

1 Type of the Paper (Review)

Effects of Ionic Liquids on Metalloproteins

Aashka Y. Patel ¹, Keertana S. Jonnalagadda ², Nicholas Paradis ¹, Timothy D. Vaden ¹, Chun Wu ^{1,3}, and Gregory A. Caputo ^{1,3*}

4 5

8

9

11

12

13

14

15

16

17

18

19

20

21

2

- Department of Chemistry & Biochemistry, Rowan University, Glassboro, NJ 08028 USA
- ² Department of Biological Sciences, Rowan University, Glassboro, NJ 08028 USA
- ³ Department of Molecular & Cellular Biosciences, Rowan University, Glassboro, NJ 08028 USA
- * Correspondence: caputo@rowan.edu

10 Received: date; Accepted: date; Published: date

Abstract: In the past decade, innovative protein therapies and bio-similar industries have grown rapidly. Additionally, ionic liquids (ILs) have been an area of great interest and rapid development in industrial processes over a similar timeline. Therefore, there is a pressing need to understand the structure and function of proteins in novel environments with ILs. Understanding the short-term and long-term stability of protein molecules in IL formulations will be key to using ILs for protein technologies. Similarly, ILs have been investigated as part of therapeutic delivery systems and implicated in numerous studies in which ILs impact the activity and/or stability of protein molecules. Notably, many of the proteins used in industrial applications are involved in redox chemistry, and thus often contain metal ions or metal-associated cofactors. In this review article, we focus on the current understanding of protein structure-function relationship in the presence of ILs, specifically focusing on the effect of ILs on metal containing proteins.

Keywords: ionic liquids; metalloproteins; protein denaturation; protein folding

222324

1. Introduction

25 Proteins are long chain polymers of amino acids connected by peptide bonds. These polypeptide 26 chains are interlinked with hydrogen bonding which leads to formation of secondary structures in 27 proteins and subsequent further organization of these secondary structure elements form tertiary 28 structures [1]. Protein function is governed by the specific three-dimensional structure the protein 29 adopts by arranging the appropriate functional groups in the proper orientation. Proteins are 30 involved in multiple processes in the living cell and are located on the extracellular surface, 31 intracellular region, and in the cell membrane [2]. Some examples of proteins that are commonly 32 found in biological systems are hormones, antibodies, enzymes (biological catalysts), transporters, 33 and receptors [3]. Because of these biological functions, proteins are also used as therapeutic agents 34 using specific formulations and as components of industrial processes [4]. Industrial processes utilize 35 a variety of proteins such as metalloproteases, laccases, cellulases, lipases, phosphatases, and 36 amylases for numerous applications [5]. Therapeutically, proteins such as immunoglobulins, 37 erythropoietin, interferons, insulin, and anti-clotting proteins are widely used in the clinic [5]. 38 Depending on the structure of the protein they are only stable in specific physiochemical 39 environments, and therefore it is important to evaluate effects of various physical and chemical 40 conditions for developing a robust formulation [6].

- 41 In some cases, protein structures are associated with metal ions including, but not limited to, Ca²⁺,
- Mg^{2+} Cu^{2+} , Fe^{2+} , and Zn^{2+} , and this class of proteins are referred to as metalloproteins [7]. Nearly 50%

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

of the existing proteins in nature are metalloproteins [7]. Metal ions within metalloproteins play a key functional role in many biological redox processes and can provide structural stability to the protein [8]. Metal ions within these proteins play important roles not only in catalyzing biological processes, but they are also involved in binding interactions with organic and inorganic molecules [9]. Examples of processes that metalloproteins are involved with include the process of neuronal signal transmission, oxygen transport to and from the lungs, control of numerous redox processes, and nitrogen fixation [10]. Well known examples of metalloproteins include many electron transfer proteins (cytochrome b5, azurin, and [4Fe4S]-ferrodoxin), oxygen binding proteins (myoglobin and hemoglobin), as well as multiple enzymes such as oxidases (methane monooxygenase, heme-coper oxidase, cytochrome P450, laccase), peroxidases (horseradish peroxidase), hydrolases (carbonic anhydrase), hydrogenases ([FeFe]-hydrogenase), and reductases (copper nirite reductase, nitric oxide reductase, sulfite reductase) [11-13]. In addition to the metals listed above, many proteins have been demonstrated to bind and utilize "trace" metals, or those that are not found in high concentrations in biological organisms. These trace metals, and the metalloproteins that utilize them, are an area of renewed interest as a result of improving methods to identify and characterize the metals and proteins [14].

The metals that bind to the protein are dependent on the metals available to the organism in general and the protein's ability to functionally adapt to the metals available. For example, many proteins in plants use the available iron from their environment, while organisms in the oceans often use copper instead of iron more frequently due to the scarcity of iron in the oceans [7]. Ion channels in the cell membrane are utilized to import these environmentally derived ions into the cytoplasm for further use by the cell. These ion channels can be selective for one or two ion species, or can be more promiscuous allowing multiple different species through the channel [15]. Once acquired, the location of the metal within the protein is key as it should not preferentially interact with the surrounding environment [13]. The structure of a metalloprotein is partially dependent on the metal; however, this structure can often be slightly modulated to accept a variety of similarly sized and charged metal ions [16, 17]. This is a complex interplay between the folded protein and the binding pocket for the metal. The protein can often fold into a similar structure in the absence of the metal, referred to as the apo-form. With the metal present, there are additional intermolecular contacts formed that stabilize the structure, known as the holo-form. Importantly, metal atoms of similar size/charge/valence may interact with the same binding site, although the protein structure is usually most stable with native metal ion ligand. The native 3D structure of the metalloprotein allows interaction of amino acid side chains with the appropriate type and number of metal ligands. This orientation promotes the correct metal-amino acid geometry facilitating the functional role and reactivity of the metal ions [13]. Protein folding is important for protein stability, and each polypeptide can adopt different three-dimensional conformations depending on the microenvironment in which it is being held [18, 19]. Changes in the surrounding microenvironments may lead to the addition or removal of the metal ions from the protein, which can impact stability of the protein [13].

81 82 83

84

Importantly, proteins are not the only biomolecules that interact with metal ions in nature. Small organic molecules, carbohydrates, and nucleic acid interactions with metal ions have all been well

established in the literature. Again, in these cases, the metal ions can be structural and/or catalytic in functionality. Examples include the structural bridging of alginate chains by Ca²⁺ [20], Mg²⁺ bridging and charge stabilization of the bacterial lipopolysaccharides [21], stabilization and structural modification of DNA and RNA by numerous monovalent and divalent cations [21-23], and metalmediated catalysis by nucleic acids [24, 25]. For readers interested in a comprehensive review of metal ion interactions with biomolecules, we suggest the recent reviews by Shchreiber and coworkers and/or by Bechtold and coworkers [26, 27].

91 92 93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

85

86

87

88

89

90

1.1 Protein Folding/Unfolding

Protein folding is the process by which the primary amino acid chain adopts an active 3D structure that is capable of carrying out the evolved function. The investigation of how proteins fold and unfold along with the forces that govern these processes has been an area of intense study for >50 years [28, 29]. In nature, the folding process occurs in the cell and is often aided by chaperone proteins or very specialized local environments such as the interior of the transcolon. However, it can occur in vitro as well, which is more dependent on the specific protein sequence and the environment [30]. Protein folding is achieved by the 3D rearrangement of a linear polypeptide chain, driven through Van der Waals interactions, hydrogen bonding, hydrophobic burial, and electrostatic interactions. All of these interactions occur between protein moieties, ligands, cofactors, and solvent molecules [28, 29]. This allows for amino acid functional groups to be brought together enabling chemical processes to occur per the specific protein function [30, 31]. Most often, the key to proper folding of proteins in their amino acid sequence [32]. The initial steps of this process often involve the burial of hydrophobic groups in a collapsed form, followed by the formation of secondary structures driven through electrostatics and hydrogen bonding. Regardless of whether or not the protein can spontaneously fold, there are thermodynamic and kinetic constraints that govern the folding process. In terms of thermodynamics, the protein must be able to fold into the native conformation that is stable under the environmental conditions where the protein must carry out the evolved function. In cells, proteins are often only marginally stable, which allows for effective degradation of these molecules when needed [33]. In terms of kinetics, a denatured or unfolded polypeptide chain must be able to achieve the native conformation state in a period of time that is reasonable within the constraints of cellular function [34]. The secondary structure, alpha helices and beta sheets, and the tertiary structure are also dependent on the primary sequence which are an integral part of the proper 3D structure allowing for proper 3D positioning of functional groups from the amino acid side chains [31, 32].

When a protein unfolds or denatures, it means that the protein has lost stability in the functional 3Dstructure, resulting in the protein being more flexible. This process is driven by the disruption of its native conformation, it requires some physical or chemical interactions to initiate the unfolding process, which is usually achieved by increasing temperature or adding a chemical denaturant [35] in order to understand the thermodynamics and stability of a protein in vitro [36]. There are four main denaturation techniques that can be utilized: chemical denaturants, temperature, pressure, and force. By utilizing these various denaturants to unfold the proteins, various aspects of protein stability can

be elucidated [37]. There are numerous studies which have been performed to evaluate effect of

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

physical stress conditions such temperature, pressure, agitation, and packing/container/closure surface, as well as effect of chemical change in terms of pH, surfactant, inorganic salts, ILs, and co-solvents, folding and unfolding of proteins [38-43].

130 Chemical denaturation is a widely used approach allowing greater understanding of protein stability. 131 One of the most common denaturants is urea, which acts by causing the disruption of nearby water-132 water interactions and increasing hydrogen bonds between urea molecules and the backbone of the 133 protein. These interactions allow for increased hydrophobic solvation, which furthers the process of 134 unfolding [44]. Another common denaturant is guanidinium, most commonly used as a 135 hydrochloride salt (GuHCl). The exact mechanism by which GuHCl denatures proteins is still a 136 controversy in the field, but various work has indicated hydrogen bond disruption, water-137 interactions, hydrophobic interactions, or backbone contacts as possible mechanisms [45, 46]. There 138 is some evidence that GuHCl is more effective at denaturing β-sheets [46, 47]. In addition to these 139 chemical denaturants, temperature or pH changes are also used to evaluate unfolding processes in 140 the proteins [48]. Increasing temperature provides thermal energy to increase molecular motion, 141 while pH changes will impact charge state of ionizable groups in the proteins, thus impacting 142 electrostatic folding forces [49].

In one study, the C12 protein underwent protein unfolding at high temperatures, influencing the rate at which it unfolds [48]. C12 is a globular protein with one domain and has been considered to be a good model for studying protein unfolding. During the unfolding process, there were disruptions in the structure of the protein core that were caused by hydrogen bond disturbances. This experiment showed that the unfolding process is an activated process since the protein would first disrupt the core protein structure and then underwent sliding movements that caused it to unfold into its transition state. Following this, the protein fully denatured with no native structure present [48]. This represents only one example of numerous reports in the literature of protein denaturation. Other well studied model systems include ribonuclease A, T4 lysozyme, myoglobin, and others [50-54].

In order to understand the unfolding process in a protein, several spectroscopic methods can be used, with the most common being fluorescence, absorbance, circular dichroism (CD), infrared (IR), and nuclear magnetic resonance. UV-Vis absorbance is a widely utilized analytical technique, although not all proteins have appropriate chromophores that exhibit spectroscopic changes upon unfolding [55-57]. One example where the UV absorbance was used was to follow the changes that happened after tyrosyl ionization; during the unfolding process of the protein in pH, the tyrosine residues, which are buried in the protein structure, are uncovered and UV absorbance can detect the tyrosyl ionization [58]. The UV spectroscopy technique used is dependent on the protein unfolding to reveal the buried aromatic residues and make these residues exposed to the solvent, showing an increased absorbance in the 280-310 nm range due to tyrosine formation at high pH. UV spectroscopy revealed whether or not the protein was undergoing an unfolding transition event [59]. The experiment showed that the technique used on the UV measurements to analyze protein denaturation is viable and can be used to understand other proteins. Fluorescence spectroscopy is also commonly used to follow the denaturation of proteins, generally utilizing the intrinsic fluorescence of Trp residues. The emission spectrum of Trp is inherently environmentally sensitive, exhibiting a red-shift in emission maximum when moving from a less polar environment to a more polar environment [60-62]. Trp residues buried in the hydrophobic core of a protein will exhibit such a change in

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

195

196

197

198

199

200

201

202

203

204

205

206

207

208

environment upon protein denaturation. These emission shifts have been widely utilized to study denaturation in proteins such as myoglobin, glycoprotein E from dengue virus, β-lactoglobulin, and [63, 64]. Nuclear magnetic resonance spectroscopy is useful in determining the protein kinetics as well as the mechanism by which the protein folds and unfolds [65]. It can give information about the unfolding and folding process of proteins based on specific residues and labeled proteins. It can also provide information regarding chemical shifts, which can help us determine the state at which the protein exists, unfolded or folded. It reveals information regarding the dynamics of the protein when it is an unfolded conformation [66]. NMR can also be used to generate high resolution structures of proteins and peptides, including metalloproteins [67-71]. Similarly, electron paramagnetic resonance (EPR) spectroscopy which relies on the spin of unpaired electrons, is useful for the study of metalloproteins with magnetic metal centers[72-75]. CD can be used to observe the structural changes by monitoring the disappearance of specific spectral signatures associated with α -helices and β sheets [76, 77]. It can also be used to analyze how proteins form ligand with specific molecules, such as substrates and cofactors [78, 79]. A variant of traditional CD spectroscopy known as magnetic CD (MCD). This method aligns the protein sample in a magnetic field during spectroscopic interrogation which allows for the study of energy levels in the metal. MCD has been applied to a variety of metalloproteins including nitrogenases, cytochrome c, and aminopeptidases [80-84]. Similarly, traditional IR spectroscopy has been widely utilized to study metalloprotein structures and interactions. Standard Fourier transform IR (FTIR) can monitor secondary structures in the protein, while far-infrared spectroscopy (FIR) can be utilized to interrogate low frequency vibrations, such as those in metal complexes [85, 86]. These IR methods have been used to investigate the structure of numerous metalloproteins and peptides including EndoIII, azurin, bovine serum albumin, and natural and designed peptides [86-91]. All of these pieces of information can together provide information regarding the stability of a protein's structure [92].

194 1.2 Ionic Liquids (ILs)

ILs are organic salts with melting points below 100 °C. In 1992 the first IL which was stable in air and ambient moisture was reported [93]. After that, ILs have been developed as an alternative to organic solvents and used in many more applications. ILs are useful industrial and laboratory solvents. The molecular composition of ILs is a combination of different cations and anions that leads to countless potential ionic liquid species. ILs have a wide range of physicochemical properties including low vapor pressure, high thermal stability, high conductivity, non-flammability, and varying degrees of biocompatibility [94]. Therefore, they could be used as a reaction media for synthesis and can be recycled multiple times, which underpins the "green" reputation of these solvents [95]. ILs have the ability to act as a host and can interact with both host and guest molecules via a combination of electrostatic, hydrogen bonding, π - and van der Waals interactions [96]. The non-covalent interactions within IL are easily broken and therefore commonly used to dissolve recalcitrant materials [96]. ILs are currently being used in many different applications including electrochemistry, energy, organic synthesis and catalysis as well as in biotechnology [97-100].

