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Biological macromolecules such as nucleic acids and proteins are homochiral, display monodisperse chain length
with mega, multimillion, molecular weight and encode functions by their precise sequence via self-organization.
The functions of biological macromolecules are either independent on molecular weight or, like in the case of
ribosome, are programmed by the self-organization of their mega molecular weight. In spite of the fact that
Staudinger coined the name macromolecule 100 years ago, self-organizable synthetic covalent and supramo-

lecular mega macromolecules exhibiting the symptoms of biological macromolecules started to emerge only
recently. This personal perspective will discuss, with examples mostly from our laboratory, methodologies for the
synthesis of self-organizable covalent and supramolecular mega macromolecules for which functions are enco-
ded, programmed and perfected via homochiral, sequence-defined and monodisperse components. Methodolo-
gies to generate them together with historical developments will be briefly discussed.

1. Introduction

This year we celebrate the 100-years anniversary of the landmark
publication of Hermann Staudinger that first draw the covalent structure
of macromolecules [1] and subsequently defined it in words [1,2]. This
anniversary was celebrated via several International Symposia orga-
nized during the Spring ACS Meeting 2020 from Philadelphia. One of us
(VP) organized an International Symposium entitled “From Staudinger
Macromolecules to the Genome of Macromolecules.” Since Staudinger
was a highly regarded organic chemist, most of the plenary lecturers at
this symposium were given by organic chemists including two Nobel
Prize laureates. The opening lecture given by VP was entitled “From
Berzelius to Staudinger through Polymers and Macromolecules.” Several
years ago, one of us (VP) edited a two-volume book that celebrated the
60 years anniversary of the 1953 Nobel Prize of Hermann Staudinger
“for his discoveries in the field of macromolecular chemistry” [3,4]. The
preface to this two-volumes book [5] and a manuscript from this book
[6] provide additional details on Staudinger concept and professional
career. While editing this book I learned about Staudinger’s life more
than he would have liked anybody to know about him except for himself.
My connection with the Hermann Staudinger House that hosts the
Institute of Macromolecular Chemistry from the University of Freiburg,
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Germany was presented by invitation in a recent publication from a
special volume dedicated to Staudinger with the occasion of the 100
anniversary of his paper that coined the name macromolecule [7] and in
an invited lecture given on September 29, 2020 at the Royal Swedish
Academy of Engineering Sciences IVA. This lecture was presented,
submitted to publication, and published after this manuscript was sub-
mitted to publication [8]. References [5-8] give more details on refer-
ences [1,2] and subsequent publications of Staudinger defining covalent
macromolecules and also tell the story that almost took me back from US
to Freiburg on the Staudinger chair. This explains the number of many
volumes, symposia and publications that I dedicated to Staudinger. A
number of other remarkable, comprehensive but short publications that
refer to Staudinger life and accomplishments are also available [9-15].
These publications can introduce anybody interested in learning as
much as possible about Staudinger and his work and therefore it will not
be repeated here. The first review article in the field of polymerization
published by Carothers in 1931 [16] and the classic first polymer
chemistry textbook published by Flory in 1953 [17] must be on the desk
of everybody reading this paper. While Flory received a Nobel Prize in
1974, in my opinion, Carothers, would have received a Nobel Prize
maybe even before Staudinger if he would not have committed suicide
on April 29, 1937 in Philadelphia (he was 41 years old at that time), one
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Table 1
Covalent linear mega homopolymers prepared by various polymerization techniques.

