacteria T. forsythia,
T. denticola and P. gingivalis [13,83-86]. These bacteria were
chosen to study cluster co-occurrence because they play an
important role in ecological interactions and functions;
early colonizers are among the first bacteria to colonize the
dental surface and periodontitis-associated bacteria can shift
the community to a disease state. We documented how
often common members of the oral microbiome are found
in the same cluster as each taxon of interest (electronic sup-
plementary material, figure S5). In the Maya and Radcliffe
populations, early colonizers like S. gordonii and S. sanguinis
co-occur in the same cluster as the periodontitis-associated
bacteria T. forsythia and T. denticola. In the Nuragic popu-
lation, we observed a similar trend but S. gordonii does not
co-occur with the other oral taxa and another early colonizer,
A. naeslundii, appears to take S. gordonii’s place. Actinomyces
naeslundii does not co-occur with the above-mentioned oral
taxa in the Maya and Radcliffe populations.

(iii) Keystone functions

Similar to the coprolites, the most abundant genes encoded by
the keystones identified in each of the dental calculus samples
include transporters, transferases and ribosomal proteins.
Efflux-related proteins linked to antibiotic-resistance (MATE
efflux and RND efflux) were identified as highly abundant
genes in each of the Maya and Radcliffe keystones, but in
neither of the Nuragic keystone taxa (electronic supplementary
material, tables 52-54). The Nuragic keystones both encode
putative pathogenic genes: bacteriocin in E. saphenum and viru-
lence activator in Olsenella. Fusobacterium nucleatum in the Maya
samples was the only other keystone found to encode similar
genes (haemolysin and ethanolamine utilization). Finally, the
keystones C. valvarum (Maya), T. denticola (Maya) and Olsenella
(Nuragic Sardinians) were found to encode toxin-antitoxin
genes and other stress-response genes in high abundance.

(iv) Functional redundancy

For gene-centric analyses, we focused on proteins involved
in dental calculus formation via cell-cell binding (adhesins,
flagellar and fimbrial proteins) [59] to give a better under-
standing of the functional redundancy of proteins involved
in dental calculus formation. The Radcliffe and Maya popu-
lations have o diversity similar profiles for each binding
protein and metric, while the Nuragic population has
significantly lower richness than both Radcliffe and Maya
populations for each gene (p-value <0.04; figure 4a). The
Nuragic population has significantly lower phylogenetic
diversity for every gene (p-value <0.0005) and Gini-Simpson
for fimbrial and flagellum genes (p-value <0.0008) compared
to Radcliffe (figure 4b,c). The Maya population has signifi-
cantly greater phylogenetic diversity for fimbrial genes

(p-value <0.003) and greater Gini-Simpson for adhesin and -

flagellum genes (p-value <0.03) as compared to the Nuragic
Sardinians (figure 4b,c).

(v) Articulation points

Neither the coprolites nor dental calculus networks have
articulation points. This is probably related to the low modular-
ity in the networks: the interconnectivity of clusters within each
network makes it likely for clusters to be connected to each
other through multiple nodes.

(c) Comparison to modern microbiomes

The coprolite and dental calculus networks inform about
general properties (numbers of clusters, connectedness, and
articulation points) and identify keystone species. We com-
pared these data to modern microbiome datasets to assess
the viability of ancient networks. The Rio Zape coprolites
were compared to modern faecal microbiome datasets that
represent hunter-gatherers (Hadza [87] and Matses [88])
and industrialized populations (MetaHIT-China [89] and
Human Microbiome Project [90]). The ancient dental
calculus was compared to modern Spanish dental calculus
[63]. It is important to compare ancient dental calculus to
modern dental calculus and not modern dental plaque, as
dental calculus is distinct from dental plaque in maturation
stage and ecology [63]. The small number of datasets mean
that broad interpretations may be limited but it is a useful
practice, nonetheless. The coprolite dataset showed fewer
numbers of clusters (p-value <2 x 107'°), lower modularity
(p-value <2x107'°), and higher transitivity (p-value <2 x
107'%) than modern faecal datasets (table 3). Unlike the low
modularity and high transitivity found in the Rio Zape copro-
lites, the modern faecal microbiome networks had medium to
very high modularity and low to very low transitivity (table 3).
Both the modern and ancient dental calculus datasets each
have low to very low modularity and high to very high transi-
tivity, while a high number of clusters is only found in the
Radcliffe ancient dental calculus dataset (table 3). The
Human Microbiome Project faecal microbiome network was
the only network that had articulation points. Keystone taxa
were not shared between ancient and modern datasets,
except for P. succinatutens serving as a keystone in the Rio
Zape coprolites and modern Hadza hunter—gatherers.

