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s 1 Summary

17 1. Wood anatomical traits shape a xylem segment’s hydraulic efficiency and em-
18 bolism spread resistance due to declining water potential. It has been known
19 for decades that variations in conduit connectivity play a role in altering xylem
2 hydraulics. However, evaluating the precise effect of conduit connectivity has
21 been elusive. The objective is to establish an analytical linkage between conduit
2 connectivity and grouping and tissue-scale hydraulics.

2 2. It is hypothesized that an increase in conduit connectivity brings improved
24 resistance to embolism spread due to increased hydraulic pathway redundancy.
2 However, an increase in conduit connectivity could also reduce resistance due
2 to increased embolism spread speed with respect to pressure. We elaborate
27 on this trade-off using graph theory, percolation theory, and computational
28 modeling of xylem. The results are validated using anatomical measurements
29 of Acer branch xylem.

30 3. Considering only species with vessels, increases in connectivity improve resis-
31 tance to embolism spread without negatively affecting hydraulic conductivity.
2 The often measured grouping index fails to capture the totality of the effect of
1 conduit connectivity on xylem hydraulics.

34 4. Variations in xylem network characteristics, such as conduit connectivity, might
35 explain why hypothesized trends among woody species, like the 'safety-efficiency’
36 trade-off hypothesis, are weaker than expected.

37 Keywords: connectivity, grouping, xylem, hydraulic conductance, embolism spread,

s Acer (Maples)

» 2 Introduction

N
o

Plant xylem supplies water from the soil pores to the leaves to compensate for the

s loss of water molecules from leaves to the atmosphere. As stomata open to uptake
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carbon dioxide molecules needed for photosynthesis, water molecules evaporate. The
water experiences a phase transition in the leaf parenchyma and escapes as vapor
through the guard cells to a desiccating atmosphere. For every water molecule lost
from leaves, the entire column of water must be pulled upwards from the soil-root
interface or from plant water storage to compensate for this water molecule loss. This
makes the conveyance of water from roots to leaves through the xylem is unique; it is
entirely passive with minimal energy expenditures (no pumping) and operationally
relies on water loss from leaves via transpiration only (Venturas, Sperry, and Hacke,
2017). However, the draw-back of such a passive system is that water in the xylem
is in a metastable state where cohesive forces between water molecules and adhesive
forces between the molecules and the cell walls sustain large tensile stresses (Dixon
and Joly, 1895). This tension is then transmitted to the xylem cell walls and sap.

The xylem tissue bears a complex network of sap-transporting conduits that form
many parallel pathways for water movement. The network of conduits, extending
from the roots to the leaves, is redundant such that if a conduit is damaged, many
other pathways still exist for the water to reach the leaves. The water is able to move
from one conduit to the next through interconduit pits (hereafter “pits”), which are
openings in the secondary cell wall of conduits that allow lateral water transport.
Pathway redundancy in xylem is necessary because conduits are often at the risk of
dysfunction through gas bubble expansion.

The consequence of having sap under tension in a conduit is that some gas-filled
bubbles can grow and fill the whole conduit. Embolisms inside conduits have been hy-
pothesized to originate and spread through homogeneous nucleation, heterogeneous
nucleation from a crack or impurities, or air-seeding from porous pits on conduit
walls (Tyree, Davis, and Cochard, 1994). In the angiosperm clade, of main interest
in this study, the pits contain a porous membrane, termed the pit membrane, that
links conduits to each other. Pressure chamber experiments have lent support to
the hypothesis of air-seeding via pores in the interconduit pit membranes by demon-
strating the equivalence between a drop in sap pressure and a rise in the pressure
of embolism contents (Cochard, Cruiziat, and Tyree, 1992; Sperry and Saliendra,

1994). This is because nucleation, or cavitation, requires negative water pressures
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to occur whereas air-seeding is dependent on the absolute value of the pressure dif-
ference between the gas in embolized vessels and the sap (P). Air-seeding from
adjacent conduits is considered the sole source of embolisms in this study. In other
words, when a conduit is embolized, or air-filled, there is risk for embolism to spread
to adjacent, connected conduits (Sperry and Tyree, 1988). This requires an initial
embolism event as exposure of the xylem sap to air due to disturbances like fire and
strong winds, herbivores, or pathogens (Venturas, Sperry, and Hacke, 2017) or de
novo heterogenous nucleation. These initial embolisms might then spread to a larger
number of vessels through air-seeding.

The ultimate impact of vessel embolism is related to its effect on organ and whole-
plant hydraulic function. When a functional vessel is air-filled, at least one hydraulic
pathway from segment inlet to outlet is lost, affecting whole-segment hydraulics. The
way vessels are distributed and connected to one another determines the degree to
which an embolism affects segment-level resistance to embolism spread. One such
measure is the vulnerability to embolism curve (VC): a plot of the percent loss of hy-
draulic conductivity (PLC) of a whole-segment against P (Tyree and Zimmermann,
2002). As P increases, the PLC increases from 0% to 100%. The shape and location
of the VC along the P axis depends on embolism spread within the xylem network
of that segment, the ease of which is determined by pit membrane ultra-structural
properties and frequency.

However, being a 'macro-scale’ measure, the VC integrates network mechanisms
beyond vessel to vessel embolism exchange. Examples of these mechanisms are the re-
dundancy of the xylem hydraulic pathway (F. Ewers, J. Ewers, Jacobsen, and Lépez-
Portillo, 2007), the variability of conduit wall susceptibility to embolism spread along
the segment cross-section (Venturas, Pratt, Jacobsen, V. Castro, Fickle, and Hacke,
2019), patterns of disease epidemics on graphs (Roth-Nebelsick, 2019), and the so-
called percolation threshold. The percolation threshold is an effective ’seal’ against
un-inhibited embolism spread born out of vessel connectivity statistics (Callaway,
Newman, Strogatz, and Watts, 2000). As of yet, the percolation threshold has never
been utilized in the literature to infer VCs. It is a network property that links the

speed of disease, or embolism, spread in a network based on the connectivity (number

4
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of neighbours) of the agents (vessels). It is these 'mid-scale’ mechanisms, straddling
the 'micro-scale’ processes and 'macro-scale’ measures, that are of interest and frame
the scope of the work here.