Mega Polymerization technique Solvent TCC) M, (g/ M,/ Conv. Laboratory (year) Ref.
homopolymer® mol) M, (%)

PMMA RAFT under high pressure (5 kbar) toluene 65 1.25 x 10°¢ 1.03 99 J. Penelle (2004) 56
PDMAEMA ATRP MeOH/water (10/1, v/ 50 1.10 x 10° 1.26 85 L.H. Gan (2006) 57

v)
PMA SET-LRP DMSO 25 1.42 x 10° 1.15 70 V. Percec (2006) 58
PBMA Reverse ATRP in miniemulsion water 60 9.89 x 10° 1.24 83 M.F. Cunningham 59
(2007)
PMA SET-LRP EtOH/water (95/5, v/Vv) 25 8.00 x 10° 1.15 80 V. Percec (2008) 60
Poly oxanorbornene ROMP 1,2-dichloroethane 100 1.23 x 10° 1.38 97 N. G. Lemcoff (2009) 61
PS AGET ATRP under high pressure (6 anisole/DMF (31/6, v/v) 22 1.20 x 10° 1.64 55 P. Kwiatkowski (2011) 62
kbar)

PHEMA SET-LRP DMSO 25 1.01 x 10° 1.49 56 V. Percec (2013) 63
PHEA SET-LRP TFE with 30% DMSO 50 9.13 x 10° 1.21 67 V. Percec (2013) 64
PAM RAFT/MADIX water 10 1.27 x 10° 1.32 100 M. Destarac (2014) 65
PDMA RAFT/MADIX water 20 1.04 x 10° 1.06 100 M. Destarac (2014) 65
PMA PET-RAFT DMSO rt 2.18 x 10° 1.08 98 C. Boyer (2014) 66
PA ICAR ATRP under high pressure (6 kbar) ~ DMSO 60 1.03 x 10% - 73 X. Cheng (2016) 67
PSM-PS Cu(0)-RDRP DMSO 100 1.6 x 10° 1.39 N/A J. Rzayev (2016) 68
PDMA photo-RAFT water rt 8.57 x 10°° 1.17 89 B.S. Sumerlin (2017) 69
Poly norbornene ROMP benzene 25 2.05 x 10° 1.12 N/A K. Nomura (2017) 70
PMMA Frustrated Lewis Pair-LP toluene rt 1.93 x 10° 1.10 92 Y. Zhang (2018) 71
PNFHMA Chain-Transfer-Light LP DMSO rt 3.05 x 10° 1.12 99 M. Chen (2019) 72

4 PMMA: poly(methyl methacrylate), PDMAEMA: poly[2-(dimethylamino)ethyl methacrylate], PMA: poly(methyl acrylate), PBMA: poly(butyl methacrylate), PS:
polystyrene, PHEMA: poly(2-hydroxyethyl methacrylate), PHEA: poly(2-hydroxyethyl acrylate), PAM; poly(acrylamide), PDMA: poly(N,N-dimethyl acrylamide), PA:
polyacrylonitrile, PNFHMA: poly(nonafluorohexyl methacrylate), PSM: poly(solketal methacrylate).

b Number-average molecular weight determined by GPC.

¢ Number-average molecular weights determined by GPC equipped with MALS detector.
4 Viscosity-average molecular weight value determined by the Mark-Houwink equation.

year before the commercialization of Nylon fibers from the polymers he
discovered at DuPont. In 1953, when Staudinger received the Nobel
Prize (Staudinger was 72 years old at that time), Carothers would have
been only 57 years old. This perspective is part of the expanded and
updated invited lecture entitled “From Frank-Kasper Phases to Early
Events of Life” given by VP during the USA-Israel Joint Symposium
“Polymeric Material from Synthesis to Applications” organized also
during the spring ACS meeting in Philadelphia in 2020 and dedicated to
the 100s anniversary of the Staudinger paper [1] that coined the name
macromolecule. Since mega covalent and supramolecular macromole-
cules as well as the self-organization concept emerged after Staudinger
days, they will be both introduced in the independent subchapter 2.

2. Definitions and nomenclature. Mega macromolecules and
self-organization

Mega is a prefix in the metric system of units denoting a factor of one
million. It originated when the corresponding Ancient Greek word was
Romanized. To my knowledge Mega was connected for the first time to
macromolecules or polymers by Elias in his beautiful book Mega Mole-
cules [18]. Since all mega molecules are in fact natural and synthetic
macromolecules, we decided in this personalized perspective, that relies
mostly on research from our laboratory, to use the word mega macro-
molecules when referring to multimillion covalent and supramolecular
synthetic macromolecules. The decision on the specific selection of
which macromolecules will be discussed in this perspective was based
on their ability to self-organize and through their self-organization to
create functions. Most of the functions selected here generate new
pathways and mechanisms for the synthesis of covalent and supramo-
lecular macromolecules, create motion in organized macromolecular
systems, select stereochemistry and even provide an extraordinary ac-
celeration of their own process of self-organization. Water channels and
membranes, ionic and electronic conductors mediated by
self-organization will also be discussed very briefly. Self-organization is
encountered in all complex systems [19,20] such as biology [21-23]
social and political organizations, technological systems, internet and
the highways, financial systems, many physical and chemical systems.

