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Phenotypic plasticity and sexual selection can each promote adaptation in
variable environments, but their combined influence on adaptive evolution is
not well understood. We propose that sexual selection can facilitate adaptation
in variable environments when individuals prefer mates that produce adaptively
plastic offspring. We develop this hypothesis and review existing studies
showing that diverse groups display both sexual selection and plasticity in non-
sexual traits. Thus, plasticity could be a widespread but unappreciated benefit of
mate choice. We describe methods and opportunities to test this hypothesis and
describe how sexual selection might foster the evolution of phenotypic plasticity.
Understanding this interplay between sexual selection and phenotypic plasticity
might help predict which species will adapt to a rapidly changing world.

Phenotypic Plasticity and Sexual Selection

Researchers have long recognized that sexual selection and phenotypic plasticity (see
Glossary) can each play key roles in diverse ecological and evolutionary processes [1-4]. Less
widely appreciated is that sexual selection and plasticity can interact in ways that influence how
these processes unfold. One such process that this interaction can impact is adaptive evolution.

A way that sexual selection, acting alone, can promote adaptive evolution is when sexual traits
(e.g., female mate preferences or male sexual signals) predict offspring fitness [5-8]. For
example, males might produce condition-dependent sexual displays that predict the fithess of
their offspring (e.g., because good-condition males transmit fewer deleterious and more beneficial
alleles to their offspring relative to lower-condition males [5-10]). If females preferentially mate with
males that express exaggerated forms of those condition-dependent displays, and produce fitter
offspring as a result, sexual selection thereby fosters adaptation [7—10]. However, some have
argued that maintaining this type of relationship between sexual traits and offspring fitness requires
consistent selection [11-13]. This is problematic because most environments vary in space and
time. Such variation can cause the selective environments that adults experience to differ from
those that their offspring experience. In these situations, sexual traits would likely fail to predict
offspring fitness, which would preclude sexual selection from promoting adaptation [3,13-16].

Sexual selection could promote adaptation in variable environments by favoring plasticity in mate
preferences or sexual signals [3,6,12,16,17]. Under such circumstances, sexual traits that
maximize offspring fitness in a particular environmental context would be expressed only in that
context when parents assess the environment and respond by altering their sexual traits though
plasticity. Yet, if parental and offspring environments are so different that parents cannot assess
the conditions that their offspring will experience, then even plasticity in sexual traits would fail to
promote adaptive evolution [11-16,18]. Moreover, offspring of a given pairing might experience
selective pressures that differ not only from those experienced by the parents, but also from
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those experienced by their siblings. Thus, plasticity in parents’ sexual traits might be unable to op-
timize the fitness of all their offspring [3,13,19].

Yet, there is a way that sexual selection can promote adaptation, even in variable environments
where parents cannot assess their offspring’s environment(s) or in situations where parents
cannot facultatively modify their sexual traits. Specifically, individuals could choose mates that
produce adaptively plastic offspring. Essentially, individuals could select mates whose offspring
adaptively assess and respond to their environment [18]; in other words, offspring plasticity
could be a fitness benefit of mate choice. Such offspring plasticity would arise when individuals
choose mates that either pass on genetic or nongenetic variation to offspring that enables off-
spring to respond facultatively to the environment, or provide resources to the choosy individual
that enables the production of plastic offspring (e.g., nuptial gifts, sensu [20], that, when allocated
to offspring, enable greater plasticity). Regardless of how the benefit of offspring plasticity is
conferred, plasticity in offspring traits, as opposed to plasticity in adult sexual traits, should
arise under conditions where parent and offspring environments differ and where parental
plasticity is either not possible or disfavored (Table 1 and Box 1).

The hypothesis that offspring plasticity could function as a fitness benefit of mate choice rests on
conventional predictions of mate choice theory (sensu [1]). Nevertheless, the potential for plasticity
and sexual selection to interact in this way has important implications for both how adaptation can
proceed in variable environments and the evolution of plasticity per se. Before discussing these
evolutionary implications, we first develop the hypothesis in greater detail.

