

¹ The roles of conduit redundancy and connectivity
² in xylem hydraulic functions

³ Assaad Mrad^{1,2,3,6}, Daniel M Johnson⁴, David M Love⁴, and
⁴ Jean-Christophe Domec^{1,5}

⁵ *Nicholas School of the Environment, Duke University, Durham, NC 27708, USA*

⁶ *Department of Civil and Environmental Engineering, University of California, Irvine, CA 92697, USA*

⁷ *Department of Engineering, Wake Forest University, Winston-Salem, NC 27101, USA*

⁸ *Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA*

⁹ *Bordeaux Sciences Agro, UMR 1391 INRA-ISPA, 33175 Gradignan Cedex, France*

¹⁰ ⁶Corresponding author: mradassaad2@gmail.com, +1-919-519-0011

¹¹ Figs. 1, 2, 3, 4, 8, and 9 to be published in color

¹² **Assaad Mrad** - ORCID: <https://orcid.org/0000-0003-4922-4446> - twitter: @mradassaad

¹³ **Daniel M Johnson** - ORCID: <https://orcid.org/0000-0003-1015-9560> - twitter: @TreePhysDJ

¹⁴ **David M Love** - no ORCID

¹⁵ **Jean-Christophe Domec** - ORCID: <https://orcid.org/0000-0003-0478-2559>

Total word count (excluding summary, references and legends):	6637
Summary	199
Introduction	1393
Description	2492
Results	1297
Discussion	1455
Acknowledgements	34
Number of figures	9
Number of tables	0
Number of supporting files	5 (Figs. S1-S3, Description S1-S2)

16 1 Summary

- 17 1. Wood anatomical traits shape a xylem segment's hydraulic efficiency and em-
18 bolism spread resistance due to declining water potential. It has been known
19 for decades that variations in conduit connectivity play a role in altering xylem
20 hydraulics. However, evaluating the precise effect of conduit connectivity has
21 been elusive. The objective is to establish an analytical linkage between conduit
22 connectivity and grouping and tissue-scale hydraulics.
- 23 2. It is hypothesized that an increase in conduit connectivity brings improved
24 resistance to embolism spread due to increased hydraulic pathway redundancy.
25 However, an increase in conduit connectivity could also reduce resistance due
26 to increased embolism spread speed with respect to pressure. We elaborate
27 on this trade-off using graph theory, percolation theory, and computational
28 modeling of xylem. The results are validated using anatomical measurements
29 of *Acer* branch xylem.
- 30 3. Considering only species with vessels, increases in connectivity improve resis-
31 tance to embolism spread without negatively affecting hydraulic conductivity.
32 The often measured grouping index fails to capture the totality of the effect of
33 conduit connectivity on xylem hydraulics.
- 34 4. Variations in xylem network characteristics, such as conduit connectivity, might
35 explain why hypothesized trends among woody species, like the 'safety-efficiency'
36 trade-off hypothesis, are weaker than expected.

37 *Keywords:* connectivity, grouping, xylem, hydraulic conductance, embolism spread,
38 *Acer* (Maples)

39 2 Introduction

- 40 40 Plant xylem supplies water from the soil pores to the leaves to compensate for the
41 loss of water molecules from leaves to the atmosphere. As stomata open to uptake

42 carbon dioxide molecules needed for photosynthesis, water molecules evaporate. The
43 water experiences a phase transition in the leaf parenchyma and escapes as vapor
44 through the guard cells to a desiccating atmosphere. For every water molecule lost
45 from leaves, the entire column of water must be pulled upwards from the soil-root
46 interface or from plant water storage to compensate for this water molecule loss. This
47 makes the conveyance of water from roots to leaves through the xylem is unique; it is
48 entirely passive with minimal energy expenditures (no pumping) and operationally
49 relies on water loss from leaves via transpiration only (Venturas, Sperry, and Hacke,
50 2017). However, the draw-back of such a passive system is that water in the xylem
51 is in a metastable state where cohesive forces between water molecules and adhesive
52 forces between the molecules and the cell walls sustain large tensile stresses (Dixon
53 and Joly, 1895). This tension is then transmitted to the xylem cell walls and sap.

54 The xylem tissue bears a complex network of sap-transporting conduits that form
55 many parallel pathways for water movement. The network of conduits, extending
56 from the roots to the leaves, is redundant such that if a conduit is damaged, many
57 other pathways still exist for the water to reach the leaves. The water is able to move
58 from one conduit to the next through interconduit pits (hereafter “pits”), which are
59 openings in the secondary cell wall of conduits that allow lateral water transport.
60 Pathway redundancy in xylem is necessary because conduits are often at the risk of
61 dysfunction through gas bubble expansion.

62 The consequence of having sap under tension in a conduit is that some gas-filled
63 bubbles can grow and fill the whole conduit. Embolisms inside conduits have been hy-
64 pothesized to originate and spread through homogeneous nucleation, heterogeneous
65 nucleation from a crack or impurities, or air-seeding from porous pits on conduit
66 walls (Tyree, Davis, and Cochard, 1994). In the angiosperm clade, of main interest
67 in this study, the pits contain a porous membrane, termed the pit membrane, that
68 links conduits to each other. Pressure chamber experiments have lent support to
69 the hypothesis of air-seeding via pores in the interconduit pit membranes by demon-
70 strating the equivalence between a drop in sap pressure and a rise in the pressure
71 of embolism contents (Cochard, Cruziat, and Tyree, 1992; Sperry and Saliendra,
72 1994). This is because nucleation, or cavitation, requires negative water pressures

73 to occur whereas air-seeding is dependent on the absolute value of the pressure dif-
74 ference between the gas in embolized vessels and the sap (P). Air-seeding from
75 adjacent conduits is considered the sole source of embolisms in this study. In other
76 words, when a conduit is embolized, or air-filled, there is risk for embolism to spread
77 to adjacent, connected conduits (Sperry and Tyree, 1988). This requires an initial
78 embolism event as exposure of the xylem sap to air due to disturbances like fire and
79 strong winds, herbivores, or pathogens (Venturas, Sperry, and Hacke, 2017) or de
80 novo heterogenous nucleation. These initial embolisms might then spread to a larger
81 number of vessels through air-seeding.

82 The ultimate impact of vessel embolism is related to its effect on organ and whole-
83 plant hydraulic function. When a functional vessel is air-filled, at least one hydraulic
84 pathway from segment inlet to outlet is lost, affecting whole-segment hydraulics. The
85 way vessels are distributed and connected to one another determines the degree to
86 which an embolism affects segment-level resistance to embolism spread. One such
87 measure is the vulnerability to embolism curve (VC): a plot of the percent loss of hy-
88draulic conductivity (PLC) of a whole-segment against P (Tyree and Zimmermann,
89 2002). As P increases, the PLC increases from 0% to 100%. The shape and location
90 of the VC along the P axis depends on embolism spread within the xylem network
91 of that segment, the ease of which is determined by pit membrane ultra-structural
92 properties and frequency.

93 However, being a 'macro-scale' measure, the VC integrates network mechanisms
94 beyond vessel to vessel embolism exchange. Examples of these mechanisms are the re-
95 dundancy of the xylem hydraulic pathway (F. Ewers, J. Ewers, Jacobsen, and López-
96 Portillo, 2007), the variability of conduit wall susceptibility to embolism spread along
97 the segment cross-section (Venturas, Pratt, Jacobsen, V. Castro, Fickle, and Hacke,
98 2019), patterns of disease epidemics on graphs (Roth-Nebelsick, 2019), and the so-
99 called percolation threshold. The percolation threshold is an effective 'seal' against
100 un-inhibited embolism spread born out of vessel connectivity statistics (Callaway,
101 Newman, Strogatz, and Watts, 2000). As of yet, the percolation threshold has never
102 been utilized in the literature to infer VCs. It is a network property that links the
103 speed of disease, or embolism, spread in a network based on the connectivity (number

104 of neighbours) of the agents (vessels). It is these 'mid-scale' mechanisms, straddling
105 the 'micro-scale' processes and 'macro-scale' measures, that are of interest and frame
106 the scope of the work here.

107 The basic property that controls xylem pathway redundancy and embolism 'per-
108 colation' is the average vessel connectivity ($\langle c \rangle$). The average vessel connectivity
109 in a xylem segment is the number of vessel neighbors (i.e., with a common contact
110 wall providing hydraulic connection), averaged over all vessels in the xylem segment
111 (Loepfe, Martinez-Vilalta, Pinol, and Mencuccini, 2007; Martínez-Vilalta, Mencuc-
112 cini, Álvarez, Camacho, Loepfe, and Piñol, 2012; Newman, 2018). Unfortunately,
113 $\langle c \rangle$ has rarely been reported in the literature but the grouping index (GI) is a mea-
114 sure commonly quantified by anatomists (Carlquist, 1984). The GI is the number of
115 vessels in a xylem cross-section divided by the number of vessel groups. Therefore,
116 the GI is a two-dimensional proxy to $\langle c \rangle$. To make use of the GI and link it to $\langle c \rangle$,
117 we focus on a particular type of wood.

118 The interest here is in angiosperm species that lack vasicentric tracheids (Car-
119 lquist, 1984; Pratt and Jacobsen, 2018). Flowering plants with vasicentric tracheids
120 can achieve pathway redundancy by surrounding vessels by tracheids (Hacke, Ja-
121 cobsen, and Pratt, 2009; Pratt, Percolla, and Jacobsen, 2015). While vasicentric
122 tracheids are dramatically smaller in diameter and length, they could be numerous
123 enough to sustain significant 'back-up' flow in case an adjacent vessel is embolized
124 (Sano, Morris, Shimada, Ronse De Craene, and Jansen, 2011). When anatomists
125 report measures of vessel grouping such as the GI, they only count vessels and dis-
126 regard tracheids. Therefore, by focusing on species lacking vasicentric tracheids, we
127 purposely take advantage of data representing the true connectivity of the xylem hy-
128 drdraulic pathway. Particularly, we will be utilizing data on seven species of the genus
129 *Acer* (Lens, Sperry, Christman, Choat, Rabaey, and Jansen, 2011) that belongs to
130 the Sapindaceae family, generally lacking vasicentric tracheids (Carlquist, 1984).