The Rio Zape coprolites had similar response diversity and
redundancy profiles when compared to the modern Matses
and Hadza hunter—gatherers for taxa encoding SCFA synthesis
genes. Overall, acetate kinase had the highest o diversity in
each dataset, regardless of metric used (p-value <1 x 1079
(electronic supplementary material, figure Séa—c). No signifi-
cant differences were observed between the coprolites and
Hadza (p-value >0.05), but the Matses hunter-gatherers had
significantly greater phylogenetic diversity for propionate
synthesis (p-value <4 x 107*) and Gini-Simpson for butyrate
synthesis (p-value <7 x107'°) compared to the coprolites.
The industrialized populations were significantly more diverse
than the coprolites for all metrics in butyrate kinase and meth-
malonyl-CoA decarboxylase, as well as for species richness in
acetate kinase (p-value <0.03). This observation is probably
related to ascertainment bias that hinders annotation and taxo-
nomic identification in non-industrial gut metagenomes [91],
but this area bears further study.

~
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Figure 4. Functional diversity in the ancient calculus datasets for genes involved in bacterial cell adhesion and cell-cell binding. In general, the Maya and Radcliffe
datasets have greater (a) functional redundancy, (b) response diversity and (c) evenness compared to the Nuragic samples for each gene of interest. These oral
ecosystems may have been more robust in terms of dental calculus deposition and growth. Significant p-values are given in reference to the Nuragic dataset.

The Spanish modern dental calculus had higher o diversity
for all genes of interest in each metric when compared to the
prehistoric Nuragic dental calculus (p-value <0.05) (electronic
supplementary material, figure S6d—f). Likewise, the modern
dental calculus had greater richness than the Radcliffe and
Maya populations (p-value <0.012), with the exception of
taxa encoding flagella in the Maya population. The modern
dental calculus had significantly higher phylogenetic diversity
than the Maya and Radcliffe datasets for fimbrial production
(p-value <0.006) (electronic supplementary material, figure
S6e) but there were no significant differences between the Rad-
cliffe, Maya, and modern dental calculus in Gini-Simpson
(electronic supplementary material, figure S6f).

(i) Sample size simulation

Most archaeological sites will provide small sample sizes. In
our study, to address the effect of sample size on uncovering
ecological interactions from human microbiomes, we simu-
lated the effect of small sample size using modern GI tract
microbiome data (see the electronic supplementary material,
Methods). In brief, we randomly subsampled five, 10 and 20
samples from each dataset, then filtered taxa and generated
the networks in the same way as we did for the full datasets.
We found that both the number of clusters (+*=0.91) and net-
work distinctness ratio (+*=0.88) increase with sample size

(electronic supplementary material, table S5 and figure S7a,
b). A high network distinctness ratio means high modularity
and low transitivity, and therefore increased sample size
leads to more clusters that are highly distinct from each
other. We performed the same small sample size simulation
with the Radcliffe ancient dental calculus dataset, which
was our only dental calculus dataset with more than 20
samples. Similar to the faecal microbiome datasets, the
number of clusters increased with sample size (r*=0.94);
however, there was no increase in the network distinctness
ratio (+?=0.52) (electronic supplementary material, figure
S7a,b), indicating there are more clusters but those clusters
are still highly interconnected. For both the faecal micro-
biomes and dental calculus, the keystones found in the full
sample dataset were not found in any of the five-sample data-
sets and only rarely found in the 10-sample datasets
(electronic supplementary material, table S6 and figure S8).
The keystones identified in the 20-sample dataset were simi-
lar to the keystones found in the full datasets (electronic
supplementary material, table S6 and figure S8).

The gene-specific approaches do not appear to be hindered
by small sample size. As discussed above, we observed similar
profiles between modern faecal datasets (Hadza, n =26 and
Matses, 1 =25) and small coprolite datasets (Rio Zape = 8), as
well as similar profiles between large ancient dental calculus
datasets (Radcliffe, 7 =44) and small ancient and modern

98506107 :SLE § 0S "y "supif “iyd  qis/jeusnol/ba0°buiysiigndKranosiedol H



Downloaded from https://royalsocietypublishing.org/ on 01 June 2021

dental calculus datasets (Maya, n =7 and Spain, 1 = 10). There-
fore, analysis of functional diversity in ancient human
microbiome datasets remains robust even when few samples
are recovered archaeologically.