The basic property that controls xylem pathway redundancy and embolism 'per-
colation’ is the average vessel connectivity ({c)). The average vessel connectivity
in a xylem segment is the number of vessel neighbors (i.e., with a common contact
wall providing hydraulic connection), averaged over all vessels in the xylem segment
(Loepfe, Martinez-Vilalta, Pinol, and Mencuccini, 2007; Martinez-Vilalta, Mencuc-
cini, Alvarez, Camacho, Loepfe, and Pinol, 2012; Newman, 2018). Unfortunately,
(c) has rarely been reported in the literature but the grouping index (GI) is a mea-
sure commonly quantified by anatomists (Carlquist, 1984). The GI is the number of
vessels in a xylem cross-section divided by the number of vessel groups. Therefore,
the GI is a two-dimensional proxy to (c¢). To make use of the GI and link it to (c),
we focus on a particular type of wood.

The interest here is in angiosperm species that lack vasicentric tracheids (Car-
lquist, 1984; Pratt and Jacobsen, 2018). Flowering plants with vasicentric tracheids
can achieve pathway redundancy by surrounding vessels by tracheids (Hacke, Ja-
cobsen, and Pratt, 2009; Pratt, Percolla, and Jacobsen, 2015). While vasicentric
tracheids are dramatically smaller in diameter and length, they could be numerous
enough to sustain significant ’back-up’ flow in case an adjacent vessel is embolized
(Sano, Morris, Shimada, Ronse De Craene, and Jansen, 2011). When anatomists
report measures of vessel grouping such as the GI, they only count vessels and dis-
regard tracheids. Therefore, by focusing on species lacking vasicentric tracheids, we
purposely take advantage of data representing the true connectivity of the xylem hy-
draulic pathway. Particularly, we will be utilizing data on seven species of the genus
Acer (Lens, Sperry, Christman, Choat, Rabaey, and Jansen, 2011) that belongs to
the Sapindaceae family, generally lacking vasicentric tracheids (Carlquist, 1984).

The plant physiology literature has made significant strides in understanding the
linkages between vessel (Hacke, Sperry, Wheeler, and L. Castro, 2006; Christman,
Sperry, and Adler, 2009; Christman, Sperry, and Smith, 2012) and pit anatomy
(Choat, Cobb, and Jansen, 2008; Jansen, Choat, and Pletsers, 2009; Lens, Sperry,
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Christman, Choat, Rabaey, and Jansen, 2011; Li, Lens, Espino, Karimi, Klepsch,
Schenk, Schmitt, Schuldt, and Jansen, 2016), vessel to vessel air-seeding, and whole
segment resistance to embolism spread through the VC. But processes mediated by
xylem network properties (Jacobsen and Pratt, 2018) have received relatively less
attention and are still elusive because pertinent measurements are lacking. Xylem
network theory (F. Ewers, J. Ewers, Jacobsen, and Lépez-Portillo, 2007) and model-
ing (Loepfe, Martinez-Vilalta, Pinol, and Mencuccini, 2007; Martinez-Vilalta, Men-
cuccini, Alvarez, Camacho, Loepfe, and Pinol, 2012; Mrad, Domec, Huang, Lens,
and Katul, 2018) provide viable avenues for investigating these processes. As long
as the effect of the xylem network is unclear, opportunities to link anatomy and seg-
ment hydraulics and to generalize trends among plant species will be missed. How
the xylem network and vessel connectivity affect whole-segment hydraulics and re-
sistance to embolism spread is here investigated through a synergistic combination
of three-dimensional xylem computer modeling and graph theory.

In what follows, we outline the modeling and theory employed and compare
the analytical linkage between average vessel connectivity and xylem hydraulics to
anatomical measurements of Acer xylem. We present an extension to a xylem hy-
draulic model (Mrad, Domec, Huang, Lens, and Katul, 2018) to simulate Maple
branch xylem segments by matching certain measurements of xylem network struc-
ture. With the aid of the model and graph theory, we link xylem vessel anatomy
and connectivity to xylem VC measures and hydraulic conductivity. Ultimately, we
highlight that increasing vessel connectivity increases the magnitude of the "air-entry’
pressure of xylem segments, without compromising hydraulic efficiency. Then, we
put these results in the context of Maple xylem and the ’'safety-efficiency’ trade-off
hypothesis.

3 Description

The two-dimensional (2D) model presented in Mrad, Domec, Huang, Lens, and Katul
(2018) is extended by introducing a three-dimensional (3D) representation. The radial

dimension is added to the model such that 3D growth ring sections are simulated. In
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its new form, the model is suited for diffuse-porous angiosperm xylem where conductive,
vasicentric tracheids are absent or play a minimal role in total tissue hydraulics. In the
following, the anatomical elements represented in the model are only briefly described
because of significant overlap with the description in Mrad, Domec, Huang, Lens, and
Katul (2018). In contrast, aspects of the model related to 3D representation of xylem
networks are extensively explained.

Throughout, water is assumed to be incompressible and its properties, including vis-
cosity and density, are constant and defined at 25°C and standard pressure. Water flow
in all vessels is assumed to be laminar. Each vessel is represented by a vertical cylin-
der with diameter D, and length L,. The vessel lumens are hydraulically connected by
intervessel connection (IVC). The IVCs link adjacent vessel elements along the radial or
tangential directions. Every vessel has a specified contact wall area determined by the
vessel contact fraction (f.) and the vessel cylindrical wall area (A,). The ensemble of all
IVCs between two vessels constitute their contact wall. The contact wall is divided into a
pit-field area using the pit-field area fraction (f,s) such that the pit-field area of each vessel
equals A, x fo x f,r. The pit-field area of each contact wall contains the pits and its size
determines the number of pit membranes it contains. The interest here is in the average of
vessel or pit properties throughout a xylem segment denoted using the (property) notation.
The aforementioned anatomical properties have been measured on seven Acer species in

Lens, Sperry, Christman, Choat, Rabaey, and Jansen (2011).

3.1 Modeling xylem networks: sap flow

To calculate the sap flow across a xylem segment, it is necessary to determine the flow
through vessel elements and IVCs. Water flow through vessel lumens is described by the
Hagen-Poiseuille equation while sap flow through IVCs is described by a superposition of
Sampson and Hagen-Poiseuille flow resistances (Description S1).

