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In this paper, we seek to prove the equality of the q-graded fermionic sums conjectured

by Hatayama et al. [14] in its full generality, by extending the results of Di Francesco

and Kedem [9] to the non-simply laced case. To this end, we will derive explicit

expressions for the quantum Q-system relations, which are quantum cluster mutations

that correspond to the classical Q-system relations, and write the identity of the q-

graded fermionic sums as a constant term identity. As an application, we will show that

these quantum Q-system relations are consistent with the short exact sequence of the

Feigin–Loktev fusion product of Kirillov–Reshetikhin modules obtained by Chari and

Venkatesh [5].

1 Introduction

Kirillov–Reshetikhin (KR-) modules of Yangians first appeared in [20]. These are simple,

finite-dimensional modules over the Yangian Y(g) of a simple Lie algebra g. Their g-

characters satisfy a family of functional relations known as the Q-system [19, 20],

which is a system of recurrence relations that comes from the fusion procedure for

transfer matrices in the generalized Heisenberg spin chains [22]. Moreover, Kirillov

and Reshetikhin [20] gave fermionic formulas for the multiplicities of an irreducible

g-module in the tensor product of KR-modules over the Yangian. In the same paper,

Kirillov and Reshetikhin (and later generalized by Hatayama et al. [14]) showed that
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806 M. S. Lin

these fermionic sums have a natural deformation to the q-graded case, and this grading

was defined combinatorially. It was conjectured by Hatayama et al. [14] and proved

shortly after by Kirillov et al. [21] that the q-grading arises in the context of crystals

of tensor products of KR-modules over Uq(ŝlr+1), by establishing a bijection between

rigged configurations and crystal paths in type A.

In a subsequent development, KR-modules over the quantum affine algebra

Uq(̂g) were defined for all types, and these modules are defined in terms of their Drinfeld

polynomials [3]. Later, Chari and Moura defined KR-modules for the current algebra

g[t] in terms of generators and relations [4]. Morover, Hatayama et al. [14] showed that

if the Uq(g)-characters of the KR-modules over Uq(̂g) satisfy the Q-system relations,

along with some other asymptotic conditions, then the multiplicity of an irreducible

Uq(g)-module in a tensor product of KR-modules over Uq(̂g) is expressed in terms of

an extended fermionic sum. Subsequently, Nakajima showed that the q-characters of

the KR-modules over Uq(̂g) satisfy the T-system relations in the simply laced case [24]

and Hernandez proved, using different methods from [24], that the q-characters of the

KR-modules over Uq(̂g) satisfy the T-system relations in the non-simply laced case [15].

As the Q-system relations are obtained from the T-system relations by forgetting the

dependence on the spectral parameters, it follows that the Uq(g)-characters of the KR-

modules over Uq(̂g) satisfy the Q-system relations.

In a separate development, Feigin and Loktev introduced a g-equivariant grading

for the tensor product of localized g[t]-modules [10], and subsequently it was shown

in [1, 6] that the graded multiplicity of an irreducible g-module in the Feigin–Loktev

graded tensor product [10] of KR-modules over g[t] is given by the q-graded fermionic

sums. A crucial ingredient in this interpretation is the polynomiality property of the

solutions of the Q-system [6]. Subsequently, Di Francesco and Kedem [7] showed that

the polynomiality property is a consequence of the cluster algebraic formulation of the

Q-system relations. As cluster algebras admit natural quantum deformations [2], they

were able to use these quantum cluster algebras to prove a conjecture of Hatayama et al.

concerning the equality of q-graded fermionic sums [14, Conjecture 4.3] in the simply-

laced case.

In the present paper, we seek to extend the results in [9] and show that [14,

Conjecture 4.3] holds in the non-simply laced case. More precisely, we will first derive

the quantum Q-system relations corresponding to the non-simply laced quantum Q-

system cluster algebras. By extending the tools and techniques in [6, 9], the results in

the current paper, along with that in [9], would show that [14, Conjecture 4.3] holds in

its entire generality.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2021/2/805/5885187 by C
hem

istry Library-Fax user on 01 June 2021



Quantum Q-Systems and Fermionic Sums 807

1.1 Main results

Let us summarize our results briefly. KR-modules over g[t] are parameterized by α ∈ Ir
(where Ir = {1, · · · , r} is the set of labels of the simple roots of g), m ∈ Z+, along with

a nonzero localization parameter z ∈ C
∗, and they are denoted by KRα,m(z). As noted

above, the g-characters of these KR-modules over g[t] satisfy the Q-system relations.

More precisely, if we let Qα,k = chresg[t]g KRα,k(z) for all α ∈ Ir and k ∈ Z+, then the Qα,k’s

satisfy the following relation for all α ∈ Ir and k ∈ N [20, 22]:

Qα,k+1Qα,k−1 = Q2
α,k −

∏
β∼α

|Cαβ |−1∏
i=0

Qβ,�tβ(k+i)/tα�. (1.1)

Here, β ∼ α means that β is connected to α in the Dynkin diagram, Cαβ are the

entries of the Cartan matrix C of g, and tα are the integers that satisfy minα∈Ir tα = 1

and Cαβtβ = Cβαtα for all α,β ∈ Ir. As previously mentioned, the Q-system relations

(1.1) could be interpreted as cluster algebra mutations [7, 17]. As cluster algebras

admit natural quantum deformations [2], we can extract the corresponding quantum

Q-system relations in the quantum Q-system cluster algebra. More precisely, we have

the following theorem.

Theorem 1.1. The quantum Q-system relations for g are given by

q
1
δ
�αα Q̂α,k+1Q̂α,k−1 = Q̂2

α,k− :
∏
β∼α

|Cαβ |−1∏
i=0

Q̂β,�tβ(k+i)/tα�,

with commutation relations

Q̂α,iQ̂β,j = q
1
δ
(�βαi−�αβ j)Q̂β,jQ̂α,i

for all α,β ∈ Ir and i, j ∈ Z such that Q̂α,i and Q̂β,j are in the same quantum cluster.

Here, δ = det(C), �αβ are the entries of the matrix δC−1, and if y1, . . . , yk are pairwise

q-commuting elements with yiyj = qC(yi,yj)yjyi, then the ordered product :y1y2 · · ·yk: is
given by

:y1y2 · · · yk:= q− 1
2
∑

1≤i<j≤n C(yi,yj)y1 · · · yk.

Here, we would like to emphasize that there is no unique quantization of a

cluster algebra (and hence the Q-system relations). The quantization of the cluster
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808 M. S. Lin

algebra chosen here is the one that gives rise to the Poisson structure on the cluster

algebra defined in [12].

Our next result concerns the identity of graded sumsMλ,n(q) = Nλ,n(q). To begin,

we let n = (nα,i)α∈Ir ,i∈N be a vector of nonnegative integers that parameterizes a finite set

of KR-modules over g[t], where nα,i is the number of KR-modules of type KRα,i(z), and

let F∗
n denote the corresponding Feigin–Loktev graded tensor product of KR-modules

parameterized by n equipped with a g-equivariant grading, which we will call the fusion

product of KR-modules parameterized by n. The graded components F∗
n[m] of F∗

n are

g-modules for all m ∈ Z+, and we define the generating function Mλ,n(q) for the graded

multiplicities of the irreducible g-module V(λ) (where λ is a dominant integral weight

of g) in F∗
n by

Mλ,n(q) =
∞∑

m=0

dimHomg(F∗
n[m],V(λ))qm. (1.2)

Here, Homg(F∗
n[m],V(λ)) denotes the space of g-equivariant maps from F∗

n[m] to V(λ).

The graded character χn(q; z) of F∗
n is defined by

χn(q; z) =
∑
λ

Mλ,n(q)chzV(λ), (1.3)

where the sum is over all dominant weights λ, and z = (z1, · · · , zr) with zα = eωα , and ωα

is the fundamental weight corresponding to α for all α ∈ Ir.

It was shown in [1, 6] that the graded multiplicities Mλ,n(q−1) could be given in

terms of a q-graded fermionic formula Mλ,n(q−1). In order to define Mλ,n(q−1) precisely,

we need some extra notations. For any vector m = (mα,i)α∈Ir ,i∈N of nonnegative integers

and α ∈ Ir, we define the total spin qα as follows:

qα = 	α +
∑

β∈Ir ,j∈N
jCαβmβ,j −

∞∑
j=1

jnα,j. (1.4)

Next, for any α ∈ Ir and i ∈ N, we define the vacancy numbers pα,i and the quadratic

form Q(m,n) as follows:

pα,i =
∞∑
j=1

min(i, j)nα,j −
∑

β∈Ir ,j∈N

Cαβ

tα
min(tαj, tβ i)mβ,j, (1.5)

Q(m,n) = 1

2

∑
α,β∈Ir ,i,j∈N

Cαβ

tα
min(tαj, tβ i)mα,imβ,j −

∑
α∈Ir ,i,j∈N

min(i, j)mα,inα,j. (1.6)
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Quantum Q-Systems and Fermionic Sums 809

The M-sum Mλ,n(q−1) [14, (4.3)] is then given by

Mλ,n(q−1) =
∑
m≥0

qα=0,pα,i≥0

qQ(m,n)
∏

α∈Ir ,i∈N

[
mα,i + pα,i

mα,i

]
q

, (1.7)

where [
m + p

m

]
q

= (qp+1; q)∞(qm+1; q)∞
(q;q)∞(qp+m+1; q)∞

, (a;q)∞ =
∞∏
j=0

(1 − aqj).

The N-sum [14, (4.16)] is defined similarly:

Nλ,n(q−1) =
∑
m≥0
qα=0

qQ(m,n)
∏

α∈Ir ,i∈N

[
mα,i + pα,i

mα,i

]
q

. (1.8)

Here, the N-sum differs from the M-sum in that the summands on the right-hand side

of equation (1.8) are not bounded by the constraint pα,i ≥ 0.

In order to show that Mλ,n(q−1) = Mλ,n(q−1), it suffices to show that Mλ,n(1) =
Mλ,n(1), fromwhich the desired identity would follow from the positivity of the q-graded

sums. In order to prove that the latter identity holds, it was necessary to show that

Mλ,n(1) = Nλ,n(1), which follows from [14, 15, 24] and then show that Mλ,n(1) = Nλ,n(1),

which was shown by Di Francesco and Kedem in [6]. Subsequently, Di Francesco and

Kedem [9] showed that Mλ,n(q−1) = Nλ,n(q−1) in the simply laced case. The main bulk of

the paper is to show that the last identity holds in the non-simply laced case as well.

Theorem 1.2. Let g be a non-simply laced simple Lie algebra, let λ be a dominant

integral weight of g, and let n = (nα,i)α∈Ir ,i∈N be a vector of nonnegative integers that

parameterizes a finite set of KR-modules over g[t]. Then, we have

Mλ,n(q−1) = Nλ,n(q−1).

Our final result concerns an identity of graded characters of fusion product of

KR-modules over g[t] that extend (1.1).

Theorem 1.3. Let

Kα,m =
⊗
β∼α

|Cα,β |−1⊗
i=0

KR
β,
⌊ tβ (m+i)

tα

⌋
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810 M. S. Lin

for all α ∈ Ir and m ∈ Z+, and let K

α,m be the fusion product corresponding to the

tensor product Kα,m of KR-modules over g[t]. Then, the graded characters of the fusion

products of the KR-modules satisfy the following identity for all α ∈ Ir and m ∈ N:

chqKRα,m+1 
 KRα,m−1 = chqKRα,m 
 KRα,m − qmchqK


α,m.

Here, we briefly remark that a stronger version of Theorem 1.3 was proved

by Chari and Venkatesh in [5] for special cases. More precisely, they showed that

there exists a short exact sequence of fusion product of KR-modules that extends the

Q-system relations (1.1) in certain cases, which we will explain in detail at the end of

Section 5.

The paper is organized as follows. We will first review some properties of

the KR-modules over the current algebra and the Feigin–Loktev fusion product in

Section 2. We will then review the construction of the Q-system cluster algebras in

Section 3 and derive the quantum Q-system relations for all simple Lie algebras. In

Section 4, we will define the restricted versions of the M- and N-sums Mλ,n(q−1)

and Nλ,n(q−1) and introduce quantum generating functions in the non-simply laced

case that specializes to the N-sum. We will then prove factorization properties of

these generating functions analogous to those in [6, 9] and use these factorization

properties, along with the Laurent polynomiality property of the solutions of the

quantum Q-system, to prove the identity Mλ,n(q−1) = Nλ,n(q−1) in the non-simply laced

case. As an immediate consequence, we will use the identity to prove Theorem 1.3 in

Section 5.

2 Graded Tensor Products of Cyclic Modules Over the Current Algebra

2.1 Preliminaries

Let g be a simple complex Lie algebra of rank r, and let Ir = {1, . . . , r} be labels of the

simple roots of g. Let C denote the Cartan matrix of g, tα (α ∈ Ir) be the integers that

satisfy tβCαβ = tαCβα for all α,β ∈ Ir, and t0 = maxα∈Ir tα. Then, we have

• �◦ = {i ∈ Ir | i corresponds to a long root ofg} and
• �• = {i ∈ Ir | i corresponds to a short root ofg}.

The following table lists all simple Lie algebras g and their corresponding t0, �◦
and �•:
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Quantum Q-Systems and Fermionic Sums 811

g t0 �◦ �•

Ar,Dr(r ≥ 4),E6,E7,E8 1 Ir ∅

Br(r ≥ 2) 2 {1, . . . , r − 1} {r}
Cr(r ≥ 3) 2 {r} {1, . . . , r − 1}
F4 2 {1, 2} {3, 4}
G2 3 {1} {2}

we note that we have Ir = �◦ � �•, tα = 1, and tβ = t0 for all α ∈ �◦ and β ∈ �•.
In addition, we will also let γ = r, r−1, 2, 1 for g = Br,Cr, F4, and G2, respectively,

and γ ′ = r − 1, r, 3, 2 for g = Br,Cr, F4, and G2, respectively.

2.2 KR-modules

While the KR-modules over the Yangian or the quantum affine algebra are defined in

terms of their Drinfeld polynomials, the KR-modules over the current algebra g[t] =
g⊗C[t] are defined in terms of generators and relations and are the classical limits of the

KR-modules over the quantum affine algebra [4, 18]. These modules are parameterized

by a nonzero z ∈ C
∗ (which we call the localization parameter), α ∈ Ir, and m ∈ Z+, and

the corresponding KR-module over g[t] is denoted KRα,m(z).

When g is of type A, we have KRα,m(z) ∼= V(mωα) as g-modules, so KR-modules

over slr+1[t] are irreducible as slr+1-modules. In general, KR-modules over g[t] need not

be irreducible as g-modules. However, the direct sum decomposition of KRα,m(z) into

irreducible g-modules has the following form [3]:

KRα,m(z) ∼= V(mωα) ⊕
( ⊕

μ≺mωα

V(μ)⊕mμ

)
,

where ≺ is the usual dominance partial ordering on P. This decomposition immediately

implies that under the restriction of the action to g, KRα,m(z) has the highest weight

component isomorphic to V(mωα).

2.3 The Feigin–Loktev fusion product

Let V1, . . . ,VN be g[t]-modules with cyclic vectors v1, . . . , vN that generate V1, . . .VN

as g[t]-modules, respectively, and let z1, . . . , zN ∈ C be pairwise distinct nonzero
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812 M. S. Lin

localization parameters. It was shown by Feigin and Loktev in [10] the tensor product

V1(z1) ⊗ · · · ⊗ VN(zN) is generated by action of g[t] the tensor product v1 ⊗ · · · ⊗ vN of

cyclic vectors v1, . . . , vN . Hence, they were able to introduce a g-equivariant grading on

the tensor product V1(z1) ⊗ · · · ⊗ VN(zN). This tensor product of localized g[t]-modules,

along with the g-equivariant grading, is called the Feigin–Loktev fusion product [10]. By

definition, the fusion product is commutative.

In general, the fusion product of cyclic g[t]-modules depends on the choice of the

localization parameters. However, it was conjectured by Feigin and Loktev in [10] and

proved in [1, 6] that the fusion product is independent of the localization parameters

when the constituent modules involved are of Kirillov–Reshetikhin type. Hence, we

can suppress the localization parameters and parameterize the fusion product of

KR-modules by a vector n = (nα,i)α∈Ir ,i∈N, where nα,i is the number of KR-modules of

type KRα,i.

3 Quantum Q-Systems

3.1 Q-systems and cluster algebras

Let I be a subset of {Qα,k | α ∈ Ir, k ∈ Z} with |I| = 2r. We say that I forms valid

set of initial data for the Q-system (1.1) if any solution of the Q-system (1.1) could be

expressed as a function of the elements in I. An important example of an initial data for

the Q-system is the components of the following vector:

y�0 = (Qα,0,Qα,1)α∈Ir .

