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1. Overview
The goal of computational nonimaging geometric optics
is the efficient design of optical lenses and mirrors for the
accurate control of light. Light waste in the United States
is equivalent to 72.9 million mwh of unnecessary electric-
ity generated at a cost of $6.9 billion a year [10] and the
amount of CO2 generated in that process is equivalent to
9.5 million cars on the roads. Light pollution also has ad-
verse health impacts on wildlife and humans. Other ex-
amples where an accurate control of light is required in-
clude projection displays, laser weapons, concentrated so-
lar energy, and medical illuminators. Freeform illumina-
tion design, i.e., with no a priori symmetry assumption, of-
ten leads to numerically solving a nonlinear second order
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partial differential equation of Monge-Ampère type with
nonlocal boundary conditions. For a review of other ap-
proaches we refer to [8, section 2].

Let Ω and Ω∗ be two bounded convex domains of ℝ𝑑.
We are interested in the redistribution of an incoming
source of light with density 𝑓 ∈ 𝐿1(Ω), 𝑓 ≥ 0, by a surface
defined by a function 𝑢 on Ω, into a prescribed irradiance
described by a density 𝑅 ∈ 𝐿1(Ω∗), 𝑅 > 0. Conservation
of energy requires ∫Ω 𝑓(𝑥)𝑑𝑥 = ∫Ω∗ 𝑅(𝑝)𝑑𝑝. In the case
the surface represents a mirror, light is reflected and we
will say that we have a reflector problem. In the case of
a lens, light is transmitted with a new direction of travel,
i.e., the light is refracted. We will refer to this as a refractor
problem. One often makes the assumption of an ideal-
ized point light source. Another design we will consider is
based on the assumption that the incoming light is colli-
mated, i.e., has parallel rays. As for the target, when it is
very far from the source, the light output can be described
with a set of directions on the unit sphere. This is referred
to as a far field problem. The combination of these design
constraints leads to the type of problems we consider in
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Figure 1. Convex reflector for the density 𝑅 discretized with
two Dirac masses; cf. section 2.5. The target Ω∗ is not shown.

this review, i.e., the parallel near field reflector problem,
the point source far field refractor problem, etc.

For the parallel far field reflector problem, Ω ⊂ ℝ𝑑 and
Ω∗ is identified with a subset of ℝ𝑑 which is the stereo-
graphic projection of a domain of the unit sphere in ℝ𝑑+1.
In this case, a ray originating at 𝑥 ∈ Ω is reflected by the
mirror described by the graph of 𝑢 into the point 𝐷𝑢(𝑥),
the gradient of 𝑢 at 𝑥. It is shown for example in [19] that
one can choose 𝑢 convex solving the Monge-Ampère equa-
tion

𝑅(𝐷𝑢(𝑥)) det 𝐷2𝑢(𝑥) = 𝑓(𝑥) in Ω, (1.1)

with the natural boundary condition

𝐷𝑢(Ω) = Ω∗. (1.2)

For a smooth function 𝑢, 𝐷2𝑢 = (𝜕2𝑢/(𝜕𝑥𝑖𝜕𝑥𝑗))𝑖,𝑗=1,…,𝑑 de-

notes its Hessianmatrix and det𝐷2𝑢 is its determinant. Fig-
ure 1 illustrates a convex reflector which redirects a parallel
light beam into a finite number of directions of the unit
sphere.

Problem (1.1)–(1.2) also appears in optimal transport
problems as we discuss in section 3. In general, problems
in geometric optics lead to more general Monge-Ampère
equations

det[𝐷2𝑢 − 𝐴(., 𝑢, 𝐷𝑢)] = 𝐵(., 𝑢, 𝐷𝑢), 𝑇(., 𝑢, 𝐷𝑢)(Ω) = Ω∗

(1.3)
which may not have interpretations as optimal transport
problems. The numerical resolution of (1.1) in conjunc-
tion with the Dirichlet boundary condition

𝑢 = 𝑔 on 𝜕Ω (1.4)

for a function 𝑔 continuous on 𝜕Ω has been the subject of
several reviews; cf. [17] for the latest.

Our focus in this review is on numerical methods for
(1.3). We first start with the model problem (1.1)–(1.2)
in section 2. The discretizations are based on the kind of
solutions for (1.1), classical solutions and various notions
of weak solutions. At this point we mainly consider the re-
cent discretization of (1.2) from [2]. We introduce the set-
ting of generated Jacobian equations for (1.3) in section 3
where we review two notions of weak solutions for (1.3).
We then discuss the convergence analysis of some of the
methods in that setting in section 4. It is here that we re-
view other discretizations of the second boundary condi-
tion. We conclude with a list of possible future directions.

This review focuses on computational aspects of gener-
ated Jacobians. For insights about the general theory, and
applications beyond optics, we refer to the excellent recent
review [11].

