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In this paper, we seek to prove the equality of the g-graded fermionic sums conjectured
by Hatayama et al. [14] in its full generality, by extending the results of Di Francesco
and Kedem [9] to the non-simply laced case. To this end, we will derive explicit
expressions for the quantum Q-system relations, which are quantum cluster mutations
that correspond to the classical Q-system relations, and write the identity of the g-
graded fermionic sums as a constant term identity. As an application, we will show that
these quantum Q-system relations are consistent with the short exact sequence of the
Feigin-Loktev fusion product of Kirillov—Reshetikhin modules obtained by Chari and
Venkatesh [5].

1 Introduction

Kirillov-Reshetikhin (KR-) modules of Yangians first appeared in [20]. These are simple,
finite-dimensional modules over the Yangian Y(g) of a simple Lie algebra g. Their g-
characters satisfy a family of functional relations known as the Q-system [19, 20],
which is a system of recurrence relations that comes from the fusion procedure for
transfer matrices in the generalized Heisenberg spin chains [22]. Moreover, Kirillov
and Reshetikhin [20] gave fermionic formulas for the multiplicities of an irreducible
g-module in the tensor product of KR-modules over the Yangian. In the same paper,

Kirillov and Reshetikhin (and later generalized by Hatayama et al. [14]) showed that
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806 M. S. Lin

these fermionic sums have a natural deformation to the g-graded case, and this grading
was defined combinatorially. It was conjectured by Hatayama et al. [14] and proved
shortly after by Kirillov et al. [21] that the g-grading arises in the context of crystals
of tensor products of KR-modules over Uq(glr +1), by establishing a bijection between
rigged configurations and crystal paths in type A.

In a subsequent development, KR-modules over the quantum affine algebra
Uq@ were defined for all types, and these modules are defined in terms of their Drinfeld
polynomials [3]. Later, Chari and Moura defined KR-modules for the current algebra
glt] in terms of generators and relations [4]. Morover, Hatayama et al. [14] showed that
if the Uq(g)—characters of the XR-modules over Uq@ satisfy the Q-system relations,
along with some other asymptotic conditions, then the multiplicity of an irreducible
U,(g)-module in a tensor product of KR-modules over Uq@ is expressed in terms of
an extended fermionic sum. Subsequently, Nakajima showed that the g-characters of
the KR-modules over Uq@ satisfy the T-system relations in the simply laced case [24]
and Hernandez proved, using different methods from [24], that the g-characters of the
KR-modules over Uq@ satisfy the T-system relations in the non-simply laced case [15].
As the Q-system relations are obtained from the T-system relations by forgetting the
dependence on the spectral parameters, it follows that the U,(g)-characters of the KR-
modules over Uq@ satisfy the Q-system relations.

In a separate development, Feigin and Loktev introduced a g-equivariant grading
for the tensor product of localized g[t]-modules [10], and subsequently it was shown
in [1, 6] that the graded multiplicity of an irreducible g-module in the Feigin-Loktev
graded tensor product [10] of KR-modules over g[t] is given by the g-graded fermionic
sums. A crucial ingredient in this interpretation is the polynomiality property of the
solutions of the Q-system [6]. Subsequently, Di Francesco and Kedem [7] showed that
the polynomiality property is a consequence of the cluster algebraic formulation of the
Q-system relations. As cluster algebras admit natural quantum deformations [2], they
were able to use these quantum cluster algebras to prove a conjecture of Hatayama et al.
concerning the equality of g-graded fermionic sums [14, Conjecture 4.3] in the simply-
laced case.

In the present paper, we seek to extend the results in [9] and show that [14,
Conjecture 4.3] holds in the non-simply laced case. More precisely, we will first derive
the quantum Q-system relations corresponding to the non-simply laced quantum Q-
system cluster algebras. By extending the tools and techniques in [6, 9], the results in
the current paper, along with that in [9], would show that [14, Conjecture 4.3] holds in

its entire generality.
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Quantum Q-Systems and Fermionic Sums 807
1.1 Main results

Let us summarize our results briefly. KR-modules over g[t] are parameterized by « € I,
(where I. = {1,--- ,r} is the set of labels of the simple roots of g), m € Z,, along with
a nonzero localization parameter z € C*, and they are denoted by KR, ,,(z). As noted
above, the g-characters of these KR-modules over g[t] satisfy the Q-system relations.
More precisely, if we let Q,, ; = chresngRa'k(z) forall« € I, and k € Z, then the Q, ;s
satisfy the following relation for all « € I,. and k € N [20, 22]:

(Copl -1
2
Qi1Qai1 =i = [T T Qsiepieries- (1.1)
B~a i=0

Here, 8 ~ « means that B is connected to « in the Dynkin diagram, Caﬂ are the
entries of the Cartan matrix C of g, and ¢, are the integers that satisfy min,; t, = 1
and Cygtg = Cg,t, for all o, B € I,. As previously mentioned, the Q-system relations
(1.1) could be interpreted as cluster algebra mutations [7, 17]. As cluster algebras
admit natural quantum deformations [2], we can extract the corresponding quantum
Q-system relations in the quantum Q-system cluster algebra. More precisely, we have

the following theorem.

Theorem 1.1. The quantum Q-system relations for g are given by

‘Cuﬁl_l

LA A ) _ A2 . )
q’? aa,kJrlaot,kfl - aoc,k_ l—[ H O/S,Lt;;(k+i)/t,1j’
B~a i=0

with commutation relations

o~

5‘1'1,5&], _ q§(Aﬂai—Aaﬂj>5ﬂ 0

Jral

for all «,8 € I. and i,j € Z such that aa’i and aﬂ,j are in the same quantum cluster.
Here, § = det(C), A,z are the entries of the matrix sC7!, and if y,, ...,y are pairwise
g-commuting elements with vivj = qC(Yi'Yf)yjyi, then the ordered product :y;y, - - y;: is
given by

1
— 1> iien CiY
Y1y Y= g 2 D CEily Ly

Here, we would like to emphasize that there is no unique quantization of a

cluster algebra (and hence the Q-system relations). The quantization of the cluster
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808 M. S. Lin

algebra chosen here is the one that gives rise to the Poisson structure on the cluster
algebra defined in [12].
Our next result concerns the identity of graded sums M, ,(q) = N, ,(q). To begin,

weletn = (n ;e be a vector of nonnegative integers that parameterizes a finite set

a,i)aeIr,
of KR-modules over glt], where n,, ; is the number of KR-modules of type KR, ;(z), and
let 7} denote the corresponding Feigin-Loktev graded tensor product of KR-modules
parameterized by n equipped with a g-equivariant grading, which we will call the fusion
product of KR-modules parameterized by n. The graded components F;[m] of F} are
g-modules for all m € Z, and we define the generating function M, , (q) for the graded
multiplicities of the irreducible g-module V(i) (where A is a dominant integral weight

of g) in F}; by

M; (@) = > dim Hom(Filml, V(2))q™. (1.2)

m=0
Here, Hom (Fz[ml, V(1)) denotes the space of g-equivariant maps from Fj[m] to V(4).

The graded character x,(g; z) of 7} is defined by
(@ 2) = D M 1 (@ch, V), (1.3)
A

where the sum is over all dominant weights A, and z = (z;,--- , z,) with z, = e®, and w,
is the fundamental weight corresponding to « for all o € I...

It was shown in [1, 6] that the graded multiplicities ./\/lkyn(q_l) could be given in
terms of a g-graded fermionic formula M, ,(g~!). In order to define M, ,(g~') precisely,

we need some extra notations. For any vector m = (m ;eny Of nonnegative integers

a,i)aelr,
and « € I, we define the total spin g, as follows:

o0
G=Lat D JCupMpi— D My (1.4)
el jeN j=1

Next, for any « € I, and i € N, we define the vacancy numbers p, ; and the quadratic

form Q(m, n) as follows:

o0
. Cop . ..
Po; = minG,jn,;— D, tiﬁ min(t,j, tgi)mg ;, (1.5)
j=1 Bel jeN ¢
1 Caﬁ . . . T
Q(m,n) = 5 Z t—mln(ta],tﬁz)ma'imﬁ,j - Z min(, jym, ;n, ;. (1.6)

o

a,Belri,jeN a€ly,ijeN
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Quantum Q-Systems and Fermionic Sums 809
The M-sum M, ,(g~') [14, (4.3)] is then given by

Myi+ Py,i
M@ hH= > q°™ ] [ ! p'l], (1.7)
)

m>0 aclyieN My ;i
Ge=0,Py,;=0

where

[m +p} @@ )

= , T Do = 1-— .
m |, (@ Do (GPT™MTL; @) @ 1=Ho( )

The N-sum [14, (4.16)] is defined similarly:

ma . + i
N)L,n(q_l) — Z qO(m,l’l) H |: iTP ,L:| ] (1.8)
q

m>0 aely ieN Mg,
Gu=0
Here, the N-sum differs from the M-sum in that the summands on the right-hand side
of equation (1.8) are not bounded by the constraint p, ; > 0.
In order to show that M, ,,(g7!) = M, ,(g7?"), it suffices to show that M, (1) =
M, (1), from which the desired identity would follow from the positivity of the g-graded
sums. In order to prove that the latter identity holds, it was necessary to show that
M; (1) = N, ,,(1), which follows from [14, 15, 24] and then show that M, (1) = N, ,(1),
which was shown by Di Francesco and Kedem in [6]. Subsequently, Di Francesco and
Kedem [9] showed that M, ,(g~!) =N, ,(g™') in the simply laced case. The main bulk of

the paper is to show that the last identity holds in the non-simply laced case as well.

Theorem 1.2. Let g be a non-simply laced simple Lie algebra, let A be a dominant

integral weight of g, and let n = (n ;ey be a vector of nonnegative integers that

a,i)aEIr,

parameterizes a finite set of KR-modules over g[t]. Then, we have
M, n(@ ") =N, n(@ D).

Our final result concerns an identity of graded characters of fusion product of
KR-modules over g[t] that extend (1.1).

Theorem 1.3. Let
[Ca,pl—1

Kom=Q) & KRﬁ’Ltﬂ(;:Jri)J

B~a i=0

120z dunp L0 Uo Jasn xe4-Ateiqr Ansiwau) Ad /81.6885/508/2/1.20Z/3I0Ie/ui/woo dno olwapese/:sdpy Woly pepeojumod



810 M. S. Lin

for all « € I, and m € Z, and let K ,,, be the fusion product corresponding to the
tensor product K, ,,, of KR-modules over g[t]. Then, the graded characters of the fusion

products of the KR-modules satisfy the following identity for all « € I, and m € N:

ch KR, 41 * KR, ) = ch KR, . +KR, . —q™ch K} ..

Here, we briefly remark that a stronger version of Theorem 1.3 was proved
by Chari and Venkatesh in [5] for special cases. More precisely, they showed that
there exists a short exact sequence of fusion product of KR-modules that extends the
Q-system relations (1.1) in certain cases, which we will explain in detail at the end of
Section 5.

The paper is organized as follows. We will first review some properties of
the KR-modules over the current algebra and the Feigin-Loktev fusion product in
Section 2. We will then review the construction of the Q-system cluster algebras in
Section 3 and derive the quantum Q-system relations for all simple Lie algebras. In
Section 4, we will define the restricted versions of the M- and N-sums M, (g~ ")
and Nkyn(q_l) and introduce quantum generating functions in the non-simply laced
case that specializes to the N-sum. We will then prove factorization properties of
these generating functions analogous to those in [6, 9] and use these factorization
properties, along with the Laurent polynomiality property of the solutions of the
quantum Q-system, to prove the identity MAIn(q*I) = Nkln(qfl) in the non-simply laced
case. As an immediate consequence, we will use the identity to prove Theorem 1.3 in

Section 5.

2 Graded Tensor Products of Cyclic Modules Over the Current Algebra
2.1 Preliminaries

Let g be a simple complex Lie algebra of rank r, and let I. = {1,...,r} be labels of the
simple roots of g. Let C denote the Cartan matrix of g, ¢, (@ € I.) be the integers that

satisfy ¢4C,p = t,Cp, for all @, B € I, and ¢, = max,; ¢,. Then, we have

e Il ={iel |icorresponds to along root ofg} and

e TII, ={i eI, |icorresponds to a short root ofg}.