131 The plant physiology literature has made significant strides in understanding the
132 linkages between vessel (Hacke, Sperry, Wheeler, and L. Castro, 2006; Christman,
133 Sperry, and Adler, 2009; Christman, Sperry, and Smith, 2012) and pit anatomy
134 (Choat, Cobb, and Jansen, 2008; Jansen, Choat, and Pletsers, 2009; Lens, Sperry,

135 Christman, Choat, Rabaey, and Jansen, 2011; Li, Lens, Espino, Karimi, Klepsch,
136 Schenk, Schmitt, Schuldt, and Jansen, 2016), vessel to vessel air-seeding, and whole
137 segment resistance to embolism spread through the VC. But processes mediated by
138 xylem network properties (Jacobsen and Pratt, 2018) have received relatively less
139 attention and are still elusive because pertinent measurements are lacking. Xylem
140 network theory (F. Ewers, J. Ewers, Jacobsen, and López-Portillo, 2007) and model-
141 ing (Loepfe, Martínez-Vilalta, Pinol, and Mencuccini, 2007; Martínez-Vilalta, Men-
142 cuccini, Álvarez, Camacho, Loepfe, and Piñol, 2012; Mrad, Domec, Huang, Lens,
143 and Katul, 2018) provide viable avenues for investigating these processes. As long
144 as the effect of the xylem network is unclear, opportunities to link anatomy and seg-
145 ment hydraulics and to generalize trends among plant species will be missed. How
146 the xylem network and vessel connectivity affect whole-segment hydraulics and re-
147 sistance to embolism spread is here investigated through a synergistic combination
148 of three-dimensional xylem computer modeling and graph theory.

149 In what follows, we outline the modeling and theory employed and compare
150 the analytical linkage between average vessel connectivity and xylem hydraulics to
151 anatomical measurements of *Acer* xylem. We present an extension to a xylem hy-
152 draulic model (Mrad, Domec, Huang, Lens, and Katul, 2018) to simulate Maple
153 branch xylem segments by matching certain measurements of xylem network struc-
154 ture. With the aid of the model and graph theory, we link xylem vessel anatomy
155 and connectivity to xylem VC measures and hydraulic conductivity. Ultimately, we
156 highlight that increasing vessel connectivity increases the magnitude of the 'air-entry'
157 pressure of xylem segments, without compromising hydraulic efficiency. Then, we
158 put these results in the context of Maple xylem and the 'safety-efficiency' trade-off
159 hypothesis.

160 3 Description

161 The two-dimensional (2D) model presented in Mrad, Domec, Huang, Lens, and Katul
162 (2018) is extended by introducing a three-dimensional (3D) representation. The radial
163 dimension is added to the model such that 3D growth ring sections are simulated. In

its new form, the model is suited for diffuse-porous angiosperm xylem where conductive, vasicentric tracheids are absent or play a minimal role in total tissue hydraulics. In the following, the anatomical elements represented in the model are only briefly described because of significant overlap with the description in Mrad, Domec, Huang, Lens, and Katul (2018). In contrast, aspects of the model related to 3D representation of xylem networks are extensively explained.

Throughout, water is assumed to be incompressible and its properties, including viscosity and density, are constant and defined at 25°C and standard pressure. Water flow in all vessels is assumed to be laminar. Each vessel is represented by a vertical cylinder with diameter D_v and length L_v . The vessel lumens are hydraulically connected by intervessel connection (IVC). The IVCs link adjacent vessel elements along the radial or tangential directions. Every vessel has a specified contact wall area determined by the vessel contact fraction (f_c) and the vessel cylindrical wall area (A_v). The ensemble of all IVCs between two vessels constitute their contact wall. The contact wall is divided into a pit-field area using the pit-field area fraction (f_{pf}) such that the pit-field area of each vessel equals $A_v \times f_c \times f_{pf}$. The pit-field area of each contact wall contains the pits and its size determines the number of pit membranes it contains. The interest here is in the average of vessel or pit properties throughout a xylem segment denoted using the $\langle \text{property} \rangle$ notation. The aforementioned anatomical properties have been measured on seven *Acer* species in Lens, Sperry, Christman, Choat, Rabaey, and Jansen (2011).

3.1 Modeling xylem networks: sap flow

To calculate the sap flow across a xylem segment, it is necessary to determine the flow through vessel elements and IVCs. Water flow through vessel lumens is described by the Hagen-Poiseuille equation while sap flow through IVCs is described by a superposition of Sampson and Hagen-Poiseuille flow resistances (Description S1).

The $k_{xa,max}$ of a modeled xylem segment is then calculated. $k_{xa,max}$ is the maximum xylem area-normalized hydraulic conductivity of a segment. $k_{xa,max}$ is estimated by solving an equivalent hydraulic resistor network subject to a pressure difference between its ends (Description S1). The resistances of the vessel elements and IVCs follow the equations above. One end of the segment is set at a given pressure, say atmospheric pressure, while the other end is subject to a higher pressure to form a pressure difference ΔP_{seg} . Then,

195 we establish a set of linear equations to be solved simultaneously like an electric resistor
196 circuit (Mrad, Domec, Huang, Lens, and Katul, 2018). The set of equations consist of
197 the Hagen-Poiseuille and Sampson flow equations mentioned in the previous paragraph
198 for every vessel element and IVC (Description S1). The solution of the set gives the sap
199 flow through the segment Q_{seg} . The hydraulic conductance of the segment (K_{seg}) is then
200 estimated as

$$K_{seg} = \frac{Q_{seg}}{\Delta P_{seg}}. \quad (1)$$

201 Additionally, $k_{xa,max}$ is

$$k_{xa,max} = \rho \frac{L_{seg}}{A_{seg}} K_{seg}, \quad (2)$$

202 where L_{seg} and A_{seg} are respectively the axial length of the simulated segment and its
203 transverse area while ρ is the density of pure water.

204 3.2 Modeling xylem networks: embolism spread

205 Air-seeding requires embolism spread to originate from an adjacent vessel through one of
206 the pits connecting two vessels (Tyree and Zimmermann, 2002). An embolism spreads
207 to an adjacent vessel when the absolute value of the pressure difference between the air
208 inside the embolism and the surrounding sap (P) exceeds the capillary pressure i.e., the
209 air-seeding pressure (ASP) of the contact wall connecting two vessels.

210 In angiosperms, pit membrane anatomy and frequency throughout vessel wall sur-
211 faces determine the critical P at which air-seeding occurs. By restricting the gas bubble
212 meniscus to sizes of the order of nanometers, pit membranes reduce the chance that the
213 bubble will spread from the embolized vessel and fill the functional one. The growth of the
214 bubbles is dictated by their size, the number of gas molecules in them, and their surface
215 chemistry (Schenk, Espino, Romo, Nima, Do, Michaud, Papahadjopoulos-Sternberg, Yang,
216 Zuo, Steppe, et al., 2017; Konrad, Katul, Roth-Nebelsick, and Jensen, 2019; Kanduč, Sch-
217 neck, Loche, Jansen, Schenk, and Netz, 2020). However, analytical relations linking pit
218 structural properties and their function in blocking air-seeding are lacking. Difficulties
219 encompass the formation of lipid-coated nanobubbles that allow for stable bubbles to exist
220 in functional vessels (Schenk, Steppe, and Jansen, 2015; Schenk, Espino, Romo, Nima,
221 Do, Michaud, Papahadjopoulos-Sternberg, Yang, Zuo, Steppe, et al., 2017) and the pres-
222 ence of a rare and leaky pit (Christman, Sperry, and Adler, 2009). Measurements of pit

223 membrane structure are thought to suffer from artefacts introduced through sample prepa-
224 ration and dehydration (Li, Lens, Espino, Karimi, Klepsch, Schenk, Schmitt, Schuld, and
225 Jansen, 2016). Moreover, the exact link between pit membrane anatomy and function
226 is not complete as of yet due to the complex interactions between its 3D structure and
227 existing chemical compounds (Kaack, Altaner, Carmesin, Diaz, Holler, Kranz, Neusser,
228 Odstrcil, Schenk, Schmidt, et al., 2019; Zhang et al., 2020).

229 Therefore, the effects of these pit traits on embolism spread resistance is surrogated to
230 a pit ASP distribution. This distribution surrogates the complexity of the pit membrane
231 ultra-structure including thickness, pore size, quantity, and chemistry. The pit membrane
232 ASPs are sampled from a two-parameter Weibull distribution that differs among species
233 (Christman, Sperry, and Adler, 2009). This distribution is given by (Christman, Sperry,
234 and Adler, 2009)

$$F_m(ASP) = 1 - \exp \left[- \left(\frac{ASP}{a} \right)^b \right], \quad (3)$$

235 where a and b are distribution parameters and $F_m(ASP)$ is the cumulative distribution
236 function of pit membrane ASPs.

237 Embolisms spread through the leakiest membrane between two vessels (Christman,
238 Sperry, and Adler, 2009). To account for this 'extreme-value' effect, the cumulative distri-
239 bution function of ASP for a contact wall containing N_m pit membranes is derived from
240 an extreme-value distribution as (Mrad, Domec, Huang, Lens, and Katul, 2018)

$$F_c(ASP) = 1 - [1 - F_m(ASP)]^{N_m} = 1 - \exp \left[- \left(\frac{ASP}{a/N_m^{1/b}} \right)^b \right]. \quad (4)$$

241 In other words, $F_c(ASP)$ is the probability that a given P will exceed the ASP of a
242 randomly chosen contact wall in the xylem network. Therefore, larger contact walls in the
243 same xylem segment are more likely to have a leakier pit. Air-seeding is assumed to result in
244 unstable bubbles that fill up the 'infected' vessel completely and instantaneously, rendering
245 it non-functional. This simplification is plausible as unstable bubbles expand rapidly (in
246 micro-seconds; Konrad and Roth-Nebelsick, 2003; Hölttä, Vesala, and Nikinmaa, 2007).
247 Such an idealization also eliminates the need to represent the aerodynamics of air expansion
248 within a vessel and any concomitant interaction with water movement.