2. Numerical Methods for the Second
Boundary Value Problem for the
Monge-Ampère Equation

The constraint (1.2) is referred to as the second boundary
value condition for (1.1) because it was studiedmuch later
than theDirichlet boundary condition (1.4). For a smooth
strictly convex function 𝑢, (1.2) was shown in [19] to be
equivalent to

𝐷𝑢(𝜕Ω) = 𝜕Ω∗, (2.1)

which looksmore like a boundary condition and nonlocal.
Several approaches have been proposed to enforce (1.2) in
a numerical scheme. We review most of them in section
4. Below we focus on discretizations of the differential op-
erator in conjunction with the approach through asymp-
totic cones of [2] for enforcing (1.2). The constraint (1.2)
can also be enforced directly by seeking piecewise linear
functions with points inΩ∗ as their piecewise gradients; cf.
section 2.5.

Next, we interpret (1.1)–(1.2) as a problem in the ge-
ometry of convex surfaces. We recall that a set 𝐾 ⊂ ℝ𝑑 is a
cone if 𝑡𝑥 ∈ 𝐾 for all 𝑡 ≥ 0 and 𝑥 ∈ 𝐾. We associate to the
domain Ω∗ the cone

𝐾Ω∗ = ⋂
𝑝∈Ω∗

{ (𝑥, 𝑧) ∈ ℝ𝑑 × ℝ, 𝑧 ≥ 𝑝 ⋅ 𝑥 }.

Given a convex function 𝑢 on Ω, recall that its epigraph is
the convex set

𝑀 = { (𝑥, 𝑧) ∈ ℝ𝑑 × ℝ, 𝑧 ≥ 𝑢(𝑥) }.
The convex hull 𝑀∗ of 𝑀 and the set (𝑥0, 𝑢(𝑥0)) + 𝐾Ω∗ for
𝑥0 ∈ 𝜕Ω defines an infinite convex hypersurface whose
boundary defines a convex function 𝑢̃ on ℝ𝑑. For any 𝑦 ∈
𝑀∗, 𝑦 + 𝐾Ω∗ ⊂ 𝑀∗. The convex function 𝑢 is said to have
asymptotic cone 𝐾Ω∗ if 𝑢̃ = 𝑢 on Ω. See Figure 2 for an
illustration.
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Figure 2. The convex hull 𝑀 of { 𝐴, 𝐵, 𝐶, 𝐷 } defines a piecewise
linear convex function on a finite interval. The convex hull 𝑀∗
of 𝑀 and the cone 𝑥0 + 𝐾Ω∗ with Ω∗ = (−3, 3) defines a
piecewise linear convex function on the real line with
asymptotic cone 𝐾Ω∗ .

Problem (1.1)–(1.2) has the formulation: find a convex
function 𝑢 on Ω with asymptotic cone 𝐾Ω∗ such that (1.1)
holds. If 𝑢 has asymptotic cone 𝐾Ω∗ , it is shown in [2] that

𝑢̃(𝑥) = inf
𝑠∈Ω

𝑢(𝑠) + sup
𝑝∈Ω∗

(𝑥 − 𝑠) ⋅ 𝑝, 𝑥 ∉ Ω. (2.2)

For example, if Ω = (−1, 1) and Ω∗ = (−1/2, 1/2), then
𝐾Ω∗ is the epigraph of the function 𝑦 = |𝑥|/2. Examples of
functions with asymptotic cone 𝐾Ω∗ are given by 𝑢1(𝑥) =
|𝑥|/2 and 𝑢2(𝑥) = 0 for −1 ≤ 𝑥 ≤ 1with 𝑢2(𝑥) = |𝑥|/2−1/2
for 𝑥 ∉ Ω.

In the sequel we will approximate the convex domain
Ω∗ by polygons 𝐾∗ ⊂ Ω∗. The resulting approximate prob-
lems are shown to be convergent in [2]. Assuming now
for simplicity that 𝐾∗ = Ω∗, it can be shown [2] that prob-
lem (1.1)–(1.2) is equivalent to finding a convex function
𝑢 on Ω which extends to a convex function on ℝ𝑑 by (2.2)
and such that (1.1) holds. Let 𝑎∗𝑗 , 𝑗 = 1, … , 𝑁, denote the
vertices of 𝐾∗. It can then be shown that

𝑢̃(𝑥) = inf
𝑠∈Ω

𝑢(𝑠) + max
𝑗=1,…,𝑁

(𝑥 − 𝑠) ⋅ 𝑎∗𝑗 , 𝑥 ∉ Ω. (2.3)

The infimum can be further restricted to boundary points
of a computational mesh.
2.1. Standard discretizations. By standard discretiza-
tions, we refer to discretizations based on the interpreta-
tion of the solution 𝑢 of (1.1) as a classical 𝐶2(Ω) solution.
In that case

det𝐷2𝑢 = div ((cof 𝐷2𝑢)𝐷𝑢),
where cof 𝐴 denotes the cofactor matrix of the matrix 𝐴
and div denotes the divergence operator. Thus (1.1) can
be seen as a nonlinear Poisson equation. Pretty much
methods developed for elliptic problems can be applied
to (1.1)–(2.2). The resulting nonlinear discrete equations
may have multiple solutions and cannot be solved by a

vanilla Newton’s method when the goal is to reproduce a
nonsmooth solution. Iterative methods which preserve a
notion of discrete convexity can be used. A particular so-
lution was selected in [19] in a least squares setting with
a mixed approximation, i.e., the introduction of new vari-
ables𝑚 = 𝐷𝑢 and 𝑃 = 𝐷𝑚. Therein, the second boundary
condition was also enforced in a least squares setting. A
least squares solution in ℝ𝑁 of a system of linear equa-
tions 𝐴𝑥 = 𝑏 is a vector 𝑥 which minimizes ||𝑏 − 𝐴𝑥||2 for
the Euclidean norm ||.|| on ℝ𝑁 .
2.2. Semidiscretizations for Aleksandrov solutions.
The semidiscrete problem considered here is obtained by
approximating the density 𝑓 with a sum of Dirac masses