More generally, we let �sk = (ktα)α∈Ir for all k ∈ Z. Then, the components of the vector

y�sk = (Qα,ktα ,Qα,ktα+1)α∈Ir (3.1)

form a valid set of initial data for the Q-system. We call y�sk the k-th fundamental initial

data for the Q-system.

Definition 3.1. Let �m = (mα)α∈Ir be a vector with integer components. We say that �m
is a generalized Motzkin path if

− min(tα, tβ) ≤ tαmβ − tβmα ≤ max(tα, tβ) (3.2)

whenever Cαβ = −1.
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Quantum Q-Systems and Fermionic Sums 813

Example 3.2. An important example of a generalized Motzkin path is the vector

�sk = (ktα)α∈Ir .

Example 3.3. Let g be of type B3. Then, it is easy to verify that the vector (−1, 0, 2) is a

generalized Motzkin path.

In general, a valid set of initial data for the Q-system is determined by a

generalized Motzkin path.

It was shown by Di Francesco and Kedem [7] that theQ-system relations could be

realized as cluster algebra mutations. While the cluster algebra mutation relations are

written without any subtractions [11], the RHS of the Q-system relations (1.1) is written

with a subtraction. To avoid the use of cluster algebras with coefficients (as in the [7,

Appendix]), we would need to normalize our Q-system relations accordingly. Following

[7, Lemma 2.1], we let μα = ∑
β∈Ir (C

−1)β,α, εα = eiπμα , and Rα,k = εαQα,k for all α ∈ Ir and

k ∈ Z. Then, it follows that the normalized variables Rα,k satisfy the following relation:

Rα,k+1Rα,k−1 = R2
α,k +

∏
β∼α

|Cαβ |−1∏
i=0

Rβ,�tβ(k+i)/tα�. (3.3)

We will thereby refer to (3.3) as the normalized Q-system for g.

The cluster algebra associated to the normalized Q-system (3.3) for g is defined

from the initial cluster (x[0],B), where x[0] = (R1,0,R2,0, . . . ,Rr,0,R1,1, . . . ,Rr,1), and

B =
(
Ct − C −Ct

C 0

)
. (3.4)

In fact, more is true.

Theorem 3.4. ([7,Theorems 3.1, 3.4, and 3.12 and Lemma 3.10]) There exists a cluster

graph Gg, which includes all nodes (x[k],B) and (x[k′],−B) labeled by k ∈ Z+, with the

clusters x[k] and x[k′] defined as follows:

x[k] = (R1,2t1k,R2,2t2k, . . . ,Rr,2trk,R1,2t1k+1, . . . ,Rr,2trk+1),

x[k′] = (R1,2t1k,R2,2t2k, . . . ,Rr,2trk,R1,2t1k−1, . . . ,Rr,2trk−1),

and mutation matrix B defined as in (3.4), such that all cluster algebra mutations in the

graph Gg are normalized Q-system relations (3.3).
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814 M. S. Lin

3.2 Quantum Q-systems

The quantum Q-system relations were first defined for type A in [8] and subsequently

for all simply laced g in [9]. Our goal in this subsection is to do the same for all non-

simply laced g. In order to define these quantum Q-system relations, we would first

need to recall the definition of a quantum cluster algebra [2].

Let us fix a positive integer m (the rank of the quantum cluster algebra) and a

non-singular skew-symmetric m × m matrix integer B̃. Let �̃ be a m × m integer matrix

that satisfies the following compatibility relation with the exchange matrix B for some

positive integer δ:

B̃�̃ = −δI,

and let T be the Z[ν±1/2]-algebra with generators X1,X2, . . . ,Xm and relations

XiXj = ν�̃ijXjXi, i, j = 1, . . . ,m. (3.5)

In addition, we will also let F be the skew-field of fractions of T .

Next, for any pairwise ν-commuting elements y1, y2, . . . , yk ∈ F with

yiyj = νC(yi,yj)yjyi (3.6)

for any i, j ∈ {1, . . . , k}, we define the ordered product :y1y2 · · ·yk: as follows:

:y1y2 · · · yk:= ν
1
2
∑

i>j C(yi,yj)y1y2 · · · yk. (3.7)

Then, it is clear that the ordered product :·: is associative and commutative, so we may

write :
∏k

i=1 yi: or :
∏

i∈[1,k] yi: in lieu of :y1y2 · · · yk:.
We are now ready to define the quantum analogue of mutations. The quantum

mutations μi act in the same way on the exchange matrix B̃ as in the classical case. We

write μi(Xj) = Xj if j �= i, and

μi(Xi) =:
m∏
j=1

X
−δji+[̃Bji]+
j : + :

m∏
j=1

X
−δji+[−B̃ji]+
j :, (3.8)

where [n]+ = max(n, 0).

Now, we would like to derive the normalized quantum Q-system relations,

by deriving the quantum cluster algebra mutations in the quantum Q-system cluster
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Quantum Q-Systems and Fermionic Sums 815

algebra associated to the exchange matrix B defined in Equation (3.4) (i.e., B̃ = B) that

correspond to the normalized Q-system relations (3.3). To this end, we let

� = δC−1, δ = det(C), (3.9)

The skew-symmetric matrix �̃ that gives rise to the commutation relations (3.5) between

the quantum cluster variables in the initial cluster X[0] = (R̂1,0, R̂2,0, . . . , R̂r,0, R̂1,1,

. . . , R̂r,1) is then given by

�̃ = −δB−1

(
0 −�

�t �t − �

)
. (3.10)

In particular, the quantum cluster variables in X[0] satisfy the following commutation

relations:

R̂α,iR̂β,j = ν�βαi−�αβ jR̂β,jR̂α,i, α,β ∈ Ir, i, j ∈ {0, 1}. (3.11)

In addition, we will also let R̂α,i denote the quantum cluster variable in the quantum

cluster algebra associated to B that corresponds to Rα,i for all α ∈ Ir and i ∈ Z.

We first observe that each generalized Motzkin path corresponds to a cluster in

the cluster algebra corresponding to the normalized Q-system. In particular, it follows

from inequality (3.2) that if

|tαj − tβ i| ≤ tα + tβ − min(tα, tβ)δαβ , (3.12)

then the variables R̂α,i and R̂β,j are in the same quantum cluster, and hence they ν-

commute. Therefore, the quantum cluster algebra mutations corresponding to (3.3) has

the following form:

R̂α,k+1 =: R̂−1
α,k−1R̂

2
α,k: + :R̂−1

α,k−1

∏
β∼α

|Cαβ |−1∏
i=0

R̂β,�tβ(k+i)/tα�, (3.13)

R̂α,k−1 =: R̂−1
α,k+1R̂

2
α,k: + :R̂−1

α,k+1

∏
β∼α

|Cαβ |−1∏
i=0

R̂β,�tβ(k+i)/tα� . (3.14)

Using the fact that B�̃ = −δI, it follows from Equation (3.13) that the normalized

quantum Q-system relations for g are given by

ν−�αα R̂α,k+1R̂α,k−1 = R̂2
α,k + ν− δ

2 :
∏
β∼α

|Cαβ |−1∏
i=0

R̂β,�tβ(k+i)/tα� . (3.15)
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816 M. S. Lin

In addition to the normalized quantum Q-system relations for g (3.15), we would also

need to know the relevant commutation relations that are satisfied by the normalized

quantum Q-system variables R̂α,i.

Lemma 3.5. Let �m is a generalized Motzkin path (3.2). Then, within each valid initial

data set (R̂α,mα
, R̂α,mα+1)α∈Ir , the normalized quantum Q-system variables R̂α,i satisfy

the following commutation relations:

R̂α,iR̂β,j = ν�βαi−�αβ jR̂β,jR̂α,i. (3.16)

Proof. The following proof of (3.16) uses the same strategy as in the proof of [7, Lemma

3.2], where the commutation relations (3.16) are proved in the simply laced case. We will

first show that (3.16) holds in the case where

|tαj − tβ i| ≤ max(tα, tβ). (3.17)

Firstly, it follows from Theorem 3.4 and Equation (3.10) that (3.16) holds whenever we

have α,β ∈ �◦ and |i− j| ≤ 1, and in the case where α ∈ �◦, β ∈ �•, we have the following

commutation relations for all k ∈ Z, i = 0,±1 and j = ±(t0 − 1),±t0:

R̂α,2kR̂β,2t0k+i = ν−i�αβ R̂β,2t0k+iR̂α,2k and (3.18)

R̂α,2k+1R̂β,t0(2k+1)+j = ν−j�αβ R̂β,t0(2k+1)+jR̂α,2k+1. (3.19)

Let

T̂α,k = R̂−2
α,k :

∏
β∼α

|Cαβ |−1∏
i=0

R̂β,�tβ(k+i)/tα�

and

cα,k = C
(
R̂α,k, R̂

−1
α,k−1

)
− 1

2

∑
β∼α

|Cαβ |−1∑
i=0

C
(
R̂β,�tβ(k+i)/tα�, R̂

−1
α,k−1

)
for all α ∈ Ir and k ∈ Z. Then, it follows that Equation (3.13) could be rewritten as

R̂α,k+1 = ν
−C

(
R̂α,k,R̂

−1
α,k−1

)
R̂2

α,k(1 + νcα,kT̂α,k)R̂
−1
α,k−1.

Thus, in order to show that the commutation relation (3.18) holds for i = 2, it suffices to

show that R̂α,2k commutes with T̂β,2t0k+1. Using the fact that C(R̂α,2k, R̂ω,2k+i) = −i�αω
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Quantum Q-Systems and Fermionic Sums 817

for all ω ∈ �◦ and i ∈ {0, 1}, and C(R̂α,2k, R̂ω,2t0k+1) = −�αω for all ω ∈ �•, it follows that

we have

C
(
R̂α,2k, R̂ω,�tω(2t0k+1)/tβ� · · · R̂ω,�tω(2t0k+|Cβω|)/tβ�

)
= −�αω = �αωCωβ

for all ω ∼ β. As we have C
(
R̂α,2k, R̂

−2
β,2t0k+1

)
= 2�αβ = �αβCββ , it follows that we have

C
(
R̂α,2k, T̂β,2t0k+1

)
= �αβCββ +

∑
ω∼β

�αωCωβ =
∑
ω∈Ir

�αωCωβ = 0,

where the last equality follows from the fact that �C = δI. So this shows that R̂α,2k

commutes with T̂β,2t0k+1, and hence (3.18) holds for i = 2. By repeating the argument as

before (and using Equation (3.14) where necessary), it follows that the commutation

relations (3.18) and (3.19) hold for all |i|, |j| ≤ t0. Consequently, the commutation

relations (3.16) hold whenever inequality (3.17) is satisfied, in the case where either

α ∈ �◦, β ∈ �• or α ∈ �•, β ∈ �◦. The same argument above would also imply that

the commutation relations (3.16) hold whenever inequality (3.17) is satisfied, in the case

where α,β ∈ �•.
Finally, to obtain the rest of the commutation relations, we will proceed by

induction on either |i− j| (in the case where either α,β ∈ �◦ or α,β ∈ �•) or |tαj − tβ i| (in
the case where either α ∈ �◦, β ∈ �• or α ∈ �•, β ∈ �◦) and repeat the same argument

as before, with the base case(s) following from the fact that the commutation relations

(3.16) hold whenever inequality (3.17) is satisfied. �

Having obtained the normalized quantum Q-system relations for g, we will now

proceed to renormalize (3.15) to obtain the quantum Q-system relations for g. We let

aα = 1
2

∑
β∈Ir �αβ and Q̂α,k = ε−1

α νaα R̂α,k for all α ∈ Ir and k ∈ Z. Then, it follows from

(3.15) that we have

ν−�αα Q̂α,k+1Q̂α,k−1 = Q̂2
α,k− :

∏
β∼α

|Cαβ |−1∏
i=0

Q̂β,�tβ(k+i)/tα� (3.20)

for all α ∈ Ir and k ∈ Z. We will thereby refer to (3.20) as the quantum Q-system for g.

Remark. The quantum Q-system variables Q̂α,k also satisfy the same commutation

relations (3.16) (with the R̂α,k’s replaced by Q̂α,k’s).
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818 M. S. Lin

For latter convenience, we will let

Ŷα,k = Q̂−2
α,k :

∏
β∼α

|Cαβ |−1∏
i=0

Q̂β,�tβ(k+i)/tα�: (3.21)

for all α ∈ Ir and k ∈ Z. Then, the quantum Q-system relations (3.20) is equivalent to

ν−�αα Q̂α,k+1Q̂α,k−1 = Q̂2
α,k(1 − Ŷα,k). (3.22)

We will conclude this section with a technical lemma, which will come in handy

in the factorization of the quantum generating functions that we will introduce in the

next section.

Lemma 3.6. Let Ẑα,k = Q̂α,kQ̂
−1
α,k+1 for all α ∈ Ir and k ∈ Z. Then, for all distinct α,β ∈ Ir,

i ∈ Z, and |p| ≤ t0, we have

1. Ẑβ,i commutes with Ẑα,i and Ẑα,i−1 whenever α,β ∈ �◦ or α,β ∈ �•;
2. Ẑβ,i commutes with Ẑα,t0i+p whenever α ∈ �• and β ∈ �◦;
3. Q̂β,i+2 commutes with Ẑ−1

α,i Ẑα,i+1 whenever α,β ∈ �◦ or α,β ∈ �•;
4. Q̂β,t0i+1 commutes with Ẑ−1

α,i−1Ẑα,i whenever α ∈ �◦ and β ∈ �•;
5. Q̂β,i commutes with Ẑ−1

α,t0i−2Ẑα,t0i−1 and Ẑ−1
α,t0i

Ẑα,t0i+1 whenever α ∈ �• and

β ∈ �◦;
6. Q̂β,i commutes with Ŷα,i+1 whenever α,β ∈ �◦ or α,β ∈ �•;
7. Q̂β,t0i−1 commutes with Ŷα,i whenever α ∈ �◦ and β ∈ �•;
8. Q̂β,i commutes with Ŷα,t0i+p whenever α ∈ �• and β ∈ �◦.

We shall omit the proof of Lemma 3.6, as all statements follow readily from

Lemma 3.5 (and using inequality (3.12)) where necessary.

Similar to the classical case, the cluster variables in any quantum cluster

algebra satisfy a Laurent property, that is, given an initial clusterX of a quantum cluster

algebra, we can express any cluster variable as a (noncommutative) Laurent polynomial

in the variables of X. As the quantumQ-system relations are obtained from the quantum

Q-system cluster algebras, it follows that the solutions of the quantumQ-system inherit

this Laurent property as well.
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Quantum Q-Systems and Fermionic Sums 819

Lemma 3.7. For any generalized Motzkin path �m, α ∈ Ir and i ∈ Z, Q̂α,i could

be expressed as a (noncommutative) Laurent polynomial in the initial data Y �m =
(Q̂α,mα

, Q̂α,mα+1)α∈Ir with coefficients in Z[ν±1/2].

4 The Graded Tensor Product Multiplicities and the Quantum Q-System: The Non-

Simply Laced Case

Our goal in this section is to show that Theorem 1.2 holds. As in [6, 9], we will

prove a slightly stronger statement, where we fix a positive integer k, restrict the

sums Mλ,n(q−1) and Nλ,n(q−1) to the m’s that satisfy mα,i = 0 for all α ∈ Ir and

i > tαk, and show that these restricted sums are equal to each other. The equality

Mλ,n(q−1) = Nλ,n(q−1) would subsequently follow when k is sufficiently large.

4.1 The restricted M- and N-sums

Throughout this section, we will assume that g is non-simply laced unless otherwise

stated. Let us fix a vector n = (nα,i)α∈Ir ,i∈N of nonnegative integers that parameterizes a

finite set of KR-modules over g[t], and a dominant integral weight λ = ∑
α∈Ir 	αωα of g,

and a positive integer k. For latter convenience, we will let 	 denote the vector (	α)α∈Ir ,
and n(j) denote the vector (nα,i)α∈Ir ,i>tαj. Also, for any j,p ∈ Z+ satisfying 0 ≤ j ≤ k and

p < t0, we let J(j,p)
g be the following indexing set:

J(j,p)
g = {(α, i) | α ∈ Ir, j + 1 ≤ i ≤ k (α ∈ �◦), t0j + p + 1 ≤ i ≤ t0k (α ∈ �•)}.