The following table lists all simple Lie algebras g and their corresponding ¢,, IT
and IT,:

o
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Quantum Q-Systems and Fermionic Sums 811

g to I, M,

Ay, Dp(r > 4),Eg, E7, Eg 1 I %)
Byr(r = 2) 2 {1,...,r—1} {r}
Cr(r>3) 2 {r} a,...,r—1)
Fy 2 1,2} (3,4}

G2 3 {1} {2}

we note that we have I, =TI, U Tl,, t, = 1, and tg = t, for all « € I, and g € I1,.
In addition, we will alsolet y =r,r—1,2,1 for g = B,, C,, F,, and G,, respectively,

andy'=r-1,r,3,2forg=B,,C, F,, and G,, respectively.

2.2 KR-modules

While the KR-modules over the Yangian or the quantum affine algebra are defined in
terms of their Drinfeld polynomials, the KR-modules over the current algebra glt] =
g®Clt] are defined in terms of generators and relations and are the classical limits of the
KR-modules over the quantum affine algebra [4, 18]. These modules are parameterized
by a nonzero z € C* (which we call the localization parameter), « € I, and m € Z_, and
the corresponding KR-module over g[t] is denoted KR, ,,,(2).

When g is of type A, we have KR, ,,(z) = V(mw,) as g-modules, so KR-modules
over sl [t] are irreducible as s, ,;-modules. In general, KR-modules over g[t] need not
be irreducible as g-modules. However, the direct sum decomposition of KR, ,,(2) into

irreducible g-modules has the following form [3]:

KR, ,(2) = V(mw,) ea( P V(u)ﬂamu),

U<y

where < is the usual dominance partial ordering on P. This decomposition immediately
implies that under the restriction of the action to g, KR, ,,(z) has the highest weight

component isomorphic to V(mw,).

2.3 The Feigin-Loktev fusion product

Let Vi,...,Vy be gltl-modules with cyclic vectors v,,...,vy that generate V,...Vy

as glt]-modules, respectively, and let z;,...,zy € C be pairwise distinct nonzero
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812 M. S. Lin

localization parameters. It was shown by Feigin and Loktev in [10] the tensor product
Vi(z)) ® --- ® Vy(zy) is generated by action of g[t] the tensor product v; ® --- ® v of
cyclic vectors vy, ..., vy. Hence, they were able to introduce a g-equivariant grading on
the tensor product V;(z;) ® - -- ® Vy(zy). This tensor product of localized g[t]-modules,
along with the g-equivariant grading, is called the Feigin-Loktev fusion product [10]. By
definition, the fusion product is commutative.

In general, the fusion product of cyclic glt]-modules depends on the choice of the
localization parameters. However, it was conjectured by Feigin and Loktev in [10] and
proved in [1, 6] that the fusion product is independent of the localization parameters
when the constituent modules involved are of Kirillov—-Reshetikhin type. Hence, we
can suppress the localization parameters and parameterize the fusion product of

KR-modules by a vector n = (n, ;) where n, ; is the number of KR-modules of

o€l ieNr

type KR, ;.

3 Quantum Q-Systems
3.1 Q-systems and cluster algebras

Let I be a subset of {Q, | « € I,k € Z} with [I| = 2r. We say that I forms valid
set of initial data for the Q-system (1.1) if any solution of the Q-system (1.1) could be
expressed as a function of the elements in I. An important example of an initial data for

the Q-system is the components of the following vector:
Y5 = (Qq 0. Qa,l)aelr'
More generally, we let 5, = (kt,),; for all k € Z. Then, the components of the vector
Y5, = (Qq ktyr Qo kty+1 el (3.1)

form a valid set of initial data for the Q-system. We call y;,_the k-th fundamental initial

data for the Q-system.

Definition 3.1. Let m = (m,),; be a vector with integer components. We say that m

is a generalized Motzkin path if
- min(ta,tﬁ) S tymp —tgm, < max(ta,tﬁ) (3.2)

whenever Cyz = —1.
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Quantum Q-Systems and Fermionic Sums 813

Example 3.2. An important example of a generalized Motzkin path is the vector
§k = (kt(x)(xelr'

Example 3.3. Let g be of type B;. Then, it is easy to verify that the vector (-1,0,2) is a
generalized Motzkin path.

In general, a valid set of initial data for the Q-system is determined by a
generalized Motzkin path.

It was shown by Di Francesco and Kedem [7] that the Q-system relations could be
realized as cluster algebra mutations. While the cluster algebra mutation relations are
written without any subtractions [11], the RHS of the Q-system relations (1.1) is written
with a subtraction. To avoid the use of cluster algebras with coefficients (as in the [7,
Appendix]), we would need to normalize our Q-system relations accordingly. Following
[7, Lemma 2.1], we let u, = Zﬂelr(c_l)ﬁ'a, €, = ™', and R,k =¢€,Q, forall a € I, and

k € Z. Then, it follows that the normalized variables R, ; satisfy the following relation:

[Copl—1
2
Ry x+1Bok—1 = Ra,k + H H Rﬂ,Ltﬁ(kH)/taJ' (3.3)

B~ i=0
We will thereby refer to (3.3) as the normalized Q-system for g.
The cluster algebra associated to the normalized Q-system (3.3) for g is defined
from the initial cluster (x[0], B), where x[0] = (R, g, R5,..., R0, Ry 1,--.,R; ), and

(ct -c —ct)
B = . (3.4)
c 0

Theorem 3.4. ([7,Theorems 3.1, 3.4, and 3.12 and Lemma 3.10]) There exists a cluster
graph gg, which includes all nodes (x[k], B) and (x[k'], —B) labeled by k € 7., with the

clusters x[k] and x[k’] defined as follows:

In fact, more is true.

X[kl = Ry 24,k R 2tokr - - - Ry otk R 2t kb1 - - B2t k1)

/
x[k'] = Ry 26,k Ro20kr - - 1 Brptokr B2t k17 - - - 1 R 2t k1)

and mutation matrix B defined as in (3.4), such that all cluster algebra mutations in the

graph G are normalized Q-system relations (3.3).
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814 M. S. Lin
3.2 Quantum Q-systems

The quantum Q-system relations were first defined for type A in [8] and subsequently
for all simply laced g in [9]. Our goal in this subsection is to do the same for all non-
simply laced g. In order to define these quantum Q-system relations, we would first
need to recall the definition of a quantum cluster algebra [2].

Let us fix a positive integer m (the rank of the quantum cluster algebra) and a
non-singular skew-symmetric m x m matrix integer B. Let A be a m x m integer matrix
that satisfies the following compatibility relation with the exchange matrix B for some

positive integer §:

BA = =41,
and let 7 be the Z[v*!/?]-algebra with generators X;,X,,...,X,, and relations
XX = vNXX, ij=1,..,m. (3.5)

In addition, we will also let F be the skew-field of fractions of 7.

Next, for any pairwise v-commuting elements y,,y,, ...,y € F with
vy = vy, (3.6)

forany i,j € {1,...,k}, we define the ordered product :y,y, - - - y}: as follows:
V1V V= U%Zi>jC(yi,y;)y1y2 - (3.7)

Then, it is clear that the ordered product :-: is associative and commutative, so we may
write :Hi-c:1 Yii or [ [jcqq gy ¥it in lieu of iy - - -yt

We are now ready to define the quantum analogue of mutations. The quantum
mutations y; act in the same way on the exchange matrix B as in the classical case. We
write p;(X;) = X; if j # 1, and

m ~ m ~
—3ji+IBjil —8ji+[—Bjil
(X)) =:HXJ. AT +:+:ij TR (3.8)
j=1 j=1

where [n], = max(n, 0).
Now, we would like to derive the normalized quantum Q-system relations,

by deriving the quantum cluster algebra mutations in the quantum Q-system cluster
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Quantum Q-Systems and Fermionic Sums 815

algebra associated to the exchange matrix B defined in Equation (3.4) (i.e., B = B) that

correspond to the normalized Q-system relations (3.3). To this end, we let
A=48C"1, §=det(0), (3.9)

The skew-symmetric matrix A that gives rise to the commutation relations (3.5) between

the quantum cluster variables in the initial cluster X[0] = (§1,01§2,0~~:§r,0r§1,1r

7\——33—1(0 —A ) (3.10)
B At At—A ) '

In particular, the quantum cluster variables in X[0] satisfy the following commutation

... ,ﬁrll) is then given by

relations:

o~

R, Ry ;=v 2R, R ., apel,ijei01}. (3.11)

In addition, we will also let ﬁa'i denote the quantum cluster variable in the quantum
cluster algebra associated to B that corresponds to R, ; forall « € I, and i € Z.

We first observe that each generalized Motzkin path corresponds to a cluster in
the cluster algebra corresponding to the normalized Q-system. In particular, it follows

from inequality (3.2) that if
e — tgil < t, +tg —min(,, tg)dyg, (3.12)

then the variables ﬁa,i and ﬁﬂ ;j are in the same quantum cluster, and hence they v-
commute. Therefore, the quantum cluster algebra mutations corresponding to (3.3) has

the following form:

[Capl—1
n .p-l B2 ., .p-l n
Ry =R Rip+ By [T 11 Renseeriyear (3.13)
B~a i=0
‘Cuﬁl_l
=) .p-l B2 ., .p-l n
Ryjo1 =R R+ B [1 11 Beiseri - (3.14)
B~a 1=0
Using the fact that BA = —§I, it follows from Equation (3.13) that the normalized
quantum Q-system relations for g are given by
, |Capl—1
_AotocA o) — D2 _7 . D
v Ry gt1Baj—1 =Rgp+v 72 H H Rp, 1ty (kti)/ta) - (3.15)

B~a =0
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816 M. S. Lin

In addition to the normalized quantum Q-system relations for g (3.15), we would also
need to know the relevant commutation relations that are satisfied by the normalized

quantum Q-system variables ﬁa'l

Lemma 3.5. Let m is a generalized Motzkin path (3.2). Then, within each valid initial

data set (ﬁa'ma,ﬁalma +1)ger. the normalized quantum Q-system variables ﬁa,i satisfy
the following commutation relations:
ﬁa!iﬁﬂ,j = VAﬁai_Aaﬁjﬁﬂljﬁali. (316)

Proof. The following proof of (3.16) uses the same strategy as in the proof of [7, Lemma
3.2], where the commutation relations (3.16) are proved in the simply laced case. We will
first show that (3.16) holds in the case where

|te] — tgil < max(t,, tg). (3.17)

Firstly, it follows from Theorem 3.4 and Equation (3.10) that (3.16) holds whenever we
have«, B € I1, and |i—j| < 1, and in the case where « € I1_, 8 € I1,, we have the following

commutation relations forall k € Z, i = 0,%+1 and j = £(t; — 1), £t,:

o~ Cings S ~
R 2kRp 2t0k+i =V ' ﬁRﬁ,Ztok-i-iRa,Zk and (3.18)
R, 2k+1Rﬁ to2k+1)+j =V ﬁRﬂ to(2k+1)+7 e, 2k+1- (3.19)
Let
[Capl—1
= 5-2
T =R IT 11 Beiesterisa
B~a i=0
and
[Capl—1
- . 3
Ca,k:C(Ra,k'Rak 1) Z > (Rﬂ,Ltﬁ(k+i)/taJ’Rak 1)
ﬁ~a i=0

for all « € I.. and k € Z. Then, it follows that Equation (3.13) could be rewritten as

- —C(Ry, R
Ra'k+1=\) ( ks uk I)Rz (1+Ucaky k)Rotk 1

Thus, in order to show that the commutation relation (3.18) holds for i = 2, it suffices to

show that ﬁa,Zk commutes with @,Ztok-H' Using the fact that C(ﬁa,zkfﬁw,2k+i) = —iA,,
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Quantum Q-Systems and Fermionic Sums 817

forallw e I, and i € {0, 1}, and C(ﬁalzk,ﬁwl%kﬂ) = —A,, for all w € I1,, it follows that

we have

o~

c (Ra,Zk'Rw,Ltw(2t0k+1)/tﬁj "'Rw,l_tw(ZtokHClgw\)/tﬁJ) =Ny = Aawcwﬁ

for all w ~ B. As we have C (ﬁayzk,ﬁfz

ﬂ’%kﬂ) = 2A,p5 = NypCpg, it follows that we have

c (Roz,Zk' %,2t0k+1) = Aaﬁcﬂﬁ + Z Aota)Cw,B = Z Aota)cwﬂ =0,

w~p wel,

where the last equality follows from the fact that AC = éI. So this shows that ﬁa,Zk
commutes with @yzmkﬂ, and hence (3.18) holds for i = 2. By repeating the argument as
before (and using Equation (3.14) where necessary), it follows that the commutation
relations (3.18) and (3.19) hold for all [i],|j| < t,. Consequently, the commutation
relations (3.16) hold whenever inequality (3.17) is satisfied, in the case where either
aell,pell, ora € II,, B € II,. The same argument above would also imply that
the commutation relations (3.16) hold whenever inequality (3.17) is satisfied, in the case
where «, B € I1,.