Offspring Plasticity as a Fitness Benefit of Mate Choice

When individuals prefer mates that produce plastic offspring, such offspring plasticity could
constitute a fitness benefit of mate choice. Offspring plasticity could take many forms (Table 2),
including: the expression of alternative morphologies in early development [18,21], greater behavioral
flexibility in coping with their environment [22], or even the expression of adult traits [3,6,12,16,17].
However, our focus here is plasticity involving offspring (not parents) assessing and responding
to their environment and that is expressed prior to sexual maturity (Table 1). Such plasticity is
common in nature and frequently influences offspring survival (Table 2). Importantly, plasticity
expressed prior to maturity is not only a potential fitness benefit of mate choice, but can also
continue to be expressed and/or have important effects on phenotypes and fitness in sexually
mature individuals (Table 2).

To illustrate how plasticity can serve as a fitness benefit of mate choice, consider Mexican
spadefoot toads (Spea multiplicata; Figure 1). Spea tadpoles can develop as either an omnivore
phenotype with generalized tadpole morphology and diet, or as a distinctive carnivore phenotype,
which possesses features that allow it to specialize on large, mobile animal prey, such as
anostracan fairy shrimp or other tadpoles [23]. This carnivore phenotype is induced when a
young tadpole eats fairy shrimp or other tadpoles [24] (i.e., Spea tadpoles exhibit diet-induced
phenotypic plasticity).

Neither alternative phenotype is intrinsically superior to the other. Rather, intraspecific resource
competition gives rise to negative frequency-dependent disruptive selection, which maintains
both phenotypes in the same pond [23]. Such selection generates equilibrium frequencies of the
two phenotypes, which vary across ponds and years [23]. Consequently, the optimal developmen-
tal strategy for a tadpole is to possess plasticity to become either an omnivore or a carnivore
[23,24]. Critically, this plasticity is greatest among S. multiplicata tadpoles sired by the relatively
high-condition, fast-calling males with which females prefer to mate [18,25-27].
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Glossary

Cryptic genetic variation: genetic
variation that is not expressed
phenotypically under normal conditions.
Such variation can be revealed
phenotypically when a population
experiences a new environment (i.e., it
can be revealed through plasticity).
Mate preference: any sensory,
behavioral, or other trait of the choosing
sex that shapes, in part, individuals’
likelihoods of mating with members of
the opposite sex that express certain
phenotypes.

Nongenetic factors: any one of the
various epigenetic factors (e.g., patterns
of DNA methylation), behavioral factors
(e.g., cultural transmission), or
environmental factors (e.g., noncoding
RNAs or microorganisms) that,
independently of DNA sequence
variation, can influence phenotype
production, be transmitted across
generations, and mediate evolutionary
change.

Phenotypic plasticity: the capacity of
an individual organism to alter its
features in direct response to changes in
environmental conditions; sometimes
used synonymously with developmental
plasticity. Athough this capacity is often
assumed to be adaptive (i.e., enhance
the individual’s fitness), it need not be.
Plasticity-led evolution: an
evolutionary process that occurs when a
change in the environment triggers a
change in phenotype via phenotypic
plasticity in an ancestral lineage and this
pre-existing plasticity is subsequently
refined by selection into an adaptive
phenotype in a derived lineage;
sometimes referred to as plasticity-first
evolution.

Reaction norm: a graphical
representation of the set of phenotypes
that a single genotype produces in
response to some specific
environmental variable(s); individuals
show plasticity if their reaction norm is
nonhorizontal.

Sexual signals: behaviors, ornaments,
or other traits that enhance mating
success with the choosing sex in
mating-related contexts.
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Table 1. General Conditions Favoring the Evolution of Mate Preferences for Individuals That Produce

Adaptively Plastic Offspring
Condition

Spatially or temporally variable
environment that is predictable,
owing to salient, reliable cues to
impending or prevailing
environmental conditions.

Offspring fitness is
frequency-dependent.

Reliable cues about the environment
unavailable to parents or are more
effectively assessed by offspring.

Parents’ ability to express plasticity is
too costly or limited relative to costs
or limits of plasticity in offspring
(sensu [81]).

Reason the condition matters

Favors the evolution of plasticity in
general [37,38,79].