1.3 Ionic Liquid Interactions with Biomolecules

In nature, biomolecules are surrounded by charged species including proteins, polysaccharides, nucleic acids, inorganic ions, and small organic molecules. Although proteins have evolved to function in these ion-rich environments, not all ionic species have identical effects on proteins. Specifically, there has been a significant amount of study regarding the ability of ionic species to stabilize or destabilize proteins in solution. This ranking of ions based on the effects on protein solubility, known as the Hofmeister series, is a core component of understanding protein behavior in complex ionic solutions [101-103]. Importantly, extensive study of the Hofmeister series has determined that the anionic component of the salt generally has a larger effect on protein solubility [101-103]. Mechanistically, the Hofmeister ions are thought to change the ordering and interactions in the bulk water around the protein rather than more direct protein interactions which then impacts protein hydration and stability[102, 104-106]. Numerous ILs have been studied from the context of the Hofmeister series, especially since many commercially available ILs have simple anions or cations as part of the IL pair [107, 108]. These studies include direct influences of ILs on biopolymers but also more fundamental studies of IL properties in solution including physicochemical parameters such as ion hydration number which appears to be an important factor in IL-biomolecule interactions [102, 107, 109-112]. When considering the descriptions of IL-protein interactions below, the IL composition and ion placement in the Hofmeister series, when known, should be considered in the reader's interpretations.

227228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

The unique properties of IL have made them very useful as potential solvents for protein preservation, media for enzymatic reactions, as well as applications in the field of bioconversion and protein production/purification [42, 113, 114]. ILs are also found to enhance solubility of certain proteins, mainly through prevention of aggregation [115-117]. Furthermore, enhanced solubility of proteins in ILs can also help achieve highly supersaturated solutions, which was successfully used as an additive in media to promote protein crystallization. ILs were shown to influence crystallization of multiple proteins as well as improving the size of the crystal formed (helping crystal growth), quality of crystals, and enhances the reproducibility of the crystallization process [118, 119]. In addition, IL/aqueous bi-phasic systems were also used for extraction of proteins from biological fluids [116, 120]. These are a few representative instances where ILs can enhance protein stability and activity. However not all ILs are compatible with proteins. Many ILs have been shown to destabilize protein structure and activity. The physicochemical properties of ILs such as polarity, alkyl chain length, hydrophobicity, and viscosity all have different effects on protein stability [42]. Therefore, a rational selection of IL for a specific protein under investigation is necessary before using it as a solvent for that application. Furthermore, there is only limited knowledge regarding the mechanism of protein stabilization or destabilization in presence of ILs and therefore research is still needed to understand based on the chemistry of ILs how they interact with protein [121].

There has been great interest in recent years to use ILs in various industries because of the beneficial properties and the desire to stabilize protein functionality over wider ranges of reaction conditions. Specifically, how these ILs interact with biomolecules and what cation-anion combinations may impact biomolecular functions is of great interest for industrial applications. Numerous groups have studied the interactions of proteins with a wide variety of ILs, resulting in some ILs enhancing protein activity and stabilizing protein structures, with others disrupting protein

structures [5, 122, 123]. The disruptive ILs are effectively a destabilizing agent, acting as a denaturant. Exploiting the ability of some ILs to enhance protein denaturation can yield greater insights into the protein-IL interactions. In one study, ribonuclease A was used to understand the effect of ILs on protein stability and aggregation. Ribonuclease A, a small enzyme, was examined in the presence of ILs such as choline dihydrogen phosphate ([Chol][Dhp]), 1-ethyl-3-methylimidazolium dicyanamide ([EMIM][Dca]), 1-butyl-3-methylimidazolium bromide ([BMIM]Br), and choline chloride ([Chol][Cl]). From this study it was observed that [Chol][Dhp] promotes stability of the native state and increases the chances of refolding, which prevents protein aggregation [124]. In another study, human serum albumin (HSA), was studied in the presence of ILs, 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM][BF4]) and choline dihydrogen phosphate ([Chol][Dhp]). [BMIM][BF4] shown to induce swelling of HSA loop 1 causing it to be 0.6 nm wider compared to what it is in water although [Chol][Dhp] was not able to impart a similar effect [125]. While this is one example, there are numerous reports in the literature comparing numerous proteins with an even greater number of

2. Interaction of Ionic liquids with metalloproteins

Due to the sheer number of unique proteins found in nature, combined with the ever-increasing number of ILs, it is unlikely there will be a set of hard and fast rules that define all IL-protein interactions. As a result, it is important to begin to focus the interpretation and analysis by refining the types of molecules being investigated. This review focuses on understanding the impact of various ILs on metalloproteins such as laccase, myoglobin, alcohol dehydrogenase, and horseradish peroxidase (HRP).

272 per273

2.1 Effect of ILs on laccase

Laccase is a metal containing protein containing four copper ions in its active center [126, 127]. Laccase was originally isolated from the Japanese lacquer tree *Rhus vernicifera*. After that laccases were also found in multiple different plant sources like *Rhus succedanea*, *Acer pseudoplatanus*, *Pinus taeda*, *Populus euramericana*, *Liriodendron tulipifera*, and *Nicotiana tabacum* [128-133]. Laccases found from these sources are monomeric proteins which have molecular weights between 90-130 kDa [54]. Notably, they are also highly glycosylated, with carbohydrate content between 22-45% [134, 135]. In addition to plant sources, fungi is a common source of laccase and most fungi produce different laccase isoforms and isoenzymes. One of the most commonly studied forms of laccase is derived from the *Trametes versicolor* fungus [136-139]. The *T. versicolor* laccase contains two copper sites, a monocopper and a tri-copper site (Figure 1). The Cu²⁺ at the mono-copper site is coordinated by two His and one Cys residue, while the Cu²⁺ atoms at the tri-copper site involve coordination of at least 3 His residues and multiple carboxyl containing residues (Asp and Glu) [127, 140, 141]. Recent studies show laccase is also present in bacteria, although these proteins are less well studied [142-144].

290

Figure 1 - Structure of Laccase from T. versicolor. The crystal structure was solved by Choinowski and coworkers; downloaded from rcsb.org (1GYC) [126, 145] The structure was visualized using VMD. (A) 3D structure of laccase. The N- and C-termini are shown as red and blue spheres respectively while the copper ions are shown in orange (partially occluded in the structure). (B) structural geometry of the mono-copper site with chelating residues highlighted.

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

In nature, laccases typically oxidize phenolic compounds and reduce molecular oxygen into water after several rounds of catalysis [146]. This is typically involved in the synthesis or degradation of naturally occurring plant lignins [147]. Laccase has found utility in bioremediation of waste products from numerous industries, remediation of excess pesticides & herbicides, as well as cleaning of wastewater streams [148]. Additionally, many synthetic organic compounds can be substrates for laccase. Organic substrates of laccase are categorized in three groups: ortho-, meta-, or parasubstituted compounds (all with a lone pair of electrons). In most cases of laccase, ortho-substituted compounds work as the better substrate over para- or meta-substituted compounds [144, 149]. One of the most useful synthetic laccase substrates is 2,2'-Azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS), which is a colorimetric substrate allowing spectroscopic monitoring of laccase activity. ABTS was used in monitoring the oxidation of non-phenolic lignin structures which gave theimpetus to find new laccase mediators [150, 151]. A particularly interesting application of laccase is in the detoxification of chlorophenol-containing wastewater which is achieved by laccase-mediated polymerization via radical coupling [152, 153]. The industrial applications of laccase coupled with the straightforward monitoring with ABTS have made it a very attractive system to study with ILs. A brief summary of studies that have been published on laccase with ILs can be found in Table 1.

 ${\bf 313} \qquad {\bf Table~1.}~ {\bf Summary~of~studies~done~pertaining~to~monitoring~effect~of~ILs~on~laccase}$

Laccase source	IL	Structure	Study done	Results	Ref
Aspergillus	1-ethyl-3- methylimidazolium ethylsulfate ([EMIM][EtSO ₄]		Activity at different temperatures in the presence or absence of ILs	([EMIM][EtSO ₄] IL decrease the activity of laccase	[154]
Trametes versicolor	tetramethylammon ium trifluoromethanesu lfonate ([TMA][TfO]).	$\left[\begin{array}{c} \begin{array}{c} \\ \\ \end{array}\right] \left[\begin{array}{c} \\ \\ \end{array}\right]$	Enzyme kinetics, time-dependent fluorescence, CD analysis	[TMA][TfO] can stabilize laccase and keep its catalytic efficiency unchanged.	[155]
Trametes versicolor	1-butyl-3- methylimidazolium trifluoromethanesu lfonate ([BMIM][TfO]), 1-butyl-1- methylpyrrolidiniu m trifluoromethanesu lfonate ((BMP::://TfO))		Enzyme kinetics, time-dependent fluorescence, CD analysis	High level of [BMIM][TfO] or [BMPyr][TfO] destabilizes laccase and decrease its activity	[155]
Trametes versicolor	([BMPyr][TfO] 1-butyl-3- methylimidazolium chloride, [BMIM]Cl; 1-ethyl-3- methylimidazolium ethylsulfate, [EMIM] [EtSO4]		Enzyme kinetic(spectroph otometric measurement of activity at 420 nm}	Inhibition of laccase activity	[156]
Trametes versicolor	Pyrrolidinium Formate ([Pyrr][F]); the Morpholinium F ([morph][F]), mb b (CsH11NOs)		Fluorescence	red shift in λ max in presence of ILs	[157]
Trametes versicolor	1-butyl-3- methylimidazolium methyl sulfate,		Effect of both water soluble ILs at different	Laccase activity did not changed upto 25% IL	[158]

	[BMIM][MeSO ₄]		concentrations	concentration in
	and 1,3-		monitored using	both cases.
	dimethylimidazoli		laccase activity	However, at 35%
	um methyl sulfate,	(~)(,)	assay	both the IL
	[MMIM][MeSO ₄],			increased the
				laccase activity
				about 1.7 times
Trametes	Choline	[\end{array}	Fourier	Effective in [122]
versicolor,	dihydrogen	OH HO OH	Transform	increasing and
	phosphate		Infrared	stabilizing laccase
	[Chol][H ₂ PO ₄]		spectroscopy (FT-	activity
			IR)	
Bacillus HR03	1-ethyl-3-methyl	N CI [®]	Enzyme activity,	As IL [159]
	imidazolium		fluorescence, CD	concentration
	chloride			increases, activity
	[EMIM][Cl];	(^)		decreases.
	butyl-3-methyl	N CI ^O		(Km increases)
	imidazolium			
	chloride			
	[BMIM][Cl];			
	hexyl-3-methyl	N CI ^Θ		
	imidazolium			
	chloride			
	[HMIM][Cl]			

Laccase enzymatic activity towards oxidation of ABTS was shown to increase when [MMIM][MeSO₄] and [BMIM][MeSO₄] were used as ILs at a concentration of 35% v/v Below this concentration ILs do not show much impact on laccase activity [158]. In another study, increased IL concentrations produce a red shift in λ_{max} for laccase fluorescence [157]. Specifically, researchers have shown that when laccase was combined with various volumetric fractions of pyrrolidinium formate ([Pyrr][F]) and morphilinium formate ([Morph][F]) ILs, they both showed a red shift in λ_{max} for laccase fluorescence [157]. However, the authors did not specifically investigate the mechanism of IL inhibition of enzymatic activity [157].

Solution pH is another parameter that is important to understand the stability of laccase in ILs. Isoelectric point (pI) of laccase is 4.6 [160, 161] and based on the nature of the IL it would affect its interaction with laccase. For example, the fluorescence intensity of laccase was found to decrease in presence of the IL [TMA][TfO] more at pH 3.6 than at pH 5 [155]. On the other hand, at pH 5.8, the fluorescence intensity of laccase was found to increase in the presence of [TMA][TfO]. At pH 3.6, there is greater contribution from CF₃SO₃- anion with respect to its interaction with the laccase interaction and as a chaotropic anion it has higher preference to bind with the protein-water interface and destabilize the enzyme (Hofmeister effect) [108, 162]. However, at pH>pI (pH 5.8) the cation

- 331 [TMA]* is more active in terms of ordering the water structure surrounding enzyme and makes
- 332 laccase more compact, resulting in increased fluorescence intensity from the greater shielding of
- 333 buried Trp residues by the bulk polar aqueous milieu [155]. In another study, the effect of laccase
- activity in the presence of three 1-ethyl-3-methyl imidazolium ILs (with anions [MDEGSO4], [EtSO4]
- and [MeSO₃]) was determined at pH 5, 7, and 9. The results show that at pH 7 and 9, the activity of
- laccase does not change with the addition of ILs. However, at pH 5 the laccase showed significantly
- 337 reduced activity overall, but the IL-laccase samples showed a smaller loss of activity, that is, the
- 338 laccase+IL mixtures performed better than laccase alone at pH 5 [163].
- 339 Above 75% (v/v) concentration of ILs like 1-ethyl-3-methyl imidazolium ILs (with anions
- [MDEGSO₄], [EtSO₄] and [MeSO₃]) laccase precipitated under most conditions [163]. In the case of 4-
- 341 methyl-N-butylpyridinium tetrafluoroborate, [4-MBP][BF4] laccase precipitated even at 50%(v/v)
- 342 concentration. Precipitation occurs because salting out effects are promoted at high concentration.
- Novel formulations such as microemulsions made up of ILs, can also influence laccase activity. For
- example, when water-in-[BMIM][PF6] was used as the IL, laccase activity was found to be higher for
- 345 the water-in-IL microemulsion compared to pure IL or water-saturated IL [42].
- 346 In addition, ILs can impact the biocatalytic activity of the laccase. For instance, aqueous biphasic
- 347 systems containing IL cholinium dihydrogen citrate ([Chol][DHCit]) have been shown to enhance
- 348 the extraction efficiency of the enzyme and increase the biocatalytic activity by 50% [164].

349 2.2 Effect of ILs on Myoglobin

- 350 Myoglobin (Figure 2) is a water-soluble globular protein of 150 amino acids involved in transport
- 351 and storage of oxygen found in mammalian muscle tissues [165, 166]. Like laccase, myoglobin is a
- 352 metalloprotein having an iron atom incorporated in the heme group which together are involved in
- 353 reversibly binding oxygen [167]. The heme binding site of the protein contains two His residues, one
- 354 (proximal) is attached directly to the heme iron and the other (distal) is on the opposite face of the
- heme but does not bind the iron, instead being available for binding to O2. The presence of this iron
- imparts a reddish-brown color to the protein and yields an intense absorption band at \sim 409 nm [168].
- 357 The heme group is buried under a hydrophobic pocket of the myoglobin in its native folded state,
- 358 however, upon unfolding, the heme group is exposed to the aqueous environment, resulting in
- 359 decrease in the absorption at ~409 nm [168]. Because of these easily interrogated absorbance
- properties, myoglobin has been widely used as model protein to understand folding and unfolding
- 361 kinetics as a function of the varieties of conditions involving not only thermal, pH, and mechanical
- stress, but also wide range of denaturants such as detergents, organic solvents, and ILs [169-172]. A
- brief summary of studies that have been published on myoglobin with ILs can be found in Table 2.

Figure 2 - Structure of myoglobin from cardiac muscle of $\it E. \, caballus.$ The crystal structure was solved by Brayer and coworkers; downloaded from rcsb.org (1WLA) [145, 173]. The structure was visualized using VMD. (A) 3D structure of myoglobin. The N- and C-termini are shown as red and blue spheres respectively while the heme is shown in orange (partially occluded in the structure). (B) Structural geometry of the heme with the iron shown in black and chelating residues highlighted.