Finally, to obtain the rest of the commutation relations, we will proceed by
induction on either | —j| (in the case where either «, 8 € I1, or o, B € T1,) or [¢,j — t4i| (in
the case where either o € I, 8 € 1, or « € I,, B € I1,) and repeat the same argument
as before, with the base case(s) following from the fact that the commutation relations

(3.16) hold whenever inequality (3.17) is satisfied. |

Having obtained the normalized quantum Q-system relations for g, we will now
proceed to renormalize (3.15) to obtain the quantum Q-system relations for g. We let
a, = %Zﬁdr A,p and aa,k = e,;lvauﬁayk for all @ € I. and k € Z. Then, it follows from
(3.15) that we have

[Capl—1
_AOtO(A A — A2 . A
v Qo j+1Qu k1 = aa,k— H H aﬁ,Ltﬁ(k-i-i)/taJ (3.20)
B~a =0

for all « € I, and k € Z. We will thereby refer to (3.20) as the quantum Q-system for g.

Remark. The quantum Q-system variables 5a,k also satisfy the same commutation
relations (3.16) (with the R, ;s replaced by Q, ;'s).
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818 M. S. Lin

For latter convenience, we will let

|Capl—1
—2
“k_ ak” H H Qﬁ Ltp (k+i) /e ) (3.21)
’\'Ot :

for all « € I, and k € Z. Then, the quantum Q-system relations (3.20) is equivalent to
_AototA ra) — "2 I
v Qy k1 Q1 = Qg k(1= Y ). (3.22)

We will conclude this section with a technical lemma, which will come in handy
in the factorization of the quantum generating functions that we will introduce in the

next section.

Lemma3.6. LetZ,, = Q,;0,;

i € Z, and |p| < ty, we have

w1 forall « € I, and k € Z. Then, for all distinct o, 8 € I,

/Z\ﬁ'i commutes with Z ;and Z, wi—1 whenever o, 8 € I, or o, B € I1;

o~

Zg ; commutes with Za toH-p

Qg ;42 commutes with Z

whenever o € I1, and g € IT;

i Z,iy1 Whenever o, 8 € I, or o, B € I1,;

Oﬂ toi+1 commutes with Z(“ lAa ; Whenever « € I, and § € I1,;
Z

o, tol—

ok W=

,and Z ! 7 1 Whenever « € II, and

1
Oﬂ,i commutes with Z o toila toit+

a,toi—2
Bell,;

Oﬁ ; commutes with Ya i+1 whenever o, g € I1, or o, B € T1;

o

Oﬁ toi—1 commutes with Y ; Whenever o € I1, and g € I1,;

Oﬁ ; commutes with Y, whenever « € I1, and g € I1,.

o toi+p

We shall omit the proof of Lemma 3.6, as all statements follow readily from
Lemma 3.5 (and using inequality (3.12)) where necessary.

Similar to the classical case, the cluster variables in any quantum cluster
algebra satisfy a Laurent property, that is, given an initial cluster X of a quantum cluster
algebra, we can express any cluster variable as a (noncommutative) Laurent polynomial
in the variables of X. As the quantum Q-system relations are obtained from the quantum
Q-system cluster algebras, it follows that the solutions of the quantum Q-system inherit

this Laurent property as well.
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Quantum Q-Systems and Fermionic Sums 819
Lemma 3.7. For any generalized Motzkin path m, o € I, and i € Z, 5(”- could
be expressed as a (noncommutative) Laurent polynomial in the initial data Y; =
@ /2],

ama’ Qomy+1)acr, With coefficients in Z[v

4 The Graded Tensor Product Multiplicities and the Quantum Q-System: The Non-
Simply Laced Case

Our goal in this section is to show that Theorem 1.2 holds. As in [6, 9], we will
prove a slightly stronger statement, where we fix a positive integer k, restrict the
sums M, ,(g~!) and N, ,(g"') to the m’s that satisfy m,; = 0 for all « € I, and
i > t,k, and show that these restricted sums are equal to each other. The equality

M, ,(q) =N, ,(g~!) would subsequently follow when k is sufficiently large.

4.1 The restricted M- and N-sums

Throughout this section, we will assume that g is non-simply laced unless otherwise

stated. Let us fix a vector n = (n, ;),; ;o Of nonnegative integers that parameterizes a

a€ly,

finite set of KR-modules over g[t], and a dominant integral weight A = >, ; €¢,o, of g,

aely

and a positive integer k. For latter convenience, we will let ¢ denote the vector (£,),z .

and n") denote the vector (n Also, for any j,p € Z, satisfying 0 <j < k and

h a,i)ozelr,i>to,j'
p < ty, we let Jg’p) be the following indexing set:

JIP (@) |a el j+1<i<k(@ell),tg+p+1<i<tok(aell,)).

For any vector m = (m, o0 of nonnegative integers and any « € I,, we define the

‘xri)(a,i)eJB
restricted total spin g, o as follows:

tok
Guo=tat 2, FCupMpj— 2 Iy (4.1)
Baely” =1

0,0
Jg

Next, for any («,i) € , we define the restricted vacancy numbers p,; and the

restricted quadratic form Q;(m, n) as follows:

tak
Poi= p minG,jm,;— > % min(t,j, tyi)my ;, (4.2)
=1 Bhesy”
) C tak
Q,(m,n) = > Z o min(t,j, tﬂi)ma'imﬂ,j — z Z min(i,j)malina'j. (4.3)
@), (BHeI®? * aelyij=1
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820 M. S. Lin

The restricted M- and N- sums M(k) (q_l) and N(k) (q_l) are then defined as follows:

(k) (q_l) — Z qak(mlm H |:m“'i +p°"ij| and (4.4)
q

m .
m>0 : (0,0) a,l
qu,0=0r_ptx,i20 (Ol,l)EJg

N(k) (q—l) Z qQk(mrn) H [ma'i + pa'i} . (45)
q

=l (@,i)es? ot
«,0=

We note that the integers g,, were introduced for the purpose of imposing the
restriction on the summation variables.

The rest of the section is devoted to prove the following theorem.

Theorem 4.1. Let A be a dominant integral weight of g, n = (n,, ;), 1, ;e b€ @ vector of

a€ly,
nonnegative integers that parameterizes a finite set of KR-modules over g[t] and k be a

Here, we remark that Theorem 4.1 is proved for all simple g in the classical case
g = 1 [6], and for all simply laced g in the graded case [9]. In both cases, the broad
strategy in proving Theorem 4.1 is as follows: firstly, Di Francesco and Kedem defined
(quantum) generating functions whose “constant term evaluation” is equal to Ni’;)l(q_l)
up to a constant depending on n and A and factorizes into a into a product of (quantum)
Q-system variables and their inverses. In the former case, Di Francesco and Kedem also
defined intermediate generating functions to account for the extra terms corresponding
to the short root indices. The next step is to show that the terms in the summation
with negative Doi for some @ € I, 1 < i < t k, do not contribute to the constant term
evaluation, from which we would get Mi’fr)l(q_l) = N(k) 2@ .

In a similar fashion, we would employ a largely similar strategy outlined in [9]
in proving Theorem 4.1 for the case where g is non-simply laced, where as in [6], we will
also define intermediate generating quantum generating functions to account for the

extra terms corresponding to the short root indices.
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4.2 The quantum generating functions

Firstly, we define the modified restricted vacancy numbers g, ; foralla € I, and 1 <i <

t,k as follows:

C tak
qali = pa,i + qalo = Za + Z tiﬂ(ta_] — tﬁl)mﬁ'] — Z (] - l)na,j. (4.6)
(ﬁJ)EJéo'O)Z ® J=i+1
taj>1tgl

Equation (4.6) could be written in a more explicit manner as follows: for all « € I1, and

0 <1i <k, we have

k tok
Qi =tat+ D G=0| D CapMps=ngj |+ D G—tod) D CouMMuyi (4.7)
j=i+1 Bell, j=toi+1 well,
and for all 8 € T, and 0 < i < tyk, we have
tok k
QGi=tp+ D G0 D CoaMaj—mp; |+ Do (taf—0) D Copmyy.  (4.8)
j=it1 aell, jZLtLJ“ well,
0

In order to facilitate the definition of the quantum generating functions that arise from
partial summations, we will need to make a few extra definitions below the fold. We
first observe that for all « € IT, and 0 < i < k, the conditions (8,j) € Jéo'o) and t,j > tﬂi

is equivalent to the condition (8,)) € Jéi’o), that is, Equation (4.7) is equivalent to

C tak
Qui=tu+ D, tiﬂ(taj —tgmyi— D (= Dn,;. (4.9)
Bpery® " j=it

This leads to the following definition of the “intermediate” modified vacancy numbers

qg’gforallae1'[0,0§i<kand0<p<t0:

C tak
Pl=t+ > tiﬂ(taj —tymy;— > (=i, (4.10)
Bpeli? j=it1
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As before, Equation (4.10) could be written explicitly as follows:

k tok
qépl) =4{,+ Z G—1) Z CopMpj— Ny | + Z G — i) Z Coo My - (4.11)
Jj=i+1 pell, Jj=toi+p+1 well,

As in [9], our 1st step is to rewrite Qi (m,n) in terms of the modified vacancy numbers

q, ;- To this end, we will first need a few notations. Given any vector v = (v, ;) (@,)es©0 of
! ! ' 9

nonnegative integers, we let v; = (v, )y, Vi = (Vg )yen, and v; = (v,

o, tyl
let £° = (£,)gen, £° = (L) gen, and q;”(p) denote the vector (qgfg)

Jwer,- Also, we
«en, for all nonnegative
integersi < kand 0 < p < t,.

Next, we let C° = (Ciplypen,s C° = (Coplapens: D = (Coplaen, pen,, A° =
(Agplapern,s A° = (Ngpa,pen., and A = (Ayplgen, pen,- Then, it is easy to see (up to a
rearrangement of the rows and columns of C and A in the case where g is of type C) that

the matrices C and A has the following block form:

c° D A A
C= , A= : (4.12)
t,D' C* toA A°

We are now ready to rewrite Qi (m, n) in terms of the g, ;'s.

Lemma 4.2. Let m = (mari)(a,i)eJéo’o)’n = (na,i)(a,i)eJéo'(’) be vectors of nonnegative

integers. Then, we have

k
1 (e} o] [e] o] (e} o] (e} { ] { ]
Qp(m,m) = D [(apy —af) - A%(ay_y —ap) +2(d5-; —qf) - A(dd, 1) — G5y)]
j=1
tok k
(@, — @) AT (A, — ) — L) — D U |, (4.13)
j=1 j=1
where
Aaﬂ . . .
Lm) = Z —— min(t,J, tghn, ng and (4.14)

(e,0), (BT

to

1 toao
Uj = % D ty—1)i - D(ADey 1y i — 266A5 1)1 (4.15)
i=1
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Quantum Q-Systems and Fermionic Sums 823

with

i—1 to—1

€G-+ = Zsmzoq_1>+s + Z (s —to)mg ; 4y, and (4.16)
s=1 s=1i
to—1

fto(ifl)+i = Z n;00—1)+s (4.17)
s=i

foralll <i<tyandl <j<k.