249 Having assigned each contact wall an ASP, the vulnerability to embolism curve (VC) of
250 the simulated growth ring section can be computed. An embolism is injected into random

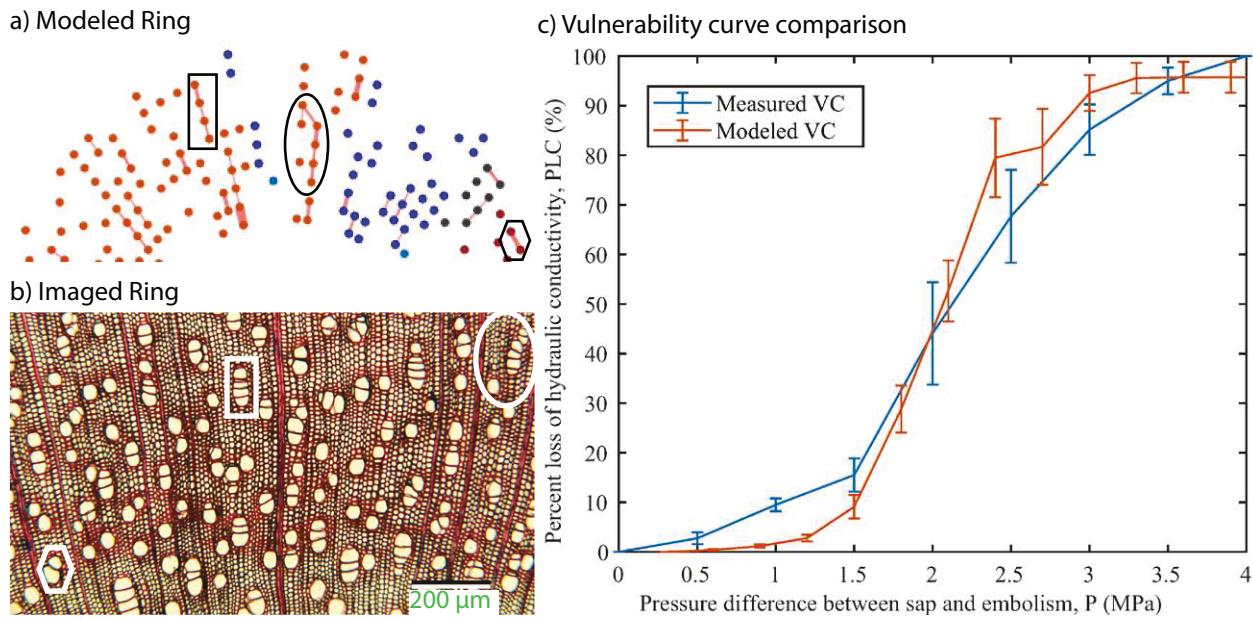
251 vessels inside the network. Then, the pressure of its contents is increased at successive steps
252 while the water pressure is maintained at P_{atm} akin to the air-injection technique (Salleo,
253 Hinckley, Kikuta, Lo Gullo, Weilgony, Yoon, and Richter, 1992). After every increase
254 in P , the initial random embolism could spread to other conduits based on the adjacent
255 contact wall ASPs. At every step, with some conduits embolized and non-functional,
256 the unsaturated xylem area-specific hydraulic conductivity (k_{xa}) is computed. Then the
257 percent loss in hydraulic conductivity (PLC) is determined as

$$\text{PLC}(P) = 100 \times \left(1 - \frac{k_{xa}(P)}{k_{xa,max}}\right). \quad (5)$$

258 The VC is the curve plotting PLC against increasing P . For the ensuing analysis, P_{50}
259 is defined as the absolute value of pressure at which $\text{PLC}(P_{50}) = 50$. Similarly, P_{88} and
260 P_{12} are defined at $\text{PLC}(P_{88}) = 88$ and $\text{PLC}(P_{12}) = 12$, respectively (Domec and Gartner,
261 2001). *In planta*, water is under tension and therefore is under negative pressure. Here,
262 we look at the absolute values of those pressures.

263 3.3 Modeling xylem networks: implementation of *Acer* hy- 264 draulics and 3D structure

265 To ensure the simulated xylem networks model real tissues, several anatomical and connectivity-
266 related measurements parameterize the simulated segments as elaborated in this section.
267 The measured average vessel length $\langle L_v \rangle$ and diameter $\langle D_v \rangle$, f_c and f_{pf} for each species
268 are used as inputs of the 3D version. These model inputs ensure that water flow resistance
269 through vessels and the frequency of contact walls and pit-field areas are realistic. $\langle D_v \rangle$
270 and f_{pf} are used to model the number of pit membranes per contact wall.


271 In addition to the 2D version, the 3D version of the model employs two measurements
272 to realistically represent the connectivity and frequency of vessels in the segment. The
273 GI equals the number of vessels in a xylem cross-section divided by the number of vessel
274 groups which also include solitary vessels (Carlquist, 1984) and the vessel frequency (VA_x^{-1})
275 equals the number of vessels per unit transverse xylem area (Fig. 1). The model employs
276 both measures to tune frequency of vessels in the 3D xylem segment, the probability
277 of a radial IVC with an adjacent vessel, and the probability of a tangential IVC. The
278 majority of IVCs in *Acer* are radial so we constrain the probability of tangential connections

279 within 5% and 20%. This interval is liberal and encompasses the estimated proportions of
280 tangential connections of the *Acer* segments based on their cross-sectional images (Fig. 1).
281 Model simulations show that the proportion of tangential connections alone is insufficient
282 to explain variation in $k_{xa,max}$ and P_{50} among species (Fig. S1). Therefore, constraining
283 the proportion of tangential connections to a liberal range will faithfully represent xylem
284 conduit geometry while not reducing the generality of this study's conclusions. Because of
285 this constraint, the probability of radial connections and the probability of vessel initiation
286 are now determined using these two independent measurements: GI and VA_x^{-1} (Description
287 S2).

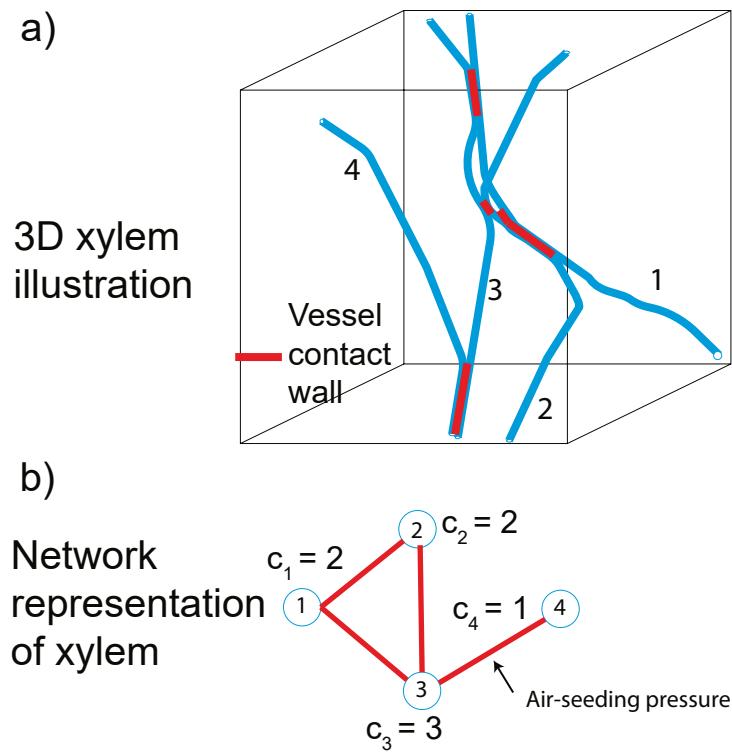
288 In Fig. 1, the xylem model ensures that vessel connectivity patterns in a modeled
289 growth ring section matches those in an *Acer negundo* section. The modeled ring cross-
290 section shows vessel lumen of varying diameters (not represented) as colored dots. Those
291 that are connected by an IVC have a red line connecting them (Fig. 1a). Vessels of the
292 same color are hydraulically connected (Mrad, Domec, Huang, Lens, and Katul, 2018). In
293 the simulated segment, two vessels appearing disconnected in that transverse section does
294 not preclude them being connected at another axial location.

295 Fig. 1a highlights three vessel groups with a correspondence to a group in an *Acer*
296 *negundo* imaged ring (Fig. 1b). The black and white rectangles show vessel groups with
297 connections that are uniquely radial while the ellipses and hexagons have a single diagonal
298 connection each. This highlights how the model recovers the preferential direction of vessel
299 connections in the *Acer* genus.

300 In this article, the pit membrane hydraulic parameters are fitted to obtain agreement
301 with tissue-level hydraulic measurements because theoretical links between anatomy, hy-
302 draulic conductivity, and embolism spread resistance are uncertain as explained above. For
303 example, pore diameter is fit such that $k_{xa,max}$ of the whole xylem segment matches the
304 measurements. Similarly, the two parameters, a and b , of $F_m(ASP)$ (equations 3 and 4)
305 were tuned such that the modeled VC was similar to the measured VC through P_{12} , P_{50} ,
306 and P_{88} (Fig. 1, c). The match was not evaluated more rigorously because the results of
307 this study do not depend on it.

Fig. 1 Illustration showing the correspondence between a) a cross-sectional view of a modeled *Acer negundo* ring and b) an image of an *Acer negundo* branch and c) the resulting vulnerability to embolism curves (VC). The model does not represent each vessel in the image but approximates the averaged anatomy and xylem network properties. Three corresponding elements are highlighted by two rectangles, two ellipses, and two hexagons. The rectangles show a uniquely radial file of vessels, the ellipses show a vessel group dominated by radial connections but with the occasional tangential or diagonal connection, and the hexagons show two vessels connected diagonally. Both the modeled and imaged rings have a grouping index of 1.84 and a vessel density of 263 mm^{-2} (Lens, Sperry, Christman, Choat, Rabaey, and Jansen, 2011). Similarly colored vessels are members of the same hydraulic component (see Description). The error bars around the measured and modeled VCs represent standard errors resulting from 6 *Acer negundo* branches (blue) and 10 simulated branches (red).

308 3.4 Theory


309 Diffuse-porous species exemplified by *Acer* have quasi-uniform anatomical properties from
310 earlywood to latewood. As a result, only vessel connectivity is of interest here. The
311 simulated xylem segments keep average anatomical traits stationary throughout a growth
312 ring.

313 Three-dimensional xylem is represented by a graph of nodes connected to each other
314 via edges as in Fig. 2. We collapse each vessel onto a node as shown in the correspondence
315 between vessels in Fig. 2a and nodes in Fig. 2b. The edges represent contact walls. A
316 node has one of two states: functional or embolized. This representation of xylem is used
317 to characterize embolism spread. Each edge in the graph representation is weighted by its
318 ASP. As P increases, it exceeds a higher fraction of edge ASPs (i.e., $F_c(P)$ is an increasing
319 function of P) so more edges become conducive to embolism spread if one exists adjacently.

320 The number of vessels a given vessel is connected to is called its connectivity c . For
321 example, vessel 3 in Fig. 2 has $c_3 = 3$ and vessel 4 has $c_4 = 1$. Of main interest is
322 the average connectivity of the xylem network $\langle c \rangle$ over all its constituent vessels. The
323 primary role of $\langle c \rangle$ in hydraulic pathway redundancy and extent of embolism propagation
324 throughout the xylem network is now considered.