𝑓𝑀 = ∑𝑀
𝑖=1 𝜇𝑖𝛿𝑥𝑖 for an integer 𝑀, weights 𝜇𝑖 ≥ 0, and

𝑥𝑖 ∈ Ω. We will assume that 𝑅 = 1. For illustration, we
consider a one-dimensional Monge-Ampère equation, i.e.,
find a convex function 𝑢 on (0, 1) such that in a weak sense

𝑢″ =
𝑀
∑
𝑖=1

𝜇𝑖𝛿𝑥𝑖 in (0, 1),

and for all 𝑥 ∈ (0, 1) we have 𝑢′(𝑥) ∈ (−1, 2), i.e., 𝑢′(0, 1) =
(−1, 2).

For 𝑢 smooth and a Borel set 𝐵 ⊂ (0, 1), the Monge-
Ampère measure associated to 𝑢 is defined as 𝑀[𝑢](𝐵) =
∫𝐵 𝑢″(𝑥) 𝑑𝑥. By the change of variable 𝑥 → 𝛾(𝑥) = 𝑢′(𝑥) =
𝑝 (gradient mapping) we obtain 𝑀[𝑢](𝐵) = ∫𝛾(𝐵) 𝑑𝑝.
Next, we replace 𝛾(𝑥) by the subgradient mapping for non-
smooth convex solutions

𝜕𝑢(𝑥0)={𝑝 ∈ ℝ∶ 𝑢(𝑥)≥𝑢(𝑥0)+𝑝(𝑥−𝑥0) for all 𝑥∈(0, 1) }.
For 𝑣(𝑥) = |𝑥 − 1/2|, we have 𝜕𝑣(𝑥0) = {−1 }, 𝑥0 <
1/2, 𝜕𝑣(1/2) = [−1, 1], and 𝜕𝑣(𝑥0) = { 1 }, 𝑥0 > 1/2.

For a Borel set 𝐵, we have 𝑀[𝑢](𝐵) = |𝜕𝑢(𝐵)|, where
for a set 𝑆, |𝑆| denotes its Lebesgue measure. By Aleksan-
drov solutions, we mean a convex function 𝑢 such that
𝜕𝑢(0, 1) = (−1, 2) and, for all Borel sets 𝐵 ⊂ (0, 1), we have
𝑀[𝑢](𝐵) = ∑𝑀

𝑖=1 𝜇𝑖𝛿𝑥𝑖 (𝐵). We require the compatibility

condition∑𝑀
𝑖=1 𝜇𝑖 = |(−1, 2)| = 3.

If we assume that the points 𝑥𝑖 are equidistributed, i.e.,
𝑥𝑖+1−𝑥𝑖 = ℎ, then for 1 ≤ 𝑖 ≤ 𝑀 with 𝑥0 = 0 and 𝑥𝑀+1 = 1

𝑀[𝑢]({𝑥𝑖}) =
𝑢𝑖+1 − 𝑢𝑖

ℎ − 𝑢𝑖 − 𝑢𝑖−1
ℎ = 𝑢𝑖+1 − 2𝑢𝑖 + 𝑢𝑖−1

ℎ ,

where 𝑢𝑖 ≈ 𝑢(𝑥𝑖). The main contribution in [2] is the ob-
servation that the above formula can also be used at 𝑥1
and 𝑥𝑀 provided that one uses the extension formula (2.3)
which gives here for 𝑖 = 0,𝑀 + 1

𝑢𝑖 = min { 𝑢1 +max ( − (𝑥𝑖 − 𝑥1), 2(𝑥𝑖 − 𝑥1)),
𝑢𝑀 +max ( − (𝑥𝑖 − 𝑥𝑀), 2(𝑥𝑖 − 𝑥𝑀)) }.

Solutions can be shown to be unique up to a constant.
One can impose the constraint 𝑢0 = 𝛼 for an arbitrary
number 𝛼. The value at 𝑥𝑀+1 is given by the above formula.
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The discretization just described generalizes a similar dis-
cretization proposed for the Dirichlet problem in [18]. De-
tails for arbitrary dimensions will be reported elsewhere.
2.3. Medius approach: Lattice basis reduction. It is pos-
sible to exploit the arithmetic of two-dimensional Carte-
sianmeshes for an efficient resolution of the nonlinear dis-
crete system obtained from a semidiscretization for Alek-
sandrov solutions, though one has to relax the convexity
criterion. The scheme we describe can be seen as a finite
difference version of the one described in the previous sec-
tion. It can be implemented through an efficient adap-
tive algorithm. Again, we present a variant of an existing
scheme [6]. The modification was crucial for the proof of
existence and uniqueness of a solution to the discrete prob-
lem [2].