Proof. Firstly, we let

tak tak
Ma,i = Zma,i' Na,i = Zna,i'
J=i j=t

foralla eI,and 1 <i <t k,and M = (Mali)(a,i)ejéo’o) and N = (V,
Our 1st step is to write ¢; and g7 in terms of mJC.’, m]?,
(4.7) and (4.8) as follows:

D aes®®

n?, and n: using Equations

k tok
@ =€+ D, (-dc°m; —nfl+ > (- to))DmS;
j=i+l j=toi+1
tok k
qf =0+ Z G-dlcm; —nfl+ > (tyj —)D'ms.
=[]

This implies that forall 1 <j<kand ¢, — 1)+ 1 <i < tyj, we have
q;_; — q; = C°M; — N; + ¢,DM; + De;, (4.18a)
. ° ° ° ° tnro
4 —9q; = CM; —N; +D'M;. (4.18b)
Thus, we have

(47— — q7) - A°(Q;_; — q;) (4.19)
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to]
=— > (C°M;—N;+t,DM; + De;) - A°(C°M; — N3 + t,DM + De;)
0 j—to(—1)+1
toj
=M C°A°(C°M? — 2N3) + N7 - A°NS + D>~ (tDM + 2C°M) - A°DM;
i=to(—1)+1
1 toj
D D [ - D'A°(2C°M — 2N3 + 2t,DM; + De;) — 2tM; - D'A°N?],
0 i—to(i—1)+1
toj
D> @, —a)-AT@, a4 (4.20)
i=to(—1)+1
toJ
= > (CM}-N;+ D'M) - A*(C°M — NY + D'M3)
i=to(—1)+1
toj
=toM? - DA®D'M? + D" (C°M] — 2Nj 4 2D'M) - A*C*M;
i=to(—1)+1
toJ
+ D, (N7-A°N;—2M;-DA°N}), and
i=to(—1)+1
2(d5_; — q7) - A(dp ;1) — 93,)) (4.21)
toJ
=2 > (C°M — N + t,DM; + De;) - A(C°M; — N} + D'M?)
i=to(—1)+1
toj
= 2t,M? - DA'(C°M; —N9)+2 D> [toM} - D'A(C*M] — N}) + N} - A'N?]
i=to(j—1)+1
toj
o o ° t . . LI NAN 1) o o °
+2 > [M;-(C°AC® +t,DA'D) Mj — M - C*A'N; — M7 - C°AN]
i=to(—1)+1
toj

+2 D e (D'AD'M; + D'AC'M; — D'ANG).
i=to(j—1)+1
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Quantum Q-Systems and Fermionic Sums 825

By using the fact that CA = §I and CAC = §C, it follows from Equations (4.19)-(4.21),
along with the block form (4.12) of the matrices C and A, that we have the RHS of (4.13)
to be equal to

k toj
1 o (o] o o (] L] (] (] o L]
Ez M? . (C°MF —2N3)+ D> (M] - (C°M} — 2N}) + 2M; - DM) (4.22)
j=1 i=to(—1)+1
1 k toj 1
2_52 - A°N; Z (N} - AN} +2N7 - AN) | — <Li(n)
j=1 i=to(j—1)+1

toj
t o ONTO
+—Z > e DM} — A°NS — 1,AN ).
0 jo1i=to(j—1)+1

It remains to show that expression (4.22) is equal to Qi (m,n). To this end, we first

observe from Equation (4.16) that we have

toj

Z ei=0

i=to(j—1)+1

foralll <j<k.As Dt(8M;.’—A°N;’—t0AN;Oj) isindependent of i for all £;(j—1)+1 < i < tyj,

it follows that we have

toj
Z > ;- D'(SM; — A°N? — (AN} ;) = 0. (4.23)
j=1i=to(G—1)+1

Next, we make use of the fact that

to—1 .
min(j, to/) = > min (Vtﬁj , j/)
0

s=0
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to deduce that

k tok
1 PR
Qi (m,n) = 2 Z mingj,j )mj -(C° 2n,) + = Z min(j,j )m
JJ'=1 J,j’ 1
tok k
+ > > min(, to/')m$ - Dm?
j=1j=1
k min(,j) tok min(,j’)
=32 > m o+ > 2. m
]]/ 1 i=1 JjJ=1

e & to-1mn([ % ]d)
53303
J

i=1j'=1 s=0 i=1

k k tok tok
1 ok %o

i=1j,j=i i=1jj=i

to—1 k k tok

DN I W

s=0 i=1 j'=i j=tgi—s

toj

Nlb—l

j=1 i=tog(G—1)+1
Likewise, by a similar argument, we have

k toj

Lym) =) | N7-A°N?+ > (N7 AN+ 2N? - AN?)

j=1 i=tp(j—1)+1

DI R EEIRES 39 3P

k
== > | M- (C°M; —2N?)+ D> (M;-(C°M; — 2N}) + 2M; - DMY)

m; — 2nj,) (4.24)

(4.24)

(4.25)

By combining Equations (4.23)-(4.25), it follows from expression (4.22) that (4.16) holds,

and we are done.

We are now ready to define our quantum generating functions that specialize

to the restricted N-sums via a constant term evaluation. To make our notations more

compact, we will introduce some shorthand notations. For any vector v°

= (v, )ael'l

(respectively v* = (v,),1,) of integers and k € Z, we shall denote the product [[,p, Oa k

(respectively [],ep, Oa ) of the commuting variables O Va by QY k (respectlvely O‘.’,k).

Likewise, we will also use the shorthand notations v ok

zv oK andZ
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Quantum Q-Systems and Fermionic Sums 827

Let us fix the quantum parameter to be g = v°

Ju=v? = q%, and Z,, = Z[u*!]. Let
?gi denote the quantum torus {5“”1-, aa'tuiﬂ}ae[r, and let 6i = {aa,i}aeIr forall ¢ € Z. For
any ring R and a set of variables x = {x;,...,x,,}, we let R((x)) denote the ring of formal
Laurent series of the variables x|, ..., x,, with coefficients in R. We define the quantum
generating function for multiplicities Zy;)l(?go) € Zu[6§1]((6;1)) in the quantum torus

?50, subject to the commutation relations in Lemma 3.5 as follows:

o,l

Y . m_l_ . A_.A_OA.AOD

20 @)= g%mm ] it a,i 0, ;%% aIPe (4.26)

m .. 2(0,0) m

(@,i)eJ] q

Here, the sum is over all vectors m = (m, ;) (@,i)eg O of nonnegative integers, and the
! ' g

modified quadratic form ak(m, n) is defined by

k-1

a) 1 o o o o o o o L] ']

Qlm,m) = oo | > 1@ = qfy) - AT = Gf) + 200 — G - Ay — i) :27)
j=1

tok—1 k
+ D@ - AN —dh ) - D Ui+ 45 - A +q - Al
j=1 j=1

—2(qg — 4q7) - Adj) + 2t0qg - Ay + 2(A°qg + AqQ) - Del} :
From Equation (4.27), we have
Qy(m,n) — Qx(m,n) = —% [q?) - A°(dp — 2q7) + 4o - A(do — 297) + 2(dp — d7) - Adp
—2tyqg - Aq] — 2(A°dg + Aqg) - De; — Lk(n):| .

This implies that the modified quadratic form ﬁk(m, n) is equal to Q;(m,n) + %Lk(n)

when g = 0 and qj = 0.

k)

In addition to the generating function Z§ n(?go) that we have defined above, we

k.p)

would also need to define intermediate quantum generating functions Zi o (?gop), where

0 < p < ty, that arise from partial summations over m, ;, with « € I1, and ¢, fi. To this
end, we will need to define truncations of a given vector v = (v, ;) (@,es O For any vector
) EJg

v=(v, 0<j<kandO <p < t,, we define vUP — (Va'i)(a l,)e]g,p). In particular,

) (@, i)eg 0

we have v00 =y,
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We shall first define the quantum generating function Zikr’fo_l)(YSOt ). To this

end, we let 5;, ; = (I + 1)t, — 1), for alli € Z. Then, it is easy to verify that §;, , is

a generalized Motzkin path for all i € Z, so the components of the vector

Y501 = Qo4 1ta-10 Qo i+ 1)t ey

form a valid set of initial data for the quantum Q-system. Hence, we define the quantum

generating function Z(k fo=1) (g (Yst ,) in the quantum torus Y , as follows:
k,to—1 qtob Myitdyi| ~ G a1~—q 0" ~a
Z( 0— ) Sor Z qO (m,n) H |: ol a,i Oo,toto Oo 10 Q.tfo 10
m©to—1 @ l)gJ(OtO 1) ma,i q
(4.28)
Here, the sum is over all vectors m@%-D = (m )( iy J(o -1 of nonnegative integers,
and the quadratic form 5,§t°‘1)(m, n) is defined by
(to—D) 1 k-1
0— °
0’ mm) = oo | > [ —afy ) AT - )20 — a7 A — D) — Ul
j=1
tok—1
+ (@ —qhy) AN @by )+45 - A g, - ATl +245 - Ag),
J=to

(4.29)

One important property of the quadratic form 6,?0‘“(111, n) is that it is independent of
m,;andn,;foralla e, and 1 <i <¢,.

If t, = 2, that is, g is of type BCF, then we are done with defining the intermediate
quantum generating functions. Else, if t; = 3, that is, g is of type G,, then we need to
s0.)- We let $;1=(@,3i+1)
for all i € Z. Then, it is easy to verify that 5; , is a generalized Motzkin path for all i € Z,

define the intermediate quantum generating function Z(k 1)(Y

so the components of the vector
ng = (Ol,i' 02,3i+11 Ol,i+1' 02,3i+2)

form a valid set of initial data for the quantum Q-system. Hence, we define the quantum

generating function Z(k 1)(Y ) in the quantum torus ?501 as follows:

S0,1

A1) m,. .+ .
Zil,m) 501)_ Z qu (m,n) H |: ot,rtn qoz,l:| 023210 quQCI2zaQ11+m22‘ (4.30)
q

m©.1) (a,i)eJéO'l) a,i
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Here, the sum is over all vectors m®V = (m of nonnegative integers, and the

a,i)(a,i)eJ;"'“

quadratic form 5,(:)(m, n) is defined by

3k—1

k—
(1) 1
k (m,n)= Z[(qu Q1 j+1)° (@1~ j11) (23— 22 3]+3)] 2 ZUj+1+ Z(qZ,j_QZ,j-H)Z
“ =

j=1

1
+ Q%,l + qg,z +41,1923 + qi,&(qz,l + Ny 0) + My (2G5, — G0 — 2My 5 + 215 5).
(4.31)

Here, we note that in the case of type G,, we have § = 1. It is easy to see that the
quadratic form 5,(61)(m, n) is independent of m, ,.

The generating function Z( ) (Y )) is related to the restricted N-sum Ni’;)l(q_l) via
a constant term and an evaluatlon. Forany f € Z [63[1]((6_1)) we define the multiple

constant term CTg_,,  (f) to be the term of total degree O in each of the variables

a,1 C(EI
Q;;, -+ ,Q, ;. In particular, if we have a normal-ordered expansion
- Aao Aao
f - Z fa‘,a°,h‘,b° ao,OOo,Oa Oo 1

a® b*cZs,a°,boezd

where s = |I1,|,d = |I1,|, then we have

CTq, (f) = Z Far 200002002,

a*cZs,a*eZd

where ak = {’Q\a’k}

51'0, e ,6rr0 =1 to be the following Laurent series:

wer, for all k € Z. Likewise, we define the multiple evaluation of f at

Abo Ab.
flaozl = Z fa',aO,h',b°ao,lao,1

a* be*cZs,a° boczZd

The constant term and evaluation maps commute, and their composition gives

CTg,Mlgoz1 = D>, Jarac00- (4.32)

a*cZs,a°czd

To simplify our notation, we will denote the LHS of Equation (4.32) by ¢ (f).