Table 2. Summary of studies done pertaining to monitoring the effects of ILs on myoglobin

	,			, 0	
Myoglo bin source	IL	Structure	Study done	Results	Ref
Horse- heart myoglo bin	1-ethyl-3- methylimidazolium phenylalanine [EMIM][Phe]		Fluorescence and circular dichroism spectroscopy	Small concentrations of increase helicity and stabilize protein, while higher concentrations lead to increase in beta structures	[174]
Horse- skeletal myoglo bin	1-butyl-3-methyl imidazolium tetrafluoroborate ([BMIM][BF4]); 1-butyl-3-methyl pyrrolidinium		Temperature stability studies, HDX experiments,	ILs enhances myoglobin unfolding kinetics	[123]

violecules 2020	J, 25, X FOR PEER REVIEW			13 01 39	
	tetrafluoroborate ([Pyrr][BF4]); 1-ethyl-3- methylimidazolium acetate [EMIM][Ac]); Tetramethyl guanidinium acetate [TMG][Ac])		unfolding kinetics		
Horse- skeletal myoglo bin	Tetramethyl ammonium hydroxide [TMA][OH]; Tetraethyl ammonium hydroxide [TEA] [OH]; Tetrapropyl ammonium hydroxide [TPA] [OH]; Tetrabutyl ammonium hydroxide [TPA] [OH];	⊕ DH	Fluorescence and (CD)	Decreases thermal stability of myoglobin	[175]
Salt free myoglo bin (Mb)	1-butyl-3- methylimidazolium cation [BMIM]+	$X = SCN^-$, HSO ₄ -, Cl-, Br-, CH ₃ COO- and I-	UV-vis spectroscopy, fluorescence spectroscopy, CD	A negative impact on the stability of Myoglobin, a sharp decrease in the transition temperature (Tm) of the myoglobin	[176]
Horse- skeletal myoglo bin	1-butyl-3- methylimidazolium chloride ([BMIM]Cl); 1-ethyl-3- methylimidazolium		Detergent (N,N- dimethyl-N- dodecylglyci ne betaine) induced denaturation		[177]

	acetate ([EMIM]Ac);		and heme- loss from	
	1-butyl-3-		myoglobin	
	methylimidazolium		monitored by	
	tetrafluoroborate		fluorescence	
	$([BMIM][BF_4])$		and circular	
			dichroism	
Horse-	Ethylmethylimidaz		Guanidinium	[EMIM]Ac does
skeletal	olium acetate		HCl induced	not affect
myoglo	([EMIM]Ac) and		myoglobin	myoglobin
bin	Butylmethylimidaz		unfolding by	unfolding (up to
	olium boron	N N N F P	combined	150 mM), while
	tetrafluoride		absorption/fl	[BMIM][BF ₄]
	$([BMIM][BF_4])$		uorescence	facilitated
			spectroscopic	myoglobin
				unfolding

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

In one study, the results suggested that ILs containing sulfate or phosphate ions and having higher viscosity such as diethylammonium sulfate ([DEA][SO4]), triethylammonium sulfate ([TEA][SO4]), dihydrogen phosphate ([DEA][P]), triethylammonium dihydrogen phosphate ([TEA][P]), Trimethylammonium dihydrogen sulfate ([TMA][SO4]) and Trimethylammonium dihydrogen phosphate ([TMA][P]) improve the stability of the myoglobin [172]. On the other hand, they also reported that less viscous ILs having acetate anions such as diethylammonium acetate ([DEA][Ac]), triethylammonium acetate ([TEA][Ac]), diethylammonium and Trimethylammonium acetate ([TMA][Ac]) were shown to destabilize myoglobin structure. One hypothesis is that ILs affect the stability of a protein by altering the hydration later (i.e. layer of water molecules around the protein). Specifically, in this case, the authors postulated that phosphate-containing ILs significantly interact with the myoglobin polypeptide chain and hence are repelled from the protein. In addition, because of these repulsions this IL also helps to provide better structure to the hydration layer, improving the stability of the protein [172]. As the acetate ions have greater affinity toward the polypeptide chain of myoglobin, they penetrate deep inside the protein structure and interact with amino acids of the polypeptide. Therefore, acetate ions present in ILs also disturb the native hydrogen bonding pattern as well as interactions of the protein with the hydration layer, resulting in protein destabilization. Further, results have indicated that anionic variation in the ILs has greater impact on the stability of myoglobin compared to the cationic variations (summarized in Table 3) [172].

390391

392393

Table <u>32</u>. Effect of various ILs on the melting temperature from fluorescence and DSC along with secondary structure composition of myoglobin determined from Far-UV CD spectra (adapted from reference [172]).

Sample	Fluorescence Tm (°C)	DSC Tm (°C)	α-Helix (%)	β-Strand (%)
Buffer	65.1	67.0	56.12	7.77
[TEA][P]	87.1	86.8	69.92	1.57
[DEA][P]	84.0	78.9	64.05	3.11
[TMA][P]	83.1	77.9	61.13	4.23
[TEA][SO ₄]	76.0	75.8	60.13	5.23
[DEA][SO ₄]	74.2	73.4	58.76	4.38
[TMA][SO ₄]	73.0	75.8	57.12	6.77
[TEA][Ac]	56.3	62.4	53.52	8.87
[DEA][Ac]	54.2	56.7	32.42	22.82
[TMA][Ac]	52.0	54.5	30.62	25.96
Urea (1 M)	NA	NA	54.63	7.23

NA=data not available

In work from Zhang et al. it was demonstrated that variation in the cation can also influence the stability of myoglobin [178]. They demonstrated that GuHCl-induced denaturation midpoints of myoglobin was not altered when interacted with phosphate buffer having 150 mM of various ILs differing only in their anions such as BF₄-, NO₃-, Cl-, and Br- , while keeping the same cation 1-butyl-3-methylimidazolium (BMIM $^{+}$) [178]. Furthermore, they have shown that increasing length of alkyl chain of imidazolium cation in the ILs affects denaturation of the myoglobin and the denaturation midpoint were found to be [HMIM][BF₄]<[BMIM][BF₄]<[EMIM][BF₄]
buffer. Additionally, hydroxy-substitution on the imidazolium cation also enhanced the denaturation of the myoglobin [178]. These differences in variation in the effect of various ILs on their capability to stabilize or destabilize the protein structure is still an unresolved question.

While some previous studies demonstrated positive or negative impact of ILs on the stability of the myoglobin, other studies demonstrated that some ILs are inert toward the stability of myoglobin. For instance, the effects of [BMIM][CI], [EMIM][Ac], [Pyrr][BF4] and [TMG][Ac] was investigated [123]. The results from this study indicated that these four ILs accelerate myoglobin unfolding kinetics not only due to changes in the aqueous solution ionic strength, but also due to IL-specific interactions [123]. While, in another study, [EMIM][Ac] did not impact myoglobin stability, but the IL [BMIM][BF4]drastically reduced the free energy required for myoglobin unfolding and hence significantly destabilized the myoglobin structure [62].

In addition, impact of ILs on the detergent-mediated denaturation of myoglobin was also evaluated. According to one study, inclusion of a series of ILs such as 1-butyl-3-methylimidazolium chloride (BMICl), 1-ethyl-3-methylimidazolium acetate(EMIAc), and 1-butyl-3-methylimidazolium tetrafluoroborate (BMIBF4) in aqueous solution had negligible impact on the detergent N,N-dimethyl-N-dodecylglycine betaine induced denaturation and heme-loss from myoglobin [177]. In another study, the effect of alkylated imidazolium chlorides based ILs such as [EMIM][Cl], [BMIM][Cl], [HMIM][Cl], and [OMIM][Cl] was tested on unfolding of myoglobin in the presence of

different detergents such as N,N-dimethyl-N-dodecylglycine betaine (zwitterionic; Empigen BB®, EBB), tetradecyltrimethylammonium bromide (cationic; TTAB), and sodium dodecyl sulfate (anionic; SDS) [78]. It was observed that, presence of ILs does not affect the EBB- and TTAB-induced dissociation of heme, however, SDS-induced dissociation is affected by presence of ILs. Furthermore, it was found that, heme dissociation follow a cooperative process at low IL concentration, while at high IL concentration the heme dissociation occur via more complex pattern, which could be due to micellization of the ILs or their direct interactions with the myoglobin [78].

2.3. Effects of IL on Azurin

The blue copper protein, azurin, is part of the azurin-nitrate reductase redox protein complex. This protein is involved in denitrification metabolism in bacteria [91, 179]. The presence of copper is necessary for protein stability. It is a small protein that can be produced from two bacterial strains – *Pseudomonas aeruginosa* and *Alcaligenes denitrificans* [180]. Azurin's structure from *P. aeruginosa* consists of a hydrophobic alpha helix, six short beta sheets and a random-coil that allows for copperbinding [91, 181, 182] (Figure 3). Notably, azurin exhibits the most blue-shifted Trp emission spectrum from naturally derived proteins, arising from the single Trp residue at position 48 [183]. This is attributed to the very hydrophobic interior of the protein, which also includes the copper binding site. The Cu²⁺ is coordinated by Gly45, His46, Asn47, Cys112, Phe114, His117, and Met121 [183]. A brief summary of studies that have been published on azurin with ILs can be found in Table 4.

Figure 3 - Structure of azurin from *P. areuginosa*. The crystal structure was solved by Adman and Jensen; downloaded from rcsb.org (1AZU([182])[145] The structure was visualized using VMD. (A) 3D structure of azurin. The N- and C-termini are shown as red and blue spheres respectively while the copper is shown in orange (partially occluded in the structure). (B) Structural geometry of the copper shown in orange and chelating residues highlighted.

ILs can affect the protein structure and its stability based on several characteristics. As a protein with a mixed structure, azurin's stability is affected differently in the presence of ILs. Recently we demonstrated 1.0 M alkyl-imidazolium chloride ILs in aqueous solutions were seen to have a variable effect on azurin; the three ILs were [BMIM][CI], [HMIM][CI], and [OMIM][CI]. The difference in these

three ILs are the length of the alkyl chains and hydrophobicity. Due to less hydrophobicity, [BMIM][Cl] and [HMIM][Cl] have some interactions at the surface of the protein. Furthermore, these ILs denature the secondary structure completely at a high temperature at $55^{\circ}{}^{\circ}{}^{\circ}$ and the tertiary structure slowly at $65^{\circ}{}^{\circ$

In a study by Fujita *et al.*, the interaction between the hydrated IL [Chol][Dhp] and several metalloproteins, such as azurin and pseudoazurin, was investigated. The study focused on the solubility and properties of the proteins dissolved in 70 wt% [Chol][Dhp]. Specifically, in [Chol][Dhp], it was found that these proteins, when dissolved, do not have any disturbance to the active sites found in the proteins. Notably, not all proteins tested were soluble under these conditions. Among those that were soluble, the retention of structural elements was supported by spectral signatures in Raman and CD spectra. Notably, resonance raman spectra showed the peaks near 260 cm⁻¹ and 400cm⁻¹ for Cu-N and Cu-S, respectively, which was consistent with the spectra for azurin in its native conformation. This indicated that the protein retained its structure and function when dissolved with the IL [184].

In another study the same IL, hydrated [Chol][Dhp], was studied to understand the interaction between the IL and azurin, specifically focusing on the redox reaction rate for azurin (dissolved in the IL) and the SAM-AuNP electrode. In the presence of this IIL, it was found that the proteins were able to maintain their structure, showing long term and thermal stability. Similar to the previous study explained above, it was found that the active site of the protein was maintained in the presence of the IL using Raman spectroscopy. It was also found that electron transfer rate constant (ks) between azurin and the electrode in the IL (202 s⁻¹) was found to be larger than that of the ammonium acetate buffer solution (44 s⁻¹) and the reason for this difference could possibly be due to protein shrinkage. Both the buffer and the IL showed that electron transfer reactions were possible at a fast rate; this would mean that this fast rate would be much more stable over a broad range of temperature values and a longer time period for the IL [185].

Table 4: Summary of studies done pertaining to monitoring the effects of ILs on azurin

Azurin	IL	Structure	Study done	Results	ref
source					
Azurin from	1-ethyl-3-	CI®	Temperature-	ILs affected the	[174]
P. aeruginosa	methylimidazolium		dependent	protein structure	
			fluorescence	by destabilizing	

2.4. Effect of ILs on other metal containing proteins

Impact of ILs has also been evaluated on other metal containing proteins such as horseradish peroxidase, alcohol dehydrogenase etc. As above, the primary purpose for these studies was to understand the how the ILs will influence folding and/or unfolding behavior of these proteins.

Horseradish peroxidase (HRP) is an enzyme having two different metal ions namely, a ferrous ion incorporated in a heme group and a calcium ion (Figure 4). Notably, the heme-iron is directly involved in the catalytic reaction center, while the calcium is structural [187]. The effect of various ILs on activity of the HRP was evaluated using chromogenic substrates. In one study, the effect of various ILs as well as hemin and calcium cofactors were evaluated for effects on the refolding properties of HRP. This study used ILs with varying anions such as EMIM with Ac, BF4, Cl, ES, and TfO, as well as with different alkyl chain lengths such as EMIM*, BMIM*, HMIM*, and OMIM* [188]. Among various tested anions, Cl- based ILs showed highest enzyme activity, while, among various ILs having different alkyl chain lengths, EMIM showed highest enzyme activity [188]. Notably, in the presence of IL [BMIM][PF6], the activity of HRP was also shown to be enhanced [188]. Moreover, HRP immobilized on a sol-gel matrix prepared from [BMIM][BF4] and silica was shown to have 30-fold higher activity compared to that of the enzyme immobilized on only silica gel [189].

Figure 4 – 3D Structure of horseradish peroxidase from *A. rusticana*. The crystal structure was solved by Hajdu and coworkers; downloaded from rcsb.org (1W4Y)[145, 187]. The structure was visualized using VMD. The N- and C-termini are shown as red and blue spheres respectively while the calcium ions are shown in green, the heme in orange and the heme-iron in black.

A tailor-made IL specifically designed to work with HRP was also developed, which has the cation tetrakis(2-hydroxyethyl)ammonium 2 possible anions:Cl- or [CF3SO3] [190]. This tailor-made IL has a

Commented [CGA1]: These were changed in the proof but I'm not sure what was changed

structure similar to TRIS (buffer), possessing four hydroxyethyl moieties. Improvement in the enzyme activity was observed with the tailor-made ILs compared to that of the common, commercially available ILs such as [BMIM][C1], [BMIM][CF3CO2], [BMIM][alanine], [BMIM][CF₃SO₃], [BMIM][BF₄], and a hydrophobic IL [BMIM][PF₆] [190]. In addition, the effect of [BMIM][CI] and [BMIM][BF4] on the thermal stability of the horseradish peroxidase was also evaluated. The results of the study showed that [BMIM][BF4] is capable of improving the thermal stability of the horseradish peroxidase when used at a concentration of 5-10% (v/v) [191]. Furthermore, [BMIM][BF4] is also capable of enhancing the reaction yield and purity for the reactions converting water insoluble phenolic compounds to a novel compound 4-phenylphenol ortho dimer [2,2'-bi-(4-phenylphenol)] [192]. However, the enzymatic catalysis was sensitive to solution pH with the best catalytic activity observed with [BMIM][BF4] (90% v/v IL in water) at pH>9. The enzyme activity was found to decrease as the pH was shifted toward neutral and as pH decreases further, the [BMIM][BF4] exerts inhibitory action on the HRP attributed to the tetrafluoroborate anion releasing fluoride ions which bind with the heme iron group [192].