The kzqmaz of a modeled xylem segment is then calculated. kg maz is the maximum
xylem area-normalized hydraulic conductivity of a segment. kg4 mas is estimated by solving
an equivalent hydraulic resistor network subject to a pressure difference between its ends
(Description S1). The resistances of the vessel elements and IVCs follow the equations
above. One end of the segment is set at a given pressure, say atmospheric pressure, while

the other end is subject to a higher pressure to form a pressure difference AP,.,. Then,
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we establish a set of linear equations to be solved simultaneously like an electric resistor
circuit (Mrad, Domec, Huang, Lens, and Katul, 2018). The set of equations consist of
the Hagen-Poiseuille and Sampson flow equations mentioned in the previous paragraph
for every vessel element and IVC (Description S1). The solution of the set gives the sap
flow through the segment Q4. The hydraulic conductance of the segment (Kye4) is then

estimated as

Qseg
Kooy = . 1
seg Apseg ( )
Additionally, kzqmaz iS
L
kxa,max = pAseg Ksegv (2)
seg

where Ly, and A, are respectively the axial length of the simulated segment and its

transverse area while p is the density of pure water.

3.2 Modeling xylem networks: embolism spread

Air-seeding requires embolism spread to originate from an adjacent vessel through one of
the pits connecting two vessels (Tyree and Zimmermann, 2002). An embolism spreads
to an adjacent vessel when the absolute value of the pressure difference between the air
inside the embolism and the surrounding sap (P) exceeds the capillary pressure i.e., the
air-seeding pressure (ASP) of the contact wall connecting two vessels.

In angiosperms, pit membrane anatomy and frequency throughout vessel wall sur-
faces determine the critical P at which air-seeding occurs. By restricting the gas bubble
meniscus to sizes of the order of nanometers, pit membranes reduce the chance that the
bubble will spread from the embolized vessel and fill the functional one. The growth of the
bubbles is dictated by their size, the number of gas molecules in them, and their surface
chemistry (Schenk, Espino, Romo, Nima, Do, Michaud, Papahadjopoulos-Sternberg, Yang,
Zuo, Steppe, et al., 2017; Konrad, Katul, Roth-Nebelsick, and Jensen, 2019; Kandu¢, Sch-
neck, Loche, Jansen, Schenk, and Netz, 2020). However, analytical relations linking pit
structural properties and their function in blocking air-seeding are lacking. Difficulties
encompass the formation of lipid-coated nanobubbles that allow for stable bubbles to exist
in functional vessels (Schenk, Steppe, and Jansen, 2015; Schenk, Espino, Romo, Nima,
Do, Michaud, Papahadjopoulos-Sternberg, Yang, Zuo, Steppe, et al., 2017) and the pres-
ence of a rare and leaky pit (Christman, Sperry, and Adler, 2009). Measurements of pit
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membrane structure are thought to suffer from artefacts introduced through sample prepa-
ration and dehydration (Li, Lens, Espino, Karimi, Klepsch, Schenk, Schmitt, Schuldt, and
Jansen, 2016). Moreover, the exact link between pit membrane anatomy and function
is not complete as of yet due to the complex interactions between its 3D structure and
existing chemical compounds (Kaack, Altaner, Carmesin, Diaz, Holler, Kranz, Neusser,
Odstrcil, Schenk, Schmidt, et al., 2019; Zhang et al., 2020).

Therefore, the effects of these pit traits on embolism spread resistance is surrogated to
a pit ASP distribution. This distribution surrogates the complexity of the pit membrane
ultra-structure including thickness, pore size, quantity, and chemistry. The pit membrane
ASPs are sampled from a two-parameter Weibull distribution that differs among species

(Christman, Sperry, and Adler, 2009). This distribution is given by (Christman, Sperry,

and Adler, 2009)
b
F(ASP)=1-— exp[— (ASP) ], (3)

a

where @ and b are distribution parameters and F,,(ASP) is the cumulative distribution
function of pit membrane ASPs.

Embolisms spread through the leakiest membrane between two vessels (Christman,
Sperry, and Adler, 2009). To account for this ’extreme-value’ effect, the cumulative distri-
bution function of ASP for a contact wall containing N,, pit membranes is derived from

an extreme-value distribution as (Mrad, Domec, Huang, Lens, and Katul, 2018)

F.(ASP)=1—[1 — F,(ASP)]Nm =1 — exp[ — <Asf/b>b]. (4)
a/Np,

In other words, F.(ASP) is the probability that a given P will exceed the ASP of a
randomly chosen contact wall in the xylem network. Therefore, larger contact walls in the
same xylem segment are more likely to have a leakier pit. Air-seeding is assumed to result in
unstable bubbles that fill up the 'infected’ vessel completely and instantaneously, rendering
it non-functional. This simplification is plausible as unstable bubbles expand rapidly (in
micro-seconds; Konrad and Roth-Nebelsick, 2003; Holtté, Vesala, and Nikinmaa, 2007).
Such an idealization also eliminates the need to represent the aecrodynamics of air expansion
within a vessel and any concomitant interaction with water movement.

Having assigned each contact wall an ASP, the vulnerability to embolism curve (VC) of

the simulated growth ring section can be computed. An embolism is injected into random
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vessels inside the network. Then, the pressure of its contents is increased at successive steps
while the water pressure is maintained at P, akin to the air-injection technique (Salleo,
Hinckley, Kikuta, Lo Gullo, Weilgony, Yoon, and Richter, 1992). After every increase
in P, the initial random embolism could spread to other conduits based on the adjacent
contact wall ASPs. At every step, with some conduits embolized and non-functional,
the unsaturated xylem area-specific hydraulic conductivity (k) is computed. Then the

percent loss in hydraulic conductivity (PLC) is determined as
kya(P
PLC(P) = 100 x (1 — x“()> : (5)
xra,max

The VC is the curve plotting PLC against increasing P. For the ensuing analysis, P
is defined as the absolute value of pressure at which PLC(P5p) = 50. Similarly, Psg and
Pyy are defined at PLC(Pgg) = 88 and PLC(Pj2) = 12, respectively (Domec and Gartner,
2001). In planta, water is under tension and therefore is under negative pressure. Here,

we look at the absolute values of those pressures.