The simplest definition of self-organization is “order for free” or “spon-
taneous order” In the simplest words “self-organization is a process in which
overall order arises from local interactions between parts of an initially
disordered system” [19,24-31]. Some of the most important features of
self-organization are self-control, self-repair, adaptability and emer-
gence [19]. Due to the very general and limited scope of this perspective
we will not discuss similarities between equilibrium and far from equi-
librium self-organization. It is sufficient to mention that any equilibrium
self-organized system proceeds through many far from equilibrium
states during the first order phase transition from order to disorder.
Numerous Frank-Kasper phases that will be discussed are far from
equilibrium. Micellar assemblies are equilibrium while closely related
vesicles are far from equilibrium. For the non-expert, we believe that it is
sufficient to provide the example of one of the most common and simple
self-organized system that is “the pattern of wind-blown ripples on the
surface of a sand dune” [23]. Self-organization in low molar mass and
macromolecular systems was pioneered by low molar mass and
macromolecular lyotropic and thermotropic liquid crystals [25]
including the use of living polymerizations for their engineering [32], by
biological membrane mimics [25,27,31], by the discovery and ultrafast
development of the new field of supramolecular chemistry [24,26,28,
29,33-38] and by many other remarkable contributors to this field
[39-55] and many other whom we apologize to for not mentioning their
names.

2.1. Covalent linear mega macromolecules

Surprisingly, there are relatively few reports on the accessible and
simple synthesis of linear mega macromolecules even based on non-self-
assembling monomers that are or can be functionalized (Table 1)
[56-72]. Some of them required quite specialized high-pressure reaction
set-ups for their synthesis [56,62,63] and are less interesting. The
photo-RAFT synthesis of mega poly(N,N-dimethylacrylamide) (Mn = 8,
570,000; Mw/Mn = 1.17) in water reported by Sumerlin laboratory in
2017 is remarkable [69].

Single-electron transfer living radical polymerization (SET-LRP) was
the method used in our laboratory to generate mega linear poly
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(acrylate)s and poly(methactylate)s under very mild conditions at room
temperature [58,60,63,64]. Thus, in 2006 a poly(methyl acrylate) of
Mn = 1,420,000 with Mw/Mn = 1.15 was obtained by SET-LRP in
DMSO at room temperature [58]. At high conversion this polymeriza-
tion self-organizes a biphasic system containing the perfectly colorless
and transparent polymer together with very little DMSO solvent and
monomer in one phase and the catalyst, ligand and most of the
remaining solvent in the second phase [58]. In 2013, poly
(2-hydroxyethyl methacrylate) of Mn = 1,017,900 with Mw/Mn
1.49 was also reported by SET-LRP [63], poly(2-ethylhexyl acrylate) of
Mn = 913,100 and Mw/Mn = 1.20 was reported in 2014 [64], while a
bifunctional poly(methyl acrylate) with Mn = 800,000 and Mw/Mn =
1.20 was reported in 2008 [60]. To give a simple example, by scanning
through most of the living polymerization methodologies from Table 1
we discovered that only ROMP was efficient for the development of

TPB-TPT (c)10(2)PMA (TPB),-TPT-(c)10(3)PMA
Mn=11,000

Self-Interrupted Living Polymerization (SILP) that recently produced the
first monodisperse polymers by chain reactions rather than by iterative
methods (see subchapter 7.5). Therefore, we encourage more activity to
be dedicated to the synthesis of mega macromolecules by methodologies
that also tolerate a large diversity of functional groups. This will help the
development of self-organizable monodisperse mega macromolecules.