Alcohol dehydrogenase is another commonly studied metalloenzyme which has zinc ions in the active structure. The *S. cerevisiae* alcohol dehydrogenase has a homotetrameric structure with each subunit having a zinc ion in the catalytic center (Figure 5) [193]. The major function of this enzyme is to carry out oxidation of alcohols using the co-substrate β -nicotinamide adenine dinucleotide (NAD*). This is a thoroughly studied model system that, in yeast, converts acealdehyde into ethanol along with formation of NADH and H*. The active site contains the Zn²+ atoms coordinated by Cys, His, and Glu residues [194]. In one study, the activity and stability of the yeast alcohol dehydrogenase was evaluated in solutions containing various ILs including 1-methylimidazolium chloride ([MIM][CI]). The data showed that the order of activity enhancement was [BMIM][CI] > [BMIM][BF4] > [MIM][BF4] ~ [MIM], while the order of stability was found to be [MIM][CI] > [MIM][BF4] > control (no ILs) > [BMIM][BF4] > [BMIM][CI]. The structural similarity of the cationic group of [MIM][CI] with the adenine moiety of NAD* was proposed to allow interaction with the active site and hence stabilize the enzyme at higher temperature [195]. In another study, the effect of [BMIM][PF6] on the yeast alcohol dehydrogenase was investigated and the data indicated a rapid decrease in the activity of the enzyme as a function of [BMIM][PF6] concentration [196].

547

548

549

550551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

Figure 5-3D Structure of alcohol dehydrogenase from *S. cerevisiae*. The crystal structure was solved by Ramaswamy and coworkers; downloaded from rcsb.org (5ENV)([145, 193]. The structure was visualized using VMD. The N- and C-termini are shown as red and blue spheres respectively while the zinc ions are shown in black. The structure represents one monomer of a homotetramer.

The effect of variation of the anionic and cationic moieties in the ILs has also been investigated on the stability of the yeast alcohol dehydrogenases [197]. Regarding anion variation in the ILs, [EMIM] was used as a fixed cation with different anions forming [EMIM][CI], [EMIM]Br, [EMIM][EtOSO3], [EMIM][TfO], [EMIM][BF4], [EMIM][dca], [EMIM][SCN], [EMIM][NTf2] [197]. In the same study, [Cl] was used as fixed anion with different cations forming NaCl, [Me4N][Cl], [Chol][Cl], [EMIM][Cl], [Et₄N][Cl], [Bu₄N][Cl], [Gdm][Cl], [BMIM][Cl]. The results of this study showed that [EMIM][Cl] and [Me₄N][Cl] have enzyme enhancing effects on the yeast alcohol dehydrogenase, while enzyme deactivating ILs are found to have anions in the order of Br- > [EtOSO₃]- > [TfO]- > [BF₄]- > [dca] -> [SCN] [197]. On the other hand, for variation in the cation, the enzyme deactivating order was found to be [Chol] > [EMIM] > [Et4N] > [Bu4N] > [Gdm] > [BMIM]+, while [EMIM][NTf2] was found to have strongest deactivating effect [197]. In addition, the effect of ILs on a bacterial alcohol dehydrogenase obtained from Thermoanaerobacter brockii (TBADH) were also investigated. Specifically, the impact of ILs such as [BMIM][CI], [BMIM][BF4], [MIm][Cl] and [MIm][BF4] was monitored on the TBADH activity. The results showed compared to control and other ILs, the enzymatic activity and catalytic efficiency was enhanced in [BMIM][CI] and [BMIM][BF4]. This study also showed that in ILs with similar anions, the activity depends on the alkyl chain length of imidazolium as well as structural similarity of cations to that of the substrate, because of this structure similarity these ILs to that of the enzyme subtract they act as an enzyme inhibitor [198]. As a result of the structural similarity of MIM ILs to that of substrate (NADP+), it was proposed

Glucose isomerase is a homotetrameric metalloenzyme with four catalytic centers and promiscuous functionality (Figure 6) [199]. The enzyme catalyzes reversible isomerizations of D-glucose to D-

competition rather than kosmotropic interactions with bulk water [198].

that reduction in activity caused by this IL and the related [BMIM] were due to direct substrate

575 pocket 576 associa 577 contain 578 residu 579 petrolo 580 corn s 581 toward 582 [DME 583 [EMIM 584 deactir 585 hand, 586 when 587 was ai

574

588

589

590

fructose as well as D-xylose to D-xylulose. Each of the catalytic centers has two subunits that form a pocket-like shape and have two divalent metal ion binding sites. Glucose isomerase is usually associated with metal ions like Mg²⁺, Co²⁺, or Mn²⁺, or a combination of these [200]. The active site contains the metal ions and several critical carboxyl containing residues (Asp & Glu) as well as a His residue involved in proton transfer. Glucose isomerase is a very important industrial enzyme for petroleum and food applications as it is used for production of ethanol for fuel as well as high fructose corn syrup [200]. One study compared effects of various ILs on the activity of glucose isomerase toward converting glucose to fructose [201]. This study investigated the ILs [DMEA][F], [DMEA][Pr], [DMEA][De], [Choline][Pr], [DMBA][Pr], [MPIP][Ac], [DBEA][Oc], [Choline][Ac], [EMIM][Ac], [EMIM][CI], [BMIM][CI] and [BMIM][Ac]. Among these ILs [EMIM][CI] and [BMIM][CI] showed a deactivating effect on the glucose isomerase and no fructose production was observed. On the other hand, [DBEA][Oc] showed the highest fructose production (of about 52%) in comparison to other ILs, when the final water content was kept at 21% w/w. In addition, [DBEA][Oc] was the only IL which was also able to produce mannose at 2% w/w, while all other ILs showed intermediate fructose production. These results indicate that the presence of ILs can significantly affect enzyme activity/stability and it is important to screen multiple ILs to find the one which provides optimum results [201].

591 592

593

594

595

Figure 6-3D Structure of glucose isomerase from Streptomyces rubiginosus. The crystal structure was solved by Dauter and coworkers; downloaded from rcsb.org (1OAD)[145].[199] The structure was visualized using VMD. The N- and C-termini are shown as red and blue spheres respectively while the manganase ions are shown in tan and the magnesium ions shown in cyan. The structure represents one monomer of a homodimer.

596597

598

599

600

601

ILs have also shown to impact the crystallization and X-ray diffraction resolution for glucose isomerase [202]. For instance, in a study by Judge *et al.*, glucose isomerase was crystallized in presence of ILs such as [EMIM][BF4], [EMIM][C1], [BMIM][C1], [HMIM][C1], triisobutyl (methyl) phosphonium p-toluenesulfonate, [n-BP][C1]. Among all ILs the triisobutyl (methyl) phosphonium p-

602 toluenesulfonate was shown to produce bigger crystals with a change in the morphology of glucose 603 isomerase crystals compared to control samples without ILs [202]. However, proper optimization of 604 the IL concentration during the crystallization is necessary because in some cases higher amounts of 605 IL might negatively impact the crystal. For example, when crystallization of glucose isomerase was 606 carried out with [BMIM][Cl] at 0 M, 0.2 M, and 0.4 M, plate-like crystals of glucose isomerase were 607 obtained only with 0.2 M IL, while the samples with no IL gave salt precipitates and samples with 608 0.4 M IL did not yield any crystals or precipitates [203]. Furthermore, a synergistic effect was observed 609 when ILs were combined with other techniques that also promote enzyme activity. For instance, the 610 activity of immobilized glucose isomerase and reaction yield for glucose conversion to fructose was 611 found to be highest when [EMIM][Cl] was used in combination of ultrasound irradiation, compared 612 to use of only the IL or ultrasound irradiation individually [204].

613614

3. Conclusions/Perspective

- Depending on the physicochemical properties of ILs such as polarity, alkyl chain length in cation, anions in IL, hydrophobicity, and viscosity, ILs can have differential effects on protein stability. Some ILs have been shown to improve the stability of proteins, some are inert, and others disruptive to protein structure and function. Because of these unique properties, ILs have applications in multiple fields such as chemistry/synthesis, biotech, pharmaceutical, and the electronics industries. Specifically, ILs that have been shown to stabilize proteins can potentially be beneficial in developing formulations of protein therapeutics or in industrial processes using biocatalysts.
- 622 As the protein stabilization or destabilization is very specific to the chemistry of ILs, a rational 623 selection of IL for protein under investigation is necessary before using it as a solvent for improving 624 protein stability or activity. There is only limited knowledge regarding the mechanism of protein 625 stabilization or destabilization in the presence of ILs and therefore research is still needed to 626 understand fundamental chemistry of ILs and how they interact with proteins. This is a crucial step 627 before ILs can be effectively incorporated into protein production, purification, or biocatalytic 628 processes. These experiments, in total, should aim to develop a predictive model for IL-biomolecule 629 systems which varies both the cation and anion of the IL based on the properties and functional 630 environment of the protein. This is a critical but challenging process because of the variability in IL 631 compositions, ongoing development of new ILs, and the variability and complexity between different 632 proteins.
- 633 One approach which has been recently described is instead of single entities, mixtures of different 634 ILs have also been used for obtaining better protein stability [205]. In addition to experimental 635 approaches for evaluating the effect on ILs on the protein stability, various in silico analysis have also 636 been performed. For instance, a study using molecular dynamics simulation analysis indicated that 637 in the presence of ILs the bovine serum albumin does not destabilize the structure it adopts, which 638 was also confirmed by experimental analysis [206]. These molecular dynamics simulations will 639 undoubtedly help to narrow the field of potential IL candidates for specific protein and biomolecular 640 applications.
- Importantly, in the study of metalloproteins with ILs, there are still numerous questions regarding mechanism of IL-protein interactions. Most importantly, the majority of studies focus on the protein

structure for obvious reasons. However, it leaves any direct interactions between ILs and the metal ions ambiguous. While in most cases it is clear from spectroscopic measurements that the metal ions are no longer properly coordinated in the protein structure, which was the initial driving force?

Does IL interactions directly with the metal cause a destabilization in the protein or does destabilization of the protein cause a loss of the metal? While the latter is intuitive, there is only preliminary direct evidence. Additional studies that directly interrogate the metal sites such as vibrational methods and magnetic circular dichroism will help shed light on this question.

Another important aspect that must be considered when discussing IL-biomolecule applications is toxicity. The ability of a specific IL to stabilize a protein structure does not inherently mean it will be stabilizing to ALL proteins, and may cause cytotoxic effects through other mechanisms. Similarly, there is no guarantee that because an IL is well tolerated by one organism that it will be equally biocompatible with all organisms. As such, the study of IL toxicity is an ongoing and rich area of research with numerous groups focused on this problem. Many studies have shown that some ILs can exhibit environmental toxicity or organismal cytotoxicity[207-209]. Alternatively, there are numerous examples in the literature of ILs that exhibit low levels of cytotoxicity, encouraging the investigation of these formulations for biological and pharmaceutical applications [207, 208, 210-213]. Our own work has shown that the cytotoxicity of ILs with imidazolium-based cations is dependent on alkyl chain length but can be used synergistically with traditional antimicrobials well below the cytotoxicity window against human cells [214, 215]. These findings parallel that of many other groups which have shown a link between lipophilicity and cytotoxicity for ILs [216, 217]. However, in light of the vast number of IL species combined with the breadth of biological species, it is necessary to expand the throughput of screening IL toxicity. Many groups have employed computational QSAR approaches to build predictive models of IL toxicity to cells [216, 218-220]. These studies can potentially yield a great deal of insight for experimentalists in the design of IL formulations for specific applications.

Finally, the significance and importance of metalloproteins will continue to grow. Numerous industrial processes rely on metalloproteins for catalysis. These include enzymes such as metalloproteases, laccases, cellulases, lipases, phosphatases, and amylases [221, 222]. Further, some of the metalloproteins are involved in the progression of the cancer and other diseases [223]. Once suitable ILs are identified and their effects on a given protein have been thoroughly evaluated, they can be successfully be used in combination with those targets to enhance or reduce activity. Because of having these beneficial properties, ILs have potential to serve as an ideal vehicle for protein therapeutics, a combinatorial therapeutic component, and an activity-enhancing additive in industrial processes in the near future.

676677678

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

Abbreviations

679 IL cations

- 681 [EMIM] 1-ethyl-3-methylimidazolium
- 682 [BMIM] 1-butyl-3-methylimidazolium
- 683 [HMIM] 1-hexyl-3-methylimidazolium

25 of 39

- 684 [MMIM] 1,3-dimethylimidazolium
- 685 [BzMIM] 1-benzyl-3-methylimidazolium
- 686 [OMIM] 1-octyl-3-methylimidazolium
- 687 [PMIM] 1-propyl-3-methylimidazolium
- 688 [BBIM] 1,3-dibutylimidazolium
- 689 [BMPyr] 1-butyl-3-methylpyrrolidinium
- 690 [OH-EMIM] 1-(2-hydroxyethyl)-3-methylimidazolium
- 691 [Me4N] Tetramethyl ammonium
- 692 [Et4N] Tetraethyl ammonium
- 693 [Pr4N] Tetrapropyl ammonium
- 694 [Bu4N] Tetrabutyl ammonium
- 695 [Me3NH] Trimethyl ammonium
- 696 [Et3NH] Triethyl ammonium
- 697 [Bu3NH] Tributyl ammonium
- 698 [MTOA] Methyl trioctyl ammonium
- 699 [BTMA] Butyl trimethyl ammonium
- 700 [Chol] Choline
- 701 [Gua] guanidinium
- 702 [DMEA] N,N-dimethylethanolammonium formate
- 703 [DMBA] N,N-Dimethylbutylammonium propionate
- 704 [MPIP] N-Methylpiperidinium acetate
- 705 [n-BP] n-butylpyridinium
- 706 [DBEA] N,N-dibutylethanolammonium

708 IL anions

- 709 [BF4] Tetrafluoroborate
- 710 [PF₆] Hexafluorophosphate
- 711 [Tf2N] Bis(trifluromethane)sulfonimide
- 712 [Dmp] Dimethyl phosphate
- $713 \qquad [MDEGSO_4] \ 2\hbox{-}(2\hbox{-methoxyethoxy}) \ ethyl \ phosphate$
- $714 \qquad [MeSO_3] \ Methyl \ sulfonate$
- 715 [EtSO₄] Ethyl sulfate
- 716 [CF3OO] Trifluoro acetate
- 717 [Dca] Dicyanamide
- 718 [Dhp] Dihydrogen phosphate
- 719 [OTf] Trifluoromethane sulfonate
- 720 [MeSO4] Methyl sulfate
- 721 [SO₄] Sulfate
- 722 [TMA] Trimethyl acetate
- 723 [F] Formate
- 724 [Pr] Propionate
- 725 [De] Deconate,
- 726 [Oc] Octanoate

	Molecules 2020, 25, X FOR PEER REVIEW	6 Of 3
727 728	[Cl] Chloride	
729 730 731	Author Contributions: writing—original draft preparation, A.P. and K.J.; writing—review and editing, G C.W., and T.D.V.; visualization, N.P. and C.W.; funding acquisition, T.D.V., C.W. and G.A.C. All authors read and agreed to the published version of the manuscript.	
732	Funding: This research was funded by the National Science Foundation, grant number DMR 1904797.	
733	Institutional Review Board Statement: Not Applicable	
734	Informed Consent Statement: Not applicable	
735	Data Availability Statement: Not Applicable	
736 737 738	Conflicts of Interest: The authors declare no conflict of interest.	