Archaeologists have made use of coprolites and dental calculus
to study human biology, nutrition, and cultural behavior
[38-40,42,43,58,92]. Applying ecological approaches to ancient
human microbiomes from these materials is a clear next step to
provide a deeper understanding of biology in the past. As
research on modern human microbiome ecology is still in its
infancy, it is expected that ancient microbiome ecology research
will lag behind, but it should not be ignored. We have found
that by focusing on ecological elements that can be interpreted
from single time-point samples, such as ecological network
properties, clusters of bacteria, keystone species, functional
redundancy and response diversity, we can gain a glimpse of
ecological interactions and functional diversity in ancient
human microbiomes.

The four keystone taxa identified in the Rio Zape coprolites
are known members of the contemporary human gut micro-
biome, which provides a validation for prehistoric keystone
taxa. Eubacterium biforme and P. succinatutens are commensals
that can produce the SCFAs butyrate [79,93] and propionate
[79,94], respectively, in addition to performing other functions.
The role of Escherichia in the gut is variable and has been ident-
ified in both disease and health-associated states [5,95]. Lastly,
Brachyspira is primarily found in the Gl-tract of pigs [96], chick-
ens [97], and humans [98] and is associated with diarrhoea and
other Gl-tract maladies [99,100]; however, members of this
genus can survive in soil for up to four months after faecal shed-
ding [101]. While our analysis of keystone taxa was unable to
provide species-level resolution for Brachyspira, a MetaPhlAn2
analysis showed that one of the species identified in the copro-
lites was B. pilosicoli. Brachyspira pilosicoli causes intestinal
spirochaetosis in humans [98] and reads mapping to B. pilosicoli
were authenticated as ancient using MAPDAMAGE 2.0, suggesting
that B. pilosicoli could be a keystone species in this population.
The diverse roles of the coprolite keystone taxa suggest that
they may dominate distinct niches that lead to different impacts
on human biology.

High response diversity and redundancy for acetate kinase is
expected as acetate is the most abundant SCFA found in the
human gut microbiome and is known to be encoded by diverse
groups of bacteria [77-79,102]. Nevertheless, it is encouraging
that we observed this trend in coprolites as further support that
we picked up a gut microbiome profile. The lower Gini-Simpson
values for methylmalonyl-coa decarboxylase indicates that a few
species dominate production of propionate, while production of
butyrate is more evenly distributed between taxa. From an eco-
logical perspective, the Rio Zape ancient microbiomes were
probably more prone to loss of propionate production than acet-
ate and butyrate because only a few, non-phylogenetically
diverse bacteria dominated propionate production.

The keystone taxa identified in the Radcliffe and Maya
dental calculus datasets (T. forsythia and T. socranskii in
Radcliffe and T. denticola and F. nucleatum in Maya) are mem-
bers of the red and orange complex group of bacteria
associated with periodontitis. Red complex bacteria are associ-
ated with driving periodontitis [86,103], and orange complex

bacteria can function as bridging microbes that facilitate pro- [ 9 |

liferation of red complex bacteria [104]. However, the simple
presence of ‘orange’” and ‘red’ complex bacteria does not guar-
antee periodontitis progression, as the disease is complex
[13,83,84,86]. Nevertheless, the presence of these bacteria as
keystones, as well as other disease-associated keystone taxa
in the Nuragic population (E. saphenum and Olsenella sp.)
[83], indicates that such ancient oral microbiomes are prone
to periodontitis. Cardiobacterium valvarum, found to be a key-
stone species in the Maya population, has been associated
with endocarditis [105,106] and also has been isolated from
the oral cavity of patients with periodontitis [106]. While we
do not have any information on the cardiovascular health of
the Maya individuals included in this study, the presence of
C. valvarum in ancient dental calculus further supports the
idea that the oral cavity has long hosted bacteria known to be
involved in cardiovascular disease [45].