For any vector m = (mα,i)(α,i)∈J(0,0)
g

of nonnegative integers and any α ∈ Ir, we define the

restricted total spin qα,0 as follows:

qα,0 = 	α +
∑

(β,j)∈J(0,0)
g

jCαβmβ,j −
tαk∑
j=1

jnα,j. (4.1)

Next, for any (α, i) ∈ J(0,0)
g , we define the restricted vacancy numbers pα,i and the

restricted quadratic form Qk(m,n) as follows:

pα,i =
tαk∑
j=1

min(i, j)nα,j −
∑

(β,j)∈J(0,0)
g

Cαβ

tα
min(tαj, tβ i)mβ,j, (4.2)

Qk(m,n) = 1

2

∑
(α,i),(β,j)∈J(0,0)

g

Cαβ

tα
min(tαj, tβ i)mα,imβ,j −

∑
α∈Ir

tαk∑
i,j=1

min(i, j)mα,inα,j. (4.3)
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The restricted M- and N- sums M(k)
λ,n(q−1) and N(k)

λ,n(q−1) are then defined as follows:

M(k)
λ,n(q−1) =

∑
m≥0

qα,0=0,pα,i≥0

qQk(m,n)
∏

(α,i)∈J(0,0)
g

[
mα,i + pα,i

mα,i

]
q

and (4.4)

N(k)
λ,n(q−1) =

∑
m≥0
qα,0=0

qQk(m,n)
∏

(α,i)∈J(0,0)
g

[
mα,i + pα,i

mα,i

]
q

. (4.5)

We note that the integers qα,0 were introduced for the purpose of imposing the

restriction on the summation variables.

The rest of the section is devoted to prove the following theorem.

Theorem 4.1. Let λ be a dominant integral weight of g, n = (nα,i)α∈Ir ,i∈N be a vector of

nonnegative integers that parameterizes a finite set of KR-modules over g[t] and k be a

positive integer. Then, we have

M(k)
λ,n(q−1) = N(k)

λ,n(q−1).

Here, we remark that Theorem 4.1 is proved for all simple g in the classical case

q = 1 [6], and for all simply laced g in the graded case [9]. In both cases, the broad

strategy in proving Theorem 4.1 is as follows: firstly, Di Francesco and Kedem defined

(quantum) generating functions whose “constant term evaluation” is equal to N(k)
λ,n(q−1)

up to a constant depending on n and λ and factorizes into a into a product of (quantum)

Q-system variables and their inverses. In the former case, Di Francesco and Kedem also

defined intermediate generating functions to account for the extra terms corresponding

to the short root indices. The next step is to show that the terms in the summation

with negative pα,i for some α ∈ Ir, 1 ≤ i ≤ tαk, do not contribute to the constant term

evaluation, from which we would get M(k)
λ,n(q−1) = N(k)

λ,n(q−1).

In a similar fashion, we would employ a largely similar strategy outlined in [9]

in proving Theorem 4.1 for the case where g is non-simply laced, where as in [6], we will

also define intermediate generating quantum generating functions to account for the

extra terms corresponding to the short root indices.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2021/2/805/5885187 by C
hem

istry Library-Fax user on 01 June 2021



Quantum Q-Systems and Fermionic Sums 821

4.2 The quantum generating functions

Firstly, we define the modified restricted vacancy numbers qα,i for all α ∈ Ir and 1 ≤ i ≤
tαk as follows:

qα,i = pα,i + qα,0 = 	α +
∑

(β,j)∈J(0,0)
g :

tαj>tβ i

Cαβ

tα
(tαj − tβ i)mβ,j −

tαk∑
j=i+1

(j − i)nα,j. (4.6)

Equation (4.6) could be written in a more explicit manner as follows: for all α ∈ �◦ and

0 ≤ i ≤ k, we have

qα,i = 	α +
k∑

j=i+1

(j − i)

⎛⎝∑
β∈�◦

Cαβmβ,j − nα,j

⎞⎠+
t0k∑

j=t0i+1

(j − t0i)
∑

ω∈�•
Cαωmω,j, (4.7)

and for all β ∈ �• and 0 ≤ i ≤ t0k, we have

qβ,i = 	β +
t0k∑

j=i+1

(j − i)

⎛⎝∑
α∈�•

Cβαmα,j − nβ,j

⎞⎠+
k∑

j=
⌊

i
t0

⌋
+1

(t0j − i)
∑

ω∈�◦
Cωβmω,j. (4.8)

In order to facilitate the definition of the quantum generating functions that arise from

partial summations, we will need to make a few extra definitions below the fold. We

first observe that for all α ∈ �◦ and 0 ≤ i < k, the conditions (β, j) ∈ J(0,0)
g and tαj > tβ i

is equivalent to the condition (β, j) ∈ J(i,0)
g , that is, Equation (4.7) is equivalent to

qα,i = 	α +
∑

(β,j)∈J(i,0)
g

Cαβ

tα
(tαj − tβ i)mβ,j −

tαk∑
j=i+1

(j − i)nα,j. (4.9)

This leads to the following definition of the “intermediate” modified vacancy numbers

q(p)

α,i for all α ∈ �◦, 0 ≤ i < k and 0 < p < t0:

q(p)

α,i = 	α +
∑

(β,j)∈J(i,p)
g

Cαβ

tα
(tαj − tβ i)mβ,j −

tαk∑
j=i+1

(j − i)nα,j. (4.10)
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As before, Equation (4.10) could be written explicitly as follows:

q(p)

α,i = 	α +
k∑

j=i+1

(j − i)

⎛⎝∑
β∈�◦

Cαβmβ,j − nα,j

⎞⎠+
t0k∑

j=t0i+p+1

(j − t0i)
∑

ω∈�•
Cαωmω,j. (4.11)

As in [9], our 1st step is to rewrite Qk(m,n) in terms of the modified vacancy numbers

qα,i. To this end, we will first need a few notations. Given any vector v = (vα,i)(α,i)∈J(0,0)
g

of

nonnegative integers, we let v◦
i = (vα,i)α∈�◦ , v

•
i = (vα,i)α∈�• and vi = (vα,tαi)α∈Ir . Also, we

let 	◦ = (	α)α∈�◦ , 	• = (	•)α∈�◦ and q◦,(p)

i denote the vector (q(p)

α,i )α∈�◦ for all nonnegative

integers i < k and 0 < p < t0.

Next, we let C◦ = (Cαβ)α,β∈�◦ , C• = (Cαβ)α,β∈�• , D = (Cαβ)α∈�◦,β∈�• , �◦ =
(�αβ)α,β∈�◦ , �• = (�αβ)α,β∈�• , and A = (�αβ)α∈�◦,β∈�• . Then, it is easy to see (up to a

rearrangement of the rows and columns of C and � in the case where g is of type C) that

the matrices C and � has the following block form:

C =
(

C◦ D

t0D
t C•

)
, � =

(
�◦ A

t0A
t �•

)
. (4.12)

We are now ready to rewrite Qk(m,n) in terms of the qα,i’s.

Lemma 4.2. Let m = (mα,i)(α,i)∈J(0,0)
g

,n = (nα,i)(α,i)∈J(0,0)
g

be vectors of nonnegative

integers. Then, we have

Qk(m,n) = 1

2δ

⎡⎣ k∑
j=1

[(
q◦
j−1 − q◦

j

) · �◦(q◦
j−1 − q◦

j

)+ 2
(
q◦
j−1 − q◦

j

) · A(q•
t0(j−1) − q•

t0j

)]

+
t0k∑
j=1

(
q•
j−1 − q•

j

) · �•(q•
j−1 − q•

j

)− Lk(n) −
k∑

j=1

Uj

⎤⎦ , (4.13)

where

Lk(n) =
∑

(α,i),(β,j)∈J(0,0)
g

�αβ

tα
min(tαj, tβ i)nα,inβ,j, and (4.14)

Uj = 1

t0

t0∑
i=1

et0(j−1)+i · Dt(�◦Det0(j−1)+i − 2t0Aft0(j−1)+i), (4.15)
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with

et0(j−1)+i =
i−1∑
s=1

sm•
t0(j−1)+s +

t0−1∑
s=i

(s − t0)m
•
t0(j−1)+s and (4.16)

ft0(j−1)+i =
t0−1∑
s=i

n•
t0(j−1)+s (4.17)

for all 1 ≤ i ≤ t0 and 1 ≤ j ≤ k.

Proof. Firstly, we let

Mα,i =
tαk∑
j=i

mα,i, Nα,i =
tαk∑
j=i

nα,i,

for all α ∈ Ir and 1 ≤ i ≤ tαk, and M = (Mα,i)(α,i)∈J(0,0)
g

and N = (Nα,i)(α,i)∈J(0,0)
g

.

Our 1st step is to write q◦
i and q•

i in terms of m◦
j , m

•
j , n

◦
j , and n•

j using Equations

(4.7) and (4.8) as follows:

q◦
i = 	◦ +

k∑
j=i+1

(j − i)[C◦m◦
j − n◦

j ] +
t0k∑

j=t0i+1

(j − t0i)Dm
•
j ;

q•
i = 	• +

t0k∑
j=i+1

(j − i)[C•m•
j − n•

j ] +
k∑

j=
⌊

i
t0

⌋
+1

(t0j − i)Dtm◦
j .

This implies that for all 1 ≤ j ≤ k and t0(j − 1) + 1 ≤ i ≤ t0j, we have

q◦
j−1 − q◦

j = C◦M◦
j − N◦

j + t0DM
•
i + Dei, (4.18a)

q•
i−1 − q•

i = C•M•
i − N•

i + DtM◦
j . (4.18b)

Thus, we have

(q◦
j−1 − q◦

j ) · �◦(q◦
j−1 − q◦

j ) (4.19)
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= 1

t0

t0j∑
i=t0(j−1)+1

(C◦M◦
j − N◦

j + t0DM
•
i + Dei) · �◦(C◦M◦

j − N◦
j + t0DM

•
i + Dei)

= M◦
j · C◦�◦(C◦M◦

j − 2N◦
j ) + N◦

j · �◦N◦
j +

t0j∑
i=t0(j−1)+1

(t0DM
•
i + 2C◦M◦

j ) · �◦DM•
i

+ 1

t0

t0j∑
i=t0(j−1)+1

[
ei · Dt�◦(2C◦M◦

j − 2N◦
j + 2t0DM

•
i + Dei

)− 2t0M
•
i · Dt�◦N◦

j

]
,

t0j∑
i=t0(j−1)+1

(q•
j−1 − q•

j ) · �•(q•
j−1 − q•

j ) (4.20)

=
t0j∑

i=t0(j−1)+1

(C•M•
i − N•

i + DtM◦
j ) · �•(C•M•

i − N•
i + DtM◦

j )

= t0M
◦
j · D�•DtM◦

j +
t0j∑

i=t0(j−1)+1

(
C•M•

i − 2N•
i + 2DtM◦

j

) · �•C•M•
i

+
t0j∑

i=t0(j−1)+1

(N•
i · �•N•

i − 2M◦
j · D�•N•

i ), and

2(q◦
j−1 − q◦

j ) · A(q•
t0(j−1) − q•

t0j
) (4.21)

= 2
t0j∑

i=t0(j−1)+1

(C◦M◦
j − N◦

j + t0DM
•
i + Dei) · A(C•M•

i − N•
i + DtM◦

j )

= 2t0M
◦
j · DAt(C◦M◦

j − N◦
j ) + 2

t0j∑
i=t0(j−1)+1

[
t0M

•
i · DtA(C•M•

i − N•
i ) + N•

i · AtN◦
j

]

+ 2
t0j∑

i=t0(j−1)+1

[
M◦

j · (C◦AC• + t0DA
tD
)
M•

i − M•
i · C•AtN◦

j − M◦
j · C◦AN•

i

]

+ 2
t0j∑

i=t0(j−1)+1

ei · (DtADtM◦
j + DtAC•M•

i − DtAN•
i

)
.
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Quantum Q-Systems and Fermionic Sums 825

By using the fact that C� = δI and C�C = δC, it follows from Equations (4.19)–(4.21),

along with the block form (4.12) of the matrices C and �, that we have the RHS of (4.13)

to be equal to

1

2

k∑
j=1

⎡⎣M◦
j · (C◦M◦

j − 2N◦
j ) +

t0j∑
i=t0(j−1)+1

(M•
i · (C•M•

i − 2N•
i ) + 2M◦

j · DM•
i )

⎤⎦ (4.22)

+ 1

2δ

k∑
j=1

⎡⎣N◦
j · �◦N◦

j +
t0j∑

i=t0(j−1)+1

(N•
i · �•N•

i + 2N◦
j · AN•

i )

⎤⎦− 1

2δ
Lk(n)

+ 1

δt0

k∑
j=1

t0j∑
i=t0(j−1)+1

ei · Dt(δM◦
j − �◦N◦

j − t0AN
•
t0j

).

It remains to show that expression (4.22) is equal to Qk(m,n). To this end, we first

observe from Equation (4.16) that we have

t0j∑
i=t0(j−1)+1

ei = 0

for all 1 ≤ j ≤ k. AsDt(δM◦
j −�◦N◦

j −t0AN
•
t0j

) is independent of i for all t0(j−1)+1 ≤ i ≤ t0j,

it follows that we have

k∑
j=1

t0j∑
i=t0(j−1)+1

ei · Dt(δM◦
j − �◦N◦

j − t0AN
•
t0j

) = 0. (4.23)

Next, we make use of the fact that

min(j, t0j
′) =

t0−1∑
s=0

min
(⌊

j + s

t0

⌋
, j′
)
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826 M. S. Lin

to deduce that

Qk(m,n) = 1

2

k∑
j,j′=1

min(j, j′)m◦
j · (C◦m◦

j′ − 2n◦
j′) + 1

2

t0k∑
j,j′=1

min(j, j′)m•
j · (C•m•

j′ − 2n•
j′) (4.24)

+
t0k∑
j=1

k∑
j′=1

min(j, t0j
′)m◦

j′ · Dm•
j

= 1

2

k∑
j,j′=1

min(j,j′)∑
i=1

m◦
j · (C◦m◦

j′ − 2n◦
j′) + 1

2

t0k∑
j,j′=1

min(j,j′)∑
i=1

m•
j · (C•m•

j′ − 2n•
j′)

+
t0k∑
j=1

k∑
j′=1

t0−1∑
s=0

min
(⌊

j+s
t0

⌋
,j′
)∑

i=1

m◦
j′ · Dm•

j

= 1

2

k∑
i=1

k∑
j,j′=i

m◦
j · (C◦m◦

j′ − 2n◦
j′) + 1

2

t0k∑
i=1

t0k∑
j,j′=i

m•
j · (C•m•

j′ − 2n•
j′) (4.24)

+
t0−1∑
s=0

k∑
i=1

k∑
j′=i

t0k∑
j=t0i−s

m◦
j′ · Dm•

j

= 1

2

k∑
j=1

⎡⎣M◦
j · (C◦M◦

j − 2N◦
j ) +

t0j∑
i=t0(j−1)+1

(M•
i · (C•M•

i − 2N•
i ) + 2M◦

j · DM•
i )

⎤⎦ .

Likewise, by a similar argument, we have

Lk(n) =
k∑

j=1

⎡⎣N◦
j · �◦N◦

j +
t0j∑

i=t0(j−1)+1

(N•
i · �•N•

i + 2N◦
j · AN•

i )

⎤⎦ . (4.25)

By combining Equations (4.23)–(4.25), it follows from expression (4.22) that (4.16) holds,

and we are done. �

We are now ready to define our quantum generating functions that specialize

to the restricted N-sums via a constant term evaluation. To make our notations more

compact, we will introduce some shorthand notations. For any vector v◦ = (vα)α∈�◦
(respectively v• = (vα)α∈�• ) of integers and k ∈ Z, we shall denote the product

∏
α∈�◦ Q̂

vα

α,k

(respectively
∏

α∈�• Q̂
vα

α,k) of the commuting variables Q̂vα

α,k by Q̂v◦
◦,k (respectively Q̂v•

•,k).
Likewise, we will also use the shorthand notations Ŷv◦

◦,k, Ŷ
v•
•,k, Ẑ

v◦
◦,k, and Ẑv

•
•,k.
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Quantum Q-Systems and Fermionic Sums 827

Let us fix the quantum parameter to be q = νδ, u = ν
1
2 = q

1
2δ , and Zu = Z[u±1]. Let

Ŷ�si denote the quantum torus {Q̂α,tαi, Q̂α,tαi+1}α∈Ir , and let Q̂i = {Q̂α,i}α∈Ir for all i ∈ Z. For

any ring R and a set of variables x = {x1, . . . , xn}, we let R((x)) denote the ring of formal

Laurent series of the variables x1, . . . , xn with coefficients in R. We define the quantum

generating function for multiplicities Z(k)
λ,n(Ŷ�s0) ∈ Zu[Q̂

±1
0 ]((Q̂−1

1 )) in the quantum torus

Ŷ�s0 , subject to the commutation relations in Lemma 3.5 as follows:

Z(k)
λ,n(Ŷ�s0) =

∑
m

qQk(m,n)
∏

(α,i)∈J(0,0)
g

[
mα,i + qα,i

mα,i

]
q

Q̂
−q•

0•,1 Q̂
−q◦

0◦,1 Q̂
q•
1•,0Q̂

q◦
1+De1

◦,0 . (4.26)

Here, the sum is over all vectors m = (mα,i)(α,i)∈J(0,0)
g

of nonnegative integers, and the

modified quadratic form Qk(m,n) is defined by

Qk(m,n) = 1

2δ

⎡⎣k−1∑
j=1

[(q◦
j − q◦

j+1) · �◦(q◦
j − q◦

j+1) + 2(q◦
j − q◦

j+1) · A(q•
t0j

− q•
t0(j+1))] (4.27)

+
t0k−1∑
j=1

(q•
j − q•

j+1) · �•(q•
j − q•

j+1) −
k∑

j=1

Uj + q◦
1 · �◦q◦

1 + q•
1 · �•q•

1

−2(q◦
0 − q◦

1) · Aq•
t0 + 2t0q

◦
0 · Aq•

1 + 2(�◦q◦
0 + Aq•

0) · De1
]
.