3.3 Modeling xylem networks: implementation of Acer hy-

draulics and 3D structure

To ensure the simulated xylem networks model real tissues, several anatomical and connectivity-

related measurements parameterize the simulated segments as elaborated in this section.
The measured average vessel length (L,) and diameter (D,), f. and f,; for each species
are used as inputs of the 3D version. These model inputs ensure that water flow resistance
through vessels and the frequency of contact walls and pit-field areas are realistic. (D,)
and fpr are used to model the number of pit membranes per contact wall.

In addition to the 2D version, the 3D version of the model employs two measurements
to realistically represent the connectivity and frequency of vessels in the segment. The
GI equals the number of vessels in a xylem cross-section divided by the number of vessel
groups which also include solitary vessels (Carlquist, 1984) and the vessel frequency (VA7 ')
equals the number of vessels per unit transverse xylem area (Fig. 1). The model employs
both measures to tune frequency of vessels in the 3D xylem segment, the probability
of a radial IVC with an adjacent vessel, and the probability of a tangential IVC. The

majority of IVCs in Acer are radial so we constrain the probability of tangential connections

10
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within 5% and 20%. This interval is liberal and encompasses the estimated proportions of
tangential connections of the Acer segments based on their cross-sectional images (Fig. 1).
Model simulations show that the proportion of tangential connections alone is insufficient
to explain variation in k4 maee and Psg among species (Fig. S1). Therefore, constraining
the proportion of tangential connections to a liberal range will faithfully represent xylem
conduit geometry while not reducing the generality of this study’s conclusions. Because of
this constraint, the probability of radial connections and the probability of vessel initiation
are now determined using these two independent measurements: GI and VA, ! (Description
S2).

In Fig. 1, the xylem model ensures that vessel connectivity patterns in a modeled
growth ring section matches those in an Acer negundo section. The modeled ring cross-
section shows vessel lumen of varying diameters (not represented) as colored dots. Those
that are connected by an IVC have a red line connecting them (Fig. la). Vessels of the
same color are hydraulically connected (Mrad, Domec, Huang, Lens, and Katul, 2018). In
the simulated segment, two vessels appearing disconnected in that transverse section does
not preclude them being connected at another axial location.

Fig. 1a highlights three vessel groups with a correspondence to a group in an Acer
negundo imaged ring (Fig. 1b). The black and white rectangles show vessel groups with
connections that are uniquely radial while the ellipses and hexagons have a single diagonal
connection each. This highlights how the model recovers the preferential direction of vessel
connections in the Acer genus.

In this article, the pit membrane hydraulic parameters are fitted to obtain agreement
with tissue-level hydraulic measurements because theoretical links between anatomy, hy-
draulic conductivity, and embolism spread resistance are uncertain as explained above. For
example, pore diameter is fit such that k;q maz of the whole xylem segment matches the
measurements. Similarly, the two parameters, a and b, of F,,(ASP) (equations 3 and 4)
were tuned such that the modeled VC was similar to the measured VC through P2, Ps,
and Pgg (Fig. 1, ¢). The match was not evaluated more rigorously because the results of

this study do not depend on it.
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Fig. 1 Illustration showing the correspondence between a) a cross-sectional view of
a modeled Acer negundo ring and b) an image of an Acer negundo branch and c)
the resulting vulnerability to embolism curves (VC). The model does not represent
each vessel in the image but approximates the averaged anatomy and xylem network
properties. Three corresponding elements are highlighted by two rectangles, two el-
lipses, and two hexagons. The rectangles show a uniquely radial file of vessels, the
ellipses show a vessel group dominated by radial connections but with the occasional
tangential or diagonal connection, and the hexagons show two vessels connected di-
agonally. Both the modeled and imaged rings have a grouping index of 1.84 and a
vessel density of 263 mm~2 (Lens, Sperry, Christman, Choat, Rabaey, and Jansen,
2011). Similarly colored vessels are members of the same hydraulic component (see
Description). The error bars around the measured and modeled VCs represent stan-

dard errors resulting from 6 Acer negundo branches (blue) and 10 simulated branches

(red).
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3.4 Theory

Diffuse-porous species exemplified by Acer have quasi-uniform anatomical properties from
earlywood to latewood. As a result, only vessel connectivity is of interest here. The
simulated xylem segments keep average anatomical traits stationary throughout a growth
ring.

Three-dimensional xylem is represented by a graph of nodes connected to each other
via edges as in Fig. 2. We collapse each vessel onto a node as shown in the correspondence
between vessels in Fig. 2a and nodes in Fig. 2b. The edges represent contact walls. A
node has one of two states: functional or embolized. This representation of xylem is used
to characterize embolism spread. Each edge in the graph representation is weighted by its
ASP. As P increases, it exceeds a higher fraction of edge ASPs (i.e., F.(P) is an increasing
function of P) so more edges become conducive to embolism spread if one exists adjacently.

The number of vessels a given vessel is connected to is called its connectivity c¢. For
example, vessel 3 in Fig. 2 has ¢3 = 3 and vessel 4 has ¢4 = 1. Of main interest is
the average connectivity of the xylem network (c) over all its constituent vessels. The
primary role of (¢) in hydraulic pathway redundancy and extent of embolism propagation
throughout the xylem network is now considered.

As alluded to above, at a given P a fraction F.(P) of vessel to vessel edges are amenable
to disease spread. In network or graph theory parlance, it is said that these edges are "occu-
pied’. Given these definitions, the process of embolism spread on xylem vessel networks falls
under the realm of edge percolation processes on a graph (Callaway, Newman, Strogatz,
and Watts, 2000; Newman, 2018). Percolation processes stipulate a threshold fraction of
‘occupied’ edges Fp threshold Where, if Fo(P) > Fethreshold, it is expected that an embolism,
randomly placed in the xylem network, will spread to the majority of the network. In other
words, the percolation threshold is a limit on the fraction of contact walls with an ASP
below the pressure difference between sap and bubble contents (P). When the threshold
is exceeded, a randomly placed embolism is expected to spread to the majority of a xylem
network. In a class of graphs applicable to xylem, called configuration models, the perco-
lation threshold F. ¢reshoia depends solely on the first (c) and second (c?) moments of the
vessel connectivity distribution

Fc,threshold = <62><C—><C> (6)
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W
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Fig. 2 Illustration of a) a three-dimensional xylem network connected via contact
walls, and b) the connectivities (cl-c4) of those conduits for embolism spread pur-
poses. Every vessel (blue) in the xylem is collapsed onto a node while vessel contact
walls (red) are represented by a bi-directional edge connecting the nodes. Every
edge is weighted by the air-seeding pressure of the contact wall connecting the ves-
sels. The length of each edge as drawn in b) does not represent any property. The
connectivity of every node in sub-figure b) is shown next to it. The average vessel

connectivity of this example is (¢) = 2.
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This result was first reported in a study of ”the resilience of the Internet to random break-
downs” (Cohen, Erez, Ben-Avraham, and Havlin, 2000). Because percolation theory con-
cerns graphs of infinite size and the xylem network is necessarily finite, the actual F 4 reshold
is expected to be smaller than its theoretical value (equation 6) due to 'finite-size’ effects.