The discrete operator is written as a minimization prob-
lem over subsets of themesh. Themesh is identified with a
tree and the adaptive algorithm selects subtrees [5], hence
the name lattice basis reduction. By adaptivity here, we
mean that the operator is evaluated in a cheap and smart
way. Let ℎ be a small positive parameter, and let ℤ2ℎ =
{𝑚ℎ,𝑚 ∈ ℤ2 } denote the orthogonal lattice with mesh
length ℎ. The set of mesh points is given by Ωℎ = Ω ∩ ℤ2ℎ.
Computations are made with a finite subset of the mesh.
Let 𝑉 denote a finite set of nonzero elements of ℤ2 such
that if 𝑒 ∈ 𝑉,−𝑒 ∈ 𝑉 . It is further assumed that elements
of 𝑉 have coprime coordinates and span ℝ2, and 𝑉 con-
tains the elements of the canonical basis of ℝ2 and a nor-
mal to each side of the target polygonal domain 𝐾∗. We
also require that 𝑉 contains { (𝑎, 𝑏) ∈ {−1, 0, 1}2, 𝑎𝑏 ≠ 0 }.

Let (𝑒1, 𝑒2) denote the canonical basis of ℝ2, and let

𝜕Ωℎ = {𝑥 ∈ Ωℎ such that for some 𝑖 = 1, 2,
𝑥 + ℎ𝑒𝑖 ∉ Ωℎ or 𝑥 − ℎ𝑒𝑖 ∉ Ωℎ}.

We define for a function 𝑣ℎ on ℤ2ℎ, 𝑒 ∈ ℤ2, and 𝑥 ∈ Ωℎ

Δℎ𝑒𝑣ℎ(𝑥) = 𝑣ℎ(𝑥 + ℎ𝑒) − 2𝑣ℎ(𝑥) + 𝑣ℎ(𝑥 − ℎ𝑒).
We are interested in mesh functions on Ωℎ which are ex-
tended to ℤ2ℎ using

𝑢̃(𝑥) = inf
𝑠∈𝜕Ωℎ

𝑢(𝑠) + max
𝑗=1,…,𝑁

(𝑥 − 𝑠) ⋅ 𝑎∗𝑗 , 𝑥 ∉ Ω, (2.4)

and are discrete convex in the sense that Δℎ𝑒𝑣ℎ(𝑥) ≥ 0 for
all 𝑥 ∈ Ωℎ and 𝑒 ∈ 𝑉 . A uniform limit of mesh functions
which are discrete convex in the sense above and solve suit-
able discrete Monge-Ampère equations is a convex func-
tion. It is a result implicit in convergence studies of dis-
cretizations of (1.1) with 𝑅 = 1.

Next, we consider a local version of a symmetrization
of a discrete version of the subgradient

𝐷𝐿𝑣ℎ(𝑥) = { 𝑝 ∈ ℝ2, 2𝑝 ⋅ (ℎ𝑒) ≤ Δℎ𝑒𝑣ℎ(𝑥) ∀𝑒 ∈ 𝐿 }.
Define a basis of ℤ2 as a pair (𝑒1, 𝑒2) ∈ (ℤ2)2 such
that | det(𝑒1, 𝑒2)| = 1. A superbase of ℤ2 is a triplet

(𝑒0, 𝑒1, 𝑒2) ∈ (ℤ2)3 such that 𝑒0 + 𝑒1 + 𝑒2 = 0, and (𝑒1, 𝑒2)
is a basis of ℤ2. The Monge-Ampère operator with lattice
basis reduction in the case 𝑅 = 1 is defined as

𝑀𝐴𝐿𝐵𝑅 𝑢ℎ(𝑥) = min
𝐿=(𝑒0,𝑒1,𝑒2)∈𝑉3

superbase

|𝐷𝐿𝑢ℎ(𝑥)| .

The discrete problem consists in finding a discrete convex
mesh function 𝑢ℎ such that

𝑀𝐴𝐿𝐵𝑅 𝑢ℎ(𝑥) = ∫
𝐸𝑥
𝑓(𝑡)𝑑𝑡, 𝑥 ∈ Ωℎ, (2.5)

where 𝐸𝑥 = 𝑥 + [−ℎ/2, ℎ/2]𝑑 is a cube centered at 𝑥 with
𝐸𝑥 ∩ Ωℎ = { 𝑥 }. The unknowns in the above equation are
themesh values 𝑢ℎ(𝑥), 𝑥 ∈ Ωℎ. For 𝑥 ∉ Ωℎ, the value 𝑢ℎ(𝑥)
needed for the evaluation of 𝐷𝐿𝑣ℎ(𝑥) is obtained from the
extension formula (2.4). Here we made the simplifying
assumption that Ω∗ = 𝐾∗ so that conservation of energy
holds. Again here we impose the constraint 𝑢ℎ(𝑥0) = 𝛼
for an arbitrary real number 𝛼 and with 𝑥0 ∈ Ωℎ for all ℎ.
A damped Newton’s method can be used for solving the
nonlinear equations for 𝑓 > 0.
2.4. Approach through viscosity solutions. The notion
of viscosity solution for (1.1) is based on comparisons
with smooth test functions. Aleksandrov solutions of (1.1)
are equivalent to viscosity solutions when the right-hand
side 𝑓 is continuous and positive [13]. For 𝑅 = 1, it was
shown in [4] through a perturbation argument that the
equivalence also holds.