From Equation (4.27), we have

Qk(m,n) − Qk(m,n) = − 1

2δ

[
q◦
0 · �◦(q◦

0 − 2q◦
1) + q•

0 · �•(q•
0 − 2q•

1) + 2(q◦
0 − q◦

1) · Aq•
0

−2t0q
◦
0 · Aq•

1 − 2(�◦q◦
0 + Aq•

0) · De1 − Lk(n)

]
.

This implies that the modified quadratic form Qk(m,n) is equal to Qk(m,n) + 1
2δ
Lk(n)

when q◦
0 = 0 and q•

0 = 0.

In addition to the generating function Z(k)
λ,n(Ŷ�s0) that we have defined above, we

would also need to define intermediate quantum generating functions Z(k,p)

λ,n (Ŷ�s0,p), where

0 < p < t0, that arise from partial summations over mα,i, with α ∈ �• and t0 � |i. To this

end, we will need to define truncations of a given vector v = (vα,i)(α,i)∈J(0,0)
g

. For any vector

v = (vα,i)(α,i)∈J(0,0)
g

, 0 ≤ j ≤ k and 0 ≤ p < t0, we define v(j,p) := (vα,i)(α,i)∈J(j,p)
g

. In particular,

we have v(0,0) = v.
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828 M. S. Lin

We shall first define the quantum generating function Z(k,t0−1)
λ,n (Ŷ�s0,t0−1

). To this

end, we let �si,t0−1 = ((i + 1)tα − 1)α∈Ir for all i ∈ Z. Then, it is easy to verify that �si,t0−1 is

a generalized Motzkin path for all i ∈ Z, so the components of the vector

Ŷ�si,t0−1
= (Q̂α,(i+1)tα−1, Q̂α,(i+1)tα )α∈Ir

form a valid set of initial data for the quantum Q-system. Hence, we define the quantum

generating function Z(k,t0−1)
λ,n (Ŷ�s0,t0−1

) in the quantum torus Ŷ�s0,t0−1
as follows:

Z(k,t0−1)
λ,n (Ŷ�s0,t0−1

)=
∑

m(0,t0−1)

qQ
(t0−1)

k (m,n)
∏

(α,i)∈J(0,t0−1)
g

[
mα,i + qα,i

mα,i

]
q

Q̂
−q•

t0−1
•,t0 Q̂

−q
◦,(t0−1)

0◦,1 Q̂
q•
t0•,t0−1Q̂

q◦
1◦,0.

(4.28)

Here, the sum is over all vectors m(0,t0−1) = (mα,i)(α,i)∈J(0,t0−1)
g

of nonnegative integers,

and the quadratic form Q
(t0−1)

k (m,n) is defined by

Q
(t0−1)

k (m,n) = 1

2δ

⎡⎣k−1∑
j=1

[
(q◦

j −q◦
j+1) · �◦(q◦

j − q◦
j+1)+2(q◦

j − q◦
j+1) · A(q•

t0j
− q•

t0(j+1)) − Uj+1

]

+
t0k−1∑
j=t0

(q•
j − q•

j+1) · �•(q•
j − q•

j+1)+q◦
1 · �◦q◦

1+q•
t0 · �•q•

t0+2q◦
1 · Aq•

t0

⎤⎦ .

(4.29)

One important property of the quadratic form Q
(t0−1)

k (m,n) is that it is independent of

mα,i and nα,i for all α ∈ Ir and 1 ≤ i ≤ tα.

If t0 = 2, that is, g is of type BCF, then we are done with defining the intermediate

quantum generating functions. Else, if t0 = 3, that is, g is of type G2, then we need to

define the intermediate quantum generating function Z(k,1)
λ,n (Ŷ�s0,1). We let �si,1 = (i, 3i + 1)

for all i ∈ Z. Then, it is easy to verify that �si,1 is a generalized Motzkin path for all i ∈ Z,

so the components of the vector

Ŷ�si,1 = (Q̂1,i, Q̂2,3i+1, Q̂1,i+1, Q̂2,3i+2)

form a valid set of initial data for the quantum Q-system. Hence, we define the quantum

generating function Z(k,1)
λ,n (Ŷ�s0,1) in the quantum torus Ŷ�s0,1 as follows:

Z(k,1)
λ,n (Ŷ�s0,1) =

∑
m(0,1)

qQ
(1)

k (m,n)
∏

(α,i)∈J(0,1)
g

[
mα,i + qα,i

mα,i

]
q

Q̂
−q2,1
2,2 Q̂

−q(1)
1,0

1,1 Q̂
q2,2
2,1 Q̂

q1,1+m2,2
1,0 . (4.30)
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Quantum Q-Systems and Fermionic Sums 829

Here, the sum is over all vectors m(0,1) = (mα,i)(α,i)∈J(0,1)
g

of nonnegative integers, and the

quadratic form Q
(1)

k (m,n) is defined by

Q
(1)

k (m,n)=
k−1∑
j=1

[
(q1,j−q1,j+1)

2+(q1,j−q1,j+1)(q2,3j−q2,3j+3)
]
− 1

2

k−1∑
j=1

Uj+1+
3k−1∑
j=2

(q2,j−q2,j+1)
2

+ q21,1 + q22,2 + q1,1q2,3 + q(1)
1,0(q2,1 + n2,2) + m2,2(2q2,1 − q2,2 − 2m2,2 + 2n2,2).

(4.31)

Here, we note that in the case of type G2, we have δ = 1. It is easy to see that the

quadratic form Q
(1)

k (m,n) is independent of m2,2.

The generating function Z(k)
λ,n(Ŷ�s0) is related to the restricted N-sum N(k)

λ,n(q−1) via

a constant term and an evaluation. For any f ∈ Zu[Q̂
±1
0 ]((Q̂−1

1 )), we define the multiple

constant term CT{Q̂α,1}α∈Ir (f ) to be the term of total degree 0 in each of the variables

Q̂1,1, · · · , Q̂r,1. In particular, if we have a normal-ordered expansion

f =
∑

a•,b•∈Zs,a◦,b◦∈Zd

fa•,a◦,b•,b◦Q̂a•
•,0Q̂a◦

◦,0Q̂b◦
◦,1Q̂b•

•,1,

where s = |�•|,d = |�◦|, then we have

CTQ̂1
(f ) =

∑
a•∈Zs,a◦∈Zd

fa•,a◦,0,0Q̂
a•
•,0Q̂a◦

◦,0,

where Q̂k = {Q̂α,k}α∈Ir for all k ∈ Z. Likewise, we define the multiple evaluation of f at

Q̂1,0, · · · , Q̂r,0 = 1 to be the following Laurent series:

f |Q̂0=1 =
∑

a•,b•∈Zs,a◦,b◦∈Zd

fa•,a◦,b•,b◦Q̂b◦
◦,1Q̂b•

•,1.

The constant term and evaluation maps commute, and their composition gives

CTQ̂1
(f )|Q̂0=1 =

∑
a•∈Zs,a◦∈Zd

fa•,a◦,0,0. (4.32)

To simplify our notation, we will denote the LHS of Equation (4.32) by φ(f ).

We may now express the N-sum in terms of Z(k)
λ,n(Ŷ�s0) as follows:

N(k)
λ,n(q−1) = q− 1

2δ
Lk(n)φ(Z(k)

λ,n(Ŷ�s0)), (4.33)
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830 M. S. Lin

where the constant term ensures the condition that q◦
0 = 0 and q•

0 = 0, and the result

agrees with the definition of the restricted N-sum N(k)
λ,n(q−1), as Qk(m,n) = Qk(m,n) −

1
2δ
Lk(n) when q◦

0 = 0 and q•
0 = 0.

4.3 Factorization properties of the quantum generating functions

In this subsection, we will state how the quantum generating function Z(k)
λ,n(Ŷ�s0) fully

factorizes (up to a scalar constant dependent on n and λ) into a product of the quantum

Q-system variables Q̂α,k and their inverses. In order to make our notations more

compact, we will denote the product y1y2 · · ·yj of variables y1, y2, . . . , yj by
∏j

i=1 yi. Next,

we define

P̂v,j =
j∏

i=1

⎛⎝⎛⎝ t0∏
j′=1

Q̂
v•
t0(i−1)+j′

•,t0(i−1)+j′

⎞⎠ Q̂
v◦
i

◦,i

⎞⎠ , (4.34)

and P̂v,0 := 1 for all vectors v = (vα,i)α∈Ir ,i∈N of integers and all positive integers j.

When k = 1, we have the following full factorization of Z(1)
λ,n(Ŷ�s0) into a product

of the quantum Q-system variables Q̂α,k and their inverses.

Lemma 4.3. The quantum generating function Z(1)
λ,n(Ŷ�s0) can be expressed as a product

of Q̂α,i (α ∈ Ir, 0 ≤ i ≤ tα + 1) as follows:

Z(1)
λ,n(Ŷ�s0) = q− 1

2δ

∑
α,β∈Ir

(
�αα	α+2

∑tα
i=1 �αβnα,i

)
Ẑ−1

•,0Ẑ
−1
◦,0P̂n,1Ẑ

	◦+1
◦,1 Ẑ	•+1

•,t0 ,

where 	◦ + 1 (respectively 	• + 1) is the vector (	α + 1)α∈�◦ (respectively (	α + 1)α∈�• ).

In order to prove Lemma 4.3, we will follow the strategy as in the proof of [6,

Lemma 5.3], with the appropriate modifications in order to take into account the effects

of quantum commutativity. As the form of the factorization formulas in Lemma 4.3

suggests, we would need to sum over mα,k for all α ∈ Ir and 1 ≤ k ≤ tα, and use the

quantum Q-system relations to simplify the expressions. We will first sum over mα,p

for all α ∈ �• and 0 < p < t0, as qγ ′,p depends on mγ ,1 for all 0 < p < t0. This

leads to the following partial factorization of Z(k)
λ,n(Ŷ�s0) as a product of the quantum

Q-system variables Q̂α,k (along with their inverses), and its intermediate generating

function Z(k,p)

λ,n (Ŷ�s0), where 0 < p < t0.

Lemma 4.4. The quantum generating function Z(k)
λ,n(Ŷ�s0) has the following partial

factorization in terms of Z(k,p)

λ,n (Ŷ�s0,p) (0 < p < t0) and Q̂α,i (α ∈ �•, 0 ≤ i ≤ p + 1) as
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Quantum Q-Systems and Fermionic Sums 831

follows:

Z(k)
λ,n(Y�s0) = q− 1

δ

∑
α,β∈�•

∑p
i=1 �αβnα,i Ẑ−1

•,0
(
Q̂

n•
1•,1 · · · Q̂n•

p•,p
)
Ẑ•,pZ

(k,p)

λ,n (Ŷ�s0,p).

Subsequently, we will then sum over mα,tα for all α ∈ Ir to obtain the full

factorization formulas in Lemma 4.3. As the proofs of Lemmas 4.3 and 4.4 are by and

large similar, we will only prove Lemma 4.3 in this subsection, leaving the details of the

proof of Lemma 4.4 to Appendix A. In order to prove Lemma 4.3, we will first need to

compute Ŷα,tα explicitly for all α ∈ Ir. It is easy to see from Lemma 3.5 that we have

Ŷα,tα =
∏
β∈Ir

Q̂
−Cαβ

β,tβ
. (4.35)

Next, we need the following technical lemmas that will be helpful in proving

Lemmas 4.3 and 4.4.

Lemma 4.5. For any α ∈ Ir and i ∈ Z, we have

Ẑα,i(1 − Ŷα,i+1)
−1 = Ẑα,i+1.

Proof. By Lemma 3.5 and (3.22), we have

1 − Ŷα,i+1 = ν−�αα Q̂−2
α,i+1Q̂α,i+2Q̂α,i = Ẑ−1

α,i+1Ẑα,i,

or equivalently, (1 − Ŷα,i+1)
−1 = Ẑ−1

α,i Ẑα,i+1. The desired statement now follows. �

Lemma 4.6. For any α ∈ Ir and i, b ∈ Z, we have

∑
a≥0

[
a + b

a

]
q

Ŷa
α,i+1Ẑ

b
α,i = Ẑ−1

α,i Ẑ
b+1
α,i+1.

Proof. Firstly, we note that

∞∑
a=0

[
a + b

a

]
v

xa = (vb+1x; v)∞
(x; v)∞

=
⎧⎨⎩
∏b

i=0(1 − vix)−1 ifb ≥ 0∏−b−1
i=0 (1 − vi+b+1x) ifb < 0.
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This implies that for any integer b and any two variables x, y satisfying the quasi-

commutation relation yx = vxy, we have

∑
a≥0

[
a + b

a

]
v

xayb = y−1(y(1 − x)−1)b+1,

where the right-hand side is considered as a formal power series in the variable x.

Now, it follows from Lemma 3.5 that we have Ẑα,iŶα,i+1 = νδŶα,i+1Ẑα,i =
qŶα,i+1Ẑα,i. In particular, by setting v = q, x = Ŷα,i+1 and y = Ẑα,i, we see that the

desired statement follows from the above equation, along with Lemma 4.5. �

Proof of Lemma 4.3. For convenience, let us set p = t0 − 1. When k = 1, we see that

qα,tα = 	α for all α ∈ Ir. Thus, it follows from Equations (4.8) and (4.11) that we have

q•
p = 	• + C•m•

t0 − n•
t0 + Dtm◦

1, (4.36)

q◦,(p)

0 = 	◦ + C◦m◦
1 − n◦

1 + t0Dm
•
t0 . (4.37)

Next, we have

Q
(p)

(m,n) = 1

2δ

(
	◦ · �◦	◦ + 	• · �•	• + 2	• · At	◦) . (4.38)

We now use Lemmas 3.5, along with Equations (4.35), (4.36), and (4.37) to rearrange the

terms involving the Q̂α,i’s in the quantum generating function Z(1,p)

λ,n (Ŷ�s0,p) as follows:

Q̂
−q•

p
•,t0 Q̂

−q◦,(p)

0◦,1 Q̂
q•
t0•,pQ̂

q◦
1◦,0 = Q̂

−q•
p

•,t0 Q̂
−q◦,(p)

0◦,1 Q̂	•
•,pQ̂	◦

◦,0 = Q̂
n•
t0•,1 Q̂

n◦
1◦,1Ŷ

m•
t0•,t0 Ŷ

m◦
1◦,1 Q̂

−	•
•,t0 Q̂

−	◦
◦,1 Q̂	•

•,pQ̂	◦
◦,0. (4.39)

Next, we let �• = {α1,α2, · · · ,αs} and �◦ = {β1,β2, · · · ,βd}. We use Lemma 3.5 and

Equation (4.38) to deduce that

Q̂−	•
•,t0 Q̂

−	◦
◦,1 Q̂	•

•,pQ̂	◦
◦,0 = q−Q

(p)
(m,n)− 1

2δ

∑
α∈Ir �αα	2α

s∏
i=1

(
Q̂

	αi
αi,pQ̂

−	αi
αi,t0

) d∏
j=1

(
Q̂

	βj
βj,0

Q̂
−	βj
βj,1

)

= q−Q
(p)

(m,n)− 1
2δ

∑
α∈Ir �αα	α Ẑ	•

•,pẐ	◦
◦,0. (4.40)

Finally, we use Lemma 3.6(6) and (7) to deduce that

Ŷ
m•

t0•,t0 Ŷ
m◦

1◦,1 Ẑ
	•
•,pẐ	◦

◦,0 =
s∏

i=1

(
Ŷ
mαi ,t0
αi,t0

Ẑ
	αi
αi,p

) d∏
j=1

(
Ŷ
mβj ,1

βj,1
Ẑ

	βj
βj,0

)
. (4.41)

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2021/2/805/5885187 by C
hem

istry Library-Fax user on 01 June 2021



Quantum Q-Systems and Fermionic Sums 833

We now use Equations (4.39)–(4.41) to deduce that

Z(1,p)

λ,n (Ŷ�s0,p) = q− 1
2δ

∑
α∈Ir �αα	α Q̂

n•
t0•,1 Q̂

n◦
1◦,1

⎛⎝ s∏
i=1

∑
mαi,t0≥0

[
mαi,t0 + 	αi

mαi,t0

]
q

Ŷ
mαi ,t0
αi,t0

Ẑ
	αi
αi,p

⎞⎠ (4.42)

×
⎛⎜⎝ d∏

j=1

∑
mβj ,1≥0

⎡⎣mβj,1 + 	βj

mβj,1

⎤⎦
q

Ŷ
mβj ,1

βj,1
Ẑ

	βj
βj,0

⎞⎟⎠ .