Parents cannot predict which
offspring traits will be favored
(because it will depend on what traits
are assumed by others in the
offspring’s generation).

Parents cannot predict which offspring
traits will be favored if cues are
unavailable to them [16,18]. Plasticity in
the offspring versus the parents is
favored if offspring can better assess
environmental cues (sensu [37,38,79)).

Favors the evolution of plasticity in
offspring as opposed to the parents.

Situations in which condition
might arise

Any varying environment in which
predictive cues occur.

Comypetitive situations, which can
generate negative frequency-
dependent disruptive selection [80].

Any system where the parents’ and
offspring’s environment are
decoupled because adults mate in
times or locations that differ from
where offspring develop. This
includes:

(i) systems in which adults mate in a
different season or location from
when or where offspring develop
(e.g., [38,74,75]);

(i) species with complex life histories
in which adults and offspring
inhabit disparate niches
(e.g., aquatic and terrestrial) [73].

Any system where plasticity is
differentially favored or is differentially
likely to evolve in parents versus
offspring, including:

(i) taxa with complex life histories in
which plasticity is favored only in
early life stages (e.g., [38,74,75));

(i) taxa in which early (out not late)
expression of plasticity is required
for the development of optimal
trait integration [46,76-78];

(iil) taxa in which adults have few, if any,
opportunities for multiple matings
(such systems would be less likely
to evolve plasticity in sexual traits)
[1,8];

(iv) systems in which sexual traits are
under countervailing selective
pressures that favor constitutive, as
opposed to plastic, expression [1,3].

Box 1. A Context Where Offspring Plasticity Is Likely to Serve as a Fitness Benefit of Mate Choice

Many of the conditions that favor offspring plasticity as a benefit of mate choice are especially likely to arise among species
with complex life histories, where juvenile and adult life stages are separated by a major developmental event: metamorphosis
[73]. This developmental mode is predominant among animals [73], and animals with complex life histories (e.g., arthropods,
fish, and amphibians) are frequently used to study mate choice and its fitness consequences [1,3]. A key feature of complex
life histories is that parents and offspring express distinct phenotypes that are adapted to different ecological circumstances
[73]. Moreover, in species with complex life histories, plasticity appears to be more commonly expressed in early, as opposed
to later, life stages (e.g., [38,74,75]), possibly because adult environments are less variable than those of juveniles or because
adults are more constrained in their ability to express plasticity than are juveniles [46,76-78]. Regardless of why plasticity is
more likely in juveniles, species with complex life histories provide particularly good candidate systems for evaluating whether
plasticity can serve as a fitness benefit of mate choice.
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Figure 1. An Example in Which Offspring Plasticity Serves as Benefit of Mate Choice. (A) Male Mexican spadefoot
toads, Spea multiplicata, call to attract females as mates, and (B) females prefer males that call faster [27]. (C) Their tadpoles
have evolved pronounced diet-induced plasticity, developing into either an omnivore morph (left photo) or a carnivore morph
(right photo), which is induced by, and specializes on, anostracan fairy shrimp (middle photo). This plasticity is favored by
frequency-dependent natural selection, such that the optimal phenotype for an individual to produce depends, in part, on
what others do. As evidence of such selection, when the frequency of camivores in different experimentally enclosed areas
of a natural pond is either increased (orange line in graph) or decreased (blue line), this frequency of carnivores later
converges on a common, equilibrium frequency, which varies from pond to pond, depending on the relative abundance of
shrimp [23]. (D) This also means that parents cannot predict the optimal tadpole phenotype; instead, selection favors
adaptively plastic offspring because offspring are in a better position to evaluate their selective environment (i.e., the resource
base and number of competitors). Consistent with this expectation, males that display the signal preferred by females
(i.e., faster-calling males) sire offspring that are more likely to express carnivore-omnivore plasticity [18].

The Spea example underscores the key components of the hypothesis that offspring plasticity
can serve as a fitness benefit of mate choice: sexual signals can predict the extent to which a
prospective mate’s offspring are plastic; individuals prefer mates who possess traits indicative
of their ability to produce more plastic offspring; and, because tadpole fitness is frequency depen-
dent, the offspring, not the parents, are best able to assess prevailing environmental conditions
and express adaptive plastic responses to them (Figure 1 and Table 1).