We may now express the N-sum in terms of Z(k) (Ya ) as follows:

R (@ = g 5™ zR) 5 ), (4.33)
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where the constant term ensures the condition that qj = 0 and qj = 0, and the result

agrees with the definition of the restricted N-sum N, (0

va@ 1), as Qp(m,n) = Q;(m,n) —

%Lk(n) when g = 0 and g = 0.
4.3 Factorization properties of the quantum generating functions

(Y3,) fully

factorizes (up to a scalar constant dependent on n and A) into a product of the quantum

In this subsection, we will state how the quantum generating function Zikl)l

Q-system variables Q,; and their inverses. In order to make our notations more

compact, we will denote the product y,y; - - ¥j of variables y;, vy, ... \Yj by HJL:ZI y;. Next,

we define
j to v , Vo
5 Vo -1)+ Vi
P =] Q, o145 | Qosi | - (4.34)
i=1 \ \j/=1

and /ﬁv,o := 1 for all vectors v = (v, ien of integers and all positive integers j.

)

n

Vel
Jdacl,
When k = 1, we have the following full factorization of Z; (?go) into a product

of the quantum Q-system variables 6a,k and their inverses.

Lemma 4.3. The quantum generating function Zﬁll)l(?go) can be expressed as a product

of aa,,. (@el,0<i<t,+1)as follows:

D 5y o Y ser (Aaala+2 3 Aapna ;) 5-15-19  SO+150°+1
Z)\n(YEo)_q 2 a,ﬁer( wore =17 o(l)Zo,OZOOP IZol Zo,to ’

where £° + 1 (respectively £° + 1) is the vector (¢, + 1),y (respectively (¢, + 1),cp,)-

In order to prove Lemma 4.3, we will follow the strategy as in the proof of [6,
Lemma 5.3], with the appropriate modifications in order to take into account the effects
of quantum commutativity. As the form of the factorization formulas in Lemma 4.3
suggests, we would need to sum over m, ; for all « € I, and 1 < k < ¢,, and use the

quantum Q-system relations to simplify the expressions. We will first sum over m,,
forall @ € I, and 0 < p < ¢y, as q,, depends on m,, ; for all 0 < p < ¢t,. This

k)

leads to the following partial factorization of Z;,n(?%) as a product of the quantum

Q-system variables aalk (along with their inverses), and its intermediate generating

function Zi’f;lp ) (?50), where 0 < p < t.

Lemma 4.4. The quantum generating function Zg?l

factorization in terms of Zikf )

(?50) has the following partial
(?gop) (0 <p <ty and /O\w- eI, 0<i<p+1)as
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follows:

<k> — 0§ Zapere 2oy MapTai A YA (k,p>
Z®) (¥5) = g Zapen p z.lo(a i a,p)z Z P s, ).
Subsequently, we will then sum over m,, for all « € I, to obtain the full
factorization formulas in Lemma 4.3. As the proofs of Lemmas 4.3 and 4.4 are by and
large similar, we will only prove Lemma 4.3 in this subsection, leaving the details of the
proof of Lemma 4.4 to Appendix A. In order to prove Lemma 4.3, we will first need to

compute ?a,ta explicitly for all « € I,.. It is easy to see from Lemma 3.5 that we have

~—Cqy
Yor, = [ sy - (4.35)
BElr

Next, we need the following technical lemmas that will be helpful in proving
Lemmas 4.3 and 4.4.

Lemma 4.5. For any « € I, and i € Z, we have

o~

1
Ctl(]' al+1) o,i+1°

Proof. By Lemma 3.5 and (3.22), we have

-~ A 9 A~ ~ s 5
1 Yoz i+1 =V “ aa,1+1 ot,H—ZOoc,i Zy, o, i+1%a,ir
or equivalently, (1 — a'i )= Z;,;Za,i +1- The desired statement now follows. |

Lemma 4.6. Foranyw €I.and i, b € Z, we have

a+b va b Z—-17b+1
Z |: :| Yoz H—IZ =2, lZoz i+1°
a>0 a q

Proof. Firstly, we note that

a-+ b] o (PHxv) 12,1 — vix)~! ifb>0
X =— =
(i Voo M%7 (1 = vitb+lx) ifb <o.

i

120z dunp L0 Uo Jasn xe4-Ateiqr Ansiwau) Ad /81.6885/508/2/1.20Z/3I0Ie/ui/woo dno olwapese/:sdpy Woly pepeojumod



832 M. S. Lin

This implies that for any integer b and any two variables x,y satisfying the quasi-

commutation relation yx = vxy, we have

z [a + b} Xayb — y—l(y(l —X)_l)b+1,

a>0 a v

where the right-hand side is considered as a formal power series in the variable x.

Now, it follows from Lemma 3.5 that we have Z, Ya = WY, LHZ(“ =
q¥ MH . In particular, by setting v = q, x = ?a i1 and y = Z,;, we see that the
de51red statement follows from the above equation, along with Lemma 4.5. [ |

Proof of Lemma 4.3. For convenience, let us set p = t; — 1. When k = 1, we see that

Gy, = Ly for all @ € I,. Thus, it follows from Equations (4.8) and (4.11) that we have

q; = ¢* + C'm} —n; + D'mj, (4.36)
o.(p) _ £° 04000 00 .
q, " ={"+C°mj —nj + t,Dm;y . (4.37)
Next, we have
®) _ 1 o o po . e e . t po
(m,n)_%(e-Ae + 2% A%L* 4+ 2¢ -A@). (4.38)

We now use Lemmas 3.5, along with Equations (4.35), (4.36), and (4.37) to rearrange the
terms involving the Q ;'s in the quantum generating function Z(1 P) (g (Ys, ) as follows:
a, gj’o_% o'f;g a% =0, fopa‘% o" 0%, = Mo oy, ;g vha,Ca; 0l,ak,. 4.39)

Next, we let TI, = {a;, 09, -+, a5} and I, = {B;,B,--- ,Bz}. We use Lemma 3.5 and
Equation (4.38) to deduce that

ope A @) 1 5 o gt

55—t — g @Pmn) g5 3op Auald || o / ’

Q,;,.0,7a 0 =q 25 Sty e %.p alto [1(a 8,001
Jj=1

(p) (m n)— aelr Agala ZZ. 2000 (4:.40)

Finally, we use Lemma 3.6(6) and (7) to deduce that

N

m; e go Amo{ tota Amﬁ IAZﬂ
V. ovmzZe 7t H( Teto gl lP)H( V2,0 ) (4.41)
i=1 j=1

120z dunp L0 Uo Jasn xe4-Ateiqr Ansiwau) Ad /81.6885/508/2/1.20Z/3I0Ie/ui/woo dno olwapese/:sdpy Woly pepeojumod



Quantum Q-Systems and Fermionic Sums 833

We now use Equations (4.39)—(4.41) to deduce that

S
—~ ~n? ~n° ~My: .
Z;ll,f)) (Y§0 ) — q_% Zaelr Aaafaa tlo anll H Z [mai,to + Zaii| Y;nt;l,to/z\i""zp (442)
, D o, o, i.to ir
i=1 Maq;,1,20 a;,to q
d
Mmeg. Lo | ~mp.1dg.
m Bl “B;.0
Jj=1mp;1>0 Bj.1 g
_1 . .
Asq % ety Maala jg g constant, we may sum over each Mg, 1o and mg. 1 foralli=1,---,s

andj = 1,---,d and apply Lemmas 3.5, 3.6(1) and (2), and 4.6, to rewrite the RHS of
Equation (4.42) as

S Awale A0 ADS 51 Tl
q 25 Lacly o 0(Oo,l ao,l H Zoti,pZOli,to

d
=1 Jj=

~ 1 ~dp+1
_1 5%F
y
1

Ly Aot An;o A0 5 151500 +150°+1
=q % oy T uao,l Qo,lz',pZO,OZo 1 Zo,l

_ 1 ~ 1 ~_ ANy ~n® ~y0 ~pe
e A S LR Lo ar el 49
By Lemma 4.4 and Equation (4.43), it follows that we have

1 o~
z) Y5, =

Pt

°,0

.l

p L]
1 1 D o~ ~n* o~ ~N: ~n® ~j0 ~pe
g Zapety (Maatat2hapiose) =~} Tapens Ty Aapmaig-1 ( a“;)z;éa.f{’ QAZe 'z

=1

By commuting Z)‘é to the immediate left of ( ?:1 a:lii) using Lemma 3.5, we obtain the

- _1 p A
remaining factor of g~ % 2ty pele Zim1 AapTi gnd Lemma 4.3 follows. |

In the general k > 1 case, we have the following lemma.
Lemma 4.7. For k > 1, the quantum generating function Zikl)l

a product of 6a,i (@el,0<i<t,+1)and Z;k;(},)o)

(?50) can be expressed as

(?51) as follows:

D o L opme151s 5 5 D) S
Zﬁwl?l(Y_’O) =q 5 Za,ﬁelr lel Agpn, lLZ.,éZo,(l)Pn,IZo,IZ Z( )(YEI)

S 1043 nM

The proof proceeds in a similar fashion as that of Lemma 4.3, which we will

describe in detail in Appendix B.
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Writing the solution of the quantum Q-system as aaln(?gj) to display its
dependence on the initial data ?gj, we shall now use the following translational

invariance property of the quantum Q-system.

Lemma 4.8. For any solution 6%”(?6) of the quantum Q-system (3.20), we have
Oa,n (YE]) = O(X,n+taj(Y§O)

forallea eI, and n,jeZ,.

Proof. Firstly, we would like to mention that Lemma 4.8 is proved for the simply laced
case [9, Lemma 5.5]. We will focus on the case where g is of type BCF, with the arguments
for the case where g is of type G, being similar. In this case, we have t, = 1 if o € IT,
and t, = 2 if « € I1,. We will prove by induction on k € Z, that the above equation holds
for all « € I, and n € Z, satisfying n < t,k + 1, with the base case k = 0 following
immediately from the definition of ?gj and aa'n(?gj).

Suppose that the statement holds for k = m, where m € Z_. We would like to

show that the statement holds for k = m + 1 as well. By induction hypothesis, we have
Qoms5) = Qo (Vi) Qoma1 (V) = Qe V) (4.44)

foralle € IT,, and
aa,Zm(?Ej) = aa,2m+2j(?§0)l aa,2m+1(?§j) = aa,2m+2j+1(?§o) (4.45)

for all o € I1,. Let us first pick some o, € I1,. We let [T, = {8 € I1, : B ~ «a,}. By (3.21),

we have

v v A v.\-2 .7 ST ST ) V. \.
Vo a1 ¥5) = Qg 2mi1 V) 210,y (3% Q1 (¥ [ Qp s (Ts): - (4.46)
Belly,

By combining (3.21) and (3.22) and (4.45) and (4.46), we deduce that

Oa,2m+2 (Y§j) = Oa,2m+2j+2(Y§0)' (4.47)
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Likewise, by observing that

, R -
Yo 2m+2(¥5) = Qo 2mi2(¥5) 72 Q) i1 V)™ ] Qpamisz(¥s),
Belly,

we may deduce in a similar fashion as before that we have 5a'2m+3(§{\§j)

Qa,2m+2j+3 (YEO)-
Next, let us pick some «, € I1,. We let 1, ={B €Il : B ~ «,}. By (3.21), we have

Yo mi1(¥s) = Qo mi1(¥s) 2 10y amia ¥s) 7 [ Qpmin ¥s) - (4.48)
Belly,

By combining (3.21) and (3.22) and (4.44) and (4.48), we deduce that

O(x m+2 (Ys]) oc m+j+2 (Yso)
This completes the induction step, and we are done. [ |

Using the translational invariance property of the quantum Q-system, along

with Lemmas 4.3 and 4.7, we get the following theorem.

Theorem 4.9.

k
Aaale+2 X8 Aapng i) 5-15-1 SO+150°+1
( : )Zo,OZo,OP kZ VA

k o ety
Z()(YSO)—q 252,‘351 otok

As an immediate consequence of Lemmas 4.7 and 4.8 and Theorem 4.9, we have

the following corollary.