325 As alluded to above, at a given P a fraction $F_c(P)$ of vessel to vessel edges are amenable
326 to disease spread. In network or graph theory parlance, it is said that these edges are 'occu-
327 pied'. Given these definitions, the process of embolism spread on xylem vessel networks falls
328 under the realm of edge percolation processes on a graph (Callaway, Newman, Strogatz,
329 and Watts, 2000; Newman, 2018). Percolation processes stipulate a threshold fraction of
330 'occupied' edges $F_{c,threshold}$ where, if $F_c(P) > F_{c,threshold}$, it is expected that an embolism,
331 randomly placed in the xylem network, will spread to the majority of the network. In other
332 words, the percolation threshold is a limit on the fraction of contact walls with an ASP
333 below the pressure difference between sap and bubble contents (P). When the threshold
334 is exceeded, a randomly placed embolism is expected to spread to the majority of a xylem
335 network. In a class of graphs applicable to xylem, called configuration models, the perco-
336 lation threshold $F_{c,threshold}$ depends solely on the first $\langle c \rangle$ and second $\langle c^2 \rangle$ moments of the
337 vessel connectivity distribution

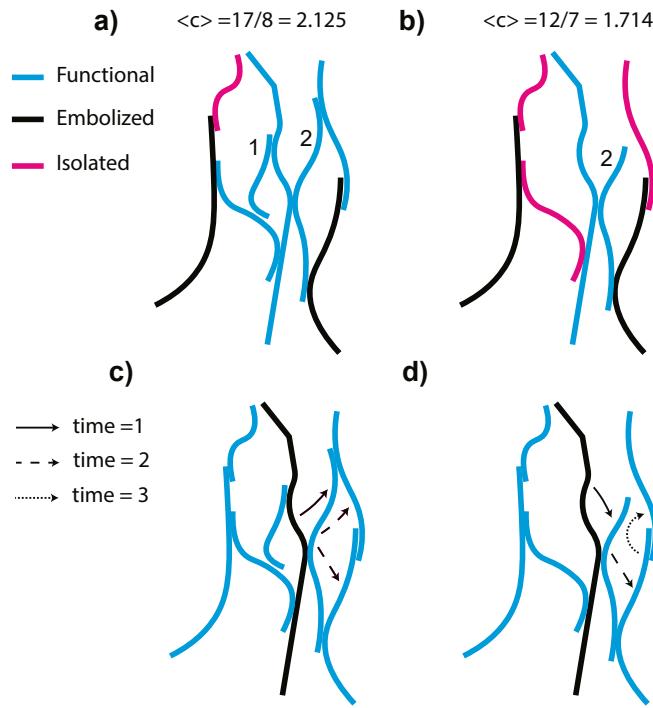
$$F_{c,threshold} = \frac{\langle c \rangle}{\langle c^2 \rangle - \langle c \rangle}. \quad (6)$$

Fig. 2 Illustration of a) a three-dimensional xylem network connected via contact walls, and b) the connectivities (c_1-c_4) of those conduits for embolism spread purposes. Every vessel (blue) in the xylem is collapsed onto a node while vessel contact walls (red) are represented by a bi-directional edge connecting the nodes. Every edge is weighted by the air-seeding pressure of the contact wall connecting the vessels. The length of each edge as drawn in b) does not represent any property. The connectivity of every node in sub-figure b) is shown next to it. The average vessel connectivity of this example is $\langle c \rangle = 2$.

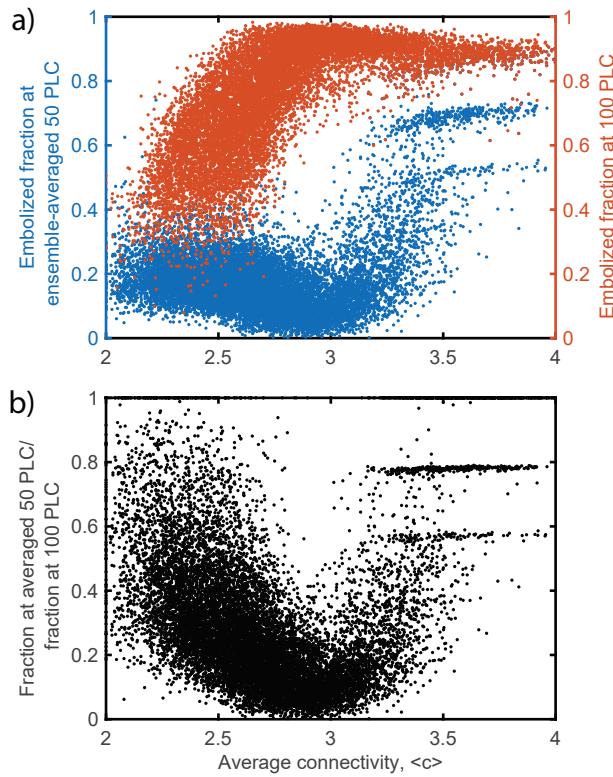
338 This result was first reported in a study of "the resilience of the Internet to random break-
339 downs" (Cohen, Erez, Ben-Avraham, and Havlin, 2000). Because percolation theory con-
340 cerns graphs of infinite size and the xylem network is necessarily finite, the actual $F_{c,threshold}$
341 is expected to be smaller than its theoretical value (equation 6) due to 'finite-size' effects.

342 The direct consequence of vessel connectivity on a species' cavitation resistance is
343 not straightforward and involves a trade-off explained in the Results. Determining the
344 functional significance of vessel grouping is further complicated because pit structure (i.e.,
345 pit membrane thickness and pit chamber depth) and connectivity (i.e., GI and $\langle L_v \rangle$) co-vary
346 (Lens, Sperry, Christman, Choat, Rabaey, and Jansen, 2011). Such co-variations could
347 lead to unexpected emergent tissue hydraulic behavior that is suited to a mechanistic
348 exploration and which we address next.

349 **3.5 Varying vessel anatomy and connectivity**


350 Simulations were performed in which VA_x^{-1} , $\langle L_v \rangle$, $\langle D_v \rangle$ are varied as well as the proba-
351 bilities of radial and tangential connections to adjacent vessels. Such variations perturbed
352 GI and $\langle c \rangle$. As these model properties were varied, others such as pit membrane diameter
353 and the contact wall ASP distribution $F_c(ASP)$, which affect embolism spread resistance
354 (equation 4), were kept constant. In other words, the distribution function's parameters a
355 and b are varied such that $F_c(ASP)$ is independent of N_m between simulations (equation
356 4). This allows disentangling the effect of vessel redundancy on vessel-to-vessel air seeding
357 and whole segment conductance and resistance to embolism spread. The objective of these
358 simulations was to assess the role of vessel connectivity in overall segment safety, through
359 P_{12} , P_{50} , P_{88} , and hydraulic efficiency, through $k_{xa,max}$.

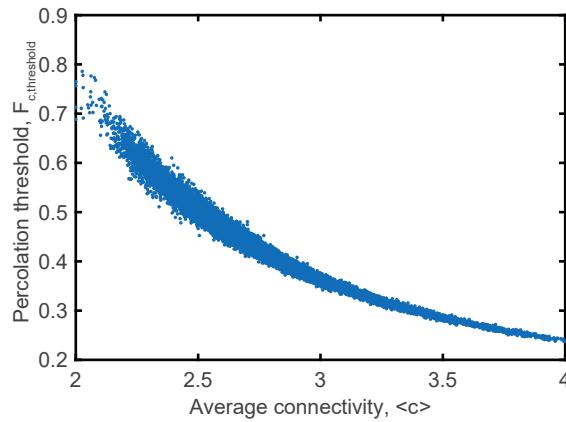
360 In the simulations discussed below, pit membrane pore diameter, a , and b (equation 4)
361 are fit to match *Acer glabrum var. glabrum*'s $k_{xa,max}$ and VC (Lens, Sperry, Christman,
362 Choat, Rabaey, and Jansen, 2011; Mrad, Domec, Huang, Lens, and Katul, 2018, as in
363 Fig. 1). However, the results are insensitive to the species used for initial fitting because
364 they are presented in terms of normalized $k_{xa,max}$ and PLC measures, as explained in what
365 follows.


366 4 Results

367 When VA_x^{-1} in a segment cross-section increased, GI and $\langle c \rangle$ increased (Fig. S2).
368 In contrast, the model indicated that $\langle D_v \rangle$ and $\langle L_v \rangle$ had no influence on measures
369 of connectivity. The effect of VA_x^{-1} on $\langle c \rangle$ is due to conduit placement throughout
370 a cross-section being random. A point pattern analysis of three *Acer* species sup-
371 port this assumption (Martínez-Vilalta, Mencuccini, Álvarez, Camacho, Loepfe, and
372 Piñol, 2012) and the anatomical measurements by Lens, Sperry, Christman, Choat,
373 Rabaey, and Jansen (2011) show a strong correlation between VA_x^{-1} and GI, further
374 corroborating this outcome. Conversely, While individual vessel length L_v is a strong
375 predictor of the connectivity c of a single vessel, $\langle L_v \rangle$ in a xylem segment did not
376 impact $\langle c \rangle$.

377 One of the hypothesized advantages of an increase in $\langle c \rangle$ is an increase in pathway
378 redundancy, a measure of interest for many biological networks, including in the
379 neurosciences and genetics (Tononi, Sporns, and Edelman, 1999). As $\langle c \rangle$ increased
380 from small values, redundancy increased significantly through the avoidance of vessel
381 isolation. But, redundancy reached a maximum and saturated at and above a critical
382 value of $\langle c \rangle$. To quantify the pathway redundancy of a simulated xylem, the fraction
383 of embolized vessels at complete hydraulic failure (PLC = 100) was used (Fig. 4a in
384 orange). The rationale behind this metric is best explained through Fig. 3a, b: the
385 xylem network with lower $\langle c \rangle$ has a higher proportion of isolated conduits compared
386 to the one with higher $\langle c \rangle$ even though the same conduits are embolized. It is then
387 said that the xylem network in Fig. 3b is less redundant than the one in Fig. 3a.
388 Pathway redundancy is quantified by the fraction of embolized conduits at PLC =
389 100 because it takes a larger fraction of embolized conduits for complete hydraulic
390 failure (Fig. 3). Higher redundancy is achieved by reducing the instances of vessel
391 isolation as a result of embolism spread events. That is achieved by increasing $\langle c \rangle$,
392 which decreases the probability of a group of vessels becoming disconnected from the
393 segment inlet or outlet. The maximum pathway redundancy ($\approx 90\%$) is achieved
394 at $\langle c \rangle \approx 2.8$ on average and it stagnates with further increases in $\langle c \rangle$ (Fig. 4, top in
395 orange).

Fig. 3 Representation of how average conduit connectivity $\langle c \rangle$ affects redundancy (panels a and b) and embolism spread speed (panels c and d). $\langle c \rangle$ is calculated by counting the number of connections of each vessel and averaging. The xylem networks are similar for panels a and c and panels b and d, respectively. The difference between the two networks is that the conduit labeled "1" is present in panels a and c but not in panels b and d. The conduit labeled "2" is shorter in the latter panels and does not connect to the conduit on the top right. Panels a and b show how the network with lower $\langle c \rangle$ suffers from a greater number of isolated conduits than the network with higher $\langle c \rangle$. Conduit isolation occurs when a conduit still contains water but either the inlet or outlet is blocked by an embolized conduit. Panels c and d show how an embolism spreads faster in the network with higher $\langle c \rangle$ than the one with lower $\langle c \rangle$. The time step values in the legend are for illustration and are best understood as progressively increasing xylem water tension.