The Nuragic dental calculus is generally similar to the other
two ancient dental calculus datasets for network properties; yet
it is distinct in functional diversity and patterns of co-
occurrence, highlighting the benefit of using multiple
approaches to study ecological variation in the microbiome.
There is significantly lower response diversity and redundancy
in the Nuragic population for each gene of interest. These genes
are involved in bacterial cell-cell binding and development of
biofilms, which suggests that this population had unique
ecological interactions during dental calculus deposition and
growth. Along those lines, S. gordonii does not cluster with
other oral bacteria and is replaced with A. naeslundii in the
Nuragic Sardinian dental calculus. In the other datasets,
A. naeslundii does not cluster with the other oral bacteria,
while S. gordonii does. These two bacteria are early colonizers
of the dental surface and therefore may represent alternative
paths to early ecological interactions involved in ancient
dental calculus formation.

The keystone taxa found in the coprolites and dental
calculus are enriched for antibiotic resistant genes. The pres-
ence of antibiotic-resistance proteins in coprolites and dental
calculus is anticipated; antibiotic-resistance is a natural result
of millions of years of microbial evolution. However, it is
noteworthy that three of the four keystone taxa in the Rio
Zape coprolites are enriched for antibiotic-resistance proteins,
suggesting how this mechanism may be important in a gut
microbiome ecology. The Nuragic dental calculus was once
again distinct owing to the lack of antibiotic resistant genes
found in its keystone taxa, yet the Nuragic keystones were
enriched for pathogenic genes. The explanation for why the
Nuragic population exhibits a seemingly distinct oral ecologi-
cal community remains elusive. Host genetics may play a
role, as Nuragic Sardinians had very low genetic diversity
[107] and host genetics does have an impact on the make-
up of the human oral microbiome [108]; however, we did
not analyse human genetics in our study and therefore we
cannot provide further resolution for this idea. The unique
oral microbiome in Nuragic Sardinians could also result
from extensive use of copper mined from the island during
the Bronze Age [109,110]. Copper has antimicrobial proper-
ties [111] and copper oxide, which is a product of heating
copper [112] and has been found in Sardinian Bronze Age
artefacts [113], is antimicrobial and has been shown to inhibit
oral biofilm formation [114]. It is possible that copper
affected Nuragic Sardinian oral microbiomes, such as
through direct, accidental inhalation while working with
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the material or through copper leaching into water/food;
however, we did not examine copper content of the dental
calculus. These hypotheses may be of interest to future
anthropological research.

The lack of articulation points in the ancient microbiome
datasets means that there are no specific weak-link taxa that
would result in a disconnected network if they were
removed. Such flexibility in ecological structure can be ben-
eficial but may also mean less stability in taxonomic and
functional interactions. However, not much is understood
about articulation points in microbiome networks, let alone
ancient microbiome networks, and more work needs to be
done to develop the theory in this area.

While this may point to greater ecological stability, it is more
likely a result of flexibility in the network structure (meaning
low modularity), which is directly tied to sample size.

Contemporary hunter-gatherers shared a keystone species
with the coprolites (P. succinatutens). Additionally, the contem-
porary and ancient hunter-gatherer faecal microbiomes had
similar response diversity and redundancy profiles for SCFA
production. Both observations indicate a potential overlap
in ecological community structure and function in contempor-
ary and ancient hunter—gatherers. The similarity in ecological
profiles is exciting because it also demonstrates that ecological
interpretation is feasible with ancient microbiome datasets.
A similar conclusion can be drawn from comparing the
modern Spanish dental calculus to the Maya and Radcliffe
ancient dental calculus. Each of these dental calculus datasets
have low modularity, high transitivity, and similar phylo-
genetic diversity and Gini-Simpson values for each gene
of interest. There are probably different factors driving simi-
larity in ancient and modern gut microbiomes than the factors
driving similarity in ancient and modern dental calculus, but
these observations present opportunities for deeper investi-
gations into how lifestyle changes over time influence
variation in ecological interactions and functional redundancy
within microbiomes.

While we were able to demonstrate key ecological signa-
tures of ancient human microbiomes, there remains reason
for caution in interpretation and application of ecological
approaches to studying these biomaterials. A primary concern
is sample size. In faecal datasets with small sample sizes
(n<10), we observed fewer clusters, lower modularity, and
high transitivity. This pattern means that clusters will consist
of many taxa and the clusters will be highly interconnected,
which may obfuscate more nuanced ecological interactions.
However, in the dental calculus dataset, we observed fewer
clusters at small sample size, but no change in the network dis-
tinctness ratio with sample size, meaning increased sample size
does not result in more separation between clusters and nodes.
Nevertheless, both the faecal and dental calculus small-sample
datasets report different keystone taxa than the respective full
datasets. Given the current data available, archaeological
studies with representative microbiome samples greater than
20 is strongly suggested for such analyses.