As q− 1
2δ

∑
α∈Ir �αα	α is a constant, we may sum over each mαi,t0 and mβj,1 for all i = 1, · · · , s

and j = 1, · · · ,d and apply Lemmas 3.5, 3.6(1) and (2), and 4.6, to rewrite the RHS of

Equation (4.42) as

q− 1
2δ

∑
α∈Ir �αα	α Q̂

n•
t0•,1 Q̂

n◦
1◦,1

s∏
i=1

(̂
Z−1

αi,pẐ
	αi+1
αi,t0

) d∏
j=1

(
Ẑ−1

βj,0
Ẑ

	βj+1

βj,1

)

= q− 1
2δ

∑
α∈Ir �αα	α Q̂

n•
t0•,1 Q̂

n◦
1◦,1Ẑ

−1•,pẐ−1
◦,0Ẑ

	◦+1
◦,1 Ẑ	•+1

•,1

= q− 1
2δ

∑
α,β∈Ir (�αα	α+2�αβnα,tα )Ẑ−1•,pẐ−1

◦,0Q̂
n•
t0•,1 Q̂

n◦
1◦,1Ẑ

	◦+1
◦,1 Ẑ	•+1

•,1 . (4.43)

By Lemma 4.4 and Equation (4.43), it follows that we have

Z(1)
λ,n(Ŷ�s0) =

q− 1
2δ

∑
α,β∈Ir (�αα	α+2�αβnα,tα )− 1

δ

∑
α,β∈�•

∑p
i=1 �α,βnα,i Ẑ−1

•,0

( p∏
i=1

Q̂
n•
i

•,i

)
Ẑ−1

◦,0Q̂
n•
t0•,1 Q̂

n◦
1◦,1Ẑ

	◦+1
◦,1 Ẑ	•+1

•,1 .

By commuting Ẑ−1
◦,0 to the immediate left of

(∏p
i=1 Q̂

n•
i

•,i
)
using Lemma 3.5, we obtain the

remaining factor of q− 1
δ

∑
α∈�•,β∈�◦

∑p
i=1 �αβnα,i and Lemma 4.3 follows. �

In the general k > 1 case, we have the following lemma.

Lemma 4.7. For k > 1, the quantum generating function Z(k)
λ,n(Ŷ�s0) can be expressed as

a product of Q̂α,i (α ∈ Ir, 0 ≤ i ≤ tα + 1) and Z(k−1)

λ,n(1,0) (Ŷ�s1) as follows:

Z(1)
λ,n(Ŷ�s0) = q− 1

δ

∑
α,β∈Ir

∑tα
i=1 �αβnα,i Ẑ−1

•,0Ẑ
−1
◦,0P̂n,1Ẑ◦,1Ẑ•,t0Z

(k−1)

λ,n(1) (Ŷ�s1).

The proof proceeds in a similar fashion as that of Lemma 4.3, which we will

describe in detail in Appendix B.
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834 M. S. Lin

Writing the solution of the quantum Q-system as Q̂α,n(Ŷ�sj) to display its

dependence on the initial data Ŷ�sj , we shall now use the following translational

invariance property of the quantum Q-system.

Lemma 4.8. For any solution Q̂α,n(Ŷ�0) of the quantum Q-system (3.20), we have

Q̂α,n(Ŷ�sj) = Q̂α,n+tαj(Ŷ�s0)

for all α ∈ Ir and n, j ∈ Z+.

Proof. Firstly, we would like to mention that Lemma 4.8 is proved for the simply laced

case [9, Lemma 5.5]. We will focus on the case where g is of type BCF, with the arguments

for the case where g is of type G2 being similar. In this case, we have tα = 1 if α ∈ �◦
and tα = 2 if α ∈ �•. We will prove by induction on k ∈ Z+ that the above equation holds

for all α ∈ Ir and n ∈ Z+ satisfying n ≤ tαk + 1, with the base case k = 0 following

immediately from the definition of Ŷ�sj and Q̂α,n(Ŷ�sj).
Suppose that the statement holds for k = m, where m ∈ Z+. We would like to

show that the statement holds for k = m + 1 as well. By induction hypothesis, we have

Q̂α,m(Ŷ�sj) = Q̂α,m+j(Ŷ�s0), Q̂α,m+1(Ŷ�sj) = Q̂α,m+j+1(Ŷ�s0) (4.44)

for all α ∈ �◦, and

Q̂α,2m(Ŷ�sj) = Q̂α,2m+2j(Ŷ�s0), Q̂α,2m+1(Ŷ�sj) = Q̂α,2m+2j+1(Ŷ�s0) (4.45)

for all α ∈ �•. Let us first pick some α• ∈ �•. We let �α• = {β ∈ �• : β ∼ α•}. By (3.21),

we have

Ŷα•,2m+1(Ŷ�sj) = Q̂α•,2m+1(Ŷ�sj)
−2 :Q̂γ ,m(Ŷ�sj)

δα•,γ ′ Q̂γ ,m+1(Ŷ�sj)
δα• ,γ ′ ∏

β∈�α•

Q̂β,2m+1(Ŷ�sj): . (4.46)

By combining (3.21) and (3.22) and (4.45) and (4.46), we deduce that

Q̂α,2m+2(Ŷ�sj) = Q̂α,2m+2j+2(Ŷ�s0). (4.47)
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Quantum Q-Systems and Fermionic Sums 835

Likewise, by observing that

Ŷα•,2m+2(Ŷ�sj) = Q̂α•,2m+2(Ŷ�sj)
−2 :Q̂γ ,m+1(Ŷ�sj)

2δα•,γ ′ ∏
β∈�α•

Q̂β,2m+2(Ŷ�sj),

we may deduce in a similar fashion as before that we have Q̂α,2m+3(Ŷ�sj) =
Q̂α,2m+2j+3(Ŷ�s0).

Next, let us pick some α◦ ∈ �◦. We let �α◦ = {β ∈ �◦ : β ∼ α◦}. By (3.21), we have

Ŷα◦,m+1(Ŷ�sj) = Q̂α•,m+1(Ŷ�sj)
−2 :Q̂γ ′,2m+2(Ŷ�sj)

δα◦,γ
∏

β∈�α◦

Q̂β,m+1(Ŷ�sj) . (4.48)

By combining (3.21) and (3.22) and (4.44) and (4.48), we deduce that

Q̂α,m+2(Ŷ�sj) = Q̂α,m+j+2(Ŷ�s0).

This completes the induction step, and we are done. �

Using the translational invariance property of the quantum Q-system, along

with Lemmas 4.3 and 4.7, we get the following theorem.

Theorem 4.9.

Z(k)
λ,n(Ŷ�s0) = q

− 1
2δ

∑
α,β∈Ir

(
�αα	α+2

∑tαk
i=1 �αβnα,i

)
Ẑ−1

•,0Ẑ
−1
◦,0P̂n,kẐ

	◦+1
◦,k Ẑ	•+1

•,t0k .

As an immediate consequence of Lemmas 4.7 and 4.8 and Theorem 4.9, we have

the following corollary.

Corollary 4.10. For all 0 < j < k, we have

Z(k)
λ,n(Ŷ�s0) = Z(j)

0,n(Ŷ�s0)Z
(k−j)
λ,n(j) (Ŷ�sj).

As an immediate consequence of Corollary 4.10, along with Lemmas 4.3 and 4.4,

we have the following corollary.

Corollary 4.11. For all 0 ≤ j ≤ k, and 0 < p < t0, we have

Z(k)
λ,n(Ŷ�s0) = q− 1

δ

∑
α,β∈Ir

∑tα j
i=1 �αβnα,i Ẑ−1

•,0Ẑ
−1
◦,0P̂n,jẐ◦,jẐ•,t0jZ

(k−j)
λ,n(j) (Ŷ�sj),
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and

Z(k)
λ,n(Ŷ�s0) = q

− 1
δ

∑
β∈Ir

(∑
α∈�◦

∑j
i=1�αβnα,i+

∑
ω∈�•

∑t0j+p
i=1 �ωβnω,i

)
Ẑ−1

•,0Ẑ
−1
◦,0P̂n,jẐ◦,jẐ•,t0j+pZ

(k−j,p)

	,n(j) (Ŷ�sj,p).

4.4 Proof of Theorem 4.1

We are now ready to prove Theorem 4.1. To this end, we need a few auxiliary lemmas

from [9, Section 5.5]. We will omit the proofs of these lemmas as they follow immediately

from the proofs of the analogous lemmas in [9, Section 5.5] with minor modifications.

We will let A denote the ring Zu[Q̂1, Q̂−1, Q̂
±1
0 ] and Aα denote the ring Zu[{Q̂β,±1}β �=α, Q̂

±1
0 ]

for all α ∈ Ir.

Lemma 4.12. ([9, Lemma 5.9]) Let α1, · · · ,αn ∈ Ir, i1, · · · , in ∈ Z and m1, · · · ,mn ∈ Z.

Then,
∏n

j=1 Q̂
mj

αj,ij
∈ A.

The proof of [9, Lemma 5.9] would still be applicable here, since Q̂α,1 and Q̂β,−1

are on the same quantum torus for all distinct α,β ∈ Ir by Lemma 3.5.

Lemma 4.13. ([9, Lemma 5.12]) For any β ∈ Ir and f ∈ Zq[Q̂
±1
0 ]((Q̂−1

1 )), we have

(̂
Z−1

•,0Ẑ
−1
◦,0Q̂β,−1 × f

) ∣∣∣∣
Q̂0=1

= 0.

Lemma 4.14. ([9, Lemma 5.14]) For all α ∈ Ir and n ∈ Z+, we have Q̂−1
α,n ∈ Aα((Q̂−1

α,1)).

Proof of Theorem 4.1. We shall prove by induction on j = k, · · · , 0 that the sum in

equation (4.5) is unchanged if we restrict the sum to sets of vectors m of nonnegative

integers such that qα,i ≥ 0 for all α ∈ Ir and i ≥ tαj. The base case j = k holds since we

have qα,tαk = 	α ≥ 0 for all α ∈ Ir. Next, let us assume that the statement holds for j,

where j ≥ 1. Let p = t0 − 1. By Corollary 4.11, we have

Z(k)
λ,n(Ŷ�s0) (4.49)

= q
− 1

δ

∑
β∈Ir

(∑
α∈�◦

∑j−1
i=1 �αβnα,i+

∑
ω∈�•

∑t0j−1
i=1 �ωβnω,i

)
Ẑ−1

•,0Ẑ
−1
◦,0P̂n,j−1

⎛⎝ t0j−1∏
i=t0(j−1)+1

Q̂
n•
i

•,i

⎞⎠ Ẑ◦,jẐ•,t0j−1

×
∑

m(j−1,p)

qQ
(p)

k−j+1(m
(j−1,0),n(j−1))

∏
(α,i)∈J(j−1,p)

g

[
mα,i + qα,i

mα,i

]
q

Q̂
−q•

t0j−1

•,t0j Q̂
−q◦,(p)

0
◦,j Q̂

q•
t0j

•,t0j−1Q̂
q◦
j

◦,j−1.
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Let us fix any β ∈ �•. By induction hypothesis, we may restrict the sum in Equation

(4.5) to qα,i ≥ 0 for all α ∈ Ir and i ≥ tαj. A generic term of the sum in Equation (4.49)

(apart from the coefficients involving q) has the form

S = Ẑ−1
•,0Ẑ

−1
◦,0P̂n,j−1

⎛⎝ t0j−1∏
i=t0(j−1)+1

Q̂
n•
i

•,i

⎞⎠ Ẑ◦,jẐ•,t0j−1Q̂
−q•

t0j−1

•,t0j Q̂
−q◦,(p)

0
◦,j Q̂

q•
t0j

•,t0j−1Q̂
q◦
j

◦,j−1.

When qβ,j < 0, it follows from Lemmas 4.4 and 4.14 that S has only nonnegative powers

of Q̂β,±1. By Lemma 4.13, it follows that S|Q̂0=1 is a Laurent series of some variables

Q̂−1
α,1 with α �= β, with coefficients that are in particular polynomials of Q̂β,1. Due to

the prefactor Ẑ−1
•,0Ẑ

−1
◦,0, it follows that the exponent of Q̂β,1 in all terms of S|Q̂0=1 are

positive. Consequently, we have φ(S) = 0. So this shows that the sum in equation (4.5) is

unchanged if we impose the restriction qβ,t0j−1 ≥ 0. We now repeat the above argument

once more, to deduce that the sum in Equation (4.5) is unchanged if we impose the

restriction qβ,i ≥ 0, where β ∈ Ir and i ≥ tβ(j−1). This completes the induction step, and

we are done. �

In particular, for a fixed vector n = (nα,i)α∈Ir ,i∈N of nonnegative integers that

parameterizes a finite set of KR-modules over g[t], a dominant integral weight λ of g

and a sufficiently large integer k, we have that M(k)
λ,n(q−1) = Mλ,n(q−1) and N(k)

λ,n(q−1) =
Nλ,n(q−1). Thus, it follows that Theorem 1.2 holds. Together with [9, Theorem 5.1], we

have the following theorem.

Theorem 4.15. Let g be a simple Lie algebra, n = (nα,i)α∈Ir ,i∈N be a vector of

nonnegative integers that parameterizes a finite set of KR-modules over g[t], λ be a

dominant integral weight, and k be a positive integer. Then, we have

Mλ,n(q−1) = Nλ,n(q−1).

In particular, Theorem 4.15 gives a complete characterization of the graded

characters of the fusion products of Kirillov–Reshetikhin modules in terms of the

quantum Q-system via Equation (4.33). More precisely, it follows from Equation (4.33)

and Theorem 4.9 (along with [9, Theorem 5.17] in the simply laced case) that we have

Mλ,n(q−1) = q
− 1

2δ

(
L(n)+∑α,β∈Ir (�αα	α+2

∑∞
i=1 �αβnα,i)

)
φ

⎛⎝⎛⎝∏
α∈Ir

Ẑ−1
α,0

⎞⎠ P̂n
∏
β∈Ir

Ẑ
	β+1
β

⎞⎠ , (4.50)
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where

P̂n =
∏

α∈�•
Q̂

nα,1
α,1 · · ·

∏
α∈�•

Q̂
nα,tα−1
α,tα−1

∏
α∈Ir

Q̂
nα,tα
α,tα

∏
α∈�•

Q̂
nα,tα+1
α,tα+1 · · ·

∏
α∈�•

Q̂
nα,2tα−1
α,2tα−1

∏
α∈Ir

Q̂
nα,2tα
α,2tα

· · · , (4.51)

L(n) =
∑

α,β∈Ir ,i,j∈N

�α,β

tα
min(tαj, tβ i)nα,inβ,j, and (4.52)

Ẑβ = lim
k→∞

Ẑβ,k. (4.53)

Here, we briefly remark that a similar reasoning as in the proof of [9, Theorem 5.17]

shows that Ẑβ is well defined as a formal power series of Q̂−1
β,1 with coefficients Laurent

polynomial of the remaining initial data of Ŷ�s0 .