Corollary 4.10. For all 0 <j < k, we have

A, n(l) s])

As an immediate consequence of Corollary 4.10, along with Lemmas 4.3 and 4.4,

we have the following corollary.
Corollary 4.11. Forall0 <j<k,and 0 < p < t;, we have

Z(k) (Y ) = q B Za Belr Zt lA“ﬁn""Z IZ 1PnJZoJZo tojz(k (]Ii(Y )’
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and

j toj+p .
&) & _ _%Zﬁel > el‘[ozj‘:lAaﬁna,i"‘Z eMe 2im1 DoBNoi)5—-15-195 5 5 (k—j.p) 5
Z; 2(Y5) =q ’( “ ' e )Z-,OZo,OPnJZo,jZ-,toJ'JrPZz,n(i) (¥g,,)-

4.4 Proof of Theorem 4.1

We are now ready to prove Theorem 4.1. To this end, we need a few auxiliary lemmas
from [9, Section 5.5]. We will omit the proofs of these lemmas as they follow immediately
from the proofs of the analogous lemmas in [9, Section 5.5] with minor modifications.
We will let A denote the ring Z,[Q;, a_l,aaﬂl and A, denote the ring Zu[{aﬂ,ﬂ}#a, a(dfl]

foralla €1I..

Lemma 4.12. ([9, Lemma 5.9]) Let ay, -~ ,00,, € I, iy,---
. e A.
]

i, € Zand my,--- ,m, € Z.

-~m
Then, H}Ll Oaj],

1

The proof of [9, Lemma 5.9] would still be applicable here, since (A)ayl and aﬁ',l

are on the same quantum torus for all distinct «, 8 € I.. by Lemma 3.5.

Lemma 4.13. ([9, Lemma 5.12]) Forany S €I, and f € Zq[aéd]((al_l)), we have

(2:32:3084,1 < F) | =0.
o Qo=1
Lemma 4.14. ([9, Lemma 5.14]) For all« € I, and n € Z, we have a;}l € Aa((a(;ll)).

Proof of Theorem 4.1. We shall prove by induction on j = k,---,0 that the sum in
equation (4.5) is unchanged if we restrict the sum to sets of vectors m of nonnegative
integers such that Qy; =0 forall « € I, and i > t,j. The base case j = k holds since we
have q,; x = £, > 0 for all @ € I,. Next, let us assume that the statement holds for j,

where j > 1. Let p = t; — 1. By Corollary 4.11, we have

76 ¥z, (4.49)
. . toj—1
1 J—1 toj—1 .
-3 Z r Zu ° Zi: Aaﬂna,i""zm . Zi: Awﬂna),i >—15-1p Ani ARG
=q ° peir (Ben. T e &=t >Zo,OZo,OPn,j—1 [T a.i)z,Z 0
i=to(j—1)+1

a® (-1.0) nG-1 my;+q,;| 29, 1~—q>P ~q}; ~q

Qi (m nY—Y) o,i a,i toj—1 dy toJ J

x D> g [1 Quig Loy Qutgj-1%4-1-
q

mG-1p) (a,i)ng;l’p)
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Let us fix any g € II,. By induction hypothesis, we may restrict the sum in Equation
(4.5) to q,; > 0 for all « € I, and i > t,j. A generic term of the sum in Equation (4.49)

(apart from the coefficients involving g) has the form

tOj_l n® _qo C[O'(p) q’ qo
PSP nt\ 5 o P AT A
S=2,0Z,0Pn;j-1 I[1 Qa.i|ZZwi10. Q.0 Q2,0
i=to(j—1)+1

When qp; <0, it follows from Lemmas 4.4 and 4.14 that S has only nonnegative powers
of Qg ;. By Lemma 4.13, it follows that S|g _, is a Laurent series of some variables
a;lll with @ # B, with coefficients that are in particular polynomials of 5/3,1. Due to
the prefactor 2:32;5 it follows that the exponent of aﬂ,l in all terms of S|g,_; are
positive. Consequently, we have ¢(S) = 0. So this shows that the sum in equation (4.5) is
unchanged if we impose the restriction gg,;_; > 0. We now repeat the above argument
once more, to deduce that the sum in Equation (4.5) is unchanged if we impose the
restriction dp; = 0, where g e I, and i > tﬁ(]’— 1). This completes the induction step, and

we are done. [ |

In particular, for a fixed vector n = (n, ), jcy Of NONnegative integers that

a€ely,
parameterizes a finite set of KR-modules over g[t], a dominant integral weight A of g
and a sufficiently large integer k, we have that Mi];)l(q_l) =M, ,(qg"") and Ni’?l(q_l) =
N, ,(g™"). Thus, it follows that Theorem 1.2 holds. Together with [9, Theorem 5.1], we

have the following theorem.

Theorem 4.15. Let g be a simple Lie algebra, n = (n,;),c ey be a vector of
nonnegative integers that parameterizes a finite set of KR-modules over g[t], » be a

dominant integral weight, and k be a positive integer. Then, we have
M; n(@ ) =N, q(@ ).

In particular, Theorem 4.15 gives a complete characterization of the graded
characters of the fusion products of Kirillov-Reshetikhin modules in terms of the
quantum Q-system via Equation (4.33). More precisely, it follows from Equation (4.33)

and Theorem 4.9 (along with [9, Theorem 5.17] in the simply laced case) that we have

_ -4 (L Aaala+2>3 . Agsliy i ~ 1\~ ~tg+1
M)L'n(q 1) =q 26( (n)—"_Za,ﬂEIr( + Zl_l B, ))¢ H Za,(l) Pn H Z'B/S"r ) (450)

aelr Bel-
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where
> a1 ANa,tg—1 na ta Ana Jta+1 NN, 2ty -1 Ny, 2ty
P, = H O(x,l H Oat -1 H Q H ozta-:l ’ H OaZta—l HOaZt -+, (4.51)
aell, aell, ael, aell, aell, o€l
Aa,f} . . : d
L= > L min(t,Jj, tghng,ng;,  an (4.52)
a,pBelijeN ¢
Z, = lim Z 4.53
p k—o0 Bk ( )

Here, we briefly remark that a similar reasoning as in the proof of [9, Theorem 5.17]
shows that Eﬁ is well defined as a formal power series of /O\/gll with coefficients Laurent

polynomial of the remaining initial data of ?30

5 An Identity Satisfied by the Graded Characters of KR-Modules

Our goal in this section is to prove Theorem 1.3. To this end, let us fix « € I. and
m € N. In order to derive Theorem 1.3 without considering too many cases, we would
need a slight generalization of Equation (4.50). To facilitate this generalization, we

will allow ourselves to consider vectors N = (1, ;) 4cr, icz, Of Nonnegative integers that

a€ly,
parameterizes a finite set of KR-modules over g[t]. We could view n as the extension

of the vectorn = (n ien Dy the vector ng = (n, o), Also, we shall make the

a,i)aelr,

following definitions:

- A . ..
L) = Z of min(t,j, tg)n, Mg (5.1)
a,pelijeZs %
H On" 0P, and (5.2)
acl,
- — F@)+L@A S g+l
M, (g =g % Caerr Aaa2a+2F(n)+L(n))¢ H Zoz,%) H 7t ) (5.3)
a€ely Bel
where
F@) = D Ayn,, (5.4)

a,fely i jely

It is easy to see from the definitions of L(n) and L(fi) that we have L(@) = L(n).
We claim that M, 5(g7') = M, ,(g~!). Indeed, we may regard (Had Z_l)Pn

Hﬂdr /Z\éﬂﬂ as an element of Zu[aoﬂl((afl)) by Theorem 4.11. Thus, it follows from the
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definition of the function ¢ that we have

_ -3, Aqalat+2 P2 Agpng ;) +L(M) ~ 1\~ ~tg+1
M)Hn(q 1) =q 235 [Z ,/3€Ir( ZL 1 B ) ]¢ H Za,(lj Pn Zﬂﬁ
a€l, Belr

— q_%[zaﬁdr (Aaaea+2 Z?il Aaﬁna,i)+i(ﬁ)]¢ H AZ%O H /Z\(;}) ﬁn H /Z\/(;[H,l

a€ly a€ly Belr

1 0o ~
_ 75|, r(AW(‘Y"'zZ‘: AapNg,i)+L() -1 Ao | D Stpt+l
—gq za[ el i=0 ]qj | | ZO['0 | | ano P, Zﬂ

ael, acly Belr

=M, 5(g° "),

where the 3rd equality follows from Lemma 3.5. The equality M, ,(q~') = M, z5(g ")
is consistent with the fact that the fusion product of a cyclic glt]-module V with the
trivial glt]-module is precisely V itself. Hence, we may regard M)\'ﬁ(q_l) as the graded
multiplicity of the irreducible component V(i) in F3}, where F} is the corresponding

fusion product of KR-modules parameterized by n. More precisely, we have

M, 5(q) = > dim Hom(FZ[ml, V(3))q™.

m=0

Our next step is to express the terms (without the coefficients) that appear in the
quantum Q-system relation (3.20) as some ﬁﬁ. To begin, we need to rewrite our quantum

Q-system relation (3.20). We first observe from Lemma 3.5 and (3.22) that we have

o) Awa )2 v A—1 _ ,—Aaa -1 N2 5y
Oa,m+1 =V aa,m (1 - Ya,m) Oa,m—l =V Oa,m—laa,m (1 -V Ya,m) ’
or equivalently,
|Cap|—1
Ao ) 0 _ N2 5. =
v Qa,m—loa,m+1 - Oa,m -V H H O,B,Ltﬂ(m+i)/taJ . (5.5)
B~a i=0

Next, we let d = (dg,i)per,,icz, be the vector that corresponds to the term 5a,m71’0\aym+l,

where

dg i = 8p(Sim_1 + 8ims1)- (5.6)
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2

o,m» Where

Next, we let s = (sg ;) gcr, be the vector that corresponds to the term Q

,i€Z+
Sﬂ,l - ZBaﬂBi,m‘ (5.7)

Finally, we will let k = (kg,i) ger, icz, to be the vector that corresponds to the term

‘Caﬁl_l

:H H aﬁ,uﬁ(mi)/tar

B~a 1=0

In order to define the numbers kﬁ,i' we would need to consider the following cases.

Case 1: either « # y’ or « = y’ and ty|m. In this case, we define
kg ;= —8p~aSitym/t, Capr (5.8)

where the function d4., is equal to 1 if 8 ~ « and is equal to 0 otherwise.
Case 2: @ = y’ and t; /m. Let us write m = tyn + p, where 0 < p < t;. In this

case, we define

im’
for all roots 8 # y, and
ky,i = (%o _p)si,n +p8i,n+1' (5.10)

It is easy to see from the definition of d and § that we have 6a,m_16alm+l = ﬁa and
a2, =Ps.

. . Ca -1~
It remains to write :Hﬁw ]_[‘ sl

i=0 Qg (t5m+i)t,)+ as a scalar multiple of Pg. To
this end, we first observe from Lemma 3.5 that in the case where either o # ' or o = 3’

and ty|m, we have

[Capl—1
:H H Qg 1ty m+iy /1 )= Pi:
B~a =0

It remains to handle the case where « = y’ and ¢, /Am. To this end, we would need to
consider subcases. Let us first consider the subcase where g is of type BCF, in which

case we have t, = 2 and p = 1. By Lemma 3.5, we have

|Capl—1

. 5 s S 5—Cap 3 X5y Mir D,
A1 11 Qsigpmesesi=v 2 Quunlynir [] Qpamsy = v2&s 7By
B~a  i=0 Bell,
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Next, in the subcase where g is of type G, in which case we have t; =3 and p = 1,2. By

Lemma 3.5, we have

[Capl—1
. ) . 27”3-PAP _ .23
H H Oﬂ,Ltﬂ(eri)/t‘,J'— v Ol,n Ol,n+1 = V°Pg.
B~a i=0
We conclude that
[Capl—1
:H H Oﬁ,l_tﬂ(m+1)/taj:= Vda'mPi;y (5.11)
B~a i=0
where
0 ifa #y ora =y and ty|m;
Oam = 13 gy N, ifa=y' 1ty fm, and g is of type BCF; (5.12)
2 ifea =y',ty fm, and g is of type G,
and hence (5.5) is equivalent to
vhaa Py = Py — yO+oempr, (5.13)

As the map ¢ is linear, it follows that we have

Aga >5—1 13 Stp+1
phaa g H Z o | Ps H Z,
aely Belr

=o((T1Z:5 )2 T12" ) - e [ TT12Z:0 | B [T 25 ).

ael, Bel, aely Belr
or equivalently,

1 (9F@4+i@ P 1 (2F®+IE
o (F@+L@+2A00) M, 3(q") = g @FOTO, (g 1 g¥ (2P ()+L0)+200,m+25)

M, (@),

(5.14)
where we have factored out q% Zery Aeale on hoth sides of the equation.