739 References

- 740 [1] C.I. Branden, J. Tooze, Introduction to protein structure, Garland Science: New York, NY, USA, 2012.
- 741 [2] A.M. Lesk, Introduction to protein architecture: the structural biology of proteins, Oxford University Press:
- 742 New York, NY, USA, 2001.
- 743 [3] A. Lesk, Introduction to protein science: architecture, function, and genomics, Oxford University Press:
- 744 New York, NY, USA, 2010.
- 745 [4] B. Leader, Q.J. Baca, D.E. Golan, Protein therapeutics: a summary and pharmacological classification,
- 746 Nature reviews Drug discovery, 7 (2008) 21-39.
- 747 [5] D. Dimitrov, Therapeutic Proteins; Voynov, V., Caravella, JA, Eds, Methods in Molecular Biology, Humana
- 748 Press: Totowa, NJ, USA 2012; pp. 1-26.
- 749 [6] B.K. Shoichet, W.A. Baase, R. Kuroki, B.W. Matthews, A relationship between protein stability and protein
- 750 function, Proceedings of the National Academy of Sciences, 92 (1995) 452-456.
- 751 [7] K.J. Waldron, J.C. Rutherford, D. Ford, N.J. Robinson, Metalloproteins and metal sensing, Nature, 460
- 752 (2009) 823-830
- 753 [8] Y. Lu, N. Yeung, N. Sieracki, N.M. Marshall, Design of functional metalloproteins, Nature, 460 (2009) 855.
- 754 [9] K.D. Karlin, Metalloenzymes, structural motifs, and inorganic models, Science, 261 (1993) 701-708.
- 755 [10] I.A. Kaltashov, M. Zhang, S.J. Eyles, R.R. Abzalimov, Investigation of structure, dynamics and function of
- $756 \qquad \text{metalloproteins with electrospray ionization mass spectrometry, Analytical and bioanalytical chemistry, 386}$
- 757 (2006) 472-481
- 758 [11] F. Nastri, D. D'Alonzo, L. Leone, G. Zambrano, V. Pavone, A. Lombardi, Engineering Metalloprotein
- 759 Functions in Designed and Native Scaffolds, Trends in Biochemical Sciences, 44 (2019) 1022-1040.
- 760 [12] J.B. Wittenberg, Myoglobin-facilitated oxygen diffusion: role of myoglobin in oxygen entry into muscle,
- 761 Physiological Reviews, 50 (1970) 559-636.
- 762 [13] B.G. Malmstrom, J. Neilands, Metalloproteins, Annual review of biochemistry, 33 (1964) 331-354.
- 763 [14] W. Shi, M. Chance, Metallomics and metalloproteomics, Cellular and Molecular Life Sciences, 65 (2008)
- 764 3040-3048.
- 765 [15] J. Vergalli, I.V. Bodrenko, M. Masi, L. Moynié, S. Acosta-Gutiérrez, J.H. Naismith, A. Davin-Regli, M.
- 766 Ceccarelli, B. Van den Berg, M. Winterhalter, Porins and small-molecule translocation across the outer
- membrane of Gram-negative bacteria, Nature Reviews Microbiology, 18 (2020) 164-176.
- $768 \qquad \hbox{[16] C. Liu, H. Xu, The metal site as a template for the metalloprotein structure formation, Journal of Inorganic}$
- 769 Biochemistry, 88 (2002) 77-86.
- 770 [17] M.L. Kennedy, B.R. Gibney, Metalloprotein and redox protein design, Current Opinion in Structural
- 771 Biology, 11 (2001) 485-490.
- 772 [18] M. Karplus, A. Šali, Theoretical studies of protein folding and unfolding, Current Opinion in Structural
- 773 Biology, 5 (1995) 58-73.
- 774 [19] J.N. Onuchic, P.G. Wolynes, Theory of protein folding, Current Opinion in Structural Biology, 14 (2004) 70-
- 775 75.
- 776 [20] I. Braccini, S. Perez, Molecular basis of C(2+)-induced gelation in alginates and pectins: the egg-box model
- 777 revisited, Biomacromolecules, 2 (2001) 1089-1096.
- 778 [21] N.H. Lam, Z. Ma, B.-Y. Ha, Electrostatic modification of the lipopolysaccharide layer: competing effects of
- divalent cations and polycationic or polyanionic molecules, Soft Matter, 10 (2014) 7528-7544.

- 780 [22] M. Quesada-Perez, E. Gonzalez-Tovar, A. Martin-Molina, M. Lozada-Cassou, R. Hidalgo-Alvarez,
- 781 Overcharging in colloids: beyond the Poisson-Boltzmann approach, Chemphyschem: a European journal of
- 782 chemical physics and physical chemistry, 4 (2003) 234-248.
- 783 [23] D.E. Draper, RNA folding: thermodynamic and molecular descriptions of the roles of ions, Biophys J, 95
- 784 (2008) 5489-5495
- 785 [24] W.L. Ward, K. Plakos, V.J. DeRose, Nucleic Acid Catalysis: Metals, Nucleobases, and Other Cofactors,
- 786 Chemical Reviews, 114 (2014) 4318-4342.
- 787 [25] L. Ma, J. Liu, Catalytic nucleic acids: biochemistry, chemical biology, biosensors, and nanotechnology,
- 788 Iscience, 23 (2020) 100815.
- 789 [26] F. Wurm, B. Rietzler, T. Pham, T. Bechtold, Multivalent Ions as Reactive Crosslinkers for Biopolymers-A
- 790 Review, Molecules, 25 (2020).
- 791 [27] O. Matsarskaia, F. Roosen-Runge, F. Schreiber, Multivalent ions and biomolecules: Attempting a
- 792 comprehensive perspective, Chemphyschem: a European journal of chemical physics and physical chemistry,
- 793 21 (2020) 1742-1767.
- 794 [28] J.L. England, G. Haran, Role of solvation effects in protein denaturation: from thermodynamics to single
- 795 molecules and back, Annual review of physical chemistry, 62 (2011).
- 796 [29] D. Baker, What has de novo protein design taught us about protein folding and biophysics?, Protein
- 797 Science, 28 (2019) 678-683.
- 798 [30] I. Sorokina, A. Mushegian, Modeling protein folding in vivo, Biology Direct, 13 (2018).
- 799 [31] C.M. Dobson, Protein folding and misfolding, Nature, 426 (2003) 884-890.
- 800 [32] C.M. Dobson, A. Šali, M. Karplus, Protein folding: a perspective from theory and experiment, Angewandte
- 801 Chemie International Edition, 37 (1998) 868-893.
- $802 \hspace{0.5cm} \textbf{[33] S. Kumar, D. Pal, Protein Bioinformatics: From Sequence to Function; Academic Press: Cambridge, MA,} \\$
- 803 USA (2010).
- 804 [34] J. Mittal, R.B. Best, Thermodynamics and kinetics of protein folding under confinement, Proceedings of the
- 805 National Academy of Sciences, 105 (2008) 20233-20238.
- 806 [35] M. Carrion-Vazquez, A.F. Oberhauser, S.B. Fowler, P.E. Marszalek, S.E. Broedel, J. Clarke, J.M. Fernandez,
- 807 Mechanical and chemical unfolding of a single protein: a comparison, Proceedings of the National Academy of
- 808 Sciences, 96 (1999) 3694-3699.
- 809 [36] A. Rader, B.M. Hespenheide, L.A. Kuhn, M.F. Thorpe, Protein unfolding: rigidity lost, Proceedings of the
- $810 \qquad \hbox{National Academy of Sciences, 99 (2002) 3540-3545}.$
- $811 \hspace{0.5cm} \textbf{[37] L.J. Lapidus, Protein unfolding mechanisms and their effects on folding experiments, F1000Research, 6}$
- 812 (2017).
- 813 [38] A.-S. Yang, B. Honig, On the pH dependence of protein stability, Journal of molecular biology, 231 (1993)
- 814 459-474.
- 815 [39] F. Meersman, L. Smeller, K. Heremans, Protein stability and dynamics in the pressure–temperature plane,
- 816 Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 1764 (2006) 346-354.
- 817 [40] A.A. Cordes, J.F. Carpenter, T.W. Randolph, Accelerated stability studies of abatacept formulations:
- 818 Comparison of freeze–thawing-and agitation-induced stresses, Journal of pharmaceutical sciences, 101 (2012)
- 819 2307-2315.
- 820 [41] R. Moriyama, S. Makino, Effect of detergent on protein structure. Action of detergents on secondary and
- 821 oligomeric structures of band 3 from bovine erythrocyte membranes, Biochimica et Biophysica Acta (BBA)-
- Protein Structure and Molecular Enzymology, 832 (1985) 135-141.

- 823 [42] M. Naushad, Z.A. ALOthman, A.B. Khan, M. Ali, Effect of ionic liquid on activity, stability, and structure
- of enzymes: a review, International journal of biological macromolecules, 51 (2012) 555-560.
- 825 [43] M.E. Johnson, C. Malardier-Jugroot, T. Head-Gordon, Effects of co-solvents on peptide hydration water
- 826 structure and dynamics, Physical Chemistry Chemical Physics, 12 (2010) 393-405.
- 827 [44] B.J. Bennion, V. Daggett, The molecular basis for the chemical denaturation of proteins by urea,
- 828 Proceedings of the National Academy of Sciences, 100 (2003) 5142-5147.
- 829 [45] O.D. Monera, C.M. Kay, R.S. Hodges, Protein denaturation with guanidine hydrochloride or urea
- 830 provides a different estimate of stability depending on the contributions of electrostatic interactions, Protein
- 831 Science, 3 (1994) 1984-1991.
- 832 [46] A. Huerta-Viga, S. Woutersen, Protein denaturation with guanidinium: A 2D-IR study, The journal of
- 833 physical chemistry letters, 4 (2013) 3397-3401.
- 834 [47] J. Dunbar, H.P. Yennawar, S. Banerjee, J. Luo, G.K. Farber, The effect of denaturants on protein structure,
- 835 Protein Science, 6 (1997) 1727-1733.
- 836 [48] R. Day, B.J. Bennion, S. Ham, V. Daggett, Increasing Temperature Accelerates Protein Unfolding Without
- Changing the Pathway of Unfolding, Journal of Molecular Biology, 322 (2002) 189-203.
- 838 [49] E.P. O'Brien, B.R. Brooks, D. Thirumalai, Effects of pH on proteins: predictions for ensemble and single-
- molecule pulling experiments, Journal of the American Chemical Society, 134 (2012) 979-987.
- $840 \qquad [50] \ K. \ Kuwajima, F.X. \ Schmid, Experimental studies of folding kinetics and structural dynamics of small}$
- proteins, Advances in biophysics, 18 (1984) 43-74.
- 842 [51] J.H. Carra, E.C. Murphy, P.L. Privalov, Thermodynamic effects of mutations on the denaturation of T4
- 843 lysozyme, Biophysical journal, 71 (1996) 1994-2001.
- 844 [52] J.H. Carra, E.A. Anderson, P.L. Privalov, Thermodynamics of staphylococcal nuclease denaturation. I. The
- $845 \qquad \text{acid denatured state, Protein Science, 3 (1994) 944-951}.$
- $846 \qquad [53] \ C.\ Pace,\ J.\ Hermans,\ The\ stability\ of\ globular\ protein,\ CRC\ critical\ reviews\ in\ biochemistry,\ 3\ (1975)\ 1-43.$
- $847 \qquad \hbox{\small [54] K.A. Dill, D. Stigter, Modeling protein stability as heteropolymer collapse, in:} \quad Advances in protein$
- 848 chemistry, vol. 46, Elsevier, 1995, pp. 59-104.
- 849 [55] K.L. Borrell, C. Cancglin, B.L. Stinger, K.G. DeFrates, G.A. Caputo, C. Wu, T.D. Vaden, An experimental
- and molecular dynamics study of red fluorescent protein mCherry in novel aqueous amino acid ionic liquids,
- 851 The Journal of Physical Chemistry B, 121 (2017) 4823-4832.
- 852 [56] D.D. Schlereth, W. Maentele, Redox-induced conformational changes in myoglobin and hemoglobin:
- 853 electrochemistry and ultraviolet-visible and Fourier transform infrared difference spectroscopy at surface-
- $854 \qquad \text{modified gold electrodes in an ultra-thin-layer spectroelectrochemical cell, Biochemistry, 31 (1992) 7494-7502}.$
- 855 [57] Z. Chi, S.A. Asher, UV resonance Raman determination of protein acid denaturation: selective unfolding
- of helical segments of horse myoglobin, Biochemistry, 37 (1998) 2865-2872.
- 857 [58] L. Joly, R. Antoine, A.-R. Allouche, M. Broyer, J. Lemoine, P. Dugourd, Ultraviolet spectroscopy of peptide
- 858 and protein polyanions in vacuo: Signature of the ionization state of tyrosine, Journal of the American
- 859 Chemical Society, 129 (2007) 8428-8429.
- 860 [59] E. Pinho Melo, M.R. Aires-Barros, S.M.B. Costa, J.M.S. Cabral, Thermal unfolding of proteins at high pH
- range studied by UV absorbance, Journal of Biochemical and Biophysical Methods, 34 (1997) 45-59.
- $862 \qquad \hbox{[60] C.A. Royer, C.J. Mann, C.R. Matthews, Resolution of the fluorescence equilibrium unfolding profile of trp} \\$
- aporepressor using single tryptophan mutants, Protein Science, 2 (1993) 1844-1852.
- 864 [61] N. Ayala, A. Zamora, Å. Rinnan, J. Saldo, M. Castillo, The effect of heat treatment on the front-face
- fluorescence spectrum of tryptophan in skim milk, Journal of Food Composition and Analysis, (2020) 103569.