Fig. 4 The effect of average vessel connectivity $\langle c \rangle$ on pathway redundancy and embolism spread rate. a) embolism spread rate is quantified by the fraction of embolized vessels at the ensemble-averaged 50% loss of hydraulic conductivity (PLC; blue): average P_{50} of all simulations combined. Pathway redundancy is quantified by the fraction of embolized vessels at 100 PLC of each simulation (orange). b) embolism spread rate divided by pathway redundancy highlighting an optimal $\langle c \rangle$ at which embolism spread is minimized.

396 The hypothesized disadvantage of increased $\langle c \rangle$ is that it increases embolism
397 spread speed with respect to P . $\langle c \rangle$ had minimal effect of spread speed until it reached
398 a critical value. Above the critical value, embolism spread speed with respect to P
399 increased dramatically. The effect of $\langle c \rangle$ on embolism spread was represented by the
400 fraction of embolized vessels at the average P_{50} value (PLC = 50) of all simulations
401 combined. By determining the fraction of embolized vessels at this common P , we
402 compared the extent of embolism spread at the same pressure occurring at the steepest
403 portion of the ensemble-averaged VC. This represents the speed of embolism spread
404 with respect to increasing P . By plotting the value of this metric against $\langle c \rangle$ per
405 simulation, it is observed that the minimum spread rate occurs around $\langle c \rangle = 3$ where
406 about 10%, but as much as 20%, of all vessels are embolized (Fig. 4, a in blue).

407 Embolism spread speed in xylem is tied by analogy to the so-called bond perco-
408 lation process. By leveraging this conceptual link, it is deduced that spread speed
409 increases with $\langle c \rangle$ above $\langle c \rangle = 3$ because of a concomitant decrease in the percolation
410 threshold ($F_{c,threshold}$). $F_{c,threshold}$ decreases from around 70% at $\langle c \rangle = 2$ to 35% at
411 $\langle c \rangle = 3$ and further below as $\langle c \rangle$ increases (Fig. 5). The decrease in $F_{c,threshold}$ means
412 that a smaller proportion of contact walls allowing embolism spread is required for
413 a randomly placed embolism to propagate pervasively. This decline in $F_{c,threshold}$
414 explains the blow-up in the fraction of embolized vessels above $\langle c \rangle = 3$ (Fig. 4, a).
415 Above $\langle c \rangle = 3$, $F_{c,threshold}$ declines below 35% and the blow-up in embolism spread
416 speed happens (Figs. 4 and 5).

417 The distance between the embolism spread rate and pathway redundancy repre-
418 sents the safety of hydraulic conductance to embolism spread. This distance is
419 evaluated by taking the ratio of these two model outputs (Fig. 4, b). This ratio is
420 smallest when $\langle c \rangle$ is in the interval between 2.8 and 3 at about 10%. This analysis
421 suggests that *Acer* species might conserve vessel connectivity, not GI (see below), to
422 improve embolism resistance regardless of pit and vessel anatomy.

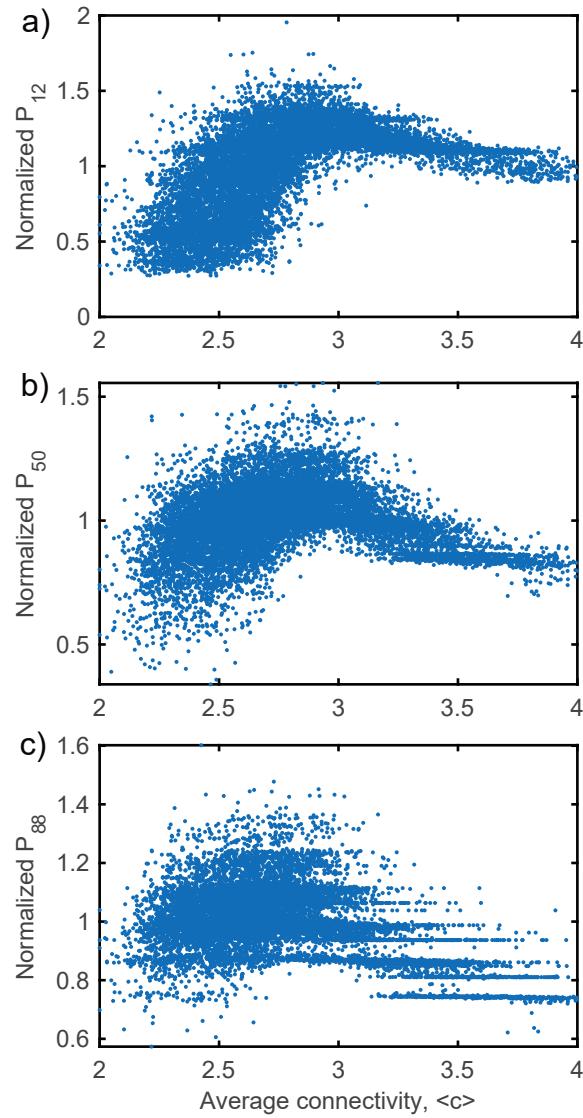
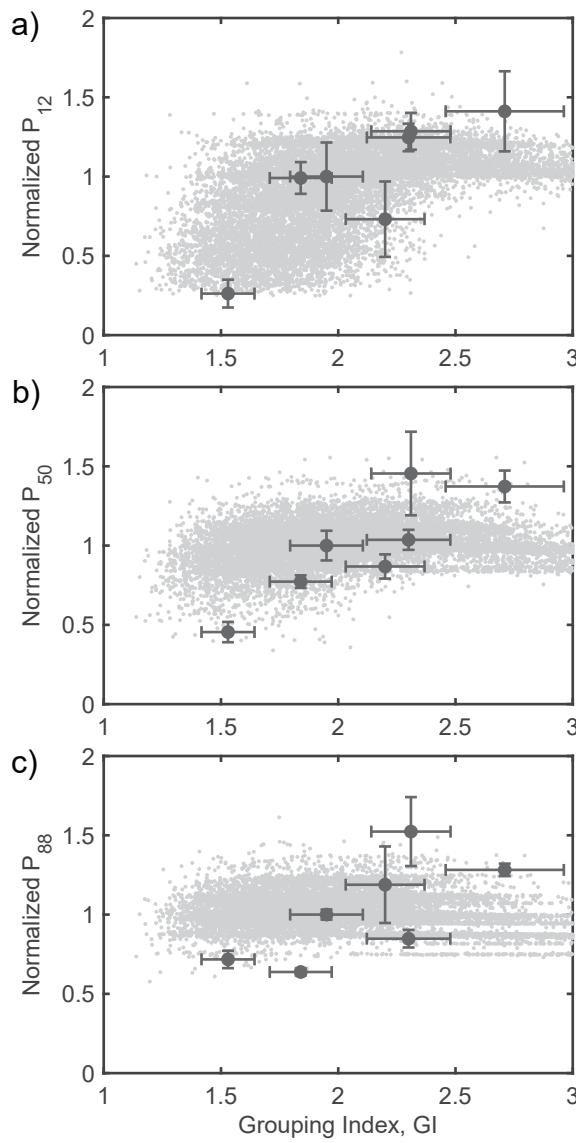

423 An increase in $\langle c \rangle$ to 3 increased P_{12} significantly but not P_{88} , imparting a smaller
424 increase to P_{50} (Fig. 6). Above $\langle c \rangle$ to 3, P_{12} , P_{50} , and P_{88} decreased such that the
425 redundancy-spread speed trade-off was corroborated. The ordinates in Fig. 6 are
426 normalized by their respective simulation means. This is to isolate the effects of

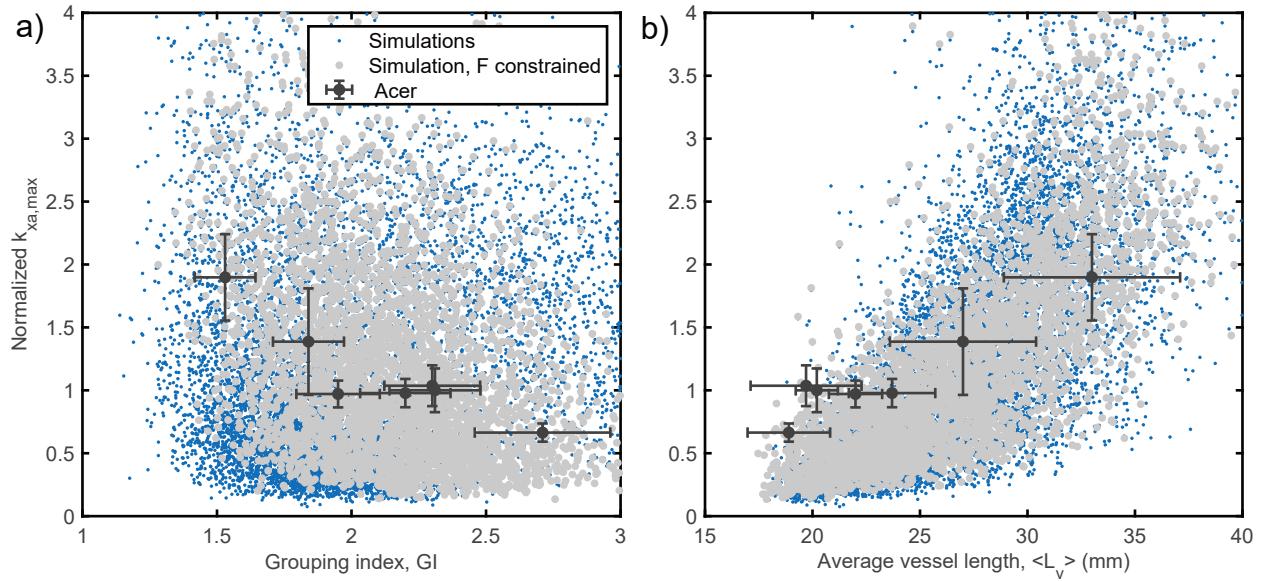
Fig. 5 The percolation threshold decreases with increasing average connectivity $\langle c \rangle$. The percolation threshold is a threshold fraction of conduit-to-conduit contact walls that allow an adjacent embolism to spread through them at a given xylem sap tension. If that threshold is exceeded, then a randomly placed embolism in the xylem network is expected to spread to the majority of the network.

427 $\langle c \rangle$ because the dimensional pressure values depend on pit membrane anatomy and
 428 frequency throughout vessel walls. An increase in $\langle c \rangle$ to 3 entailed an improvement
 429 in P_{12} , commonly referred to as the 'air-entry pressure'. In this case, variations
 430 in P_{12} are not related to air-seeding and air entry dynamics but the concept of
 431 redundancy (Fig. 4). Above $\langle c \rangle = 3$, gains in redundancy stagnated (Fig. 4)
 432 while the percolation threshold continued to decline (Fig. 5). Detrimental effects
 433 of a reduction in percolation threshold hold for P_{50} and P_{88} as well. In contrast,
 434 it appears from Fig. 6 that better embolism spread resistance due to redundancy
 435 is strongest in the low-pressure portion of VCs (i.e., P_{12}). Therefore, the effect of
 436 $\langle c \rangle$ on P_{88} is minimal below $\langle c \rangle = 3$. As a result, increases in P_{50} due to pathway
 437 redundancy were weaker compared to P_{12} but still present.