Offspring plasticity might serve as a benefit of mate choice in many systems, given that both
sexual selection and genetic variation in plasticity has been reported in numerous studies
(Table 2). In particular, variation in the slopes, heights, and shapes of reaction norms among
sibships (genotypes) suggests that heritable (e.g., genetic) variation among reaction norms
could underlie a relationship between adult sexual traits and offspring plasticity. Importantly, in
a number of the systems where sibship-level variation in reaction norms is observed, sexual
selection has also been documented (Table 2). Although the details of male sexual signals and
female mate choice are not always known, this broad distribution of both plasticity and sexual
selection point to the general potential for plasticity to serve as a fithess benefit of mate choice.
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Sexual Signals as Indicators of Offspring Plasticity

For offspring plasticity to serve as a fithess benefit of mate choice requires that individuals gauge a
prospective mate’s ability to produce plastic offspring. Direct assessment of a potential mate’s
ability to do so is unlikely [1,3], especially in contexts where offspring plasticity is most likely
favored (Table 1 and Box 1). Instead, individuals should rely on sexual signals that predict a
prospective mate’s capacity to produce plastic offspring [1,3,28,29].

Generally, for sexual traits to predict offspring fithess, these traits must be condition-dependent
or otherwise costly to produce [1,3,5,19,29,30] (i.e., they must be ‘honest’ signals) [29]. Thus, in
the case of offspring plasticity, only those individuals capable of allocating resources to signaling
can express preferred sexual signals and these signals would reliably predict an individual’s ability
to produce plastic offspring. Moreover, those individuals’ offspring will inherit the capacity to produce
the preferred sexual signals as a reflection of their fitness. If offspring plasticity is selectively favored in
variable environments, then those offspring capable of facultatively expressing adaptive phenotypes
in a given environment would attain the condition necessary to produce those signals as adults.
Consequently, offspring plasticity might readily couple offspring fitness with the ability to express
preferred signals (sensu [31-33]).

For sexual signals and offspring plasticity to become correlated does not require that mate
preferences favor offspring plasticity per se, nor does it hinge on specific assumptions regarding
the evolutionary origins of mate preferences. Indeed, if there is no variation in mate preferences
(e.g., because the preference is fixed in the population or because individuals mate randomly
with respect to sexual signals), then individuals that choose mates that produce more plastic off-
spring will benefit from those matings. Similarly, individuals might prefer mates that produce more
energetic signals, either because such signals are more stimulatory to the nervous system or
because they correspond to other fithess benefits (e.g., fertilization success, parental care, or
nuptial gifts). However, if such mates also produce adaptively plastic offspring, then individuals
will receive this benefit regardless of the origins of the preference.

Moreover, the possibility that offspring plasticity serves as a fitness benefit of mate choice
addresses one of the general arguments that environmental variation disrupts predictive relation-
ships between sexual traits and offspring fitness. In particular, some have argued that environ-
mental variation, and even the expression of phenotypic plasticity in response to that variation,
should weaken correlations between genotypes and phenotypes, thereby diminishing the likeli-
hood that sexual signals predict offspring fithess [3,11,13—15]. Yet, such arguments likely only
apply when the environment varies unpredictably (see, e.g., [13]). By contrast, adaptive plasticity
is not expected to evolve in unpredictable environments [34-38]. Instead, adaptive plasticity is
expected to evolve in variable environments where salient cues reliably predict prevailing or
impending environmental conditions [37,39]. For example, as highlighted above, reaction
norms evolve in response to selection favoring individuals that express the appropriate pheno-
type in a given environment [2,40-42]. Thus, selection can refine both the extent to which off-
spring are plastic and the phenotypes that are expressed in different environments, given those
environments are of the sort that are expected to favor plasticity in general [2,37,43,44]. In
these situations, plasticity does not preclude a predictive relationship between sexual traits and
offspring fithess, but could instead reinforce such a relationship.