- 866 [62] O.C. Fiebig, E. Mancini, G. Caputo, T.D. Vaden, Quantitative evaluation of myoglobin unfolding in the
- 867 presence of guanidinium hydrochloride and ionic liquids in solution, The Journal of Physical Chemistry B, 118
- 868 (2014) 406-412.
- 869 [63] S.A. Rosú, O.J. Rimoldi, E.D. Prieto, L.M. Curto, J.M. Delfino, N.A. Ramella, M.A. Tricerri, Amyloidogenic
- 870 propensity of a natural variant of human apolipoprotein AI: stability and interaction with ligands, PLoS One,
- 871 10 (2015) e0124946.
- 872 [64] J. Ren, K. Kachel, H. Kim, S.E. Malenbaum, R. John, E. London, Interaction of diphtheria toxin T domain
- with molten globule-like proteins and its implications for translocation, Science, 284 (1999) 955-957.
- 874 [65] P. Schanda, V. Forge, B. Brutscher, Protein folding and unfolding studied at atomic resolution by fast two-
- dimensional NMR spectroscopy, Proceedings of the National Academy of Sciences, 104 (2007) 11257-11262.
- 876 [66] H.J. Dyson, P.E. Wright, Unfolded proteins and protein folding studied by NMR, Chemical reviews, 104
- 877 (2004) 3607-3622.
- 878 [67] M.J. Knight, A.J. Pell, I. Bertini, I.C. Felli, L. Gonnelli, R. Pierattelli, T. Herrmann, L. Emsley, G. Pintacuda,
- 879 Structure and backbone dynamics of a microcrystalline metalloprotein by solid-state NMR, Proceedings of the
- 880 National Academy of Sciences, 109 (2012) 11095-11100.
- 881 [68] I. Bertini, C. Luchinat, G. Parigi, R. Pierattelli, NMR spectroscopy of paramagnetic metalloproteins,
- 882 ChemBioChem, 6 (2005) 1536-1549.
- 883 [69] A. Bertarello, L. Benda, K.J. Sanders, A.J. Pell, M.J. Knight, V. Pelmenschikov, L. Gonnelli, I.C. Felli, M.
- 884 Kaupp, L. Emsley, R. Pierattelli, G. Pintacuda, Picometer Resolution Structure of the Coordination Sphere in
- the Metal-Binding Site in a Metalloprotein by NMR, Journal of the American Chemical Society, 142 (2020)
- 886 16757-16765.
- 887 [70] L. Cerofolini, T. Staderini, S. Giuntini, E. Ravera, M. Fragai, G. Parigi, R. Pierattelli, C. Luchinat, Long-
- $888 \qquad \hbox{range paramagnetic NMR data can provide a closer look on metal coordination in metalloproteins, JBIC}$
- Journal of Biological Inorganic Chemistry, 23 (2018) 71-80.
- 890 [71] M. Lee, T. Wang, O.V. Makhlynets, Y. Wu, N.F. Polizzi, H. Wu, P.M. Gosavi, J. Stöhr, I.V. Korendovych,
- $891 \qquad \text{W.F. DeGrado, Zinc-binding structure of a catalytic amyloid from solid-state NMR, Proceedings of the} \\$
- 892 National Academy of Sciences, 114 (2017) 6191-6196.
- $893 \qquad \hbox{\small [72] A. Jasniewski, Y. Hu, M.W. Ribbe, Electron Paramagnetic Resonance Spectroscopy of Metalloproteins, in: }$
- Metalloproteins, Springer: Berlin, Germany, 2019, pp. 197-211.
- 895 [73] K.J. Koebke, T. Kühl, E. Lojou, B. Demeler, B. Schoepp-Cothenet, O. Iranzo, V.L. Pecoraro, A. Ivancich, The
- Metalloprotein, Angewandte Chemie, (2020). doi:10.1002/ange.202012673
- 898 [74] F. Neese, Quantum chemical calculations of spectroscopic properties of metalloproteins and model
- 899 compounds: EPR and Mössbauer properties, Current opinion in chemical biology, 7 (2003) 125-135.
- $900 \qquad \hbox{[75] G. Ulas, T. Lemmin, Y. Wu, G.T. Gassner, W.F. DeGrado, Designed metalloprotein stabilizes a}$
- 901 semiquinone radical, Nature chemistry, 8 (2016) 354-359.
- 902 [76] J. Seelig, H.-J. Schönfeld, Thermal protein unfolding by differential scanning calorimetry and circular
- 903 dichroism spectroscopy Two-state model versus sequential unfolding, Quarterly Reviews of Biophysics, 49
- 904 (2016).
- $905 \qquad \hbox{\it [77] J. Seelig, Cooperative protein unfolding. A statistical-mechanical model for the action of denaturants,}$
- 906 Biophysical chemistry, 233 (2018) 19-25.
- 907 [78] J.Y. Lee, K.M. Selfridge, E.M. Kohn, T.D. Vaden, G.A. Caputo, Effects of Ionic Liquid Alkyl Chain Length
- $908 \qquad \text{on Denaturation of Myoglobin by Anionic, Cationic, and Zwitterionic Detergents, Biomolecules, 9 (2019) 264.}$

- 909 [79] D. Kuciauskas, G.A. Caputo, Self-Assembly of Peptide–Porphyrin Complexes Leads to pH-dependent
- 910 Excitonic Coupling, The journal of physical chemistry B, 113 (2009) 14439-14447.
- 911 [80] J. McMaster, V.S. Oganesyan, Magnetic circular dichroism spectroscopy as a probe of the structures of the
- 912 metal sites in metalloproteins, Curr Opin Struct Biol, 20 (2010) 615-622.
- 913 [81] J.A. Larrabee, S.-A. Chyun, A.S. Volwiler, Magnetic Circular Dichroism Study of a Dicobalt(II) Methionine
- $914 \qquad \text{Aminopeptidase/Fumagillin Complex and Dicobalt II-II and II-III Model Complexes, Inorganic Chemistry, 47}$
- 915 (2008) 10499-10508.
- 916 [82] B.J. Hales, Magnetic Circular Dichroism Spectroscopy of Metalloproteins, Methods in molecular biology,
- 917 1876 (2019) 213-225.
- 918 [83] M.W. Wolf, K. Rizzolo, S.J. Elliott, N. Lehnert, Resonance Raman, Electron Paramagnetic Resonance, and
- $919 \qquad \text{Magnetic Circular Dichroism Spectroscopic Investigation of Diheme Cytochrome c Peroxidases from}$
- 920 Nitrosomonas europaea and Shewanella oneidensis, Biochemistry, 57 (2018) 6416-6433.
- 921 [84] J.K. Kowalska, J.T. Henthorn, C. Van Stappen, C. Trncik, O. Einsle, D. Keavney, S. DeBeer, X ray
- 922 Magnetic Circular Dichroism Spectroscopy Applied to Nitrogenase and Related Models: Experimental
- 923 Evidence for a Spin Coupled Molybdenum (III) Center, Angewandte Chemie International Edition, 58 (2019)
- 924 9373-9377.
- 925 [85] O. Gutierrez-Sanz, O. Rudiger, A.L. De Lacey, FTIR spectroscopy of metalloproteins, Methods in
- 926 molecular biology, 1122 (2014) 95-106.
- 927 [86] A. Hassan, L.J. Macedo, J.C. de Souza, F.C. Lima, F.N. Crespilho, A combined Far-FTIR, FTIR
- 928 Spectromicroscopy, and DFT Study of the Effect of DNA Binding on the [4Fe4S] Cluster Site in EndoIII,
- 929 Scientific reports, 10 (2020) 1-12.
- 930 [87] M. Murariu, E.S. Dragan, G. Drochioiu, Model peptide-based system used for the investigation of metal
- $931 \qquad \text{ions binding to histidine-containing polypeptides, Biopolymers, 93 (2010) 497-508.} \\$
- 932 [88] H.A. Alhazmi, FT-IR spectroscopy for the identification of binding sites and measurements of the binding
- 933 interactions of important metal ions with bovine serum albumin, Scientia Pharmaceutica, 87 (2019) 5.
- $934 \qquad [89] \ A.C.\ Manesis, M.J.\ O'Connor, C.R.\ Schneider, H.S.\ Shafaat, Multielectron\ Chemistry\ within\ a\ Model$
- $935 \qquad \hbox{Nickel Metalloprotein: Mechanistic Implications for Acetyl-CoA Synthase, Journal of the American Chemical}$
- 936 Society, 139 (2017) 10328-10338.
- 937 [90] A.V. Lupaescu, M. Jureschi, C.I. Ciobanu, L. Ion, G. Zbancioc, B.A. Petre, G. Drochioiu, FTIR and MS
- $938 \qquad \hbox{evidence for heavy metal binding to anti-amyloidal NAP-like peptides, International Journal of Peptide} \\$
- $939 \qquad \text{Research and The rapeutics, 25 (2019) 303-309}.$
- 940 [91] A. Acharyya, D. DiGiuseppi, B.L. Stinger, R. Schweitzer-Stenner, T.D. Vaden, Structural Destabilization of
- $941 \qquad \text{Azurin by Imidazolium Chloride Ionic Liquids in Aqueous Solution, The Journal of Physical Chemistry B, 123}$
- 942 (2019) 6933-6945.
- 943 [92] S.M. Kelly, N.C. Price, The use of circular dichroism in the investigation of protein structure and function,
- 944 Current protein and peptide science, 1 (2000) 349-384.
- 945 [93] J.S. Wilkes, M.J. Zaworotko, Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids, Journal
- 946 of the Chemical Society, Chemical Communications, (1992) 965-967.
- 947 [94] R.D. Rogers, K.R. Seddon, Ionic Liquids--Solvents of the Future?, Science, 302 (2003) 792-793.
- $948 \qquad [95] \, H. \, Zhao, S. \, Xia, P. \, Ma, \, Use \, of \, ionic \, liquids \, as \, \'egreen's olvents \, for \, extractions, \, Journal \, of \, Chemical \, Chemic$
- 949 Technology & Biotechnology: International Research in Process, Environmental & Clean Technology, 80 (2005)
- 950 1089-1096.

- 951 [96] W. Lu, A.G. Fadeev, B. Qi, E. Smela, B.R. Mattes, J. Ding, G.M. Spinks, J. Mazurkiewicz, D. Zhou, G.G.
- 952 Wallace, Use of ionic liquids for π -conjugated polymer electrochemical devices, Science, 297 (2002) 983-987.
- 953 [97] D.S. Silvester, Recent advances in the use of ionic liquids for electrochemical sensing, Analyst, 136 (2011)
- 954 4871-4882.
- 955 [98] H. Zhao, S.V. Malhotra, Applications of ionic liquids in organic synthesis, (2002). Available online:
- 956 http://hdl.handle.net/11286/581381 (accessed on 12/4/20202).
- 957 [99] M. Watanabe, M.L. Thomas, S. Zhang, K. Ueno, T. Yasuda, K. Dokko, Application of ionic liquids to
- 958 energy storage and conversion materials and devices, Chemical reviews, 117 (2017) 7190-7239.
- 959 [100] K. Fujita, D.R. MacFarlane, M. Forsyth, Protein solubilising and stabilising ionic liquids, Chemical
- 960 communications, (2005) 4804-4806.
- 961 [101] M.C. Gurau, S.-M. Lim, E.T. Castellana, F. Albertorio, S. Kataoka, P.S. Cremer, On the Mechanism of the
- Hofmeister Effect, Journal of the American Chemical Society, 126 (2004) 10522-10523.
- 963 [102] Y. Zhang, P.S. Cremer, Interactions between macromolecules and ions: the Hofmeister series, Current
- 964 opinion in chemical biology, 10 (2006) 658-663.
- 965 [103] A.M. Hyde, S.L. Zultanski, J.H. Waldman, Y.-L. Zhong, M. Shevlin, F. Peng, General Principles and
- $966 \qquad {\it Strategies for Salting-Out Informed by the Hofmeister Series, Organic Process Research \& Development, 21}$
- 967 (2017) 1355-1370.
- 968 [104] H.I. Okur, J. Hladílková, K.B. Rembert, Y. Cho, J. Heyda, J. Dzubiella, P.S. Cremer, P. Jungwirth, Beyond
- 969 the Hofmeister Series: Ion-Specific Effects on Proteins and Their Biological Functions, The Journal of Physical
- 970 Chemistry B, 121 (2017) 1997-2014.
- 971 [105] R.L. Baldwin, How Hofmeister ion interactions affect protein stability, Biophysical journal, 71 (1996)
- 972 2056-2063.
- 973 [106] A. Acharyya, D. Mukherjee, F. Gai, Assessing the Effect of Hofmeister Anions on the Hydrogen-Bonding
- $974 \qquad \text{Strength of Water via Nitrile Stretching Frequency Shift, The Journal of Physical Chemistry B, 124 (2020) 11783-11783.}$
- 975 11792.
- 976 [107] H. Zhao, Are ionic liquids kosmotropic or chaotropic? An evaluation of available thermodynamic
- 977 parameters for quantifying the ion kosmotropicity of ionic liquids, Journal of Chemical Technology &
- 978 Biotechnology: International Research in Process, Environmental & Clean Technology, 81 (2006) 877-891.
- $979 \qquad \hbox{[108] Z. Yang, Hofmeister effects: an explanation for the impact of ionic liquids on biocatalysis, Journal of the impact of ionic liquids on biocatalysis, Journal of the impact of ionic liquids on biocatalysis, Journal of the impact of ionic liquids on biocatalysis, Journal of the impact of ionic liquids on biocatalysis, Journal of the impact of ionic liquids on biocatalysis, Journal of the impact of ionic liquids on biocatalysis, Journal of the impact of ionic liquids on biocatalysis, Journal of the impact of ionic liquids on biocatalysis, Journal of the impact of ionic liquids on biocatalysis, Journal of the impact of ionic liquids on biocatalysis, Journal of the impact of ionic liquids on biocatalysis, Journal of the ionic liquids on biocatalysis, Journal of the ionic liquids on biocatalysis, Ionic liquids on biocatalysis and Ionic liquids on bi$
- 980 biotechnology, 144 (2009) 12-22.
- $981 \qquad \hbox{[109] R.L. Gardas, D.H. Dagade, J.A.P. Coutinho, K.J. Patil, Thermodynamic Studies of Ionic Interactions in}$
- $982 \qquad \hbox{Aqueous Solutions of Imidazolium-Based Ionic Liquids [Emim][Br] and [Bmim][Cl], The Journal of Physical} \\$
- 983 Chemistry B, 112 (2008) 3380-3389.
- 984 [110] D.H. Dagade, K.R. Madkar, S.P. Shinde, S.S. Barge, Thermodynamic Studies of Ionic Hydration and
- $985 \qquad \text{Interactions for Amino Acid Ionic Liquids in Aqueous Solutions at 298.15 K, The Journal of Physical Chemistry} \\$
- 986 B, 117 (2013) 1031-1043.
- 987 [111] H. Ohno, K. Fujita, Y. Kohno, Is seven the minimum number of water molecules per ion pair for assured
- 988 biological activity in ionic liquid-water mixtures?, Physical Chemistry Chemical Physics, 17 (2015) 14454-
- 989 14460.
- [112] P. Sun, K. Huang, H. Liu, The nature of salt effect in enhancing the extraction of rare earths by non-
- 991 functional ionic liquids: Synergism of salt anion complexation and Hofmeister bias, Journal of colloid and
- 992 interface science, 539 (2019) 214-222.