The direct consequence of vessel connectivity on a species’ cavitation resistance is
not straightforward and involves a trade-off explained in the Results. Determining the
functional significance of vessel grouping is further complicated because pit structure (i.e.,
pit membrane thickness and pit chamber depth) and connectivity (i.e., GI and (L,)) co-vary
(Lens, Sperry, Christman, Choat, Rabaey, and Jansen, 2011). Such co-variations could
lead to unexpected emergent tissue hydraulic behavior that is suited to a mechanistic

exploration and which we address next.

3.5 Varying vessel anatomy and connectivity

Simulations were performed in which VA, (L,), (D,) are varied as well as the proba-
bilities of radial and tangential connections to adjacent vessels. Such variations perturbed
GI and (c). As these model properties were varied, others such as pit membrane diameter
and the contact wall ASP distribution F.(ASP), which affect embolism spread resistance
(equation 4), were kept constant. In other words, the distribution function’s parameters a
and b are varied such that F.(ASP) is independent of N,, between simulations (equation
4). This allows disentangling the effect of vessel redundancy on vessel-to-vessel air seeding
and whole segment conductance and resistance to embolism spread. The objective of these
simulations was to assess the role of vessel connectivity in overall segment safety, through
Pyo, Psp, Pgg, and hydraulic efficiency, through k4 maz-

In the simulations discussed below, pit membrane pore diameter, a, and b (equation 4)
are fit to match Acer glabrum var. glabrum’s kyqmae and VC (Lens, Sperry, Christman,
Choat, Rabaey, and Jansen, 2011; Mrad, Domec, Huang, Lens, and Katul, 2018, as in
Fig. 1). However, the results are insensitive to the species used for initial fitting because
they are presented in terms of normalized k4 mas and PLC measures, as explained in what

follows.
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4 Results

When VA in a segment cross-section increased, GI and {(c) increased (Fig. S2).
In contrast, the model indicated that (D,) and (L,) had no influence on measures
of connectivity. The effect of VA on (c) is due to conduit placement throughout
a cross-section being random. A point pattern analysis of three Acer species sup-
port this assumption (Martinez-Vilalta, Mencuccini, Alvarez, Camacho, Loepfe, and
Pinol, 2012) and the anatomical measurements by Lens, Sperry, Christman, Choat,
Rabaey, and Jansen (2011) show a strong correlation between VA ! and GI, further
corroborating this outcome. Conversely, While individual vessel length L, is a strong
predictor of the connectivity ¢ of a single vessel, (L,) in a xylem segment did not
impact (c).

One of the hypothesized advantages of an increase in (c) is an increase in pathway
redundancy, a measure of interest for many biological networks, including in the
neurosciences and genetics (Tononi, Sporns, and Edelman, 1999). As (c) increased
from small values, redundancy increased significantly through the avoidance of vessel
isolation. But, redundancy reached a maximum and saturated at and above a critical
value of (¢). To quantify the pathway redundancy of a simulated xylem, the fraction
of embolized vessels at complete hydraulic failure (PLC = 100) was used (Fig. 4a in
orange). The rationale behind this metric is best explained through Fig. 3a, b: the
xylem network with lower (c) has a higher proportion of isolated conduits compared
to the one with higher (c¢) even though the same conduits are embolized. It is then
said that the xylem network in Fig. 3b is less redundant than the one in Fig. 3a.
Pathway redundancy is quantified by the fraction of embolized conduits at PLC =
100 because it takes a larger fraction of embolized conduits for complete hydraulic
failure (Fig. 3). Higher redundancy is achieved by reducing the instances of vessel
isolation as a result of embolism spread events. That is achieved by increasing (c),
which decreases the probability of a group of vessels becoming disconnected from the
segment inlet or outlet. The maximum pathway redundancy (= 90 %) is achieved
at (c) ~ 2.8 on average and it stagnates with further increases in (c¢) (Fig. 4, top in

orange).
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a) <c>=17/8=2.125 b) <c>=12/7=1.714
=== Functional

= Embolized

= |solated 2

c) d)

— time=1
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.......... > time=3

Fig. 3 Representation of how average conduit connectivity (c) affects redundancy
(panels a and b) and embolism spread speed (panels ¢ and d). {(c) is calculated by
counting the number of connections of each vessel and averaging. The xylem networks
are similar for panels a and ¢ and panels b and d, respectively. The difference between
the two networks is that the conduit labeled 717 is present in panels a and ¢ but not
in panels b and d. The conduit labeled ”2” is shorter in the latter panels and does not
connect to the conduit on the top right. Panels a and b show how the network with
lower (c) suffers from a greater number of isolated conduits than the network with
higher (¢). Conduit isolation occurs when a conduit still contains water but either
the inlet or outlet is blocked by an embolized conduit. Panels ¢ and d show how an
embolism spreads faster in the network with higher (¢) than the one with lower (c).
The time step values in the legend are for illustration and are best understood as

progressively increasing xylem water tension.
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Fig. 4 The effect of average vessel connectivity (c¢) on pathway redundancy and
embolism spread rate. a) embolism spread rate is quantified by the fraction of em-
bolized vessels at the ensemble-averaged 50% loss of hydraulic conductivity (PLC;
blue): average Psy of all simulations combined. Pathway redundancy is quantified
by the fraction of embolized vessels at 100 PLC of each simulation (orange). b)
embolism spread rate divided by pathway redundancy highlighting an optimal (c) at

which embolism spread is minimized.
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The hypothesized disadvantage of increased (c) is that it increases embolism
spread speed with respect to P. (c¢) had minimal effect of spread speed until it reached
a critical value. Above the critical value, embolism spread speed with respect to P
increased dramatically. The effect of (¢) on embolism spread was represented by the
fraction of embolized vessels at the average Pso value (PLC = 50) of all simulations
combined. By determining the fraction of embolized vessels at this common P, we
compared the extent of embolism spread at the same pressure occuring at the steepest
portion of the ensemble-averaged VC. This represents the speed of embolism spread
with respect to increasing P. By plotting the value of this metric against (c¢) per
simulation, it is observed that the minimum spread rate occurs around (c) = 3 where
about 10%, but as much as 20%, of all vessels are embolized (Fig. 4, a in blue).