Establishing that plasticity serves as a fithess benefit of mate choice requires evaluating whether pre-
ferred sexual traits predict offspring plasticity and fitness (Figure 2; e.g., [18]). In performing such tests,
it is critical to measure offspring fitness across different environments (Figure 2). Indeed, in any given
environment, offspring with fixed phenotypes that are optimal for that environment might achieve
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Figure 2. A Method for Evaluating if Offspring Plasticity Is a Fithess Benefit of Mate Choice. (A) First, determine if
certain male signals are preferred by females. (B) Second, use a common-garden approach to determine if offspring of
different males vary in degree of ecologically relevant plasticity (note that in doing so one should incorporate methods that
account for possible parental effects, such as differential maternal resource allocation, impacting offspring plasticity [19]).
From this, ask whether the slopes of the reaction norms are steeper for preferred than for nonpreferred males or,
alternatively, (C) examine the relationship between the male signal and offspring plasticity, where the latter can be
estimated by taking the family mean difference in phenotype when offspring are exposed to two (or more) environments
(e.g., obtained from a reaction norm experiment as shown in panel B). (D) Finally, determine if the plasticity is adaptive by
measuring the fitness of the offspring from different males when they are reared in the different environments that they
would normally encounter in nature; more plastic offspring should have higher fitness than less plastic offspring across
these different environments. Note that more plastic offspring might not have the highest fitness in a given environment
(see main text), but they should have higher average fitness across environments.

higher fitness than offspring with facultatively expressed phenotypes (sensu [45,46)). Yet, those same
offspring with that fixed phenotype would do poorly in an alternative environment compared with off-
spring that can facultatively express traits that are better suited to the alternative environment. Thus,
offspring that express different phenotypes in response to the environment should have higher fitness
overall when averaged across multiple environments [4].

In this regard, offspring plasticity differs from other fitness benefits ascribed to mate choice. If
plastic individuals are unable to express the optimum phenotype in a given environment, then
the offspring of preferred mates or those with exaggerated sexual signals might not be those
with the highest fitness in that environment. The possibility that offspring plasticity could serve
as a benefit in this way could explain why preferred males with exaggerated sexual signals do
not always sire the fittest offspring in any particular environment [3]. Thus, identifying whether off-
spring plasticity constitutes a fitness benefit of mate choice could reconcile, at least in part,
longstanding issues about the nature and prevalence of indirect, ‘good genes’ benefits of mate
choice [3,19].

Inheritance of Plasticity: Genetic and Nongenetic Mechanisms
A predictive association between sexual signals and offspring plasticity does not require a genetic
basis to plasticity in offspring (or to sexual traits) but such a genetic basis may exist. Indeed, as
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highlighted in Table 2, numerous studies have documented variation among sibships and popu-
lations in whether and how they respond to any particular change in their environment. Moreover,
plastic traits commonly exhibit additive genetic variance in the heights and slopes of reaction
norms [40,42,47,48]. Both observations suggest the presence of underlying heritable variation
in plasticity.

Attempts to identify specific genes that regulate plasticity, and that could serve as the targets of
sexual selection for offspring plasticity, are still in their infancy [49], but such attempts have pro-
duced some intriguing possibilities. For instance, researchers have identified several develop-
mental switch genes that influence plasticity (e.g., [50-52]). In situations where, as a result of
mate choice, offspring inherit alleles at specific genes that render them more plastic, plasticity
could constitute an indirect, ‘good genes’ benefit of mate choice.

However, the hypothesis that offspring plasticity can serve as a fitness benefit of mate choice
does not necessitate that offspring actually inherit alleles for plasticity. Rather, offspring may
inherit nongenetic factors (sensu [53]). Indeed, increasing evidence suggests that nongenetic
factors such as epigenetic modifications of DNA play a key role in mediating plasticity [53,54].
For instance, some of the aforementioned developmental switch genes that regulate plasticity
are themselves influenced by epigenetic factors [51,52]. This suggests that mechanisms of
nongenetic inheritance and the genetic architecture of plasticity can both be targets of selection
and together shape the evolutionary trajectories of plastic traits in offspring.