- 993 [113] N. Byrne, L.-M. Wang, J.-P. Belieres, C.A. Angell, Reversible folding-unfolding, aggregation protection,
- and multi-year stabilization, in high concentration protein solutions, using ionic liquids, Chemical
- 995 communications, (2007) 2714-2716.
- 996 [114] J.V. Rodrigues, V. Prosinecki, I. Marrucho, L.P.N. Rebelo, C.M. Gomes, Protein stability in an ionic liquid
- 997 milieu: on the use of differential scanning fluorimetry, Physical Chemistry Chemical Physics, 13 (2011) 13614-
- 998 13616
- 999 [115] J.A. Laszlo, D.L. Compton, Comparison of peroxidase activities of hemin, cytochrome c and
- 1000 microperoxidase-11 in molecular solvents and imidazolium-based ionic liquids, Journal of Molecular Catalysis
- 1001 B: Enzymatic, 18 (2002) 109-120.
- 1002 [116] Z. Du, Y.L. Yu, J.H. Wang, Extraction of proteins from biological fluids by use of an ionic liquid/aqueous
- 1003 two phase system, Chemistry–A European Journal, 13 (2007) 2130-2137.
- 1004 [117] S.N. Baker, T.M. McCleskey, S. Pandey, G.A. Baker, Fluorescence studies of protein thermostability in
- ionic liquids, Chemical Communications, (2004) 940-941.
- $1006 \qquad \hbox{[118] D.F. Kennedy, C.J. Drummond, T.S. Peat, J. Newman, Evaluating protic ionic liquids as protein}$
- 1007 crystallization additives, Crystal growth & design, 11 (2011) 1777-1785.
- $1008 \qquad \hbox{[119] J.A. Garlitz, C.A. Summers, R.A. Flowers, G.E. Borgstahl, Ethylammonium nitrate: a protein}$
- 1009 crystallization reagent, Acta Crystallographica Section D: Biological Crystallography, 55 (1999) 2037-2038.
- 1010 [120] S. Dreyer, P. Salim, U. Kragl, Driving forces of protein partitioning in an ionic liquid-based aqueous two-
- 1011 phase system, Biochemical Engineering Journal, 46 (2009) 176-185.
- 1012 [121] H. Weingärtner, C. Cabrele, C. Herrmann, How ionic liquids can help to stabilize native proteins,
- 1013 Physical Chemistry Chemical Physics, 14 (2012) 415-426.
- 1014 [122] S. Galai, A. P. de los Ríos, F.J. Hernández-Fernández, S. Haj Kacem, F. Tomas-Alonso, Over-activity and
- $1015 \qquad \text{stability of laccase using ionic liquids: screening and application in dye decolorization, RSC Advances, 5 (2015)} \\$
- 1016 16173-16189.
- 1017 [123] M.C. Miller, S.L. Hanna, K.G. DeFrates, O.C. Fiebig, T.D. Vaden, Kinetics and mass spectrometric
- 1018 measurements of myoglobin unfolding in aqueous ionic liquid solutions, International Journal of Biological
- $1019 \qquad \text{Macromolecules, 85 (2016) 200-207}.$
- $1020 \qquad \hbox{[124] D. Constatinescu, C. Herrmann, H. Weing\"{a}rtner, Patterns of protein unfolding and protein aggregation}$
- in ionic liquids, Physical Chemistry Chemical Physics, 12 (2010) 1756-1763.
- $1022 \qquad \hbox{\small [125] V.W. Jaeger, J. Pfaendtner, Destabilization of Human Serum Albumin by Ionic Liquids Studied Using}$
- 1023 Enhanced Molecular Dynamics Simulations, The Journal of Physical Chemistry B, 120 (2016) 12079-12087.
- $1024 \qquad \hbox{[126] K. Piontek, M. Antorini, T. Choinowski, Crystal structure of a laccase from the fungus Trametes}$
- 1025 versicolor at 1.90-A resolution containing a full complement of coppers, The Journal of biological chemistry,
- 1026 277 (2002) 37663-37669.
- 1027 [127] T. Bertrand, C. Jolivalt, P. Briozzo, E. Caminade, N. Joly, C. Madzak, C. Mougin, Crystal structure of a
- 1028 four-copper laccase complexed with an arylamine: insights into substrate recognition and correlation with
- 1029 kinetics, Biochemistry, 41 (2002) 7325-7333.
- 1030 [128] M.-C. Kiefer-Meyer, V. Gomord, A. O'Connell, C. Halpin, L. Faye, Cloning and sequence analysis of
- $1031 \qquad \text{laccase-encoding cDNA clones from tobacco, Gene, 178 (1996) 205-207}.$
- $1032 \qquad \hbox{[129] R. Sterjiades, J.F. Dean, K.-E.L. Eriksson, Laccase from sycamore maple (Acer pseudoplatanus)}$
- polymerizes monolignols, Plant Physiology, 99 (1992) 1162-1168.
- 1034 [130] W. Bao, D.M. O'Malley, R. Whetten, R.R. Sederoff, A laccase associated with lignification in loblolly pine
- 1035 xylem, Science, 260 (1993) 672-674.

- 1036 [131] P.R. LaFayette, K.-E.L. Eriksson, J.F. Dean, Characterization and heterologous expression of laccase
- 1037 cDNAs from xylem tissues of yellow-poplar (Liriodendron tulipifera), Plant molecular biology, 40 (1999) 23-35.
- 1038 [132] P. Ranocha, G. McDougall, S. Hawkins, R. Sterjiades, G. Borderies, D. Stewart, M. Cabanes Macheteau,
- 1039 A.M. Boudet, D. Goffner, Biochemical characterization, molecular cloning and expression of laccases–a
- divergent gene family-in poplar, European Journal of Biochemistry, 259 (1999) 485-495.
- 1041 [133] Y. Sato, B. Wuli, R. Sederoff, R. Whetten, Molecular cloning and expression of eight laccase cDNAs in
- loblolly pine (Pinus taeda), Journal of Plant Research, 114 (2001) 147-155.
- 1043 [134] U.N. Dwivedi, P. Singh, V.P. Pandey, A. Kumar, Structure–function relationship among bacterial, fungal
- and plant laccases, Journal of Molecular Catalysis B: Enzymatic, 68 (2011) 117-128.
- 1045 [135] L. Arregui, M. Ayala, X. Gómez-Gil, G. Gutiérrez-Soto, C.E. Hernández-Luna, M.H. de los Santos, L.
- 1046 Levin, A. Rojo-Domínguez, D. Romero-Martínez, M.C. Saparrat, Laccases: structure, function, and potential
- application in water bioremediation, Microbial cell factories, 18 (2019) 200.
- 1048 [136] H. Maniak, M. Talma, K. Matyja, A. Trusek, M. Giurg, Synthesis and Structure-Activity Relationship
- 1049 Studies of Hydrazide-Hydrazones as Inhibitors of Laccase from Trametes versicolor, Molecules, 25 (2020) 1255.
- 1050 [137] L. Xu, K. Sun, F. Wang, L. Zhao, J. Hu, H. Ma, Z. Ding, Laccase production by Trametes versicolor in
- 1051 solid-state fermentation using tea residues as substrate and its application in dye decolorization, Journal of
- 1052 Environmental Management, 270 (2020) 110904.
- 1053 [138] J.M. Bebić, K.M. Banjanac, M.M. Ćorović, A.D. Milivojević, M.B. Simović, A.Ž. Vukoičić, D.D. Mitrović,
- D.I. Bezbradica, Immobilization of laccase from Trametes versicolor on LifetechTM supports for applications in
- degradation of industrial dyes, Hemijska industrija, (2020) 16-16.
- 1056 [139] K. Sun, S. Li, J. Yu, R. Gong, Y. Si, X. Liu, G. Chu, Cu2+-assisted laccase from Trametes versicolor
- enhanced self-polyreaction of triclosan, Chemosphere, 225 (2019) 745-754.
- $1058 \qquad \hbox{[140] M.A. Brown, Z. Zhao, A.G. Mauk, Expression and characterization of a recombinant multi-copper}$
- oxidase: laccase IV from Trametes versicolor, Inorganica chimica acta, 331 (2002) 232-238.
- 1060 [141] V.V. Vu, S.T. Ngo, Copper active site in polysaccharide monooxygenases, Coordination Chemistry
- 1061 Reviews, 368 (2018) 134-157.
- 1062 [142] A.M. Mayer, R.C. Staples, Laccase: new functions for an old enzyme, Phytochemistry, 60 (2002) 551-565.
- 1063 [143] N. Durán, M.A. Rosa, A. D'Annibale, L. Gianfreda, Applications of laccases and tyrosinases
- 1064 (phenoloxidases) immobilized on different supports: a review, Enzyme and microbial technology, 31 (2002)
- 1065 907-931.
- $1066 \qquad \hbox{[144] F. Xu, Oxidation of phenols, anilines, and benzenethiols by fungal laccases: correlation between activity}$
- and redox potentials as well as halide inhibition, Biochemistry, 35 (1996) 7608-7614.
- 1068 [145] S.K. Burley, H.M. Berman, C. Bhikadiya, C. Bi, L. Chen, L. Di Costanzo, C. Christie, K. Dalenberg, J.M.
- 1069 Duarte, S. Dutta, RCSB Protein Data Bank: biological macromolecular structures enabling research and
- $1070 \qquad \text{education in fundamental biology, biomedicine, biotechnology and energy, Nucleic acids research, 47 (2019)} \\$
- 1071 D464-D474.
- $1072 \qquad \hbox{[146] L. Viikari, A. Suurn\"{a}kki, S. Gr\"{o}nqvist, L. Raaska, A. Ragauskas, Forest products: biotechnology in pulp}$
- and paper processing, in: Encyclopedia of microbiology, Academic Press, 2009, pp. 80-94.
- 1074 [147] R. Cohen, L. Persky, Y. Hadar, Biotechnological applications and potential of wood-degrading
- $1075 \qquad \text{mushrooms of the genus Pleurotus, Applied microbiology and biotechnology, 58 (2002) 582-594.}$
- 1076 [148] S.R. Couto, J.L.T. Herrera, Industrial and biotechnological applications of laccases: a review,
- 1077 Biotechnology advances, 24 (2006) 500-513.

- 1078 [149] P. Baldrian, J. Šnajdr, Production of ligninolytic enzymes by litter-decomposing fungi and their ability to
- decolorize synthetic dyes, Enzyme and Microbial Technology, 39 (2006) 1023-1029.
- 1080 [150] B.S. Wolfenden, R.L. Willson, Radical-cations as reference chromogens in kinetic studies of ono-electron
- $1081 \hspace{1.5cm} transfer \hspace{0.1cm} reactions: \hspace{0.1cm} pulse \hspace{0.1cm} radiolysis \hspace{0.1cm} studies \hspace{0.1cm} of \hspace{0.1cm} 2, \hspace{0.1cm} 2' \hspace{0.1cm} -azinobis-(3-ethylbenzthiazoline-6-sulphonate), \hspace{0.1cm} Journal \hspace{0.1cm} of \hspace{0.1cm} 1000\hspace{0.1cm} -azinobis-(3-ethylbenzthiazoline-6-sulphonate), \hspace{0.1cm} Journal \hspace{0.1cm} 0 \hspace{0.1cm} -azinob$
- the Chemical Society, Perkin Transactions 2, (1982) 805-812.
- 1083 [151] R. Bourbonnais, M.G. Paice, Oxidation of non phenolic substrates: an expanded role for laccase in lignin
- 1084 biodegradation, FEBS letters, 267 (1990) 99-102.
- 1085 [152] O. Milstein, A. Haars, A. Majcherczyk, J. Trojanowski, D. Tautz, H. Zanker, A. Hüttermann, Removal of
- 1086 chlorophenols and chlorolignins from bleaching effluent by combined chemical and biological treatment,
- 1087 Water Science and Technology, 20 (1988) 161-170.
- $1088 \qquad \hbox{[153] J. Dec, K. Haider, J.-M. Bollag, Release of substituents from phenolic compounds during oxidative}$
- 1089 coupling reactions, Chemosphere, 52 (2003) 549-556.
- 1090 [154] A.P.M. Tavares, O. Rodríguez, M. Fernández-Fernández, A. Domínguez, D. Moldes, M.A. Sanromán,
- 1091 E.A. Macedo, Immobilization of laccase on modified silica: Stabilization, thermal inactivation and kinetic
- 1092 behaviour in 1-ethyl-3-methylimidazolium ethylsulfate ionic liquid, Bioresource Technology, 131 (2013) 405-
- 1093 412.
- 1094 [155] X. Yu, F. Zou, Y. Li, L. Lu, X. Huang, Y. Qu, Effect of three trifluoromethanesulfonate ionic liquids on the
- activity, stability and conformation of laccase, International journal of biological macromolecules, 56 (2013) 62-
- 1096 68.
- 1097 [156] A. Domínguez, O. Rodríguez, A.P.M. Tavares, E.A. Macedo, M. Asunción Longo, M. Ángeles Sanromán,
- $1098 \qquad {\sf Studies\ of\ laccase\ from\ Trametes\ versicolor\ in\ aqueous\ solutions\ of\ several\ methylimidazolium\ ionic\ liquids,}$
- 1099 Bioresource Technology, 102 (2011) 7494-7499.
- $1100 \hspace{0.5cm} \hbox{\small [157] O. Saoudi, N. Ghaouar, T. Othman, Fluorescence study of laccase from Trametes versicolor under the} \\$
- $1101 \qquad \hbox{effects of pH, chemical denaturants and ionic liquids, Journal of Molecular Liquids, 225 (2017) 56-63.}$
- 1102 [158] A.P.M. Tavares, J.A.N. Pereira, A.M.R.B. Xavier, Effect of ionic liquids activation on laccase from
- 1103 Trametes versicolor: Enzymatic stability and activity, Engineering in Life Sciences, 12 (2012) 648-655.
- $1104 \qquad \hbox{\small [159] B. Dabirmanesh, K. Khajeh, F. Ghazi, B. Ranjbar, S.-M. Etezad, A semi-rational approach to obtain an analysis of the semi-rational approach approach to obtain an analysis of the semi-rational approach approach to obtain an analysis of the semi-rational approach approach to obtain an analysis of the semi-rational approach approach to obtain an analysis of the semi-rational approach to obtain an analysis of the semi-rational approach approach to obtain an analysis of the semi-rational approach approach$
- 1105 ionic liquid tolerant bacterial laccase through π -type interactions, International Journal of Biological
- 1106 Macromolecules, 79 (2015) 822-829.
- 1107 [160] P. Bauduin, A. Renoncourt, D. Touraud, W. Kunz, B.W. Ninham, Hofmeister effect on enzymatic
- $1108 \qquad \text{catalysis and colloidal structures, Current opinion in colloid \& interface science, 9 (2004) 43-47.}$
- $1109 \qquad \hbox{[161] C. Jolivalt, C. Madzak, A. Brault, E. Caminade, C. Malosse, C. Mougin, Expression of laccase IIIb from the analysis of the control of the c$
- 1110 white-rot fungus Trametes versicolor in the yeast Yarrowia lipolytica for environmental applications, Applied
- 1111 microbiology and biotechnology, 66 (2005) 450-456.
- 1112 [162] H. Zhao, Effect of ions and other compatible solutes on enzyme activity, and its implication for
- 1113 biocatalysis using ionic liquids, Journal of Molecular Catalysis B: Enzymatic, 37 (2005) 16-25.
- 1114 [163] A.P.M. Tavares, O. Rodriguez, E.A. Macedo, Ionic liquids as alternative co solvents for laccase: study of
- enzyme activity and stability, Biotechnology and bioengineering, 101 (2008) 201-207.
- 1116 [164] E.V. Capela, A.I. Valente, J.C.F. Nunes, F.F. Magalhães, O. Rodríguez, A. Soto, M.G. Freire, A.P.M.
- $1117 \qquad \hbox{Tavares, Insights on the laccase extraction and activity in ionic-liquid-based aqueous biphasic systems,}$
- 1118 Separation and Purification Technology, 248 (2020) 117052.
- 1119 [165] J.B. Wittenberg, B.A. Wittenberg, Mechanisms of cytoplasmic hemoglobin and myoglobin function,
- 1120 Annual review of biophysics and biophysical chemistry, 19 (1990) 217-241.