Embolism spread speed in xylem is tied by analogy to the so-called bond perco-
lation process. By leveraging this conceptual link, it is deduced that spread speed
increases with (c) above (¢) = 3 because of a concomitant decrease in the percolation
threshold (F.ipreshoid). Fethreshoia decreases from around 70% at (¢) = 2 to 35% at
(¢) = 3 and further below as (c) increases (Fig. 5). The decrease in F, ipresnola Means
that a smaller proportion of contact walls allowing embolism spread is required for
a randomly placed embolism to propagate pervasively. This decline in F, preshold
explains the blow-up in the fraction of embolized vessels above (¢) = 3 (Fig. 4, a).
Above (¢) = 3, Feinreshoa declines below 35% and the blow-up in embolism spread
speed happens (Figs. 4 and 5).

The distance between the embolism spread rate and pathway redundancy rep-
resents the safety of hydraulic conductance to embolism spread. This distance is
evaluated by taking the ratio of these two model outputs (Fig. 4, b). This ratio is
smallest when (c) is in the interval between 2.8 and 3 at about 10%. This analysis
suggests that Acer species might conserve vessel connectivity, not GI (see below), to
improve embolism resistance regardless of pit and vessel anatomy.

An increase in (c) to 3 increased Pj5 significantly but not Pgg, imparting a smaller
increase to Ps (Fig. 6). Above {(c) to 3, P2, Psy, and Pgg decreased such that the
redundancy-spread speed trade-off was corroborated. The ordinates in Fig. 6 are

normalized by their respective simulation means. This is to isolate the effects of
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Fig. 5 The percolation threshold decreases with increasing average connectivity (c).
The percolation threshold is a threshold fraction of conduit-to-conduit contact walls
that allow an adjacent embolism to spread through them at a given xylem sap tension.
If that threshold is exceeded, then a randomly placed embolism in the xylem network

is expected to spread to the majority of the network.

(c) because the dimensional pressure values depend on pit membrane anatomy and
frequency throughout vessel walls. An increase in (¢) to 3 entailed an improvement
in P, commonly referred to as the ’air-entry pressure’. In this case, variations
in Py are not related to air-seeding and air entry dynamics but the concept of
redundancy (Fig. 4). Above (¢) = 3, gains in redundancy stagnated (Fig. 4)
while the percolation threshold continued to decline (Fig. 5). Detrimental effects
of a reduction in percolation threshold hold for Psy and Fsg as well. In contrast,
it appears from Fig. 6 that better embolism spread resistance due to redundancy
is strongest in the low-pressure portion of VCs (i.e., Pj2). Therefore, the effect of
(c) on Pgg is minimal below (¢) = 3. As a result, increases in Psy due to pathway
redundancy were weaker compared to Ppo but still present.

In contrast to (c), the effect of GI on VC measures was weaker. The simulation
scatterplots showed Pj, being significantly affected by GI whereas the relation of GI
to Psy and Pgg was nuanced (Fig. 7). Having low GI (= 1.5) did not preclude a high
Py5 but a high GI constrains Pj5 to higher values (Fig. 7,a). The Acer data conforms
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Fig. 6 The average vessel connectivity (c) affects a) Py significantly, b) Psg mildly,

and c¢) Pgg minimally. The ordinates are normalized by the respective simulation

means. The dimensional pressure values are a function of pit membrane anatomy

and the average vessel wall area occupied by pit membranes. Since the interest here

lies in the effect of (c¢) only, the ordinates are normalized.
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to the scatter plot. The simulations show that FPsg and GI were uncorrelated for the
simulations leaving a weak relation between GI and Py (Fig. 7,b,c).

The (L,) is a strong predictor of maximum xylem area specific hydraulic conduc-
tivity (Kzamaz; Fig. 8) but not GI or (D,), and therefore the lumen fraction F. As
was done for Pyg, Psg, and Pgg, kygmae i normalized by simulation and Acer dataset
means appropriately (Fig. 8). The model correlation between (L,) and kg mq. indi-
cates that water movement through vessel wall pits is the most restrictive to overall
sap flow (Choat, Cobb, and Jansen, 2008). With longer vessels, sap crosses a smaller
number of pit membranes on average thus increasing the whole segment conductivity
(Fig. 8, b). Over the ensemble of simulations, GI and (D,) were weakly correlated
with kyqmaez (Fig. 8, a). In the Acer branches, GI and VA! are strongly corre-
lated (Lens, Sperry, Christman, Choat, Rabaey, and Jansen, 2011). Since F' in these
branches is constrained to the range spanning 15% to 25% (Fig. S3), there exists
a trade-off between vessel frequency per transverse area (VA ') and (D,). This
is because F' is the fraction of the transverse stem area occupied by vessel lumen
(F = VA (7/4)(D?)). As a result, it was hypothesized that increasing GI would
lead to decreasing kyqmar due to a decrease (D,) but this did not happen (Fig. 8,
a). The (Ly)-kyamas relation was minimally affected when F' was constrained in
the model because (L,) had the stronger effect on k4 me. than (D,) (gray scatter-
plots; Fig. 8, b). Therefore, the presence of a correlation between GI and kuq max
in the Acer data (Lens, Sperry, Christman, Choat, Rabaey, and Jansen, 2011, Fig.
8, a) occurs because of a separate correlation between GI and (L,) (Lens, Sperry,
Christman, Choat, Rabaey, and Jansen, 2011).