5 An Identity Satisfied by the Graded Characters of KR-Modules

Our goal in this section is to prove Theorem 1.3. To this end, let us fix α ∈ Ir and

m ∈ N. In order to derive Theorem 1.3 without considering too many cases, we would

need a slight generalization of Equation (4.50). To facilitate this generalization, we

will allow ourselves to consider vectors n̂ = (nα,i)α∈Ir ,i∈Z+ of nonnegative integers that

parameterizes a finite set of KR-modules over g[t]. We could view n̂ as the extension

of the vector n = (nα,i)α∈Ir ,i∈N by the vector n0 = (nα,0)α∈Ir . Also, we shall make the

following definitions:

L̂(n̂) =
∑

α,β∈Ir ,i,j∈Z+

�αβ

tα
min(tαj, tβ i)nα,inβ,j, (5.1)

P̂n̂ =
∏
α∈Ir

Q̂
nα,0
α,0 P̂n, and (5.2)

Mλ,n̂(q−1) = q− 1
2δ

(∑
α∈Ir �αα	α+2F̂(n̂)+L̂(n̂)

)
φ

⎛⎝⎛⎝∏
α∈Ir

Ẑ−1
α,0

⎞⎠ P̂n̂
∏
β∈Ir

Ẑ
	β+1
β

⎞⎠ , (5.3)

where

F̂(n̂) =
∑

α,β∈Ir ,i,j∈Z+
�αβnα,i. (5.4)

It is easy to see from the definitions of L(n) and L̂(n̂) that we have L̂(n̂) = L(n).

We claim that Mλ,n̂(q−1) = Mλ,n(q−1). Indeed, we may regard
(∏

α∈Ir Ẑ
−1
α,0

)
P̂n̂∏

β∈Ir Ẑ
	β+1
β as an element of Zu[Q̂

±1
0 ]((Q̂−1

1 )) by Theorem 4.11. Thus, it follows from the
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definition of the function φ that we have

Mλ,n(q−1) = q
− 1

2δ

[∑
α,β∈Ir (�αα	α+2

∑∞
i=1 �αβnα,i)+L(n)

]
φ

⎛⎝⎛⎝∏
α∈Ir

Ẑ−1
α,0

⎞⎠ P̂n
∏
β∈Ir

Ẑ
	β+1
β

⎞⎠
= q

− 1
2δ

[∑
αβ∈Ir (�αα	α+2

∑∞
i=1 �αβnα,i)+L̂(n̂)

]
φ

⎛⎝∏
α∈Ir

Q̂
nα,0
α,0

⎛⎝∏
α∈Ir

Ẑ−1
α,0

⎞⎠ P̂n
∏
β∈Ir

Ẑ
	β+1
β

⎞⎠
= q

− 1
2δ

[∑
α,β∈Ir (�αα	α+2

∑∞
i=0 �αβnα,i)+L̂(n̂)

]
φ

⎛⎝⎛⎝∏
α∈Ir

Ẑ−1
α,0

⎞⎠⎛⎝∏
α∈Ir

Q̂
nα,0
α,0

⎞⎠ P̂n
∏
β∈Ir

Ẑ
	β+1
β

⎞⎠
= Mλ,n̂(q−1),

where the 3rd equality follows from Lemma 3.5. The equality Mλ,n(q−1) = Mλ,n̂(q−1)

is consistent with the fact that the fusion product of a cyclic g[t]-module V with the

trivial g[t]-module is precisely V itself. Hence, we may regard Mλ,n̂(q−1) as the graded

multiplicity of the irreducible component V(λ) in F ∗̂
n, where F ∗̂

n is the corresponding

fusion product of KR-modules parameterized by n̂. More precisely, we have

Mλ,n̂(q) =
∞∑

m=0

dimHomg(F ∗̂
n[m],V(λ))qm.

Our next step is to express the terms (without the coefficients) that appear in the

quantum Q-system relation (3.20) as some P̂n̂. To begin, we need to rewrite our quantum

Q-system relation (3.20). We first observe from Lemma 3.5 and (3.22) that we have

Q̂α,m+1 = ν�αα Q̂2
α,m

(
1 − Ŷα,m

)
Q̂−1

α,m−1 = ν−�αα Q̂−1
α,m−1Q̂

2
α,m

(
1 − νδŶα,m

)
,

or equivalently,

ν�αα Q̂α,m−1Q̂α,m+1 = Q̂2
α,m − νδ :

∏
β∼α

|Cαβ |−1∏
i=0

Q̂β,�tβ(m+i)/tα� . (5.5)

Next, we let d̂ = (dβ,i)β∈Ir ,i∈Z+ be the vector that corresponds to the term Q̂α,m−1Q̂α,m+1,

where

dβ,i = δαβ(δi,m−1 + δi,m+1). (5.6)
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Next, we let ŝ = (sβ,i)β∈Ir ,i∈Z+ be the vector that corresponds to the term Q̂2
α,m, where

sβ,i = 2δαβδi,m. (5.7)

Finally, we will let k̂ = (kβ,i)β∈Ir ,i∈Z+ to be the vector that corresponds to the term

:
∏
β∼α

|Cαβ |−1∏
i=0

Q̂β,�tβ(m+i)/tα� .

In order to define the numbers kβ,i, we would need to consider the following cases.

Case 1: either α �= γ ′ or α = γ ′ and t0|m. In this case, we define

kβ,i = −δβ∼αδi,tβm/tαCαβ , (5.8)

where the function δβ∼α is equal to 1 if β ∼ α and is equal to 0 otherwise.

Case 2: α = γ ′ and t0 � |m. Let us write m = t0n + p, where 0 < p < t0. In this

case, we define

kβ,i = δβ∼αδi,m, (5.9)

for all roots β �= γ , and

kγ ,i = (t0 − p)δi,n + pδi,n+1. (5.10)

It is easy to see from the definition of d̂ and ŝ that we have Q̂α,m−1Q̂α,m+1 = P̂d̂ and

Q̂2
α,m = P̂̂s.

It remains to write :
∏

β∼α

∏|Cαβ |−1
i=0 Q̂β,�tβ(m+i)/tα�: as a scalar multiple of P̂k̂. To

this end, we first observe from Lemma 3.5 that in the case where either α �= γ ′ or α = γ ′

and t0|m, we have

:
∏
β∼α

|Cαβ |−1∏
i=0

Q̂β,�tβ(m+i)/tα�:= P̂k̂.

It remains to handle the case where α = γ ′ and t0 � |m. To this end, we would need to

consider subcases. Let us first consider the subcase where g is of type BCF, in which

case we have t0 = 2 and p = 1. By Lemma 3.5, we have

:
∏
β∼α

|Cαβ |−1∏
i=0

Q̂β,�tβ(m+i)/tα�:= ν
�γγ
2 Q̂γ ,nQ̂γ ,n+1

∏
β∈�•

Q̂
−Cαβ

β,2n+1 = ν
1
2
∑

β∼γ ′ �βγ P̂k̂.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2021/2/805/5885187 by C
hem

istry Library-Fax user on 01 June 2021



Quantum Q-Systems and Fermionic Sums 841

Next, in the subcase where g is of type G, in which case we have t0 = 3 and p = 1, 2. By

Lemma 3.5, we have

:
∏
β∼α

|Cαβ |−1∏
i=0

Q̂β,�tβ(m+i)/tα�:= ν2Q̂3−p
1,n Q̂p

1,n+1 = ν2P̂k̂.

We conclude that

:
∏
β∼α

|Cαβ |−1∏
i=0

Q̂β,�tβ(m+i)/tα�:= νσα,mP̂k̂, (5.11)

where

σα,m =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if α �= γ ′ or α = γ ′ and t0|m;

1
2

∑
β∼γ ′ �βγ if α = γ ′, t0 � |m, and g is of type BCF;

2 if α = γ ′, t0 � |m, and g is of type G,

(5.12)

and hence (5.5) is equivalent to

ν�αα P̂d̂ = P̂̂s − νδ+σα,mP̂k̂. (5.13)

As the map φ is linear, it follows that we have

ν�ααφ

⎛⎝⎛⎝∏
α∈Ir

Ẑ−1
α,0

⎞⎠ P̂d̂
∏
β∈Ir

Ẑ
	β+1
β

⎞⎠
= φ

⎛⎝⎛⎝∏
α∈Ir

Ẑ−1
α,0

⎞⎠ P̂̂s
∏
β∈Ir

Ẑ
	β+1
β

⎞⎠− νδ+σα,mφ

⎛⎝⎛⎝∏
α∈Ir

Ẑ−1
α,0

⎞⎠ P̂k̂
∏
β∈Ir

Ẑ
	β+1
β

⎞⎠ ,

or equivalently,

q
1
2δ

(
2F̂ (̂d)+L̂(̂d)+2�αα

)
Mλ,̂d(q−1) = q

1
2δ (2F̂ (̂s)+L̂(̂s))Mλ,̂s(q

−1) + q
1
2δ

(
2F̂ (̂k)+L̂(̂k)+2σα,m+2δ

)
Mλ,̂k(q−1),

(5.14)

where we have factored out q
1
2δ

∑
α∈Ir �αα	α on both sides of the equation.

It remains to simplify Equation (5.14). To this end, we would need to compute

the exponents that appear in Equation (5.14) explicitly. Our 1st technical lemma involves

the relation between F̂ (̂d), F̂ (̂s), and F̂ (̂k).
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Lemma 5.1. For all α ∈ Ir and m ∈ N, we have

F̂ (̂d) = F̂ (̂s) = δ + F̂ (̂k).

Proof. The statement follows immediately from the following equalities:

F̂ (̂d) =
∑

ω,β∈Ir

∞∑
i=0

�βωdβ,i = 2
∑
ω∈Ir

�α,ω;

F̂ (̂s) =
∑

ω,β∈Ir

∞∑
i=0

�βωsβ,i = 2
∑
ω∈Ir

�α,ω;

F̂ (̂k) =
∑

ω,β∈Ir

∞∑
i=0

�βωkβ,i = −
∑

ω∈Ir ,β∼α

Cαβ�βω = −δ + 2
∑
ω∈Ir

�αω,

where we used C� = δI in the last equality. �

Our next technical lemma involves the relation L̂(̂d) and L̂(̂s).

Lemma 5.2. For all α ∈ Ir and m ∈ N, we have

L̂(̂d) = L̂(̂s) − 2�αα.

Proof. The statement follows immediately from the following equalities:

L̂(̂d) =
∑

β,ω∈Ir ,i,j∈Z+

�βω

tβ
min(tβ j, tωi)dβ,idω,j

= �αα[min(m − 1,m − 1) + 2min(m − 1,m + 1) + min(m + 1,m + 1)]

= (4m − 2)�αα;

L̂(̂s) =
∑

β,ω∈Ir ,i,j∈Z+

�βω

tβ
min(tβ j, tωi)sβ,isω,j = 22�αα min(m,m) = 4m�αα.

�

Our final technical lemma involves relating L̂(̂s) and L̂(̂k) + 2σα,m.

Lemma 5.3. For all α ∈ Ir and m ∈ N, we have

L̂(̂k) + 2σα,m = L̂(̂s) − 2mδ.
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We are now ready to prove Theorem 1.3.

Proof. of Theorem 1.3 By Lemmas 5.1–5.3, we have

2F̂ (̂d) + L̂(̂d) + 2�αα = 2F̂ (̂s) + L̂(̂s) = 2F̂ (̂k) + L̂(̂k) + 2σα,m + 2δ + 2mδ,

so Equation (5.14) reduces to

Mλ,̂d(q−1) = Mλ,̂s(q
−1) − q−mMλ,̂k(q−1),

or equivalently,

M
λ,̂d(q) = Mλ,̂s(q) − q−mM

λ,̂k(q). (5.15)

As Equation (5.15) holds for all dominant weights λ, and Mλ,n̂(q) is the graded

multiplicity of the irreducible component V(λ) in F ∗̂
n, we have

chqF ∗̂
d

= chqF ∗̂
s − qmchqF ∗̂

k
.

Theorem 1.3 now follows from the above equation, along with the definitions of d̂, ŝ,

and k̂. �

Remark. In a related work, Chari and Venkatesh [5, Theorem 4] showed that when m

is a multiple of tα, there exists a short exact sequence of fusion product of KR-modules

that extends the Q-system relations (1.1):

0 −→ τmK

α,m −→ KRα,m 
 KRα,m −→ KRα,m+1 
 KRα,m−1 −→ 0,

where τk is the grading shift operator on the set of graded g[t]-modules by k. By applying

the character map to the above exact sequence, we see that the identity of graded

characters of the fusion product of KR-modules is the same as that as the identity stated

in Theorem 1.3 in the aforementioned case. This implies the short exact sequences of

fusion products of KR-modules obtained in [5] are consistent with our quantum Q-

system relations. In light of Theorem 1.3, we expect that the above short exact sequence

of fusion product of KR-modules should exist in the remaining cases.
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6 Conclusion

In this paper, we have proved the combinatorial identity Mλ,n(q−1) = Nλ,n(q−1)

(Theorem 1.2) for all non-simply laced simple Lie algebras g, which together with [9,

Theorem 5.1], shows that the identity holds for all simple Lie algebras g. This was done

by defining appropriate quantum generating functions that satisfy some factorization

properties, and writing the q-graded sum Nλ,n(q−1) as the constant term evaluation of

these generating functions, which would then allow us to prove the desired identity. As

an application, we obtained an identity of graded characters of the fusion product of

KR-modules over the current algebra g[t] and showed that the short exact sequences

of fusion products of KR-modules over g[t] obtained by Chari and Venkatesh [5] are

consistent with our quantum Q-system relations.

Here, we would like to remark that there is a generalization of the conjecture of

the q-graded fermionic sums, conjectured by Hatayama et al. in the sequel [13], to the

twisted case as well. In the same paper, Hatayama et al. gave a combinatorial definition

of the KR-modules for the twisted quantum affine algebras and showed that if the

restricted characters of these KR-modules over the twisted quantum affine algebras

satisfy the twisted Q-system relations (which first appeared in [23]), along with some

other asymptotic conditions, then the multiplicities arising in the tensor product of

KR-modules over the twisted quantum affine algebras could expressed in terms of an

extended fermionic sum M̃λ,n(1) [13, 4.20] (here, M̃λ,n(q−1) plays the role of Nλ,n(q−1) in

the twisted case).

Subsequently, Hernandez [16] showed that the restricted characters of these KR-

modules over the twisted quantum affine algebras do satisfy the twisted Q-system

relations, while Okado et al. [25] established a bijection between rigged configurations

and crystal paths in the non-exceptional cases. These two results (along with earlier

results by Hernandez [15]) together shows that conjectural identity [13, Conjecture 4.3] of

the q-graded fermionic sumsMλ,n(q−1) = M̃λ,n(q−1) holds at q = 1 in the non-exceptional

cases.

In another development, Williams [26] extended the results of [7] and showed

that the twistedQ-system relations of type �= A(2)
2n could be interpreted as cluster algebra

mutations as well. Similar to the untwisted case, these cluster algebras admit natural

deformations as well, so we could obtain the quantum twisted Q-system relations

of type �= A(2)
2n . Using these quantum twisted Q-system relations and the methods

developed in [9] and in this paper, we believe that the conjectural identity of q-fermionic

sumsMλ,n(q−1) = M̃λ,n(q−1) holds in all twisted cases of type �= A(2)
2n , and we will address
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this conjectural identityMλ,n(q−1) = M̃λ,n(q−1) in these cases in a future publication. We

will also address the A(2)
2n case as well in a future publication.
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A Proof of Lemma 4.4

As before in the proof of Lemma 4.3, we would first need to compute Ŷα,p explicitly for

all α ∈ �• and 1 ≤ p ≤ t0 −1. Firstly, we observe that in the case where α �= γ ′, it follows

from Lemma 3.5 that we have

Ŷα,p =
∏
β∈Ir

Q̂
−Cαβ

β,k . (A.1)

Our next goal is to compute Ŷγ ′,p explicitly for all 1 ≤ p ≤ t0 − 1. To this end, we need

to consider cases. Firstly, when g is of type BCF, we have t0 = 2, in which case the only

integral value of p for which 1 ≤ p ≤ t0 − 1 is p = 1. By observing from Lemma 3.5 that

we have

C

⎛⎝Q̂−2
α,1, :

∏
β∼α

|Cαβ |−1∏
i=0

Q̂β,�tβ(1+i)/tα�:

⎞⎠ = 0,

it follows that we have

Ŷγ ′,1 = q
�γγ
2δ Q̂γ ,0Q̂γ ,1

∏
β∈�•

Q̂
−Cαβ

β,1 . (A.2)

Next, when g is of type G2, we have t0 = 3, in which case the only integral values of k

for which 1 ≤ p ≤ t0 − 1 is p = 1, 2. For both values of p, it is easy to check that we have

Ŷ2,p = q2Q̂3−p
1,0 Q̂p

1,1Q̂
−2
2,k. (A.3)
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A.1 Proof of Lemma 4.4 in the case where g is of type BCF

Firstly, it follows from Equations (4.7), (4.8), and (4.11) that we have

q•
0 − 2q•

1 + q•
2 = C•m•

1 − n•
1, (A.4)

q◦
0 − q◦,(1)

0 = −De1. (A.5)

Next, by Equations (4.27) and (4.29), we have

Qk(m,n)−Q
(1)

k (m,n)= 1

2δ

(
2q•

1 · �•(q•
1−q•

2) + 2q◦
0 · A(2q•

1−q•
2)−U1 + 2(�◦q◦

0+Aq•
0) · De1

)
.