In short, the mechanisms mediating the inheritance and expression of plasticity, and that could
therefore serve as targets of selection for offspring plasticity, are varied and complex [4,49].
Indeed, both genetic and nongenetic mechanisms might play important roles in the expression
of offspring plasticity and these mechanisms will differentially impact whether and how sexual
selection is exerted on the genome and the subsequent evolutionary response. Thus, a key
challenge is to uncover the factor(s) actually transmitted across generations that influences
offspring plasticity (see Outstanding Questions). Regardless of whether sexual signals become
correlated with genetic or inherited nongenetic (e.g., epigenetic) variation underlying plasticity
[5,7], offspring plasticity would still constitute a fithess benefit of mate choice.

An important consideration regarding offspring plasticity as a benefit of mate choice is the subse-
quent impact of directional selection exerted by mate choice on the underlying genetic or non-
genetic variation. If mate choice exerts strong selection on sexual signals that are indicative of
adaptive, facultatively expressed traits, then any underlying heritable variation for those signals
or the facultatively expressed traits could be lost over time [1]. Historically, variable selection
(and, therefore, shifting optima) was one explanation for how variation could be maintained in
the face of strong selection [1,11,14]. Yet, under the scenario we outline here, the same genetic
variants would be favored regardless of environment (because the plastic variants exhibit higher
fitness when averaged across all environments). Thus, genetic variation could decline as popula-
tions approached optima for sexual signals and offspring plasticity.

However, the genetic (and/or nongenetic) architecture of plasticity likely consists of a sufficiently large
mutational target to maintain heritable variation in the face of persistent selection by mate preferences
(analogous to ‘genic capture’; sensu [5,30]). Indeed, the genetic architecture of adaptive plasticity,
and of the resulting facultatively induced phenotypes, likely consists of numerous loci with diverse
functions, ranging from elements of the sensory system involved in detection of environmental cues
to the threshold amount of hormone needed to trigger a specific plastic response [4,49]. Such diver-
sity would provide ample potential sources of heritable variation across the genome that is unlikely to
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be exhausted by sexual selection, especially if multiple routes exist by which facultative expression of
adaptive phenotypes exist [55].

Generally, the complexity of mechanisms underlying adaptive plasticity is thought to explain the
maintenance of genetic variation in plasticity in natural populations [48,56] and it suggests that
the potential for a single, optimally plastic genotype to approach fixation is low. Whether this is
the case remains to be tested, but we suspect that the variation underlying offspring plasticity
and sexual traits might be especially resistant to depletion. Moreover, if condition-dependent
direct benefits, such as the provisioning of nuptial gifts and subsequent maternal resource alloca-
tion to offspring, also contribute to mate choice favoring offspring plasticity, then heritable varia-
tion should readily be maintained [3,20]. As greater attention is given to offspring plasticity as a
benefit of mate choice, theoretical and empirical work should evaluate how variation in phenotypic
plasticity (whether caused by genetic or nongenetic mechanisms) is impacted by mate choice
and the subsequent effect of this variation on sexual selection.

Evolutionary Implications of Offspring Plasticity as a Fitness Benefit of Mate Choice
That offspring plasticity can function as a benefit of mate choice has at least two key evolutionary
implications. First, it can help explain how sexual selection promotes adaptation in novel or
variable environments. As noted earlier, a criticism of the notion that sexual selection promotes
adaptation is that environmental variation will break down any correlations between adult sexual traits
and offspring fithess. However, if sexual traits indicate the capacity for offspring to produce different
traits in response to prevailing or impending environmental conditions, then adult sexual traits will
predict offspring fitness even in variable environments [18] (Figure 2; see also Figure 1 and Table 1).

Moreover, exposure to novel environments can induce the expression of plasticity, which is then
subject to novel selective pressures [57,58]. This plasticity can be adaptive in the sense that it
allows rapid (within-generation) responses to selection and subsequent short-term population
persistence, but whether it allows long-term persistence depends on the existence of underlying
heritable variation in plasticity and, thus, the capacity for evolutionary responses to selection
[48,56,58]. If inducing cues in a novel environment reliably predict environmental conditions
(sensu [59]), then the potential for a long-term adaptive response may be increased by
associations between sexual traits and offspring plasticity owing to the combined effects of direct
ecological selection and indirect sexual selection. Indeed, because selection on sexual traits can
be stronger than selection on viability and fecundity traits in natural populations [60,61], offspring
plasticity as a benefit of mate choice might facilitate relatively rapid adaptive evolution and long-
term persistence in novel environments. Testing this possibility is especially important in a time
of global change.