438 In contrast to $\langle c \rangle$, the effect of GI on VC measures was weaker. The simulation
 439 scatterplots showed P_{12} being significantly affected by GI whereas the relation of GI
 440 to P_{50} and P_{88} was nuanced (Fig. 7). Having low GI (≈ 1.5) did not preclude a high
 441 P_{12} but a high GI constrains P_{12} to higher values (Fig. 7,a). The *Acer* data conforms


Fig. 6 The average vessel connectivity $\langle c \rangle$ affects a) P_{12} significantly, b) P_{50} mildly, and c) P_{88} minimally. The ordinates are normalized by the respective simulation means. The dimensional pressure values are a function of pit membrane anatomy and the average vessel wall area occupied by pit membranes. Since the interest here lies in the effect of $\langle c \rangle$ only, the ordinates are normalized.

442 to the scatter plot. The simulations show that P_{88} and GI were uncorrelated for the
443 simulations leaving a weak relation between GI and P_{50} (Fig. 7,b,c).


444 The $\langle L_v \rangle$ is a strong predictor of maximum xylem area specific hydraulic conductivity ($k_{xa,max}$; Fig. 8) but not GI or $\langle D_v \rangle$, and therefore the lumen fraction F . As
445 was done for P_{12} , P_{50} , and P_{88} , $k_{xa,max}$ is normalized by simulation and *Acer* dataset
446 means appropriately (Fig. 8). The model correlation between $\langle L_v \rangle$ and $k_{xa,max}$ indicates
447 that water movement through vessel wall pits is the most restrictive to overall
448 sap flow (Choat, Cobb, and Jansen, 2008). With longer vessels, sap crosses a smaller
449 number of pit membranes on average thus increasing the whole segment conductivity
450 (Fig. 8, b). Over the ensemble of simulations, GI and $\langle D_v \rangle$ were weakly correlated
451 with $k_{xa,max}$ (Fig. 8, a). In the *Acer* branches, GI and VA_x^{-1} are strongly correlated
452 (Lens, Sperry, Christman, Choat, Rabaey, and Jansen, 2011). Since F in these
453 branches is constrained to the range spanning 15% to 25% (Fig. S3), there exists
454 a trade-off between vessel frequency per transverse area (VA_x^{-1}) and $\langle D_v \rangle$. This
455 is because F is the fraction of the transverse stem area occupied by vessel lumen
456 ($F = VA_x^{-1} (\pi/4) \langle D_v^2 \rangle$). As a result, it was hypothesized that increasing GI would
457 lead to decreasing $k_{xa,max}$ due to a decrease $\langle D_v \rangle$ but this did not happen (Fig. 8,
458 a). The $\langle L_v \rangle$ - $k_{xa,max}$ relation was minimally affected when F was constrained in
459 the model because $\langle L_v \rangle$ had the stronger effect on $k_{xa,max}$ than $\langle D_v \rangle$ (gray scatter-
460 plots; Fig. 8, b). Therefore, the presence of a correlation between GI and $k_{xa,max}$
461 in the *Acer* data (Lens, Sperry, Christman, Choat, Rabaey, and Jansen, 2011, Fig.
462 8, a) occurs because of a separate correlation between GI and $\langle L_v \rangle$ (Lens, Sperry,
463 Christman, Choat, Rabaey, and Jansen, 2011).
464

465 5 Discussion

466 The simulations suggested that vessel connectivity and grouping improved segment-
467 level resistance to embolism spread without affecting hydraulic conductivity. Increases
468 in $\langle c \rangle$ and GI lead to an increase in P_{12} (more negative potential) through redundancy
469 when all other anatomical features are held constant. There is a limit

Fig. 7 The grouping index (GI) affects a) P_{12} significantly but its effect on b) P_{50} is nuanced while it bears no effect on c) P_{88} . The ordinates are normalized by the respective simulation or *Acer* data means. The simulations are shown in light gray while data derived from *Acer* vulnerability to embolism curves are in large symbols. The error bars around the *Acer* data points are standard errors from (Lens, Sperry, Christman, Choat, Rabaey, and Jansen, 2011).

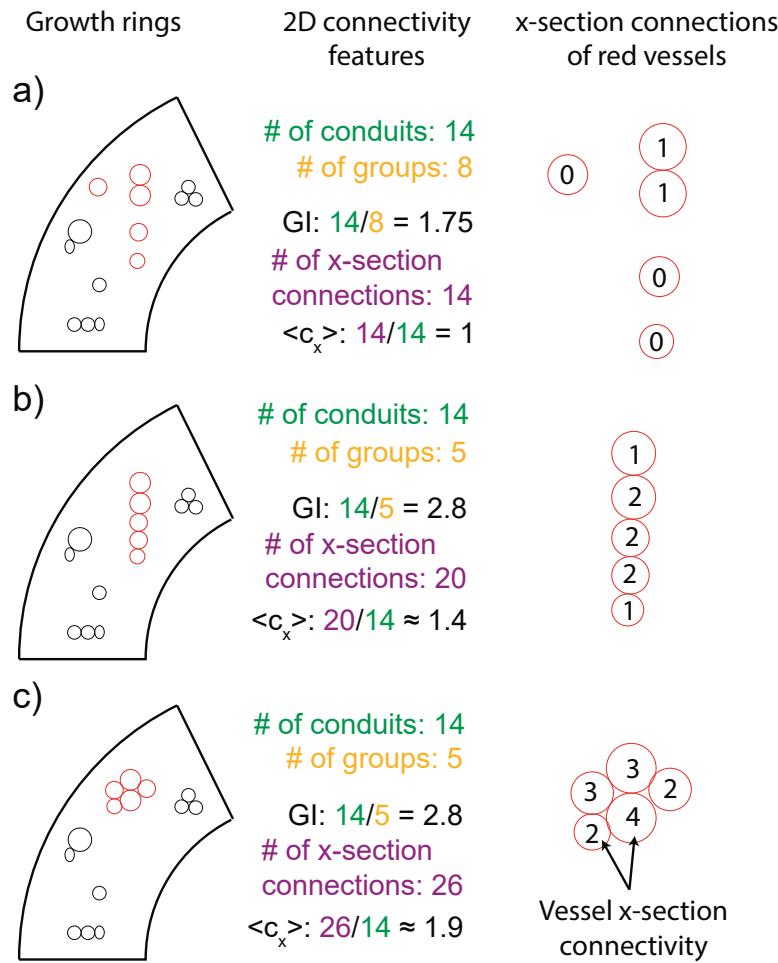


Fig. 8 While the *Acer* dataset (dark gray circles) shows significant correlations between the maximum xylem area specific hydraulic conductivity ($k_{xa,max}$) and the a) grouping index (GI) and the b) average vessel length ($\langle L_v \rangle$), simulations show that only $\langle L_v \rangle$ is a significant predictor of $k_{xa,max}$ (blue and light gray circles). The simulations vary properties pertinent to vessel anatomy and connectivity, but not pit membrane hydraulic properties (see Description). Light gray circles are scatter plots of simulations where the vessel lumen fraction is constrained to between 15% and 25% (Fig. S3). The error bars around the *Acer* data points are standard errors from (Lens, Sperry, Christman, Choat, Rabaey, and Jansen, 2011). On the ordinate is $k_{xa,max}$ normalized appropriately by simulation or dataset means.

470 to the positive relation between measures of vessel connection and P_{12} at $\langle c \rangle = 3$.
471 At this value, embolism percolation dynamics overtook redundancy in influence but
472 the *Acer* species did not seem to cross that limit. Increases in $\langle c \rangle$ below that limit
473 increased P_{12} more strongly than P_{50} and P_{88} . As a result, higher vessel connectivity
474 is thought to contribute to a steeper VC (Figs. 6 and 7).

475 One could also use the relation between $\langle c \rangle$ and redundancy to compare relative
476 connectivities between species (Fig. 3). If one compares the proportion of air-filled
477 conduits at a PLC ≈ 100 between different species, then one could infer that the
478 species with the lowest proportion of embolized conduits is the least redundant and
479 thus has lower $\langle c \rangle$. But to make an inference about relative differences in $\langle c \rangle$ between
480 species based redundancy arguments, the species compared should all have only
481 vessels as the main pathway for water and air-seeding the main mode of embolism
482 spread in the xylem network.

483 Unfortunately, there does not exist data on *Acer* vessel connectivity in the lit-
484 erature due to the labor-intensive nature of these measurements. Consequently, we
485 relied on a closely related measure, GI, which is reported for the *Acer* species (Lens,
486 Sperry, Christman, Choat, Rabaey, and Jansen, 2011). GI is a two-dimensional mea-
487 sure of vessel connection. Fig. 9 shows the relation between the average transverse
488 vessel connectivity $\langle c_x \rangle$ and GI. $\langle c_x \rangle$ quantifies only the connectivity apparent from
489 a transverse stem section. So, it is the two-dimensional equivalent of $\langle c \rangle$. The $\langle c_x \rangle$
490 and GI differ if the fraction of tangential vessel connections varies from species to
491 species as seen by comparing Fig. 9b and Fig. 9c. While Fig. 9b and Fig. 9c have
492 the same GI, the latter has a higher $\langle c_x \rangle$. Therefore, when vessel connections have a
493 preferred direction (radial in *Acer*), they limit $\langle c_x \rangle$ and, therefore, $\langle c \rangle$ to lower values
494 for the same GI. It is typical to have conduit connections in a predominantly pre-
495 ferred direction in angiosperm xylem with only vessels as the water pathway. One
496 possible driver of this trend is the potential increase in the 'air-entry' pressure of
497 xylem (P_{12}) due to increases in GI (Fig. 7, a) while maintaining a high percolation
498 threshold (Fig. 5) by maintaining $\langle c \rangle$ to values low enough to prevent the blowup
499 in embolism spread speed (Fig. 4). This supports the hypothesis that increasing
500 GI is a necessary but insufficient condition to improve *Acer* resistance to embolism

Fig. 9 Illustration showing the discrepancy between the grouping index (GI) and transverse or cross-section (x-section) vessel connectivity $\langle c_x \rangle$. The GI is defined as the number of vessels (number in green) divided by the number of vessel groups (number in orange). The $\langle c_x \rangle$ is the number of cross-section vessel connections (number in purple) divided by the number of vessels in a transverse stem section. The vessels in black are invariant whereas those in red form different vessel multiples when comparing a), b), and c). On the right-most column, the red vessels are highlighted and the cross-sectional connectivity $\langle c_x \rangle$ of each is written inside of it. The "# of x-section connections" in the middle column is the sum of the vessel connectivities in the growth rings (left column) for both the black and red vessels. Especially when comparing b) and c), we see that 1 vessel group can have a higher connectivity with more tangential connections. While the illustrations in this figure are constrained to the cross-section, the same concepts apply in 3 dimensions with the 3-dimensional vessel connectivity property $\langle c \rangle$.