For solutions of schemes to converge to a viscosity so-
lution, it is convenient that the scheme satisfies a mono-
tonicity property allowing comparison with smooth test
functions. This often requires writing discretizations in a
specific form and, for schemes which violate the mono-
tonicity condition, it is very difficult to prove convergence
in the setting of viscosity solutions. For example, the
scheme (2.5) may require a numerical integration leading
to nonmonotone schemes. However, we believe that con-
vergence can still be proven in the setting of Aleksandrov
solutions through a perturbation argument taking advan-
tage of convergence results for (2.5) which are essentially
the same as the ones discussed in [2]. In fact, a nonmono-
tone approximation of 𝑀𝐴𝐿𝐵𝑅 𝑢ℎ(𝑥) through a standard
discretization of the gradient was actually considered in
[6].

The geometric content of solutions to the Monge-
Ampère equation is lost in the viscosity solution setting. It
is unlikely to explain the behavior of standard discretiza-
tions for (1.1)–(1.2) and nonsmooth solutions. We refer
to [7, 12] for explicit monotone discretizations of (1.1).
We do not discuss this further since their analysis in con-
junction with (2.4) is similar to the analysis of the effect of
numerical integration for (2.5), a topic we wish to discuss
in a separate work.
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2.5. Semidiscretizations for Brenier solutions. Here we
assume that the density 𝑅 is approximated by a sum of

Dirac masses ∑𝑀
𝑖=1 𝑟𝑖𝛿𝑃𝑖 for 𝑃𝑖 ∈ Ω∗ and 𝑟𝑖 ∈ ℝ for all

𝑖. Energy conservation reads ∑𝑀
𝑖=1 𝑟𝑖 = ∫Ω 𝑓(𝑥) 𝑑𝑥. In the

case of one Dirac mass 𝑟𝑖𝛿𝑃𝑖 the surface which reflects all
rays with direction (0, … , 0, 1) ∈ ℝ𝑑+1 from Ω into a direc-
tion of the unit sphere with stereographic projection the
point 𝑃𝑖 is, by Snell’s law, given by a plane 𝑥 ⋅ 𝑃𝑖 − 𝑏𝑖 for
a parameter 𝑏𝑖. The reflector is then given by the graph of
the convex function

𝑢𝑀(𝑥) = max
𝑖=1,…,𝑀

𝑥 ⋅ 𝑃𝑖 − 𝑏𝑖,

with rays in the region

𝑊 𝑖(𝑏) = { 𝑥 ∈ Ω, 𝑥 ⋅𝑃𝑖−𝑏𝑖 ≥ 𝑥⋅𝑃𝑗−𝑏𝑗 for all 𝑗 = 1, … ,𝑀 },

reflected in the direction 𝑃𝑖. We thus need

∫
𝑊𝑖(𝑏)

𝑓(𝑥) 𝑑𝑥 = 𝑟𝑖, 𝑖 = 1, … ,𝑀,

which is the nonlinear equation to be solved for 𝑏𝑖, 𝑖 =
1, … ,𝑀. The constraint (1.2) is enforced implicitly in the
sense that by construction 𝜕𝑢𝑀(Ω) ⊂ Ω∗ when Ω∗ is con-
vex.

3. Generated Jacobian Equations
Generated Jacobian equations are a class of prescribed Ja-
cobian equations, i.e., one seeks a mapping 𝑇 between
two bounded domains Ω and Ω∗ of ℝ𝑑 whose Jacobian
det𝐷𝑇(𝑥) is prescribed by an equation

det𝐷𝑇(𝑥) = 𝜓(𝑥, 𝑇(𝑥))

for a given function 𝜓 on Ω × Ω∗. An example of such a
mapping is the optimal transport map, discussed above,
between two measures supported respectively on Ω and
Ω∗. In that case, one requires 𝜓 ≥ 0 and the mapping 𝑇
is generated by a convex function 𝑢 on Ω in the sense that
𝑇(𝑥) = 𝐷𝑢(𝑥). In geometric optics problems, 𝜓 ≥ 0 as well
and the mapping 𝑇 taking a light described by 𝑥 ∈ Ω into
a point 𝑇 (𝑥) on the target is also generated by a scalar
function 𝑢 on Ω which describes the optical surface and
solves the generated Jacobian equation

det𝐷𝑇 (𝑥)=𝜓(𝑥, 𝑢(𝑥), 𝑇 (𝑥)), 𝑇 (𝑥)=𝑇(𝑥, 𝑢(𝑥), 𝐷𝑢(𝑥)),
(3.1)

where now 𝜓 and 𝑇 are functions onΩ×ℝ×Ω∗ which take
values in ℝ and ℝ𝑑, respectively. We assume in this paper
that 𝜓 is separable in the sense that