(A.6)

By letting c1 = 2(�◦q◦
0 + Aq•

0) · De1, c2 = 2q•
1 · �•(2q•

1 − q•
2) + 2q◦

0 · A(2q•
1 − q•

2), c3 =
−2q•

1 · �•q•
1 + ∑

α∈�• �ααqα,1(qα,1 + 1) and c4 = −U1, it follows that from (A.6) that we

have

1

2δ
(c1 + c2 + c3 + c4) = Qk(m,n) − Q

(1)

k (m,n) + 1

2δ

∑
α∈�•

�ααqα,1(qα,1 + 1). (A.7)

We first use Lemma 3.5, along with Equations (A.2) and (A.7), to rearrange the terms

involving the Q̂α,i’s in the quantum generating function Z(k)
λ,n(Ŷ�s0) as follows:

Q̂
−q•

0•,1 Q̂
−q◦

0◦,1 Q̂
q•
1•,0Q̂

q◦
1+De1

◦,0 = q− 1
2δ
c1Q̂De1◦,0 Q̂

−q•
0•,1 Q̂

−q◦
0◦,1 Q̂

q•
1•,0Q̂

q◦
1◦,0, (A.8)

Q̂
−q•

0•,1 = (q
�γγ
2δ Q̂γ ,0Q̂γ ,1)

−mγ ′ ,1Ŷ
m•

1•,1 Q̂
n•
1−2q•

1+q•
2•,1 , (A.9)

Q̂
−2q•

1+q•
2•,1 Q̂

−q◦
0◦,1 Q̂

q•
1•,0 = q− 1

2δ
c2Q̂

−q◦
0◦,1 Q̂

q•
1•,0Q̂

−2q•
1+q•

2•,1 , (A.10)

Q̂
q•
1•,0Q̂

−2q•
1•,1 = q

1
δ
(q•

1·�•q•
1−
∑

α∈�• �ααq2α,1)
s∏

i=1

Q̂
qαi ,1

αi,0
Q̂

−2qαi ,1

αi,1

= q− 1
2δ
c3

s∏
i=1

Ẑ
qαi ,1

αi,0
Q̂

−qαi ,1

αi,1
. (A.11)

As we have (De1)α = δαγmγ ′,1, we deduce from Lemmas 3.5 and 3.6(8) that we have

Q̂De1◦,0 (q
�γγ
2δ Q̂γ ,0Q̂γ ,1)

−mγ ′ ,1Ŷ
m•

1•,1 Q̂
n•
1•,1Q̂

−q◦
0◦,1 (A.12)

= q
− 1

2δ
(c4−�γγ m2

γ ′ ,1)Q̂De1◦,0 Q̂De1◦,1 (q
�γ ,γ
2δ Q̂γ ,0Q̂γ ,1)

−mγ ′ ,1Ŷ
m•

1•,1 Q̂
n•
1•,1Q̂

−q◦,(1)
0◦,1

= q− 1
2δ
c4Ŷ

m•
1•,1 Q̂

n•
1•,1Q̂

−q◦,(1)
0◦,1

= q− 1
2δ
c4Q̂

n•
1•,1Q̂

−q◦,(1)
0◦,1 Ŷ

m•
1•,1 .
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Finally, we use Lemma 3.6(6) to deduce that

Ŷ
m•

1•,1
s∏

i=1

(̂
Z
qαi ,1

αi,0
Q̂

−qαi ,1

αi,1

)
=

s∏
i=1

(
Ŷ
mαi ,1

αi,1
Ẑ
qαi ,1

αi,0
Q̂

−qαi ,1

αi,1

)
. (A.13)

By combining Equations A7A13, it follows from the definition of Z(k)
λ,n(Ŷ�s0) that we have

Z(k)
λ,n(Ŷ�s0) =

∑
m(0,1)≥0

⎡⎢⎣qQ(1)

k (m,n)− 1
2δ

∑
α∈�• �ααqα,1(qα,1+1)

∏
(α,i)∈J(0,1)

g

[
mα,i + qα,i

mα,i

]
q

Q̂
n•
1•,1Q̂

−q◦,(1)
0◦,1

×
⎛⎝ s∏

i=1

∑
mαi ,1≥0

[
mαi,1 + qαi,1

mαi,1

]
q

Ŷ
mαi ,1

αi,1
Ẑ
qαi ,1

αi,0
Q̂

−qαi,1

αi,1

⎞⎠ Q̂
q•
2•,1Q̂

q◦
1◦,0

⎤⎦ . (A.14)

As Q
(1)

k (m,n) − 1
2δ

∑
α∈�• �ααqα,1(qα,1 + 1) is independent of mαi,1 for all i = 1, · · · , s, we

may sum over each mαi,1 for all i = 1, · · · , s and apply Lemmas 3.5 and 4.5 to write the

RHS of (A.14) as

∑
m(0,1)≥0

qQ
(1)

k (m,n)
∏

(α,i)∈J(0,1)
g

[
mα,i + qα,i

mα,i

]
q

Q̂
n•
1•,1Q̂

−q◦,(1)
0◦,1

(
s∏

i=1

Ẑ−1
αi,0

Ẑαi,1Q̂
−qαi ,1

αi,2

)
Q̂

q•
2•,1Q̂

q◦
1◦,0. (A.15)

Finally, we rewrite expression (A.15) using Lemmas 3.5 and 3.6(1), (3), and (5) to deduce

that Z(k)
λ,n(Ŷ�s0) is equal to

q− 1
δ

∑
α,β∈�• �αβnα,1 Ẑ−1

•,0Q̂
n•
1•,1Ẑ•,1

∑
m(0,1)

qQ
(1)

k (m,n)
∏

(α,i)∈J(0,1)
g

[
mα,i + qα,i

mα,i

]
q

Q̂
−q•

1•,2 Q̂
−q◦,(1)

0◦,1 Q̂
q•
2•,1Q̂

q◦
1◦,0.

Lemma 4.4 for the case where g is of type BCF now follows from the definition of

Z(k,1)
λ,n (Ŷ�s0,1).

A.2 Proof of Lemma 4.4 in the case where g is of type G2

In this case, we have t0 = 3. We will first handle the case when p = 1. Firstly, it follows

from Equations (4.7), (4.8), and (4.11) that we have

q1,0 − q(1)
1,0 = −m2,1, and (A.16)

q2,j−1 − 2q2,j + q2,j+1 = 2m2,j − n2,j, j = 1, 2. (A.17)

This implies that q1,0(q2,1 − 2q2,2 + q2,3) = (q(1)
1,0 − m2,1)(2m2,2 − n2,2), from which we

deduce that

q1,0q2,3 = −q1,0q2,1 + 2q1,0q2,2 + 2q(1)
1,0m2,2 − q(1)

1,0n2,2 − 2m2,1m2,2 + m2,1n2,2. (A.18)
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Our next step is to computeU1 explicitly. To this end, we observe that e1 = −2m2,1−m2,2,

e2 = m2,1 − m2,2, e3 = m2,1 + 2m2,2, f1 = n2,1 + n2,2, f2 = n2,2 and f3 = 0, t0D
t�◦D = 2.

This implies that

U1 = 2

3
[(−2m2,1 − m2,2)

2 + (m2,1 − m2,2)
2 + (m2,1 + 2m2,2)

2]

+ 2[(−2m2,1 − m2,2)(n2,1 + n2,2) + (m2,1 − m2,2)n2,2]

= 2(2m2
2,1 + 2m2,1m2,2 + 2m2

2,2 − 2m2,1n2,1 − m2,1n2,2 − m2,2n2,1 − 2m2,2n2,2).

(A.19)

Using the fact that De1 = 2m2,1+m2,2, it follows from combining Equations (4.27), (4.31),

(A.18), and (A.19) that we have

Qk(m,n) − Q
(1)

k (m,n) = 2q2,1(q2,1 − q2,2) + 2q1,0(2q2,1 − q2,2) +
2∑

j,α=1

(3 − α)(3 − j)m2,jqα,0

+ 2m2,1(m2,1−n2,1) + m2,2(n2,1− 2q(1)
1,0 − 2q2,1+ q2,2) − q(1)

1,0q2,1.

(A.20)

By letting c1 = ∑2
j,α=1(3 − α)(3 − j)m2,jqα,0, c2 = 2q2,1(q2,1 − q2,2) + 2q1,0(2q2,1 − q2,2) +

q2,1(q2,1+1), c3 = 2m2,1(m2,1−n2,1), c4 = m2,2(n2,1−2q(1)
1,0−2q2,1+q2,2), and c5 = −q(1)

1,0q2,1,

it follows that from Equation (A.20) that we have

c1 + c2 + c3 + c4 + c5 = Qk(m,n) − Q
(1)

k (m,n) + q2,1(q2,1 + 1). (A.21)

We first use Lemma 3.5, along with Equations (A.3) and (A.17) to rearrange the terms

involving the Q̂α,i’s in the quantum generating function Z(k)
λ,n(Ŷ�s0) as follows:

Q̂
−q2,0
2,1 Q̂

−q1,0
1,1 Q̂

q2,1
2,0 Q̂

2m2,1+m2,2
1,0 = q−c1Q̂

2m2,1+m2,2
1,0 Q̂

−q2,0
2,1 Q̂

−q1,0
1,1 Q̂

q2,1
2,0 , (A.22)

Q̂
−q2,0
2,1 = (q2Q̂2

1,0Q̂1,1)
−m2,1Ŷ

m2,1
2,1 Q̂

n2,1−2q2,1+q2,2
2,1 , (A.23)

Q̂
−2q2,1+q2,2
2,1 Q̂

−q1,0
1,1 Q̂

q2,1
2,0 Q̂

−2q2,1
2,1 = q2(q1,0+q2,1)(−2q2,1+q2,2)Q̂

−q1,0
1,1 Q̂

q2,1
2,0 Q̂

−2q2,1+q2,2
2,1

= q−c2Q̂
−q1,0
1,1 Ẑ

q2,1
2,0 Q̂

−q2,1
2,1 Q̂

q2,2
2,1 . (A.24)

Next, we deduce from Lemmas 3.5 and 3.6(8), along with Equation (A.16), that we have

Q̂
2m2,1
1,0 (q2Q̂2

1,0Q̂1,1)
−m2,1 Ŷ

m2,1
2,1 Q̂

n2,1
2,1 Q̂

−q1,0
1,1 (A.25)

= q−c3+2m2
2,1Q̂

2m2,1
1,0 Q̂

m2,1
1,1 (q2Q̂2

1,0Q̂1,1)
−m2,1 Ŷ

m2,1
2,1 Q̂

n2,1
2,1 Q̂

−q(1)
1,0

1,1

= q−c3 Ŷ
m2,1
2,1 Q̂

n2,1
2,1 Q̂

−q(1)
1,0

1,1

= q−c3Q̂
n2,1
2,1 Q̂

−q(1)
1,0

1,1 Ŷ
m2,1
2,1 .
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Finally, it follows from Lemmas 3.5 and 3.6(8) that we have

Q̂
m2,2
1,0 Q̂

n2,1
2,1 Q̂

−q(1)
1,0

1,1 Ŷ
m2,1
2,1 Ẑ

q2,1
2,0 Q̂

−q2,1+q2,2
2,1 = q−c4Q̂

n2,1
2,1 Q̂

−q(1)
1,0

1,1 Ŷ
m2,1
2,1 Ẑ

q2,1
2,0 Q̂

−q2,1+q2,2
2,1 Q̂

m2,2
1,0 , (A.26)

Q̂
−q(1)

1,0
1,1 , Ŷ

m2,1
2,1 Ẑ

q2,1
2,0 Q̂

−q2,1
2,1 = q−c5 Ŷ

m2,1
2,1 Ẑ

q2,1
2,0 Q̂

−q2,1
2,1 Q̂

−q(1)
1,0

1,1 . (A.27)

By combining Equations (A.21)–(A.27), it follows from the definition of Z(k)
λ,n(Ŷ�s0) that we

have

Z(k)
λ,n(Ŷ�s0) =

∑
m(0,1)≥0

⎡⎢⎣qQ(1)

k (m,n)−q2,1(q2,1+1)
∏

(α,i)∈J(0,1)
g

[
mα,i + qα,i

mα,i

]
q

Q̂
n2,1
2,1 (A.28)

×
⎛⎝ ∑

m2,1≥0

[
m2,1 + q2,1

m2,1

]
q

Ŷ
m2,1
2,1 Ẑ

q2,1
2,0 Q̂

−q2,1
2,1

⎞⎠ Q̂
−q(1)

1,0
1,1 Q̂

q2,2
2,1 Q̂

q1,1+m2,2
1,0

⎤⎦ .

As Q
(1)

k (m,n) − q2,1(q2,1 + 1) is independent of m2,1, we may sum over m2,1 and apply

Lemma 4.6 to write the RHS of (A.28) as

Q̂
n2,1
2,1 Ẑ−1

2,0Ẑ2,1
∑

m(0,1)≥0

qQ
(1)

k (m,n)
∏

(α,i)∈J(0,1)
g

[
mα,i + qα,i

mα,i

]
q

Q̂
−q2,1
2,2 Q̂

−q(1)
1,0

1,1 Q̂
q2,2
2,1 Q̂

q1,1+m2,2
1,0 .

Lemma 4.4 for the case p = 1 now follows from the definition of Z(k,1)
λ,n (Ŷ�s0,1), with

the remaining factor of q−�22n2,1 obtained by commuting Ẑ−1
2,0 to the left of Q̂

n2,1
2,1 using

Lemma 3.5.

Finally, we will deal with the case p = 2. Bearing in mind that we have q2,1 +
n2,2 = 2q2,2 − q2,3 + 2m2,2, it follows from Equations (4.27) and (4.29) that we have

Q
(1)

k (m,n) − Q
(2)

k (m,n) = 2q2,2(q2,2 − q2,3) + q(1)
1,0(2q2,2 − q2,3)

+ m2,2

(
2q2,1 − q2,2 + 2q(1)

1,0 − 2m2,2 + 2n2,2

)
. (A.29)

By letting c6 = m2,2(2q2,1−q2,2+2q(1)
1,0), c7 = 2q2,2(q2,2−q2,3)+q(1)

1,0(2q2,2−q2,3)+q2,2(q2,2+
1) and c8 = −2m2,2(m2,2 − n2,2), it follows from Equation (A.29) that we have

c6 + c7 + c8 = Q
(1)

k (m,n) − Q
(2)

k (m,n) + q2,2(q2,2 + 1). (A.30)

We first use Lemmas 3.5 and 4.5, along with Equations (A.3) and (A.17) to rearrange the

terms involving the Q̂α,i’s in the quantum generating function Z(k,1)
λ,n (Ŷ�s0,1) as follows:

Q̂
−q2,1
2,2 Q̂

−q(1)
1,0

1,1 Q̂
q2,2
2,1 Q̂

m2,2
1,0 = q−c6Q̂

m2,2
1,0 Q̂

−q2,1
2,2 Q̂

−q(1)
1,0

1,1 Q̂
q2,2
2,1 , (A.31)

Q̂
−q2,1
2,2 = (q2Q̂1,0Q̂

2
1,1)

−m2,2 Ŷ
m2,2
2,2 Q̂

n2,2−2q2,2+q2,3
2,2 , (A.32)
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Q̂
−2q2,2+q2,3
2,2 Q̂

−q(1)
1,0

1,1 Q̂
q2,2
2,1 = q(q(1)

1,0+2q2,2)(−2q2,2+q2,3)Q̂
−q(1)

1,0
1,1 Q̂

q2,2
2,1 Q̂

−2q2,2+q2,3
2,2

= q−c7Q̂
−q(1)

1,0
1,1 Ẑ

q2,2
2,1 Q̂

−q2,2
2,2 Q̂

q2,3
2,2 . (A.33)

Bearing in mind that q(1)
1,0−q(2)

1,0 = −2m2,2, we apply Lemmas 3.5 and 3.6(8) to deduce that

Q̂
m2,2
1,0 (q2Q̂1,0Q̂

2
1,1)

−m2,2Ŷ
m2,2
2,2 Q̂

n2,2
2,2 Q̂

−q(1)
1,0

1,1 = q−c8+2m2
2,2Q̂

m2,2
1,0 Q̂

2m2,2
1,1 (q2Q̂1,0Q̂

2
1,1)

−m2,2

Ŷ
m2,2
2,2 Q̂

n2,2
2,2 Q̂

−q(2)
1,0

1,1

= q−c8 Ŷ
m2,2
2,2 Q̂

n2,2
2,2 Q̂

−q(2)
1,0

1,1

= q−c8Q̂
n2,2
2,2 Q̂

−q(2)
1,0

1,1 Ŷ
m2,2
2,2 . (A.34)

By combining Equations (A.30)–(A.34), it follows from the definition of Z(k,1)
λ,n (Ŷ�s0,1) that

we have

Z(k,1)
λ,n (Ŷ�s0,1) =

∑
m(0,2)≥0

⎡⎢⎣qQ(2)

k (m,n)−q2,2(q2,2+1)
∏

(α,i)∈J(0,2)
g

[
mα,i + qα,i

mα,i

]
q

Q̂
n2,2
2,2 Q̂

−q(2)
1,0

1,1 (A.35)

×
⎛⎝ ∑

m2,2≥0

[
m2,2 + q2,2

m2,2

]
q

Ŷ
m2,2
2,2 Ẑ

q2,2
2,1 Q̂

−q2,2
2,2

⎞⎠ Q̂
q2,3
2,2 Q̂

q1,1
1,0

⎤⎦ .