5 Discussion

The simulations suggested that vessel connectivity and grouping improved segment-
level resistance to embolism spread without affecting hydraulic conductivity. In-
creases in (c¢) and GI lead to an increase in Pj (more negative potential) through

redundancy when all other anatomical features are held constant. There is a limit
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Fig. 7 The grouping index (GI) affects a) Pj5 significantly but its effect on b) Psg
is nuanced while it bears no effect on ¢) Pgg. The ordinates are normalized by the
respective simulation or Acer data means. The simulations are shown in light gray
while data derived from Acer vulnerability to embolism curves are in large symbols.
The error bars around the Acer data points are standard errors from (Lens, Sperry,
Christman, Choat, Rabaey, and Jansen, 2011).
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Fig. 8 While the Acer dataset (dark gray circles) shows significant correlations
between the maximum xylem area specific hydraulic conductivity (kzqmaez) and the
a) grouping index (GI) and the b) average vessel length ((L,)), simulations show
that only (L,) is a significant predictor of Kk maes (blue and light gray circles). The
simulations vary properties pertinent to vessel anatomy and connectivity, but not
pit membrane hydraulic properties (see Description). Light gray circles are scatter
plots of simulations where the vessel lumen fraction is constrained to between 15%
and 25% (Fig. S3). The error bars around the Acer data points are standard errors
from (Lens, Sperry, Christman, Choat, Rabaey, and Jansen, 2011). On the ordinate

is Kzamae Normalized appropriately by simulation or dataset means.
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to the positive relation between measures of vessel connection and Py at (c) = 3.
At this value, embolism percolation dynamics overtook redundancy in influence but
the Acer species did not seem to cross that limit. Increases in (c¢) below that limit
increased P, more strongly than Psy and Pgg. As a result, higher vessel connectivity
is thought to contribute to a steeper VC (Figs. 6 and 7).

One could also use the relation between (c) and redundancy to compare relative
connectivities between species (Fig. 3). If one compares the proportion of air-filled
conduits at a PLC =~ 100 between different species, then one could infer that the
species with the lowest proportion of embolized conduits is the least redundant and
thus has lower (c¢). But to make an inference about relative differences in (¢) between
species based redundancy arguments, the species compared should all have only
vessels as the main pathway for water and air-seeding the main mode of embolism
spread in the xylem network.

Unfortunately, there does not exist data on Acer vessel connectivity in the lit-
erature due to the labor-intensive nature of these measurements. Consequently, we
relied on a closely related measure, GI, which is reported for the Acer species (Lens,
Sperry, Christman, Choat, Rabaey, and Jansen, 2011). GI is a two-dimensional mea-
sure of vessel connection. Fig. 9 shows the relation between the average transverse
vessel connectivity (c,) and GI. (¢,) quantifies only the connectivity apparent from
a transverse stem section. So, it is the two-dimensional equivalent of (c¢). The (c,)
and GI differ if the fraction of tangential vessel connections varies from species to
species as seen by comparing Fig. 9b and Fig. 9c. While Fig. 9b and Fig. 9c have
the same GI, the latter has a higher (c,). Therefore, when vessel connections have a
preferred direction (radial in Acer), they limit (c,) and, therefore, (c) to lower values
for the same GI. It is typical to have conduit connections in a predominantly pre-
ferred direction in angiosperm xylem with only vessels as the water pathway. One
possible driver of this trend is the potential increase in the ’air-entry’ pressure of
xylem (Pj2) due to increases in GI (Fig. 7, a) while maintaining a high percolation
threshold (Fig. 5) by maintaining (c¢) to values low enough to prevent the blowup
in embolism spread speed (Fig. 4). This supports the hypothesis that increasing

GI is a necessary but insufficient condition to improve Acer resistance to embolism

25

This article is protected by copyright. All rights reserved



Growth rings 2D connectivity =~ x-section connections

features of red vessels
a)
# of conduits: 14 )
7S NG
08 & 0 @
g) ®) Gl: 14/8 =1.75 -
) # of x-section o)
© connections: 14 2/
- <c>: 14/14 = 1 B
* N
b) # of conduits: 14 )
( '1'>
‘>H
& Gl: 14/5 = 2.8 /\/2\\
CQ # of x-section >g <
o connections: 20 >_2\/
. ~ ( 'I )
coo <c>:20/14=1.4 (D
C
) # of conduits: 14
e ’3\
2NN
(3 9<2)
@D se Gl:14/5=2.8 >ﬂ4>},,,/
CQ # of x-section \:\T
o connections: 26 ‘
000 <c >:26/14=1.9 Vessel x-section

connectivity

Fig. 9 Illustration showing the discrepancy between the grouping index (GI) and
transverse or cross-section (x-section) vessel connectivity (c,). The GI is defined
as the number of vessels (number in green) divided by the number of vessel groups
(number in orange). The (c,) is the number of cross-section vessel connections (num-
ber in purple) divided by the number of vessels in a transverse stem section. The
vessels in black are invariant whereas those in red form different vessel multiples when
comparing a), b), and ¢). On the right-most column, the red vessels are highlighted
and the cross-sectional connectivity langlec, of each is written inside of it. The ”#
of x-section connections” in the middle column is the sum of the vessel connectivities
in the growth rings (left column) for both the black and red vessels. Especially when
comparing b) and c), we see that 1 vessel group can have a higher connectivity with
more tangential connections. While the igstrations in this figure are constrained to
the cross-section, the same concepts apply in 3 dimensions with the 3-dimensional

vessel connectivity property (c).
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spread.

Nonetheless, trends between GI and PLC measures are similar, but weaker, to
those with (c) despite having varied the fraction of tangential and diagonal connec-
tions four-fold in the simulations (Fig. 7 and S1). Most striking is the absence of
a linear relation between GI and Psy but its presence in the Acer dataset (Lens,
Sperry, Christman, Choat, Rabaey, and Jansen, 2011). This suggests that the trend
seems to stem from the significant correlation between GI and another pit membrane
property. This assertion is corroborated by a linear relation between GI and Psg in
the dataset (Fig. 7b). Indeed, in the Acer data (Lens, Sperry, Christman, Choat,
Rabaey, and Jansen, 2011), 7;,, has been shown to be a strong predictor of resistance
to embolism spread at the pit and vessel levels (Li, Lens, Espino, Karimi, Klep-
sch, Schenk, Schmitt, Schuldt, and Jansen, 2016) and at the xylem segment level
(Lens, Sperry, Christman, Choat, Rabaey, and Jansen, 2011). In a recent study on
Poplar, embolism resistance plasticity in Populus tremula x alba has shown a strong
correlation between GI and Psy (Lemaire, Quilichini, Brunel-Michac, Santini, Berti,
Cartailler, Conchon, Badel, and Herbette, 2021). Concurrently, Populus tremula
alba, a member of the Salicaceae family that largely does not possess vasicentric
tracheids, has shown a significant decrease in the pit membrane area per vessel with
an increase in Pso. These empirical examples support the hypothesis that GI is nec-
essary for embolism spread resistance in such angiosperm families but needs to be
accompanied by variations in pit and vessel anatomy.