𝜓(𝑥, 𝑢, 𝑝) = 𝑓(𝑥)
𝑅(𝑇(𝑥, 𝑢, 𝑝))

for positive functions 𝑓 ∈ 𝐿1(Ω) and 𝑔 ∈ 𝐿1(Ω∗). This struc-
tural assumption encompasses applications in geometric

optics. The second boundary value problem for the gen-
erated Jacobian equation (3.1) is to prescribe in addition
the image of Ω by 𝑇 , i.e.,

𝑅(𝑇 (𝑥)) det 𝐷𝑇 (𝑥) = 𝑓(𝑥), 𝑥 ∈ Ω,
𝑇 (Ω) = Ω∗. (3.2)

The transformation 𝑇 and the ”potential” 𝑢 are now re-
lated through a generating function 𝐺 ∶ Ω×Ω∗ ×ℝ+ ↦ ℝ
and 𝑇(𝑥, 𝑢, 𝑝) is obtained by solving the system

𝐷𝑥𝐺(𝑥, 𝑇, 𝑍) = 𝑝, 𝐺(𝑥, 𝑇, 𝑍) = 𝑢,

where 𝑍 is an additional unknown. It is assumed that the
above system has a unique solution, that 𝐺 is sufficiently
smooth and strictly decreasing with respect to 𝑧. When
𝐺(𝑥, 𝑦, 𝑧) = 𝑥 ⋅ 𝑦 + log 𝑧, we obtain 𝑇(𝑥, 𝑦, 𝑝) = 𝑝, i.e.,
𝑇 (𝑥) = 𝐷𝑢(𝑥) and 𝜓 does not depend on 𝑢(𝑥). The same
holds for optimal transport problems with a general cost
function 𝑐(𝑥, 𝑦), with compatible assumptions on 𝑐 ∶ Ω ×
Ω∗ → ℝ, in which case 𝐺(𝑥, 𝑦, 𝑧) = 𝑐(𝑥, 𝑦) + log 𝑧. The
mapping 𝑇 is then the optimal transport map, i.e.,

𝑇 (𝑥) = argmin
𝑇

∫
Ω
𝑐(𝑥, 𝑇(𝑥))𝑓(𝑥)𝑑𝑥,

where the infimum is taken over mappings 𝑇 which push
forward themeasure with density 𝑓 onto the measure with
density 𝑔, that is, mappings 𝑇 which satisfy

∫
Ω
𝜙(𝑇(𝑥))𝑓(𝑥)𝑑𝑥 = ∫

Ω∗
𝜙(𝑦)𝑔(𝑦)𝑑𝑦

for all continuous functions 𝜙 ∶ Ω∗ → ℝ.
For weak solutions of (3.2) one has, as in the case of

(1.1)–(1.2), the Aleksandrov theory and the Brenier for-
mulation.

The functions 𝑥 ↦ 𝐺(𝑥, ., .) play the role hyperplanes
play as support functions in the theory of convex functions.
Given 𝑦0 ∈ Ω∗ and 𝜆0 ∈ ℝ+, the function 𝑥 ↦ 𝐺(𝑥, 𝑦0, 𝜆0)
is said to be a 𝐺-support to a function 𝑢 ∶ Ω → ℝ at 𝑥 =
𝑥0 ∈ Ω if 𝑢(𝑥) ≥ 𝐺(𝑥, 𝑦0, 𝜆0) ∀𝑥 ∈ Ω with equality at 𝑥 =
𝑥0. The function 𝑢 is said to be 𝐺-convex if it has a 𝐺-
support at all points 𝑥 ∈ Ω. Equivalently 𝑢 is 𝐺-convex if
and only if there exists a set 𝒜 ⊂ Ω∗ × ℝ+ such that

𝑢(𝑥) = sup
(𝑦,𝜆)∈Ω∗×ℝ+

𝐺(𝑥, 𝑦, 𝜆).

The 𝐺-subdifferential of 𝑢 at 𝑥0 ∈ Ω is defined as the set-
valued function

𝜕𝐺𝑢(𝑥0) = {𝑦 ∈ Ω∗, ∃𝜆0 ∈ ℝ+ such that 𝐺(𝑥, 𝑦, 𝜆0)
is a 𝐺-support to 𝑢 at 𝑥0}.

It is known that for a 𝐺-convex function 𝑢, the set
𝜕𝐺𝑢(𝐸) = ⋃𝑥∈𝐸 𝜕𝐺𝑢(𝑥) is measurable when 𝐸 is measur-
able ([1, Lemma 2.1] and [20, pp. 12–13]). Moreover the
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set function

𝑀[𝑢](𝐸) = ∫
𝜕𝐺ᵆ(𝐸)

𝑔(𝑝)𝑑𝑝

is a Radon measure. A weak solution of (3.2) in the sense
of Aleksandrov is a 𝐺-convex function 𝑢 such that

𝑀[𝑢](𝐸) = ∫
𝐸
𝑓(𝑥)𝑑𝑥 for all Borel sets 𝐸 ⊂ Ω.