501 spread.

502 Nonetheless, trends between GI and PLC measures are similar, but weaker, to
503 those with $\langle c \rangle$ despite having varied the fraction of tangential and diagonal connec-
504 tions four-fold in the simulations (Fig. 7 and S1). Most striking is the absence of
505 a linear relation between GI and P_{50} but its presence in the *Acer* dataset (Lens,
506 Sperry, Christman, Choat, Rabaey, and Jansen, 2011). This suggests that the trend
507 seems to stem from the significant correlation between GI and another pit membrane
508 property. This assertion is corroborated by a linear relation between GI and P_{88} in
509 the dataset (Fig. 7b). Indeed, in the *Acer* data (Lens, Sperry, Christman, Choat,
510 Rabaey, and Jansen, 2011), T_m has been shown to be a strong predictor of resistance
511 to embolism spread at the pit and vessel levels (Li, Lens, Espino, Karimi, Klep-
512 sch, Schenk, Schmitt, Schuldt, and Jansen, 2016) and at the xylem segment level
513 (Lens, Sperry, Christman, Choat, Rabaey, and Jansen, 2011). In a recent study on
514 Poplar, embolism resistance plasticity in *Populus tremula x alba* has shown a strong
515 correlation between GI and P_{50} (Lemaire, Quilichini, Brunel-Michac, Santini, Berti,
516 Cartailler, Conchon, Badel, and Herbette, 2021). Concurrently, *Populus tremula x*
517 *alba*, a member of the Salicaceae family that largely does not possess vasicentric
518 tracheids, has shown a significant decrease in the pit membrane area per vessel with
519 an increase in P_{50} . These empirical examples support the hypothesis that GI is nec-
520 essary for embolism spread resistance in such angiosperm families but needs to be
521 accompanied by variations in pit and vessel anatomy.

522 If increasing $\langle c \rangle$ leads to improved xylem resistance to embolism spread with-
523 out negatively affecting hydraulic flow efficiency, then what might the evolutionary
524 drivers of $\langle c \rangle$ variation between species be? The fact that the ubiquitous GI mea-
525 surements could be uncorrelated to measures of 3D connectivity (Fig. 9) means that,
526 currently, the data needed to answer this question are unavailable. If, however, $\langle c \rangle$
527 is correlated with GI and air-seeding is the main way for embolisms to spread, then
528 species such as those in the *Acer* genus might have to increase $\langle c \rangle$ at the expense
529 of increasing vessel frequency. This is because GI and VA_x^{-1} are highly correlated
530 in *Acer* (Lens, Sperry, Christman, Choat, Rabaey, and Jansen, 2011). This would
531 incur one of two costs: Either there would be less space for other types of cells in

the xylem like fibers and parenchyma, negatively affecting biomechanics and storage ((Pratt and Jacobsen, 2017)), or the conduits would have smaller diameters to preserve space with implications for hydraulic efficiency and construction costs in terms of carbon (Fig. S2). The latter is what is observed in the set of *Acer* species where a near-constant vessel packing fraction is conserved (Fig. S3; Lens, Sperry, Christman, Choat, Rabaey, and Jansen, 2011). However, reliable, inter-family measurements of $\langle c \rangle$ are necessary to validate or correct this hypothesis.

Resistance to embolism spread in plant organs is determined by the intersection among multiple anatomical traits operating at different scales. The ultra-structure of pit membranes determines the size of the nanopores that both allow water flow and restrict embolism spread (Jansen, Choat, and Pletsers, 2009; Lens, Sperry, Christman, Choat, Rabaey, and Jansen, 2011; Li, Lens, Espino, Karimi, Klepsch, Schenk, Schmitt, Schuldt, and Jansen, 2016; Zhang et al., 2020). Wider vessels reduce water flow resistance but a larger surface area, with more pit membranes, has been suggested to facilitate embolism spread (Hargrave, Kolb, F. Ewers, and Davis, 1994; Christman, Sperry, and Adler, 2009; Christman, Sperry, and Smith, 2012). A common theme among these traits, when they change, is that they affect k_{xa} and P_{50} in opposing ways. This reason is partly behind the expectation that safe species, with high resistance to drought, are less efficient with low hydraulic conductivity, and vice versa. This expectation leads to the hypothesis of the 'safety-efficiency' trade-off (Tyree, Davis, and Cochard, 1994) which has recently been shown to be weak (Gleason, Westoby, Jansen, Choat, Hacke, Pratt, Bhaskar, Brodribb, Bucci, Cao, et al., 2016). However, the simulations perturbing vessel connectivity have shown that it has a significant effect on the slope of the VC (Fig. 6 and 7) regardless of changes in pit and vessel anatomy. These 'middle-scale' variations in xylem networks do not affect P_{50} and $k_{xa,max}$, typical measures of xylem safety and efficiency, in clearly opposing ways (Manzoni, Vico, Katul, Palmroth, Jackson, and Porporato, 2013). The weakness of the expected safety-efficiency trade-off among woody species (Gleason, Westoby, Jansen, Choat, Hacke, Pratt, Bhaskar, Brodribb, Bucci, Cao, et al., 2016) might be because an increase in vessel connectivity, all else constant, could improve P_{50} (to a certain extent; Fig/ 6,b) while not affecting $k_{xa,max}$ (as observed through

563 the 2D proxy GI, blue and gray scatter plots in Fig. 8,a), unlike how changes in
564 other anatomical traits affect them. doc

565 'Middle-scale' variations encompass more than trends in vessel grouping, especially
566 in flowering plants with vasicentric tracheids (Carlquist, 1984; Carlquist, 2009).
567 In such species, much of the hydraulic connectivity between vessels is mediated by
568 radial or tangential bands of conductive tracheids. As a result, such species with
569 mostly solitary vessels will encounter different embolism spread dynamics. A recent
570 study on three flowering species with mostly solitary vessels has concluded that soli-
571 tary cavitation events dominate over events that involve groups of vessels (Johnson,
572 Brodersen, Carins-Murphy, Choat, and Brodribb, 2020). Consequently, species pos-
573 ssesing different patterns of vessel connectivity will not conform to similar P_{50} and
574 $k_{xa,max}$ trade-offs even if vessel and pit anatomy are identical.

575 In *Acer*, increasing conduit connectivity improves branch resistance to embolism
576 spread without adversely affecting hydraulic conductivity. This may be true for all
577 plants with vessels as the only water conducting cell type such as *Acer*. In general,
578 that means that when xylem network characteristics vary among woody species,
579 the 'safety-efficiency' trade-off hypothesis applied to the segment level might not
580 hold. This result was established using a combination of numerical simulations and
581 theoretical tactics borrowed from network and percolation theory. Increasing average
582 conduit connectivity invoked a trade-off between hydraulic pathway redundancy and
583 embolism spread speed with respect to pressure. Pathway redundancy increased
584 with conduit connectivity because conduit isolation was avoided. Above a critical
585 conduit connectivity, improvements in redundancy were canceled by embolism spread
586 speed due to a declining percolation threshold. These results underscore the need to
587 account for changes in average conduit connectivity, preferential arrangements, and
588 cell types among organs and species to successfully generalize hydraulic trends.

589 6 Acknowledgments

590 AM acknowledges funding from the National Science Foundation (NSF-AGS-1644382,
591 NSF-AGS-2028633). AM, DMJ, DML, and J-CD acknowledge the NSF for grant
592 NSF-IOS-1754893. The authors appreciate the critical feedback provided by Dr.
593 Gabriel G. Katul and Dr. Frederic Lens.

594 7 Author contributions

595 AM planned and designed the research and developed the computational model and
596 the theory. AM, DMJ, DML, and J-CD analysed the data and model results and
597 wrote the manuscript.

598 8 Data availability

599 Branch anatomy data on the seven *Acer* species were obtained Lens, Sperry, Christ-
600 man, Choat, Rabaey, and Jansen (2011) after contacting the corresponding author
601 of that study. The code for the model is found at <https://github.com/mradassaad>.

602 References

- 603 [1] DS Callaway, MEJ Newman, SH Strogatz, and DJ Watts. “Network robustness
604 and fragility: Percolation on random graphs”. In: *Physical Review Letters* 85.25
605 (2000), pp. 5468–5471.
- 606 [2] S Carlquist. “Vessel grouping in dicotyledon wood: significance and relationship
607 to imperforate tracheary elements”. In: *Aliso: A Journal of Systematic and
608 Evolutionary Botany* 10.4 (1984), pp. 505–525.
- 609 [3] S Carlquist. “Non-random vessel distribution in woods: patterns, modes, diver-
610 sity, correlations”. In: *Aliso: A Journal of Systematic and Evolutionary Botany*
611 27.1 (2009), pp. 39–58.

612 [4] B Choat, AR Cobb, and S Jansen. “Structure and function of bordered pits:
613 new discoveries and impacts on whole-plant hydraulic function”. In: *New Phytologist* 177.3 (2008), pp. 608–626.

614

615 [5] MA Christman, JS Sperry, and FR Adler. “Testing the ‘rare pit’ hypothesis for
616 xylem cavitation resistance in three species of Acer”. In: *New Phytologist* 182.3
617 (2009), pp. 664–674.

618

619 [6] MA Christman, JS Sperry, and DD Smith. “Rare pits, large vessels and extreme
620 vulnerability to cavitation in a ring-porous tree species”. In: *New Phytologist*
621 193.3 (2012), pp. 713–720.

622

623 [7] H Cochard, P Cruiziat, and MT Tyree. “Use of positive pressures to estab-
624 lish vulnerability curves: further support for the air-seeding hypothesis and
625 implications for pressure-volume analysis”. In: *Plant Physiology* 100.1 (1992),
626 pp. 205–209.

627

628 [8] R Cohen, K Erez, D Ben-Avraham, and S Havlin. “Resilience of the internet to
629 random breakdowns”. In: *Physical Review Letters* 85.21 (2000), pp. 4626–4628.

630

631 [9] HH Dixon and J Joly. “On the ascent of sap”. In: *Philosophical Transactions
632 of the Royal Society of London. B* 186 (1895), pp. 563–576.

633

634 [10] J-C Domec and BL Gartner. “Cavitation and water storage capacity in bole
635 xylem segments of mature and young Douglas-fir trees”. In: *Trees* 15.4 (2001),
636 pp. 204–214.