If increasing (c) leads to improved xylem resistance to embolism spread with-
out negatively affecting hydraulic flow efficiency, then what might the evolutionary
drivers of (c¢) variation between species be? The fact that the ubiquitous GI mea-
surements could be uncorrelated to measures of 3D connectivity (Fig. 9) means that,
currently, the data needed to answer this question are unavailable. If, however, (c)
is correlated with GI and air-seeding is the main way for embolisms to spread, then
species such as those in the Acer genus might have to increase (c) at the expense
of increasing vessel frequency. This is because GI and V AJ! are highly correlated
in Acer (Lens, Sperry, Christman, Choat, Rabaey, and Jansen, 2011). This would

incur one of two costs: Either there would be less space for other types of cells in
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the xylem like fibers and parenchyma, negatively affecting biomechanics and storage
((Pratt and Jacobsen, 2017)), or the conduits would have smaller diameters to pre-
serve space with implications for hydraulic efficiency and construction costs in terms
of carbon (Fig. S2). The latter is what is observed in the set of Acer species where a
near-constant vessel packing fraction is conserved (Fig. S3; Lens, Sperry, Christman,
Choat, Rabaey, and Jansen, 2011). However, reliable, inter-family measurements of
(c) are necessary to validate or correct this hypothesis.

Resistance to embolism spread in plant organs is determined by the intersection
among multiple anatomical traits operating at different scales. The ultra-structure of
pit membranes determines the size of the nanopores that both allow water flow and
restrict embolism spread (Jansen, Choat, and Pletsers, 2009; Lens, Sperry, Christ-
man, Choat, Rabaey, and Jansen, 2011; Li, Lens, Espino, Karimi, Klepsch, Schenk,
Schmitt, Schuldt, and Jansen, 2016; Zhang et al., 2020). Wider vessels reduce water
flow resistance but a larger surface area, with more pit membranes, has been sug-
gested to facilitate embolism spread (Hargrave, Kolb, F. Ewers, and Davis, 1994;
Christman, Sperry, and Adler, 2009; Christman, Sperry, and Smith, 2012). A com-
mon theme among these traits, when they change, is that they affect k., and Psq in
opposing ways. This reason is partly behind the expectation that safe species, with
high resistance to drought, are less efficient with low hydraulic conductivity, and
vice versa. This expectation leads to the hypothesis of the 'safety-efficiency’ trade-
off (Tyree, Davis, and Cochard, 1994) which has recently been shown to be weak
(Gleason, Westoby, Jansen, Choat, Hacke, Pratt, Bhaskar, Brodribb, Bucci, Cao, et
al., 2016). However, the simulations perturbing vessel connectivity have shown that
it has a significant effect on the slope of the VC (Fig. 6 and 7) regardless of changes
in pit and vessel anatomy. These 'middle-scale’ variations in xylem networks do not
affect P5o and kg mae, typical measures of xylem safety and efficiency, in clearly op-
posing ways (Manzoni, Vico, Katul, Palmroth, Jackson, and Porporato, 2013). The
weakness of the expected safety-efficiency trade-off among woody species (Gleason,
Westoby, Jansen, Choat, Hacke, Pratt, Bhaskar, Brodribb, Bucci, Cao, et al., 2016)
might be because an increase in vessel connectivity, all else constant, could improve

P5y (to a certain extent; Fig/ 6.,b) while not affecting k4 mar (as observed through
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the 2D proxy GI, blue and gray scatter plots in Fig. 8,a), unlike how changes in
other anatomical traits affect them. doc

"Middle-scale’ variations encompass more than trends in vessel grouping, espe-
cially in flowering plans with vasicentric tracheids (Carlquist, 1984; Carlquist, 2009).
In such species, much of the hydraulic connectivity between vessels is mediated by
radial or tangential bands of conductive tracheids. As a result, such species with
mostly solitary vessels will encounter different embolism spread dynamics. A recent
study on three flowering species with mostly solitary vessels has concluded that soli-
tary cavitation events dominate over events that involve groups of vessels (Johnson,
Brodersen, Carins-Murphy, Choat, and Brodribb, 2020). Consequently, species pos-
sessing different patterns of vessel connectivity will not conform to similar Psy and
Eya.maz trade-offs even if vessel and pit anatomy are identical.

In Acer, increasing conduit connectivity improves branch resistance to embolism
spread without adversely affecting hydraulic conductivity. This may be true for all
plants with vessels as the only water conducting cell type such as Acer. In general,
that means that when xylem network characteristics vary among woody species,
the ’safety-efficiency’ trade-off hypothesis applied to the segment level might not
hold. This result was established using a combination of numerical simulations and
theoretical tactics borrowed from network and percolation theory. Increasing average
conduit connectivity invoked a trade-off between hydraulic pathway redundancy and
embolism spread speed with respect to pressure. Pathway redundancy increased
with conduit connectivity because conduit isolation was avoided. Above a critical
conduit connectivity, improvements in redundancy were canceled by embolism spread
speed due to a declining percolation threshold. These results underscore the need to
account for changes in average conduit connectivity, preferential arrangements, and

cell types among organs and species to successfully generalize hydraulic trends.
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Fig. S1: The probability of tangential inter-vessel connections does not explain
variation in kxa, max and b) Ps.
Fig. S2: The effect of VA, on a) GI and b) c.
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Fig. S3: The seven Acer species maintain a tight relation between VA ! and
average vessel lumen area.

Description S1: Modeling xylem networks: sap flow

Description S2: Calculating GI and VA, ! in the model
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