Thus we have the necessary condition

∫
Ω
𝑓(𝑥)𝑑𝑥 = ∫

Ω∗
𝑔(𝑝)𝑑𝑝.

The tracing map of 𝑢 for 𝑦0 ∈ Ω∗ is defined as

𝜏𝐺𝑢(𝑦0) = {𝑥0 ∈ Ω, ∃𝜆0 ∈ ℝ+ such that

𝐺(𝑥, 𝑦0, 𝜆0) supports 𝜙 at 𝑥0 }.
Note that 𝜏𝐺 is the inverse of the 𝐺-subdifferential, i.e.,
𝜏𝐺𝑢(𝑦0) = (𝜕𝐺𝑢)−1(𝑦0), and can be interpreted as the set
of directions from which light emanating from the origin
is redirected in the direction 𝑦.

For a subset 𝐹 ⊂ Ω∗ we define 𝜏𝐺𝑢(𝐹) = ⋃𝑦∈𝐹 𝜏𝐺𝑢(𝑦),
and for a 𝐺-convex function 𝑢 we define the set function

𝜂ᵆ(𝐹) = ∫
𝜏𝐺ᵆ(𝐹)

𝑓(𝑥)𝑑𝑥. (3.3)

A weak solution of (3.2) in the sense of Brenier is a 𝐺-
convex function 𝑢 such that

𝜂ᵆ(𝐹) = ∫
𝐹
𝑔(𝑝)𝑑𝑝 for all Borel sets 𝐹 ⊂ Ω∗. (3.4)

Explicit expressions of the generating function 𝐺 and
the terms for the differential equation (1.3) can be found
in [20, 8]. For the far field reflector problem with an in-
coming parallel light beam, as in section 2.5, the surface
𝑥 ↦ 𝑥 ⋅ 𝑃𝑖 − 𝑏𝑖 gives the generating function 𝐺(𝑥, 𝑃𝑖, 𝜆0) =
𝑥 ⋅𝑃𝑖+log 𝜆0. In general, the generating function describes
a basic optical surface which converts light from 𝑥 ∈ Ω
into 𝑦 ∈ Ω∗. The optical surface can be made of ellipses,
parabolas, hyperbolas, Cartesian ovals, etc. Figure 3 shows
an ellipse refracting light from a point light source into a
uniform direction.

4. Convergence of Numerical Methods
for Generated Jacobian Equations

There are two types of convergence to be addressed: con-
vergence of an iterative method for solving the discrete
nonlinear system resulting from a discretization and con-
vergence of the numerical solution to the exact solution.

Many of the developments have taken place with dis-
cretizations of (1.2) different from the approach through
asymptotic cones taken in section 2. We review them be-
low. It is our goal to systematically extend the Aleksandrov
solution approach and the lattice basis reduction approach
to generated Jacobian equations.

Figure 3. An example of a surface with a uniform refracting
property.

4.1. Other discretizations of the second boundary con-
dition.
4.1.1. Defining function of the target domain. Let 𝐻 be a
defining function of Ω∗, i.e., Ω∗ = { 𝑥 ∈ ℝ𝑑, 𝐻(𝑥) < 0 }.
The boundary condition 𝐷𝑢(Ω) = Ω∗ can be shown to be
equivalent to

𝐻(𝐷𝑢) = 0on 𝜕Ω
for a defining function 𝐻 of Ω∗; cf. for example [7].

Let 𝑑𝜕Ω∗ denote the distance function to the boundary
𝜕Ω∗ of Ω∗, i.e., 𝑑𝜕Ω∗(𝑥) = inf𝑧∈𝜕Ω∗ ||𝑥 − 𝑧||. An example
of defining function is given by the signed distance-to-the-
boundary defined as

𝛿𝜕Ω∗(𝑥) = −𝑑𝜕Ω∗(𝑥), 𝑥 ∈ Ω∗,
and 𝛿𝜕Ω∗(𝑥) = 𝑑𝜕Ω∗(𝑥), 𝑥 ∉ Ω∗.

If the goal is to prove convergence to a viscosity solution,
one chooses a monotone discretization of 𝐻(𝐷𝑢) = 0 as
in [7,12].
4.1.2. Iterated projection algorithm. Numerical experiments
in [9] suggested that the following iterative method con-
verges to a solution of (1.1)–(1.2). Let 𝑛 denote the out-
ward normal to 𝜕Ω. We consider the sequence 𝑢𝑘 defined
by

𝑅(𝐷𝑢𝑘) det 𝐷2𝑢𝑘+1 = 𝑓 in Ω,
𝜕𝑢𝑘+1
𝜕𝑛 = (Proj𝜕Ω∗𝐷𝑢𝑘) ⋅ 𝑛 on 𝜕Ω,

𝑢𝑘+1(𝑥0) = 𝛼
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for 𝑥0 ∈ 𝜕Ω and 𝛼 a real number. Here for a vector 𝑣 ∈ ℝ𝑑,
we define

Proj𝜕Ω∗𝑣 = inf
𝑦∈𝜕Ω∗

||𝑦 − 𝑣||.