- 1121 [166] K.D. Jurgens, S. Papadopoulos, T. Peters, G. Gros, Myoglobin: just an oxygen store or also an oxygen
- 1122 transporter?, Physiology, 15 (2000) 269-274.
- 1123 [167] J.C. Kendrew, G. Bodo, H.M. Dintzis, R. Parrish, H. Wyckoff, D.C. Phillips, A three-dimensional model of
- the myoglobin molecule obtained by x-ray analysis, Nature, 181 (1958) 662-666.
- 1125 [168] P.A. Sykes, H.-C. Shiue, J.R. Walker, R.C. Bateman Jr, Determination of myoglobin stability by visible
- 1126 spectroscopy, Journal of chemical education, 76 (1999) 1283.
- 1127 [169] M.C. Yin, C. Faustman, Influence of temperature, pH, and phospholipid composition upon the stability
- 1128 of myoglobin and phospholipid: a liposome model, Journal of agricultural and food chemistry, 41 (1993) 853-
- 1129 857.
- 1130 [170] S. Mondal, S. Das, S. Ghosh, Interaction of myoglobin with cationic gemini surfactants in phosphate
- buffer at pH 7.4, Journal of Surfactants and Detergents, 18 (2015) 471-476.
- 1132 [171] A. Bizzarri, S. Cannistraro, Solvent effects on myoglobin conformational substates as studied by electron
- paramagnetic resonance, Biophysical chemistry, 42 (1992) 79-85.
- 1134 [172] P. Attri, I. Jha, E.H. Choi, P. Venkatesu, Variation in the structural changes of myoglobin in the presence
- of several protic ionic liquid, International journal of biological macromolecules, 69 (2014) 114-123.
- 1136 [173] R. Maurus, C.M. Overall, R. Bogumil, Y. Luo, A.G. Mauk, M. Smith, G.D. Brayer, A myoglobin variant
- 1137 with a polar substitution in a conserved hydrophobic cluster in the heme binding pocket, Biochimica et
- 1138 Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology, 1341 (1997) 1-13.
- 1139 [174] K. Sankaranarayanan, G. Sathyaraj, B.U. Nair, A. Dhathathreyan, Reversible and Irreversible
- 1140 Conformational Transitions in Myoglobin: Role of Hydrated Amino Acid Ionic Liquid, The Journal of Physical
- 1141 Chemistry B, 116 (2012) 4175-4180.
- 1142 [175] I. Jha, P. Attri, P. Venkatesu, Unexpected effects of the alteration of structure and stability of myoglobin
- $1143 \qquad \text{and hemoglobin in ammonium-based ionic liquids, Physical Chemistry Chemical Physics, 16 (2014) 5514-5526.}$
- 1144 [176] A. Kumar, P. Venkatesu, A comparative study of myoglobin stability in the presence of Hofmeister
- anions of ionic liquids and ionic salts, Process Biochemistry, 49 (2014) 2158-2169.
- 1146 [177] E.M. Kohn, J.Y. Lee, A. Calabro, T.D. Vaden, G.A. Caputo, Heme Dissociation from Myoglobin in the
- 1147 Presence of the Zwitterionic Detergent N,N-Dimethyl-N-Dodecylglycine Betaine: Effects of Ionic Liquids,
- 1148 Biomolecules, 8 (2018) 126.
- 1149 [178] C. Zhang, A. Yu, R. Lu, Cationic effect of imidazolium-based ionic liquid on the stability of myoglobin,
- 1150 Process Biochemistry, 58 (2017) 181-185.
- $1151 \hspace{0.5cm} \hbox{\small [179] B.G. Karlsson, T. Pascher, M. Nordling, R.H.A. Arvidsson, L.G. Lundberg, Expression of the blue copper} \\$
- protein azurin from Pseudomonas aeruginosa in Escherichia coli, FEBS Letters, 246 (1989) 211-217.
- 1153 [180] G.E. Norris, B.F. Anderson, E.N. Baker, Blue copper proteins. The copper site in azurin from Alcaligenes
- denitrificans, Journal of the American Chemical Society, 108 (1986) 2784-2785.
- 1155 [181] B. Pradhan, C. Engelhard, S. Van Mulken, X. Miao, G.W. Canters, M. Orrit, Single electron transfer events
- $1156 \qquad \text{and dynamical heterogeneity in the small protein azurin from Pseudomonas aeruginosa, Chemical Science, 11} \\$
- 1157 (2020) 763-771.
- 1158 [182] E. Adman, L. Jensen, Structural features of azurin at 2.7 Å resolution, Israel Journal of Chemistry, 21
- 1159 (1981) 8-12
- $1160 \qquad \hbox{\small [183] M. Cascella, A. Magistrato, I. Tavernelli, P. Carloni, U. Rothlisberger, Role of protein frame and solvent}$
- $1161 \hspace{0.5cm} \hbox{for the redox properties of azurin from Pseudomonas aeruginosa, Proceedings of the National Academy of the N$
- 1162 Sciences, 103 (2006) 19641-19646.

- 1163 [184] K. Fujita, H. Ohno, Enzymatic activity and thermal stability of metallo proteins in hydrated ionic liquids,
- 1164 Biopolymers, 93 (2010) 1093-1099.
- 1165 [185] K. Fujita, J. Kuwahara, N. Nakamura, H. Ohno, Communication Fast Electron Transfer Reaction of
- 1166 Azurin Fixed on the Modified Electrode in Hydrated Ionic Liquids, Journal of The Electrochemical Society, 163
- 1167 (2016) G79-G81.
- 1168 [186] K. Fujita, J. Kuwahara, N. Nakamura, H. Ohno, Communication fast electron transfer reaction of azurin
- 1169 fixed on the modified electrode in hydrated ionic liquids, Journal of The Electrochemical Society, 163 (2016)
- 1170 G79
- 1171 [187] G.H. Carlsson, P. Nicholls, D. Svistunenko, G.I. Berglund, J. Hajdu, Complexes of horseradish peroxidase
- 1172 with formate, acetate, and carbon monoxide, Biochemistry, 44 (2005) 635-642.
- 1173 [188] S.-W. Bae, D. Eom, N.L. Mai, Y.-M. Koo, Refolding of horseradish peroxidase is enhanced in presence of
- metal cofactors and ionic liquids, Biotechnology Journal, 11 (2016) 464-472.
- 1175 [189] Y. Liu, M. Wang, J. Li, Z. Li, P. He, H. Liu, J. Li, Highly active horseradish peroxidase immobilized in 1-
- 1176 butyl-3-methylimidazolium tetrafluoroborate room-temperature ionic liquid based sol-gel host materials,
- 1177 Chemical communications, (2005) 1778-1780.
- 1178 [190] D. Das, A. Dasgupta, P.K. Das, Improved activity of horseradish peroxidase (HRP) in 'specifically
- designed' ionic liquid, Tetrahedron Letters, 48 (2007) 5635-5639.
- 1180 [191] M.F. Machado, J.M. Saraiva, Thermal Stability and Activity Regain of Horseradish Peroxidase in
- 1181 Aqueous Mixtures of Imidazolium-Based Ionic Liquids, Biotechnology Letters, 27 (2005) 1233-1239.
- 1182 [192] S. Sgalla, G. Fabrizi, S. Cacchi, A. Macone, A. Bonamore, A. Boffi, Horseradish peroxidase in ionic liquids:
- Reactions with water insoluble phenolic substrates, Journal of Molecular Catalysis B: Enzymatic, 44 (2007) 144-
- 1184 148.
- $1185 \qquad \hbox{[193] B.V. Plapp, H.A. Charlier Jr, S. Ramaswamy, Mechanistic implications from structures of yeast alcohol}$
- dehydrogenase complexed with coenzyme and an alcohol, Archives of biochemistry and biophysics, 591 (2016)
- 1187 35-42.
- 1188 [194] S.B. Raj, S. Ramaswamy, B.V. Plapp, Yeast alcohol dehydrogenase structure and catalysis, Biochemistry,
- 1189 53 (2014) 5791-5803.
- 1190 [195] B. Dabirmanesh, K. Khajeh, J. Akbari, H. Falahati, S. Daneshjoo, A. Heydari, Mesophilic alcohol
- dehydrogenase behavior in imidazolium based ionic liquids, Journal of Molecular Liquids, 161 (2011) 139-143.
- 1192 [196] Y. Zhang, X. Huang, Y. Li, Negative effect of [bmim][PF6] on the catalytic activity of alcohol
- 1194 1235.
- 1195 [197] S. Weibels, A. Syguda, C. Herrmann, H. Weingärtner, Steering the enzymatic activity of proteins by ionic
- 1196 liquids. A case study of the enzyme kinetics of yeast alcohol dehydrogenase, Physical Chemistry Chemical
- 1197 Physics, 14 (2012) 4635-4639.
- 1198 [198] B. Dabirmanesh, K. Khajeh, B. Ranjbar, F. Ghazi, A. Heydari, Inhibition mediated stabilization effect of
- $1199 \qquad \text{imidazolium based ionic liquids on alcohol dehydrogenase, Journal of Molecular Liquids, 170 (2012) 66-71.}$
- 1200 [199] U.A. Ramagopal, M. Dauter, Z. Dauter, SAD manganese in two crystal forms of glucose isomerase, Acta
- 1201 Crystallographica Section D: Biological Crystallography, 59 (2003) 868-875.
- $1202 \qquad \hbox{[200] C. Enzymes, Glucose Isomerase, (2020)}.$
- 1203 [201] T. Ståhlberg, J.M. Woodley, A. Riisager, Enzymatic isomerization of glucose and xylose in ionic liquids,
- 1204 Catalysis Science & Technology, 2 (2012) 291-295.

- 1205 [202] R.A. Judge, S. Takahashi, K.L. Longenecker, E.H. Fry, C. Abad-Zapatero, M.L. Chiu, The Effect of Ionic
- 1206 Liquids on Protein Crystallization and X-ray Diffraction Resolution, Crystal Growth & Design, 9 (2009) 3463-
- 1207 3469.
- 1208 [203] M.L. Pusey, M.S. Paley, M.B. Turner, R.D. Rogers, Protein Crystallization Using Room Temperature Ionic
- 1209 Liquids, Crystal Growth & Design, 7 (2007) 787-793.
- 1210 [204] Y. Wang, Y. Pan, Z. Zhang, R. Sun, X. Fang, D. Yu, Combination use of ultrasound irradiation and ionic
- 1211 liquid in enzymatic isomerization of glucose to fructose, Process Biochemistry, 47 (2012) 976-982.
- 1212 [205] A. Kumar, P. Venkatesu, Innovative aspects of protein stability in ionic liquid mixtures, Biophysical
- 1213 reviews, 10 (2018) 841-846.
- 1214 [206] L. Satish, S. Millan, K. Bera, S. Mohapatra, H. Sahoo, A spectroscopic and molecular dynamics simulation
- $1215 \qquad \text{approach towards the stabilizing effect of ammonium-based ionic liquids on bovine serum albumin, New} \\$
- 1216 Journal of Chemistry, 41 (2017) 10712-10722.
- 1217 [207] M. Petkovic, J.L. Ferguson, H.N. Gunaratne, R. Ferreira, M.C. Leitao, K.R. Seddon, L.P.N. Rebelo, C.S.
- 1218 Pereira, Novel biocompatible cholinium-based ionic liquids—toxicity and biodegradability, Green Chemistry,
- 1219 12 (2010) 643-649.
- 1220 [208] K.M. Docherty, C.F. Kulpa Jr, Toxicity and antimicrobial activity of imidazolium and pyridinium ionic
- 1221 liquids, Green Chemistry, 7 (2005) 185-189.
- 1222 [209] D. Zhao, Y. Liao, Z. Zhang, Toxicity of ionic liquids, Clean–soil, air, water, 35 (2007) 42-48.
- 1223 [210] K. Radošević, M.C. Bubalo, V.G. Srček, D. Grgas, T.L. Dragičević, I.R. Redovniković, Evaluation of
- 1224 toxicity and biodegradability of choline chloride based deep eutectic solvents, Ecotoxicology and
- 1225 environmental safety, 112 (2015) 46-53.
- 1226 [211] A.A.C. Toledo Hijo, G.J. Maximo, M.C. Costa, E.A.C. Batista, A.J.A. Meirelles, Applications of Ionic
- 1228 5369.
- 1229 [212] A. Krishnan, K.P. Gopinath, D.-V.N. Vo, R. Malolan, V.M. Nagarajan, J. Arun, Ionic liquids, deep eutectic
- 1230 solvents and liquid polymers as green solvents in carbon capture technologies: a review, Environmental
- 1231 Chemistry Letters, (2020) 1-24.
- 1232 [213] M. Lotfi, M. Moniruzzaman, M. Sivapragasam, S. Kandasamy, M.A. Mutalib, N.B. Alitheen, M. Goto,
- 1233 Solubility of acyclovir in nontoxic and biodegradable ionic liquids: COSMO-RS prediction and experimental
- $1234 \qquad \text{verification, Journal of Molecular Liquids, 243 (2017) 124-131.}$
- 1235 [214] K. Cook, K. Tarnawsky, A.J. Swinton, D.D. Yang, A.S. Senetra, G.A. Caputo, B.R. Carone, T.D. Vaden,
- $1236 \qquad \hbox{Correlating Lipid Membrane Permeabilities of Imidazolium Ionic Liquids with their Cytotoxicities on Yeast,} \\$
- 1237 Bacterial, and Mammalian Cells, Biomolecules, 9 (2019).
- 1238 [215] D.D. Yang, N.J. Paterna, A.S. Senetra, K.R. Casey, P.D. Trieu, G.A. Caputo, T.D. Vaden, B.R. Carone,
- $1239 \qquad \text{Synergistic interactions of ionic liquids and antimicrobials improve drug efficacy, Iscience, 24 (2020) 101853.}$
- $1240 \qquad \hbox{\small [216] B. Yoo, B. Jing, S.E. Jones, G.A. Lamberti, Y. Zhu, J.K. Shah, E.J. Maginn, Molecular mechanisms of ionic and the state of the st$
- $1241 \qquad \text{liquid cytotoxicity probed by an integrated experimental and computational approach, Scientific reports, } 6$
- 1242 (2016) 19889.
- 1243 [217] J. Ranke, A. Müller, U. Bottin-Weber, F. Stock, S. Stolte, J. Arning, R. Störmann, B. Jastorff, Lipophilicity
- $1244 \qquad \text{parameters for ionic liquid cations and their correlation to in vitro cytotoxicity, Ecotoxicology and} \\$
- 1245 environmental safety, 67 (2007) 430-438.

- $1246 \qquad \hbox{\small [218] M.A. Salam, B. Abdullah, A. Ramli, I.M. Mujtaba, Structural feature based computational approach of a superscript of the property of the pr$
- $1247 \qquad \text{toxicity prediction of ionic liquids: cationic and anionic effects on ionic liquids toxicity, Journal of Molecular} \\$
- 1248 Liquids, 224 (2016) 393-400.
- $1249 \qquad \hbox{\small [219] N. Abramenko, L. Kustov, L. Metelytsia, V. Kovalishyn, I. Tetko, W. Peijnenburg, A review of recent}$
- 1250 advances towards the development of QSAR models for toxicity assessment of ionic liquids, Journal of
- 1251 Hazardous Materials, 384 (2020) 121429.
- 1252 [220] L. Cao, P. Zhu, Y. Zhao, J. Zhao, Using machine learning and quantum chemistry descriptors to predict
- the toxicity of ionic liquids, Journal of Hazardous Materials, 352 (2018) 17-26.
- 1254 [221] C.-C. Chen, P.-H. Wu, C.-T. Huang, K.-J. Cheng, A Pichia pastoris fermentation strategy for enhancing
- $1255 \qquad \text{the heterologous expression of an Escherichia coli phytase, Enzyme and Microbial Technology, } 35 (2004) 315-1000 ($
- 1256 320.
- 1257 [222] C. Rabert, D. Weinacker, A. Pessoa Jr, J.G. Farías, Recombinants proteins for industrial uses: utilization of
- 1258 Pichia pastoris expression system, Brazilian Journal of Microbiology, 44 (2013) 351-356.
- 1259 [223] F. Mannello, G. Tonti, S. Papa, Matrix metalloproteinase inhibitors as anticancer therapeutics, Current
- 1260 cancer drug targets, 5 (2005) 285-298.
- 1261
- 1262 Sample Availability: N/A.
- 1263 **Publisher's Note:** MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
- 1264 affiliations.

© 2020 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).