As Q
(2)

k (m,n) − q2,2(q2,2 + 1) is independent of m2,2, we may sum over m2,2 and apply

Lemma 4.6 to rewrite the RHS of equation (A.35) as

∑
m(0,2)≥0

qQ
(2)

k (m,n)
∏

(α,i)∈J(0,2)
g

[
mα,i + qα,i

mα,i

]
q

Q̂
n2,2
2,2 Q̂

−q(2)
1,0

1,1 Ẑ−1
2,1Ẑ2,2Q̂

−q2,2
2,3 Q̂

q2,3
2,2 Q̂

q1,1
1,0 . (A.36)

Finally, we rewrite expression (A.36) using Lemmas 3.5 and 3.6(1), (3), and (5) to deduce

that Z(k,1)
λ,n (Ŷ�s0,1) is equal to

q−2n2,2 Ẑ−1
2,1Q̂

n2,2
2,2 Ẑ2,2

∑
m(0,2)

qQ
(2)

k (m,n)
∏

(α,i)∈J(0,2)
g

[
mα,i + qα,i

mα,i

]
q

Q̂
−q2,2
2,3 Q̂

−q(2)
1,0

1,1 Q̂
q2,3
2,2 Q̂

q1,1
1,0 .

Lemma 4.4 for the case p = 2 now follows from the previous case p = 1, as well as the

definition of Z(k,2)
λ,n (Ŷ�s0,2).
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B Proof of Lemma 4.9

For convenience, let us set p = t0 − 1. Firstly, we observe from Equations (4.8) and (4.11)

that we have

q•
p − 2q•

t0 + q•
t0+1 = C•m•

t0 − n•
t0 + Dtm◦

1, (B.1)

q(p),◦
0 − 2q◦

1 + q◦
2 = C◦m◦

1 − n◦
1 + t0Dm

•
t0 − Det0+1. (B.2)

Next, we deduce from Equations (4.27) and (4.29) that we have

Q
(p)

k (m,n) − Qk−1(m
(1,0),n(1)) = 1

δ

[
q◦
1 · �◦(q◦

1−q◦
2) + q•

t0 · �•(q•
t0−q•

t0+1)+(2q◦
1 − q◦

2) · Aq•
t0

−t0q
◦
1 · Aq•

t0+1 − (�◦q◦
1 + Aq•

t0) · Det0+1

]
. (B.3)

Let c1 = −(�◦q◦
1 +Aq•

t0) ·Det0+1, c2 = −(q◦
1 ·�◦q◦

2 +q•
t0 ·�•q•

t0+1 +q◦
2 ·Aq•

t0 + t0q
◦
1 ·Aq•

t0+1)

and c3 = q◦
1 · �◦q◦

1 + q•
t0 · �•q•

t0 + 2q◦
1 · Aq•

t0 + 1
2

∑
α∈Ir �ααqα,tα (qα,tα + 1). Then, it follows

from Equation (B.3) that we have

1

δ
(c1 + c2 + c3) = Q

(p)

k (m,n) − Qk−1(m
(1,0),n(1)) + 1

2δ

∑
α∈Ir

�ααqα,tα (qα,tα + 1). (B.4)

We first use Lemma 3.5, along with Equations (4.35), (B.1), and (B.2) to rearrange the

terms involving the Q̂α,i’s in the quantum generating function Z(k,p)

λ,n (Ŷ�s0,p) as follows:

Q̂
−q•

p
•,t0 Q̂

−q◦,(p)

0◦,1 = Q̂
n•
t0•,1 Q̂

n◦
1◦,1Ŷ

m•
t0•,t0 Ŷ

m◦
1◦,1 Q̂

−2q•
t0•,t0 Q̂

−2q◦
1◦,1 Q̂

q•
t0+1

•,t0 Q̂
q◦
2+Det0+1

◦,1 , (B.5)

Q̂
Det0+1

◦,1 Q̂
q•
t0•,pQ̂

q◦
1◦,0 = q− 1

δ
c1Q̂

q•
t0•,pQ̂

q◦
1◦,0Q̂

Det0+1

◦,1 , (B.6)

Q̂
q•
t0+1

•,t0 Q̂
q◦
2◦,1Q̂

q•
t0•,pQ̂

q◦
1◦,0 = q− 1

δ
c2Q̂

q•
t0•,pQ̂

q◦
1◦,0Q̂

q•
t0+1

•,t0 Q̂
q◦
2◦,1, (B.7)

and

Q̂
−2q•

t0•,t0 Q̂
−2q◦

1◦,1 Q̂
q•
t0•,pQ̂

q◦
1◦,0

= q− 1
δ
(2q◦

1·�◦q◦
1+2q•

t0
·�•q•

t0
+2q◦

1·Aq•
t0

)Q̂
q•
t0•,pQ̂

−2q•
t0•,t0 Q̂

q◦
1◦,0Q̂

−2q◦
1◦,1

= q
− 1

δ

(
c3+ 1

2
∑

α∈Ir �ααqα,tα (qα,tα −1)
) s∏
i=1

(
Q̂

qαi,t0
αi,p Q̂

−2qαi,t0
αi,t0

) d∏
j=1

(
Q̂

qβj ,1

βj,0
Q̂

−2qβj ,1

βj,1

)

= q− 1
δ
c3

s∏
i=1

(̂
Z
qαi ,t0
αi,p Q̂

−qαi ,t0
αi,t0

) d∏
j=1

(
Ẑ
qβj ,1

βj,0
Q̂

−qβj ,1

βj,1

)
. (B.8)

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2021/2/805/5885187 by C
hem

istry Library-Fax user on 01 June 2021



852 M. S. Lin

Finally, we use Lemma 3.6(6) and (7) to deduce that

Ŷ
m•

t0•,t0 Ŷ
m◦

1◦,1
s∏

i=1

(̂
Z
qαi ,t0
αi,p Q̂

−qαi ,t0
αi,t0

) d∏
j=1

(
Ẑ
qβj ,1

βj,0
Q̂

−qβj ,1

βj,1

)

=
s∏

i=1

(
Ŷ
mαi ,t0
αi,t0

Ẑ
qαi ,t0
αi,p Q̂

−qαi ,t0
αi,t0

) d∏
j=1

(
Ŷ
mβj ,1

βj,1
Ẑ
qβj ,1

βj,0
Q̂

−qβj ,1

βj,1

)
. (B.9)

We now combine Equations (B.4)–(B.9) to deduce that

Z(k,p)

λ,n (Ŷ�s0,p) = Q̂
n•
t0•,1 Q̂

n◦
1◦,1
∑
m(1,0)

⎡⎢⎣qQk−1(m(1,0),n(1))− 1
2δ

∑
α∈Ir �ααqα,tα (qα,tα +1)

∏
(α,i)∈J(1,0)

g

[
mα,i + qα,i

mα,i

]
q

×
⎛⎝ s∏

i=1

∑
mαi,t0≥0

[
mαi,t0 + qαi,t0

mαi,t0

]
q

Ŷ
mαi ,t0
αi,t0

Ẑ
qαi ,t0
αi,p Q̂

−qαi,t0
αi,t0

⎞⎠

×
⎛⎜⎝ d∏

j=1

∑
mβj ,1≥0

⎡⎣mβj,1 + qβj,1

mβj,1

⎤⎦
q

Ŷ
mβj ,1

βj,1
Ẑ
qβj ,1

βj,0
Q̂

−qβj ,1

βj,1

⎞⎟⎠ Q̂
q•
t0+1

•,t0 Q̂
q◦
2+Det0+1

◦,1

⎤⎥⎦ .

(B.10)

As Qk−1(m
(1,0),n(1))− 1

2δ

∑
α∈Ir �ααqα,tα (qα,tα +1) is independent of mβj,1 and mαi,t0 for all

i = 1, · · · , s and j = 1, · · · ,d, we may sum over each mβj,1 and mαi,t0 for all i = 1, · · · , s
and j = 1, · · · ,d and apply Lemma 4.6 to write the RHS of Equation (B.10) as

Q̂
n•
t0•,1 Q̂

n◦
1◦,1
∑
m(1,0)

⎡⎢⎣qQk−1(m(1,0),n(1))
∏

(α,i)∈J(1,0)
g

[
mα,i + qα,i

mα,i

]
q

(
s∏

i=1

Ẑ−1
αi,pẐαi,t0Q̂

−qαi ,t0
αi,t0+1

)
(B.11)

×
⎛⎝ d∏

j=1

Ẑ−1
βj,0

Ẑβj,1Q̂
−qβj ,1

βj,2

⎞⎠ Q̂
q•
t0+1

•,t0 Q̂
q◦
2+Det0+1

◦,1

⎤⎦ .

Finally, we rewrite expression (B.11) using Lemma 3.6(1), (2), (3), and (4) to get

Z(k,p)

λ,n (Ŷ�s0,p) = Q̂
n•
t0•,1 Q̂

n◦
1◦,1Ẑ

−1•,pẐ−1
◦,0Ẑ◦,1Ẑ•,t0Z

(k−1)

λ,n(1) (Ŷ�s1).

Lemma 4.9 now follows from Lemma 4.4, along with a similar argument at the end of

the proof of Lemma 4.3.

References

[1] Ardonne, E. and R. Kedem. “Fusion products of Kirillov–Reshetikhin modules and fermionic

multiplicity formulas.” J. Algebra 308, no. 1 (2007): 270–94.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2021/2/805/5885187 by C
hem

istry Library-Fax user on 01 June 2021



Quantum Q-Systems and Fermionic Sums 853

[2] Berenstein, A. and A. Zelevinsky. “Quantum cluster algebras.” Adv. Math. 195, no. 2 (2005):

405–55.

[3] Chari, V. “On the fermionic formula and the Kirillov–Reshetikhin conjecture.” Int. Math. Res.

Not. IMRN 12 (2001): 629–54.

[4] Chari, V. and A. Moura. “The restricted Kirillov–Reshetikhin modules for the current and

twisted current algebras.” Comm. Math. Phys. 266, no. 2 (2006): 431–54.

[5] Chari, V. and R. Venkatesh. “Demazure modules, fusion products and Q-systems.” Comm.

Math. Phys. 333, no. 2 (2015): 799–830.

[6] Di Francesco, P. and R. Kedem. “Proof of the combinatorial Kirillov–Reshetikhin conjecture.”

Int. Math. Res. Not. IMRN, no. 7 (2008). Art. ID rnn006, 57.

[7] Di Francesco, P. and R. Kedem. “Q-systems as cluster algebras II: Cartan matrix of finite

type and the polynomial property.” Lett. Math. Phys. 89, no. 3 (2009): 183–216.

[8] Di Francesco, P. and R. Kedem. “Non-commutative integrability, paths and quasi-

determinants.” Adv. Math. 228 (2011): 97–152.

[9] Di Francesco, P. and R. Kedem. “Quantum cluster algebras and fusion products.” Int. Math.

Res. Not. IMRN 10 (2014): 2593–642.

[10] Feigin, B. and S. Loktev. “On Generalized Kostka Polynomials and the Quantum Verlinde

Rule.” In Differential Topology, Infinite-Dimensional Lie Algebras, and Applications, Vol.

194. American Mathematical Society Translations Series 2. 61–79. Providence, RI: American

Mathematical Society, 1999.

[11] Fomin, S. and A. Zelevinsky. “Cluster algebras. I. Foundations.” J. Amer. Math. Soc., 15,

no. 2 (2002): 497–529 (electronic).

[12] Gekhtman, M., M. Shapiro, and A. Vainshtein. “Cluster algebras and Poisson geometry.”

Mosc. Math. J. 3, no. 3 (2003): 899–934.

[13] Hatayama, G., A. Kuniba, M. Okado, T. Takagi, and Z. Tsuboi. “Paths, Crystals and Fermionic

Formulae.” In MathPhys Odyssey 2001, Vol. 23. Progress in Mathematical Physics. 205–72.

Boston, MA: Birkhäuser Boston, 2002.

[14] Hatayama, G., A. Kuniba, M. Okado, T. Takagi, and Y. Yamada. “Remarks on Fermionic

Formula.” In Recent Developments in Quantum Affine Algebras and Related Topics

(Raleigh, NC, 1998), Vol. 248. Contemporary Mathematics. 243–91. Providence, RI: American

Mathematical Society, 1999.

[15] Hernandez, D. “The Kirillov–Reshetikhin conjecture and solutions of T-systems.” J. Reine

Angew. Math. 596 (2006): 63–87.

[16] Hernandez, D. “Kirillov–Reshetikhin conjecture: the general case.” Int. Math. Res. Not. IMRN

1 (2010): 149–93.

[17] Kedem, R. “Q-systems as cluster algebras.” J. Phys. A 41, no. 19 (2008). 194011, 14.

[18] Kedem, R. “A Pentagon of Identities, Fusion Products and the Kirillov–Reshetikhin Con-

jecture.” In New Trends in Quantum Integrable Systems. 173–93. Hackensack, NJ: World

Scientific, 2011.

[19] Kirillov, A. N. “Identities for the Rogers dilogarithm function connected with simple Lie

algebras.” J. Sov. Math. 47 (1989): 2450–9.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2021/2/805/5885187 by C
hem

istry Library-Fax user on 01 June 2021



854 M. S. Lin

[20] Kirillov, A. N. and N. Y. Reshetikhin. “Representations of Yangians and multiplicities of

occurrence of the irreducible components of the tensor product of representations of simple

Lie algebras.” Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 160, no. 8

(1987): 211–21. Anal. Teor. Chisel i Teor. Funktsii. 301.

[21] Kirillov, A. N., A. Schilling, and M. Shimozono. “A bijection between Littlewood–Richardson

tableaux and rigged configurations.” Selecta Math. (N.S.) 8, no. 1 (2002): 67–135.

[22] Kuniba, A., T. Nakanishi, and J. Suzuki. “Functional relations in solvable lattice models I:

functional relations and representation theory.” Internat. J. Modern Phys. A 9, no. 30 (1994):

5215–66.

[23] Kuniba, A. and J. Suzuki. “Functional relations and analytic Bethe ansatz for twisted

quantum affine algebras.” J. Phys. A 28, no. 3 (1995): 711–22.

[24] Nakajima, H. “t-analogs of q-characters of Kirillov–Reshetikhin modules of quantum affine

algebras.” Represent. Theory 7 (2003): 259–74 (electronic).

[25] Okado, M., A. Schilling, and T. Scrimshaw. “Rigged configuration bijection and proof of the

X = M conjecture for nonexceptional affine types.” J. Algebra 516, no. 1 (2018): 1–37.

[26] Williams, H. “Q-systems, factorization dynamics, and the twist automorphism.” Int. Math.

Res. Not. IMRN 22 (2015): 12042–69.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2021/2/805/5885187 by C
hem

istry Library-Fax user on 01 June 2021


	Quantum Q-Systems and Fermionic Sums---The Non-Simply Laced Case
	1 Introduction
	1.1 Main results

	2 Graded Tensor Products of Cyclic Modules Over the Current Algebra
	2.1 Preliminaries
	2.2 KR-modules
	2.3 The Feigin--Loktev fusion product

	3 Quantum Q-Systems
	3.1 Q-systems and cluster algebras
	3.2 Quantum Q-systems

	4 The Graded Tensor Product Multiplicities and the Quantum Q-System: The Non-Simply Laced Case
	4.1 The restricted M- and N-sums
	4.2 The quantum generating functions
	4.3 Factorization properties of the quantum generating functions
	4.4 Proof of Theorem 4.1

	5 An Identity Satisfied by the Graded Characters of KR-Modules
	6 Conclusion
	A.1 Proof of Lemma 4.4 in the case where g is of type BCF
	A.2 Proof of Lemma 4.4 in the case where g is of type G2