4.1.3. Enforced in a least squares sense. Introducing new
variables 𝑚 = 𝐷𝑢 and 𝑃 = 𝐷𝑚, (2.2) becomes 𝑚(𝜕Ω) =
𝜕Ω∗. In [19] (1.1) is written in terms of the new variables
and solved along with the constraint 𝑚(𝜕Ω) = 𝜕Ω∗ in a
least squares setting.
4.1.4. Enforced throughout the source domain. It has been
suggested in [12] that instead of enforcing 𝐻(𝐷𝑢) = 0 on
𝜕Ω, one can enforce 𝐻(𝐷𝑢) = 0 on Ω. The motivation was
to get convergence results to a viscosity solution of (1.1)–
(1.2). A similar idea was previously used in [15] where the
authors sought a piecewise linear convex approximation
with the requirement that its piecewise gradients be vectors
in Ω∗ enforced as a constraint in an optimization scheme.

Although we have assumed in this paper that Ω∗ is
convex, several of the discretizations proposed for (1.2)
should work for nonconvex domains, an exception being
the approach based on a defining function of Ω∗.
4.2. Numerical methods for generated Jacobian equa-
tions. A general approach for handling (1.3) was initiated
in [8] for the point source near field reflector and refractor
problems. It is based on the iterative projection algorithm
for handling the second boundary condition.

A priori the semidiscrete approximations with Brenier
solutions can be applied to generated Jacobian equations.
But this raises the practical issue of how to compute the
analogues of the sets𝑊𝑖(𝑏) described in section 2.5. For far
field problems a computational geometry approach was
used in [16].
4.3. Convergence of iterative methods. No convergence
analysis has been reported for the iterated method based
on projections proposed in [9]. Damped Newton meth-
ods have also been used. A damped Newton’s method is a
variant of Newton’s method for which the Jacobian matrix
is multiplied by a damping factor, with the goal of having
convergence of the iterates independent of the closeness to
the solution of an initial guess.

For the semidiscrete problems with Brenier solutions, a
convergence analysis for a damped Newton’s method was
given in [14]. It does not cover for example the far field re-
fractor problemwhich is included in the class of generated
Jacobian equations for which convergence of an iterative
method is proven in [1].
4.4. Convergence of discretizations. Not much is
known about convergence of standard discretizations for
(1.1)–(1.2). For smooth solutions and the Dirichlet prob-
lem, existence of a solution can be proven for various dis-
cretizations but for ℎ sufficiently small. The least squares
method for the discretization of (1.1)–(1.4) has not been
analyzed for smooth solutions. We gave a theory of

convergence of standard discretizations for Aleksandrov
solutions of the Dirichlet problem for the Monge-Ampère
equation [3]. It is based on the assumption that comput-
ers do not see the difference between a computational do-
main and a fictitious subdomain arbitrarily close. It would
be interesting to have a theory without that assumption.

The convergence of semidiscrete approximations for
Aleksandrov and Brenier solutions is central to the the-
ory of generated Jacobian equations [20]. For the medius
approach convergence of the discretization was proven in
[6, 2]. We note that convergence of the discretization was
also proven for both approaches [15,12] where the second
boundary condition is enforced throughout the domain.
4.5. Performance of the numerical methods. There has
not been a comparative numerical study of discretizations
for (1.1)–(1.2). No numerical experiments were reported
in [2, 12]. The approach through asymptotic cones of [2]
should yield results similar to the ones reported in [6] for
the medius approach. Methods based on standard dis-
cretizationsmay not be very efficient. A possible exception
is the least squares approach which has been applied to a
variety of optics problems. In [15], it was reported that
a method based on standard discretizations of the gradi-
ent and Hessian vastly outperforms an analogue which is
provably competent. It is reasonable to expect that meth-
ods based on the iterative projection algorithm would be
less efficient than a more direct approach. Understanding
the mechanisms of the not so efficient methods could give
a better understanding of the computational process and
may lead to more efficient numerical methods.

5. Possible Future Directions
Computational nonimaging geometric optics based on
Monge-Ampère equations is like a painting which is
largely incomplete. The main open issue is to what extent
existing methods can be made more efficient. Several pos-
sible moves or combinations of the ideas discussed above
are possible. For example, one can adapt to the second
boundary value problemmethods proposed for theDirich-
let problem [17]. A possible direction is to adapt advances
in computational optimal transport to generated Jacobian
equations. Also, the state of the art in computationalmath-
ematics such as fast solvers and adaptive methods have
not been applied to geometric optics problems. There are
alsomany unanswered questions which deal with the anal-
ysis of several of the numerical methods that have been
proposed. In addition to several of the issues mentioned
above, we give several more examples.

1. Problems with loss of energy, i.e., when only part of
the radiation is transmitted, and problems with mul-
tiple sources or extended fields and systems with two
lenses could be addressed with recent advances on
proven convergent numerical methods.
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2. The semigeostrophic flow equations were formulated
as a coupled system consisting of the Monge-Ampère
equation with the second boundary condition and a
transport equation. It would be interesting to see how
recent advances can be used for its numerical resolu-
tion.

3. There is no theory for viscosity solutions of generated
Jacobian equations. The special case (1.1)–(1.2) has
been recently solved in [12].
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