A second implication of offspring plasticity as a benefit of mate choice is that it could impact the
evolution of phenotypic plasticity itself [18]. Plasticity is increasingly thought to play diverse roles in
ecology and evolution, including enabling populations to persist in novel or changing environ-
ments and facilitating speciation [2,57,58,62-64]. Plasticity can assume such diverse roles
because plasticity can itself evolve [65] and its evolution can, in turn, have important downstream
consequences [43,66]. For example, because environmental change is typically harmful to an
organism (it reduces the match between its phenotype and environment), phenotypic plasticity
has evolved in essentially all taxa [67], where it allows individuals to produce phenotypes that
are better suited for any new conditions that they might encounter [2,4]. However, because
different genotypes typically vary in whether and how they respond to any given environmental
change (Table 2), selection can act on this formerly cryptic genetic variation for plasticity [68]
and favor those genotypes that produce well-adapted phenotypes for the current environment.
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Through this process of adaptive refinement (known as ‘genetic accommodation’ [2]), selection
can cause a change in both the regulation of plasticity and form of the facultatively expressed
phenotypes, leading to a better match between phenotype and environment [2,57,63,64].

Sexual selection might play a crucial role in this process of plasticity-led evolution. If mate
choice enhances the reproductive success of individuals that produce plastic offspring, then
mate choice would thereby increase the production of offspring capable of responding to cues
that reliably indicate prevailing or impending environmental conditions. As more plastic offspring
are produced and exposed to selection, the opportunity for selection to refine that plasticity is
increased [2,18,43]. Thus, when adult sexual traits become associated with adaptive offspring
plasticity, they may readily enable plasticity-led evolution to facilitate adaptation [2,18,43,64,66].

Concluding Remarks

The potential for offspring plasticity to constitute a fitness benefit of mate choice could arise
whenever the environment is spatially or temporally variable and offspring are better able than
their parents to accurately assess their environment or express plasticity (Table 1). Evaluating
whether plasticity can serve as a fitness benefit of mate choice could explain patterns of sexual
selection in diverse taxa and help resolve whether and how sexual selection contributes to
adaptation, which is an enduring issue in evolution [1,10,12,69-72]. Moreover, because mate
choice for plastic offspring could facilitate the evolution of plasticity, sexual selection could amplify
plasticity-led evolution and its downstream consequences. Given that many species are
experiencing rapid environmental change, and that plasticity might help populations ‘buy time’
until more permanent adaptive solutions can evolve [58], evaluating whether plasticity can
serve as a benefit of mate choice is especially timely now (see Outstanding Questions).
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Outstanding Questions

What are the genetic, developmental,
and evolutionary mechanisms by which
offspring plasticity becomes associated
with adult sexual traits? Addressing
this question is fundamental to our
understanding of whether and how
plasticity serves as a fitness benefit of
mate choice.

Are there particular traits, taxa, or
conditions in which sexual traits are
more likely to predict offspring plasticity?
Evaluating these factors would provide
insights into the processes by which
plasticity serves as a fithess benefit of
mate choice.

Can mate choice for offspring plasticity
explain some of the conflicting evidence
for indirect benefits of mate choice? If
offspring plasticity commonly mediates
connections between sexual traits
and offspring fitness, then past tests
of indirect benefits might have failed
to capture important dimensions of
how these models apply to natural
populations (e.g., by rearing offspring
in only one environment).

Can sexual selection, paradoxically, lead
to the loss of plasticity? If offspring
plasticity is associated with adult sexual
traits, then any changes to those traits
could result in the production of less-
plastic offspring and indirectly facilitate
the loss of plasticity, a process known
as genetic assimilation. Such changes
to mating traits might not arise because
offspring plasticity is selectively
disfavored per se. Instead, selection
might favor mating traits that maximize
other components of fitness that are
under stronger selection
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