It remains to simplify Equation (5.14). To this end, we would need to compute

the exponents that appear in Equation (5.14) explicitly. Our 1st technical lemma involves

the relation between F(d), F(8), and F(k).
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Lemma 5.1. For all « € I, and m € N, we have
Fd)=F@® =8+ F).

Proof. The statement follows immediately from the following equalities:

oo
?(a) = Z ZAﬂwdﬂ,i =2 Z Ay

w,Bel 1=0 wel,
o0
F® = 2 > MpuSpi =22 Moo
w,Bel 1=0 wel,
. o0
Fly= > D Apokpi=— D, Cuphpo=—8+23 Ay,
w,Bely i=0 welr,f~a wely

where we used CA = §I in the last equality.
Our next technical lemma involves the relation Z(&) and f@.
Lemma 5.2. Forall « € I, and m € N, we have
L) =L6) — 2A,,.
Proof. The statement follows immediately from the following equalities:

- 3 A . . .
L) = Z % min(tgj, t,0)dg ;d,,
B.wel i jely B

= Ay minim—-1,m—-1)+2min(m—-1,m+ 1) +min(m+1,m+ 1)]

= (4m — 2)A

oo’

~ A
L(S) = z % min(tgj, t,0)s4,;S, j = 2° A ye Min(m, m) = 4mA,,,.
Bwelyijel B

Our final technical lemma involves relating f(s) and f(ﬂ) + 20, -
Lemma 5.3. For all « € I, and m € N, we have

L) + 20, , = L) — 2ms.
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We are now ready to prove Theorem 1.3.

Proof. of Theorem 1.3 By Lemmas 5.1-5.3, we have
2F(d) +L(d) + 27, = 2F®) +LE) = 2F &) +L(k) + 20, ,, + 25 + 2m3,
so Equation (5.14) reduces to
M, 3 ) =M (g ") —q "M, z(q "),

or equivalently,
M, 3(@) = M, 5(@ —q "M, (9. (5.15)

As Equation (5.15) holds for all dominant weights A, and M, 5(q) is the graded

multiplicity of the irreducible component V(}) in %, we have
ch, 73 = chy 75 — g™ ch 7.

Theorem 1.3 now follows from the above equation, along with the definitions of Ei S,
and k. [ |

Remark. In a related work, Chari and Venkatesh [5, Theorem 4] showed that when m
is a multiple of ¢, there exists a short exact sequence of fusion product of KR-modules

that extends the Q-system relations (1.1):

0 — 1,,K}

a,m

—> KRy KRy ,p —> KRy g KRy g — O,

o,m

where 7}, is the grading shift operator on the set of graded g[t]-modules by k. By applying
the character map to the above exact sequence, we see that the identity of graded
characters of the fusion product of KR-modules is the same as that as the identity stated
in Theorem 1.3 in the aforementioned case. This implies the short exact sequences of
fusion products of KR-modules obtained in [5] are consistent with our quantum Q-
system relations. In light of Theorem 1.3, we expect that the above short exact sequence

of fusion product of KR-modules should exist in the remaining cases.
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6 Conclusion

In this paper, we have proved the combinatorial identity Mkln(q_l) = Nkln(q_l)
(Theorem 1.2) for all non-simply laced simple Lie algebras g, which together with [9,
Theorem 5.1], shows that the identity holds for all simple Lie algebras g. This was done
by defining appropriate quantum generating functions that satisfy some factorization
properties, and writing the g-graded sum Nkln(q_l) as the constant term evaluation of
these generating functions, which would then allow us to prove the desired identity. As
an application, we obtained an identity of graded characters of the fusion product of
KR-modules over the current algebra g[t] and showed that the short exact sequences
of fusion products of KR-modules over g[t] obtained by Chari and Venkatesh [5] are
consistent with our quantum Q-system relations.

Here, we would like to remark that there is a generalization of the conjecture of
the g-graded fermionic sums, conjectured by Hatayama et al. in the sequel [13], to the
twisted case as well. In the same paper, Hatayama et al. gave a combinatorial definition
of the KR-modules for the twisted quantum affine algebras and showed that if the
restricted characters of these KR-modules over the twisted quantum affine algebras
satisfy the twisted Q-system relations (which first appeared in [23]), along with some
other asymptotic conditions, then the multiplicities arising in the tensor product of
KR-modules over the twisted quantum affine algebras could expressed in terms of an
extended fermionic sum Mx,n(l) [13, 4.20] (here, Mk,n(q_l) plays the role of NV, ,(g7?!) in
the twisted case).

Subsequently, Hernandez [16] showed that the restricted characters of these KR-
modules over the twisted quantum affine algebras do satisfy the twisted Q-system
relations, while Okado et al. [25] established a bijection between rigged configurations
and crystal paths in the non-exceptional cases. These two results (along with earlier
results by Hernandez [15]) together shows that conjectural identity [13, Conjecture 4.3] of
the g-graded fermionic sums M, ,(g~!) = M, ,(g~!) holds at g = 1 in the non-exceptional
cases.

In another development, Williams [26] extended the results of [7] and showed

2)

that the twisted Q-system relations of type # Agn could be interpreted as cluster algebra

mutations as well. Similar to the untwisted case, these cluster algebras admit natural
deformations as well, so we could obtain the quantum twisted Q-system relations
of type # Aézrz Using these quantum twisted Q-system relations and the methods

developed in [9] and in this paper, we believe that the conjectural identity of g-fermionic
(2)

on and we will address

sums M, ,(qg}) = M, ,(g~!) holds in all twisted cases of type # A
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this conjectural identity M, ,,(g~!) = Z\N/Ix,n(qfl) in these cases in a future publication. We

will also address the A;zrz case as well in a future publication.
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A Proof of Lemma 4.4

As before in the proof of Lemma 4.3, we would first need to compute ?a,p explicitly for
alle € 1, and 1 < p < ¢, — 1. Firstly, we observe that in the case where « # y/, it follows

from Lemma 3.5 that we have

-~ ~—Cop
Yop=110Qss" (A.1)
BElr

Our next goal is to compute ?V’,p explicitly for all 1 < p < t; — 1. To this end, we need
to consider cases. Firstly, when g is of type BCF, we have t; = 2, in which case the only

integral value of p for which 1 < p < t; — 1is p = 1. By observing from Lemma 3.5 that

we have
[Capl—1
-2 . o) ) —
clazi -] IT Cpupasisms:] =0
B~a i=0
it follows that we have
- Ayy o~ ~Cup
Y,1=q7%Q,00,, [] @5;" (A.2)

Next, when g is of type G,, we have t; = 3, in which case the only integral values of k

for which 1 < p <t,—11is p =1, 2. For both values of p, it is easy to check that we have

v 233-PAP H-2
Yop=49"Q19 Q1,05 (A.3)
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A.1 Proof of Lemma 4.4 in the case where g is of type BCF
Firstly, it follows from Equations (4.7), (4.8), and (4.11) that we have

a5 — 2q] + q3 = C*m] —nj, (A.4)

a5 — dg D _ —De;. (A.5)

Next, by Equations (4.27) and (4.29), we have

1 { ] (o] { ] { ] o (o] { ]
Qy(m, -0} (m,m)= (2q1 A*(qi—qb) + 2q3 - A2q} —q3) — U + 2(A°q3 +Aq)) - De, ).

(A.6)
By letting ¢; = 2(A°qg + Aqg) - Dey, ¢, = 2q] - A*(2q] — q3) + 245 - A(2q] — 43), ¢3 =
=247 - A*q) + 2 e, Awada,1(Ge1 + 1) and ¢4 = —Uy, it follows that from (A.6) that we
have
1
%(C1 + ¢y +c3+¢y) = Qp(m,n) — Ok (m n) + — z Aya901(Gyq + ). (A.7)
otel'l

We first use Lemma 3.5, along with Equations (A.2) and (A.7), to rearrange the terms

involving the 5a ;'s in the quantum generating function Z(k) 1(Ys5,) as follows:

O._(IIOOO ?OQ?qul+Del — q—z% ODela qOO qOOql O(OIIO' (A8)
e A e e _ ~m® ~n°®—2q° .

O.,?O _ (q%amo%l) m, Y:‘,lll 01.1,11 q1+q2, (A.9)

0 0, = o B8, 10

. I~ —2q
Oqloa ql qé (CI1 A q1 Zael’[. Aaozqa 1) H O aO O *
i=1

_ g o [[2 e, (A1)

Y A —~ —~ ~m® ~N® ~_°
OoD,gl (q% Q)/,OO)/,I)_my/'1 Y:I,lll 01.111 Oor(llo (A.12)

hyy s . o,(1)

Q, 00,1 ”Y.,la Ool

1
7§(C47Awm

~De; De1
v Ooo Q,; (@
(1)
,L ~n$ —q°
— 4]7“11 1 0
= 25 . 1

.I

=4

1 c Anl _qo (1) 1
— 4 y
=q ® o ol
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Finally, we use Lemma 3.6(6) to deduce that
. L ’*q q
=m i 1 o - ai,l
v (z% o ) I1 ( e e Qs ) . (A.13)
i=1 i=1

By combining Equations A7A13, it follows from the definition of Z(k) (Y~ ) that we have

o , 1 e 0,(1)
Z(k) (Y = Z q% M) 35 > e, Aeae,1(Ga,1+1) H |:ma,z + qol,l:| al;lll Q. ;10
q

mO >0 (a,i)ejéo'” My i

N
m,. + . o oy (2 ~q5 ~q3
1> [ q} Tz et ) afal | e
q

i=1mg;120 a1
As 5,(61)(m, n) — % 2 wer., Aoale,1(Gy,1 + 1) is independent of m,, ; foralli=1,.---,s, we
may sum over each m,_, foralli=1,---,s and apply Lemmas 3.5 and 4.5 to write the

RHS of (A.14) as
3 mn) Myi+ Qo Anl 5 qg(l) 7 q“’ qu Q (A.15)
> gt ] [ |
m©D>0 (@ e wh g

Finally, we rewrite expression (A.15) using Lemmas 3.5 and 3.6(1), (3), and (5) to deduce
that Z(k) (Y~ ) is equal to

1 m. -+ . e ® gD ge o
gt Zepen Aoz 1007, S gk e ] [ q] 0,5'0,1" 0300
q

m(.1) (Ot,i)GJéo'D o,l

Lemma 4.4 for the case where g is of type BCF now follows from the definition of

k,1
Z( )(YSOI)

A.2 Proof of Lemma 4.4 in the case where g is of type G,

In this case, we have ¢, = 3. We will first handle the case when p = 1. Firstly, it follows
from Equations (4.7), (4.8), and (4.11) that we have

G0 —qi'y=-my,, and (A.16)

Q21— 2q2j+Qzjp1 =2My; — Ny, j=12. (A.17)

This implies that q; o(q2; — 2G5, + g2 3) = (q(lly()) —my1)(2my 5 — Ny ,), from which we
deduce that

(€9 (€Y
41,092,3 = —q1,0921 T 291,092,2 + 247 oMo — d; gNg2 — 2My 1My 5 + My 1Ny ,5.  (A18)
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Our next step is to compute U; explicitly. To this end, we observe thate; = —2m, ;—m, ,,

This implies that
_ 2 _ 2 _ 2 2
Ul = 5[( 2m2'1 mzyz) + (mzll mzlz) + (mzyl + 2m2'2) ]

+2[(=2my,; —my o)y + 1y 5) + (Mg — My 5Ny,
2 2
=2(2m3 +2my My 5 +2M3 5 — 2My 1Ny — My Mg 5 — My oMy 1 — 2My 575 o).
(A.19)

Using the fact that De; = 2m, ; +m, ,, it follows from combining Equations (4.27), (4.31),
(A.18), and (A.19) that we have

2
— —1) .
Q(m,n) — Qp (M, n) =2q,,(q21 — 4d22) +2491,0(292; — qo2) + Z B —a)B =))my;q,0
Ja=1
1 1
+2my (Mg =Ny 1) + My (Mg — 2‘1(1,()) —2G3,+422) — q(1,()3q2,1-
(A.20)

. 2 .