637

638 [11] FW Ewers, JM Ewers, AL Jacobsen, and J López-Portillo. “Vessel redundancy:
639 modeling safety in numbers”. In: *IAWA Journal* 28.4 (2007), pp. 373–388.

640

641 [12] SM Gleason, M Westoby, S Jansen, B Choat, UG Hacke, RB Pratt, R Bhaskar,
642 TJ Brodribb, SJ Bucci, K-F Cao, et al. “Weak tradeoff between xylem safety
643 and xylem-specific hydraulic efficiency across the world’s woody plant species”.
644 In: *New Phytologist* 209.1 (2016), pp. 123–136.

645

646 [13] UG Hacke, AL Jacobsen, and RB Pratt. “Xylem function of arid-land shrubs
647 from California, USA: an ecological and evolutionary analysis”. In: *Plant, Cell
648 & Environment* 32.10 (2009), pp. 1324–1333.

641 [14] UG Hacke, JS Sperry, JK Wheeler, and L Castro. “Scaling of angiosperm xylem
642 structure with safety and efficiency”. In: *Tree Physiology* 26.6 (2006), pp. 689–
643 701.

644 [15] KR Hargrave, KJ Kolb, FW Ewers, and SD Davis. “Conduit diameter and
645 drought-induced embolism in *Salvia mellifera* Greene (Labiatae)”. In: *New*
646 *Phytologist* 126.4 (1994), pp. 695–705.

647 [16] T Hölttä, T Vesala, and E Nikinmaa. “A model of bubble growth leading
648 to xylem conduit embolism”. In: *Journal of Theoretical Biology* 249.1 (2007),
649 pp. 111–123.

650 [17] AL Jacobsen and RB Pratt. “Going with the flow: Structural determinants of
651 vascular tissue transport efficiency and safety”. In: *Plant, Cell & Environment*
652 41.12 (2018), pp. 2715–2717.

653 [18] S Jansen, B Choat, and A Pletsers. “Morphological variation of intervessel pit
654 membranes and implications to xylem function in angiosperms”. In: *American*
655 *Journal of Botany* 96.2 (2009), pp. 409–419.

656 [19] KM Johnson, C Brodersen, MR Carins-Murphy, B Choat, and TJ Brodribb.
657 “Xylem embolism spreads by single-conduit events in three dry forest an-
658 giosperm stems”. In: *Plant Physiology* 184.1 (2020), pp. 212–222.

659 [20] L Kaack, CM Altaner, C Carmesin, A Diaz, M Holler, C Kranz, G Neusser,
660 M Odstrcil, HJ Schenk, V Schmidt, et al. “Function and three-dimensional
661 structure of intervessel pit membranes in angiosperms: a review”. In: *IAWA*
662 *Journal* 40.4 (2019), pp. 673–702.

663 [21] M Kanduč, E Schneck, P Loche, S Jansen, HJ Schenk, and RR Netz. “Cavita-
664 tion in lipid bilayers poses strict negative pressure stability limit in biological
665 liquids”. In: *Proceedings of the National Academy of Sciences* 117.20 (2020),
666 pp. 10733–10739.

667 [22] W Konrad, G Katul, A Roth-Nebelsick, and KH Jensen. “Xylem functioning,
668 dysfunction and repair: a physical perspective and implications for phloem
669 transport”. In: *Tree Physiology* 39.2 (2019), pp. 243–261.

670 [23] W Konrad and A Roth-Nebelsick. “The dynamics of gas bubbles in conduits
671 of vascular plants and implications for embolism repair”. In: *Journal of Theoretical
672 Biology* 224.1 (2003), pp. 43–61.

673 [24] C Lemaire, Y Quilichini, N Brunel-Michac, J Santini, L Berti, J Cartailler, P
674 Conchon, É Badel, and S Herbette. “Plasticity of the xylem vulnerability to
675 embolism in *Populus tremula x alba* relies on pit quantity properties rather
676 than on pit structure”. In: *Tree Physiology* (Feb. 2021). tpab018. ISSN: 1758-
677 4469. DOI: 10.1093/treephys/tpab018. eprint: <https://academic.oup.com/treephys/advance-article-pdf/doi/10.1093/treephys/tpab018/36971185/tpab018.pdf>. URL: <https://doi.org/10.1093/treephys/tpab018>.

680

681 [25] F Lens, JS Sperry, MA Christman, B Choat, D Rabaey, and S Jansen. “Testing
682 hypotheses that link wood anatomy to cavitation resistance and hydraulic
683 conductivity in the genus *Acer*”. In: *New Phytologist* 190.3 (2011), pp. 709–723.

684 [26] S Li, F Lens, S Espino, Z Karimi, M Klepsch, HJ Schenk, M Schmitt, B Schuldt,
685 and S Jansen. “Intervessel pit membrane thickness as a key determinant of
686 embolism resistance in angiosperm xylem”. In: *IAWA Journal* 37.2 (2016),
687 pp. 152–171.

688 [27] L Loepfe, J Martinez-Vilalta, J Pinol, and M Mencuccini. “The relevance of
689 xylem network structure for plant hydraulic efficiency and safety”. In: *Journal
690 of Theoretical Biology* 247.4 (2007), pp. 788–803.

691 [28] S Manzoni, G Vico, G Katul, S Palmroth, RB Jackson, and A Porporato.
692 “Hydraulic limits on maximum plant transpiration and the emergence of the
693 safety–efficiency trade-off”. In: *New Phytologist* 198.1 (2013), pp. 169–178.

694 [29] J Martínez-Vilalta, M Mencuccini, X Álvarez, J Camacho, L Loepfe, and J
695 Piñol. “Spatial distribution and packing of xylem conduits”. In: *American
696 Journal of Botany* 99.7 (2012), pp. 1189–1196.

697 [30] A Mrad, J-C Domec, C-W Huang, F Lens, and G Katul. “A network model
698 links wood anatomy to xylem tissue hydraulic behaviour and vulnerability to
699 cavitation”. In: *Plant, Cell & Environment* 41.12 (2018), pp. 2718–2730.

700 [31] MEJ Newman. *Networks*. Oxford university press, 2018.

701 [32] RB Pratt and AL Jacobsen. “Conflicting demands on angiosperm xylem: Trade-
702 offs among storage, transport and biomechanics”. In: *Plant, Cell & Environ-
703 ment* 40.6 (2017), pp. 897–913.

704 [33] RB Pratt and AL Jacobsen. “Identifying which conduits are moving water in
705 woody plants: a new HRCT-based method”. In: *Tree Physiology* 38.8 (2018),
706 pp. 1200–1212.

707 [34] RB Pratt, MI Percolla, and AL Jacobsen. “Integrative Xylem Analysis of Cha-
708 parral Shrubs”. In: *Functional and Ecological Xylem Anatomy*. Ed. by Uwe
709 Hacke. Cham, Switzerland: Springer International Publishing, 2015, pp. 189–
710 207. ISBN: 978-3-319-15783-2. DOI: 10.1007/978-3-319-15783-2_7.

711 [35] A Roth-Nebelsick. “It’s contagious: calculation and analysis of xylem vuln-
712 erability to embolism by a mechanistic approach based on epidemic modeling”.
713 In: *Trees* 33.5 (2019), pp. 1519–1533.

714 [36] S Salleo, TM Hinckley, SB Kikuta, MA Lo Gullo, P Weilgony, T-M Yoon, and
715 H Richter. “A method for inducing xylem emboli in situ: experiments with a
716 field-grown tree”. In: *Plant, Cell & Environment* 15.4 (1992), pp. 491–497.

717 [37] Y Sano, H Morris, H Shimada, LP Ronse De Craene, and S Jansen. “Anatomical
718 features associated with water transport in imperforate tracheary elements
719 of vessel-bearing angiosperms”. In: *Annals of Botany* 107.6 (2011), pp. 953–
720 964.

721 [38] HJ Schenk, S Espino, DM Romo, N Nima, AYT Do, JM Michaud, B Papahadjopoulos-
722 Sternberg, J Yang, YY Zuo, K Steppe, et al. “Xylem surfactants introduce a
723 new element to the cohesion-tension theory”. In: *Plant Physiology* 173.2 (2017),
724 pp. 1177–1196.

725 [39] HJ Schenk, K Steppe, and S Jansen. "Nanobubbles: a new paradigm for air-
726 seeding in xylem". In: *Trends in Plant Science* 20.4 (2015), pp. 199–205.

727 [40] JS Sperry and NZ Saliendra. "Intra-and inter-plant variation in xylem cav-
728 itation in *Betula occidentalis*". In: *Plant, Cell & Environment* 17.11 (1994),
729 pp. 1233–1241.

730 [41] JS Sperry and MT Tyree. "Mechanism of water stress-induced xylem em-
731 bolism". In: *Plant Physiology* 88.3 (1988), pp. 581–587.

732 [42] G Tononi, O Sporns, and GM Edelman. "Measures of degeneracy and redun-
733 dancy in biological networks". In: *Proceedings of the National Academy of Sci-
734 ences* 96.6 (1999), pp. 3257–3262.

735 [43] MT Tyree, SD Davis, and H Cochard. "Biophysical perspectives of xylem evolu-
736 tion: is there a tradeoff of hydraulic efficiency for vulnerability to dysfunction?"
737 In: *IAWA Journal* 15.4 (1994), pp. 335–360.

738 [44] MT Tyree and MH Zimmermann. *Xylem Structure and the Ascent of Sap*.
739 Springer Series in Wood Science. Springer, 2002. ISBN: 9783540433545.

740 [45] MD Venturas, RB Pratt, AL Jacobsen, V Castro, JC Fickle, and UG Hacke.
741 "Direct comparison of four methods to construct xylem vulnerability curves:
742 Differences among techniques are linked to vessel network characteristics". In:
743 *Plant, Cell & Environment* 42.8 (2019), pp. 2422–2436.

744 [46] MD Venturas, JS Sperry, and UG Hacke. "Plant xylem hydraulics: what we
745 understand, current research, and future challenges". In: *Journal of Integrative
746 Plant Biology* 59.6 (2017), pp. 356–389.

747 [47] Y Zhang et al. "High porosity with tiny pore constrictions and unbending path-
748 ways characterize the 3D structure of intervessel pit membranes in angiosperm
749 xylem". In: *Plant, Cell & Environment* 43.1 (2020), pp. 116–130.

750 **Fig. S1:** The probability of tangential inter-vessel connections does not explain
751 variation in $k_{xa, max}$ and b) P_{50} .

752 **Fig. S2:** The effect of VA_x^{-1} on a) GI and b) c.

753 **Fig. S3:** The seven Acer species maintain a tight relation between VA_x^{-1} and
754 average vessel lumen area.

755 **Description S1:** Modeling xylem networks: sap flow

756 **Description S2:** Calculating GI and VA_x^{-1} in the model