Unfortunately, excavating more than 20 coprolites with suf-
ficient microbiome data to perform ecological analysis from a
single site is unlikely. A major challenge is the presence of
soil and non-GI tract bacteria in coprolites. Even in the best
cases, human GI tract microbiome bacteria make up less than
or equal to 75% of microbial DNA in coprolites [41]; thus,
improved methods to isolate gut-derived molecules are
required. Furthermore, among the coprolites that are consistent

with the gut microbiome, the gut may not be solely human; m

for instance, dogs are coprophagic and suspected human
coprolites may, in fact, be from dogs. Additionally, host
DNA content may leach between coprolites, as well as other
sources [115]. Fortunately, recently developed bioinformatic
approaches are improving our ability to distinguish human
from non-human coprolites [57,116]. Finally, coprolites are rela-
tively delicate and often expose the sample to processes that
alter DNA sequences and fragment nucleic acids. While micro-
biome data has been successfully recovered from coprolites in
diverse sets of environments [41,117-119], we would expect
such success to be an exception rather than the rule. Even
when a set of coprolites do prove to retain a GI microbiome
community, the small sample size may hinder ecological
interpretation. Microbiomes from mummies initially provided
an intuitive avenue to study ecology of ancient human gut
microbiomes but was ultimately discovered to be misleading
as the human gut, upon death, continues to be a moist,
warm, enclosed bioreactor shaping the ecology to resemble
that expected of compost [41]. Because ecology focuses so clo-
sely on taxa-taxa abundances and taxa-gene interactions, the
preservation issues of a coprolites presents a major challenge,
but Rio Zape proved to be an exception, as our results show
that we can still study resilience and redundancy with small
sample sizes.

A further challenge is authenticating that the communities
are in fact ancient human microbiomes. Importantly, the pre-
viously published datasets used in this analysis validated
their sequencing reads and we did the same for our newly gen-
erated data with SOURCETRACKER2 [80], where the majority of
our reads come from expected oral microbes. As expected for
ancient DNA, all samples had reads which could not be
assigned to known taxa in the database (categorized as
‘unknown’ in SOURCETRACKER2). We included these reads in
our analyses, because a majority of them probably originate
from ancient oral microbes but cannot be confidently assigned
owing to existing databases being biased towards reference
strains from modern, industrialized populations. These
‘unknown’ reads may belong to taxa performing important
functions and therefore removing them may bias results. An
additional validation for the recovery of an ancient microbiome
is to analyze post-mortem DNA damage patterns for reads
mapping to the keystone taxa, by using programs such as
MarDaMAGE 2.0 [75]. Damage patterns consistent with ancient
DNA lend strong credibility that the taxa at the centre of eco-
logical interactions (i.e. the keystone taxa) are truly ancient,
and not arising from recent contamination. Contamination
from modern sources, either environmental or from human
microbiomes during laboratory work, would be evident in
both the types of microbes identified as keystone taxa, as
well as a lack of the prototypical ancient DNA damage [120]
in these keystones. Keystone taxa indicative of recent contami-
nation would be bacteria found at high abundance in soil and /
or human skin microbiomes. However, our results indicate that
we are profiling an ancient microbial ecosystem because our
keystone taxa are gut/oral microbes and have prototypical
ancient DNA damage.

A greater interest in the maturing of ecological theory for
microbiomes is needed, but applying such theory effectively
requires a serious investment in mitigating ascertainment
biases that burden current reference databases. Publicly avail-
able reference databases are skewed towards microbiomes
from modern, industrial settings, of often health-associated
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microbiomes, which bias functional annotation of ancient
and non-industrial studies. This ascertainment bias explains
why we observe high taxonomic diversity for the industrial-
ized gut microbiome datasets and provide at least a partial
explanation of ‘unknown’ reads in ancient dental calculus
results. Our functional diversity approach relies on mapping
to marker genes identified from reference taxa. Poor reference
representation from non-industrialized populations will lead
to bacterial genes and taxa being missed and categorized as
‘unknown’. Future microbiome initiatives must avoid exacer-
bating these biases, with an attention to data that informs,
and contextualizes, the microbial ecology.
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