By letting ¢; = 37,18 — )8 — )My Gy 0, C2 = 2451 (G271 — da,2) + 241,0(2G2, — d22) +
1 1

42,1(qz,1+1), c3 =2my 1(My =Ny 1), Cq = mz,z(nz,l_2‘1(1,())_2‘12,1"“12,2)' and ¢5 = _q(l,g)qZ,ll

it follows that from Equation (A.20) that we have
— —1
¢ +cy+c3+cy+c5=0(m,n) — O}C )(m, n)+¢q;,(qy; +1). (A.21)

We first use Lemma 3.5, along with Equations (A.3) and (A.17) to rearrange the terms

involving the O ;'s in the quantum generating function Z(k) (Y ,) as follows:

quzoa q100q215?7321+m22 — q—c102m21+m2202¢I200 moagz(,)l, (A.22)
Qz 220 = (¢°Q} 001 1)_mZIYmZIOn21 21t (A.23)

-2G21+922 R fho Q21732921 2 + —2qg2.1+ "—Q1,0"QZ,1"—2112,1+612,2
02 | Q a? 021 =q (q1,0+42,1)(—2492,1 lZ2,2)Q 02,0 02'1

=q 20, °Z% 0, ! aq” (A.24)
Next, we deduce from Lemmas 3.5 and 3.6(8), along with Equation (A.16), that we have
a1 (@?Q2 00, ) M Y, QY5 0y P (A.25)
—q C3+2’”2102m210’"“(q Q2,0 ) MY, 055 A, %o
- R A e,

m21

_ q—03022110 q10Y
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Finally, it follows from Lemmas 3.5 and 3.6(8) that we have

(1) (1)
Sm22 AN21 A 91,0 5M2,1592,1 A—92,11492,2 —Cca A2 AT D,05M2,154921 A—492,1192,2 AM2,2
Q Q Ol,l Y2,1 ZZ,O Q =q 6402,1 Ol,l Y. ZZ,O 02,1 Q (A.26)

1,0 “2,1 2,1 2,1 1,0 -
a*q(ll,()) ?mz,l’z\q;la—ib,l _ —05’177712,1’2\42,16—(12,16*‘1(11,3) (A.27)
11 1 ¥21 420U21" =4 21 %420 Y21 “11 - -
By combining Equations (A.21)—(A.27), it follows from the definition of Z;kl)l(?go) that we
have
k) < (D) N Myi+qu;| An
Z0E) = D> | g% mmma@ath T [ ot DRt gy (A.28)
mOD >0 (a,i)eJéO’l) myi q

My +qo1 | Sma15921 53-92.1 ’\_q(11())"f122’\Q1 1+ma2
X Z |: Yy17 254 Q5,1 Q,,70;70Q;
my, q

mgz,1>0
D A
As Q; (m,n) — g,,(q; + 1) is independent of m,,, we may sum over m,; and apply
Lemma 4.6 to write the RHS of (A.28) as

PSRN —(1) m,:+q,;| ~—g,; ~—a ~g,,~

n215-1 Q. (mmn) H a,l a,l q2,1 1,0 42,2 /91,1+M2,2

Q,71 Z5 022, Z q Q,,70,,70,707 .
q

m©O>0 (a,i)eg ™V Ma,i

Lemma 4.4 for the case p = 1 now follows from the definition of Z;];'ll)('\go]), with
the remaining factor of g~#22"21 obtained by commuting 25 (1) to the left of 5%1 using
Lemma 3.5.

Finally, we will deal with the case p = 2. Bearing in mind that we have g, +
Moo =24y, — G 3+ 2m, ,, it follows from Equations (4.27) and (4.29) that we have

—(1) —(2)
Q. m,n) — 0 (M,n) = 24, ,(ds5 — dz3) +a\'9(2a5 — Gz3)

1
+mMy5(2q21 — Gap + 2q(1,()) —2my 5 +2n,,). (A.29)

. 1 1
By letting cg = m, 5(2951— G322 ~|—2q(1,())), C7 =2455(qz, —q2'3)+q(1,())(2q2'2 —Qq23)+422(q,+

1) and c¢g = —2m, ,(mM, 5 — N, ,), it follows from Equation (A.29) that we have
C + ¢y + Cg = Q) (m,n) — G (M, 0) + Gy (@5 5 + 1) (A.30)

We first use Lemmas 3.5 and 4.5, along with Equations (A.3) and (A.17) to rearrange the

. . ~ . . . D
terms involving the Q, ;'s in the quantum generating function Zﬁkn )(Y§o ,) as follows:
A CI21"*‘1(11())AQ22"m22 AM2.2 A QZl"*q(llt))"Chz
—q2, , , 2 _ _—Cg 2492, , ,
Qy Q11" Q1 Q10" =q Q1" Qy Q7 Qy (A.31)

AN=921 _ 27 A2 \—MaavM22A/N22-292,2+423
Q,," =(q°Q,,07,) Y,,7°Q,73 , (A.32)
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~-2 + q q 2 +
02 z‘122 q2301 lloafnz +2q22)( 2q22+q23)a lloafhza 42,2+42,3

q"
ey A Y
- a0, 7, o, 32

Bearing in mind that q(l) q(lz()) = —2m, ,, we apply Lemmas 3.5 and 3.6(8) to deduce that

m22 —mp 2 pM22 7 nzz qu_ —cg+2m3 , AM2232M22 . 273 A2 \—mMa2
Ca 0100 1) Y,,°0,5Q,;" =q 220, " Q; ,77°(q°Q,001,1)
(2)
SMm22AN22 A3 11,0
Y2,2 02,2 Qll
q—Cgszzanzza q10

=g =Q,%'Q, ql 0 vy, (A.34)

By combining Equations (A.30)—(A.34), it follows from the definition of Z(k 1)(Y ) that

S0,1
we have

ma,i

—@ m..+q. .
Z(k 1)(Y301) — Z qQk (m,;n)—qz,2(q2,2+1) H |: ot q“’l:| 02 q10 (A.35)
q

m©2>0 CRNS

mao,2>0 M3,2

m,,+g ~ G g~ — PPN
2,2 2,2 M2,2542,2 A—42,2 42,3 73911
X § . |: :| Y,2°257 0y, Q;5 Q1
q

As O,(cz) (m,n) — g, ,(q,, + 1) is independent of m, ,, we may sum over m,, and apply

Lemma 4.6 to rewrite the RHS of equation (A.35) as

ma,i

—(2) m..+aq. -
z qak (m,n) H |: a,i qa,zj| 02 Ol ?102 222023220%30!111 (A.36)
q

m©.2>0 (@,)es®?

Finally, we rewrite expression (A.36) using Lemmas 3.5 and 3.6(1), (3), and (5) to deduce

that Z(k 1)(Y ) is equal to

S0,1

q—2nz 2Z Onz ZZZ ) Z qQ,(CZ)(m n) 1_[ |:ma,i + qa,i:| 02 gz 2 Ql ‘fl an2 3 qu 1
m©2 (@i)es? q
Lemma 4.4 for the case p = 2 now follows from the previous case p = 1, as well as the

definition of Z(k 2y (Y3,,)-
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B Proof of Lemma 4.9

For convenience, let us set p = t; — 1. Firstly, we observe from Equations (4.8) and (4.11)

that we have

a - 245, + Q1 = C'mj, — nj, + D'ms, (B.1)
(). o o __ 0.0 o .
o~ —2q; +q; = C'mj —n; +t{Dmy —Dey ;. (B.2)

Next, we deduce from Equations (4.27) and (4.29) that we have
) =Y 1 o o o o o ° o '} o o '}
o m,n) - q,_,m*®,nM) = S lar- A%@i—ap) + i - A*(aE, —d3 1) +(2d] - 63) - Agy,
—toqs - Aq}, . — (A°QS + Aq) - De; ). (B.3)

Letc; = —(A°q] +Aq7 ) -Dey 1y, C; = —(q] - A°qy +q3 - A*dy  +d5 - Ady) +d] -Adg )
and ¢; = ¢} - A°Q} +qf, - A°QE + 245 - Adf) + 5 Y ocr, Mg, (dayg, +1)- Then, it follows
from Equation (B.3) that we have

1 — () — 1
st tey) = o m,n) - q,_,m™,n") + 75 2 Aol @ug, +1. (B4
aelr

We first use Lemma 3.5, along with Equations (4.35), (B.1), and (B.2) to rearrange the

terms involving the 5a'i's in the quantum generating function Z(k’p (¥ (Y5,,) as follows:

—® o,(p) -2 o
~—(p ~—q _ Anto nl Amto 1A~ qto —qu qt0+1 q2+Det0+1
O.,to o,1 o1 O o ,to an 0 ,to ao 1 ao ,to Oo,l 4 (B5)
~Degy 41 25 ~qS _lo ~Ui ~q? ~De; +1
a5 0.90% = g 0,505 a5 (B.6)
qt0+1 qz qto ql —*CZ th a; qtOJrl a3
a2 a%a,90% = g v=q,50% 0,2 0%, (B.7)

and

~—2q3) ~-2q5 ~4;
O. to 0 A O ql O tO Oql

_1 o . ~q7 ~—2q; ~—2
_ 5(2q1 A q1+2qt A qt +2q1 Aqt ) tO to ql q1
=q 0 0 Q ao to ao ,0

s d
—%<03+% > aety Moo oty (Ga,te — ) H ki) ~ 24yt H Aqﬂ] o) —29p;1
al'p 0‘ to /3]7 /3]

i=1 j=

—

da
1 ACla =Gy, Aqﬂ 1~—4p;,
= 803 H ( al,LPfO al,t(; tO) H ( ﬂ]yjo aﬁj, J ) . (B.8)

i=1 Jj=1
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Finally, we use Lemma 3.6(6) and (7) to deduce that

s d
Amto ml A%zl to A Qal to Aqﬂ] 1 A qﬂ]
Yo to Y ( aip OO{ o ) H B;j.0 ,B],

i=1 j=1
d mep.,1~4p:,1 qp;.1
_ th to590,tg A 9.ty R L R~
- H( IR0 ZR0 Qg )H (Yﬂjyl 2,7 050" ). (B.9)
=1 j=1

We now combine Equations (B.4)—(B.9) to deduce that

(k'p) Mo gy Q1m0 n)— 5 Aoarota (Ga te +1) my i+ 4,
Z (Y ) - O k-1 4 25 acly Daalaete \Ya,ty
a3 |a m [

m1.0 (a,i)eJE,l’O) a,i

S
H Z M, 0 + Qa o Ym% lo"q% N Qa; tg
o;,to Otl,p o, to
= q

aj,to

Mmg. ;1 +4z. 1Aq -q ~03 1 ~q5+De
Bj.1 Bj1 Mp; 19871 Bl to+1 AUy D€ty +1
H Z Yﬂj, ﬂ],O Oﬁj ao,to Oo,l
=1mg.1>0 Bj. q
(B.10)
As Ok 1(m(l 0 nMy 25 2ael, Naalot, o, T 1) is independent of mg 1 and My, 1 for all
i=1,---,sandj=1,---,d, we may sum over each mg 1 and m, , foralli=1,---,s

andj=1,---,d and apply Lemma 4.6 to write the RHS of Equation (B.10) as

s
AN 309 Qp_1 (M0 n) ma i T g -1 ~—=Qu; 1y
a"1 a°'1 g H H @i,p Oll.to Qai,to—i-l (B.11)
q

m .
md.0 (@) EJ;(JLO) a,i i=1

A qﬂ] Aq;0+lAq;+Det0+l
Hzﬁ 0210527 | Quzy Qo

Finally, we rewrite expression (B.11) using Lemma 3.6(1), (2), (3), and (4) to get

k, k—1
Z( P (YSO ) T e t{) O ZO IIJZO (l)ZO IZO tOZ)(L n(l)) (Ysl)

Lemma 4.9 now follows from Lemma 4.4, along with a similar argument at the end of

the proof of Lemma 4.3.
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