2.1.1. From self-generated biphasic to programmed biphasic SET-LRP

The biphasic system observed during the SET-LRP of methyl acrylate
in DMSO at room temperature [58] was induced by the very high sol-
ubility of Cu(I)X/ligand and Cu(II)Xy/ligand in DMSO in the absence of
monomer and polymer and by the higher solubility of the polymer in
DMSO and monomer that does not contain Cu()X and Cu(II)X» species
and ligand [58]. When methyl acrylate was replaced with n-butyl
acrylate this biphasic system was observed at lower degrees of
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polymerization than for the case of poly(methyl acrylate). Haddleton
laboratory investigated the SET-LRP of n-butyl acrylate in DMSO and
named it “self-generated biphasic” SET-LRP [73]. Perfect chain end
functionality polymers free of Cu species were obtained by the self--
generated biphasic SET-LRP [58,73]. Inspired by the self-generated
SET-LRP system Percec laboratory elaborated a large diversity of “pro-
grammed biphasic” SET-LRP systems in which an even better solvent for
Cu catalyst, water, generates biphasic systems with many combinations
of organic solvents including water soluble solvents and monomers that
are not miscible with water containing Cu species and ligand [74-80].
The self-generated and programmed biphasic SET-LRP systems provide
a simple example in which the selective partitioning of monomer,
polymer, catalysts, ligand and solvent in two different phases provides
an extremely efficient and economic SET-LRP process by
self-organization in which activation and deactivation of the growing
chain occurs at the interface of the two phases. No purification of the
resulting polymer is required. This self-organization is dependent on the
nature of the solvents, monomer, their concentrations and occurs at a
certain monomer conversion or it can be programmed to start even at
zero-conversion [74-80].

2.2. Covalent cyclic mega DNA and liquid crystals

The classic cyclic biological compounds are phospholipids [81-83]
and DNA [84-86]. Linear phospholipids self-organize biological human
membranes that are stable at room temperature and above but not at
very high temperature while archaebacterial extremophiles survive at
high temperatures since their membranes are based on cyclic phos-
pholipids [81-83]. Inspired by the cyclic phospholipids of the mem-
branes of archaebacterial extremophiles our laboratory synthesized
monodisperse macrocyclic main chain polyether liquid crystal (LC)
oligomers based on conformational isomerism and compared their
structures and phase transitions with those of the corresponding
monodisperse linear homologous compounds. This comparison
demonstrated that isotropization phase transitions of the cyclic LCs are
higher than those of the corresponding linear compounds, invalidating a
hypothesis advanced in 1888, that linear rather than cyclic are the most
favorable topology for the self-organization of LC phases [87]. The
explanation for this unexpected result known by cell membranes bi-
ologists but not by synthetic LC experts relies on the fact that cyclic LCs
fold into more rigid rods than the corresponding linear components
(Fig. 1) [88-94].

Self-organizable main-chain and side-chain liquid crystal polymers
containing cyclic mesogenic groups that fold into supramolecular rods
were also elaborated [93] (Fig. 2).Cyclic DNA is widely spread in
biology, exists as catenanes and knots [84-86] and may have inspired
Stoddart [36] and Sauvage [38] to assemble their synthetic homologues
into molecular machines. There are quite a number of books on cyclic
polymers that do not self-organize. They will not ne enumerated here.

2.3. Covalent and supramolecular branched-dendritic mega
macromolecules

A TERminator Multifunctional INItiator (TERMINI) methodology
was elaborated to generate closed to mega dendritic poly(methyl
methacrylate) [95,96]. This method applies to the synthesis of den-
drimers from any commercial monomers. Its expansion via thio-bromo
click led to the synthesis of poly(acrylate) dendrimers also from com-
mercial monomers [97,98]. Supramolecular dendrimers were elabo-
rated by numerous elegant methods developed by Lehn [99-101] and
other laboratories [44]. Phase transfer catalyzed polyetherification of
properly designed AB; monomers based on conformational isomerism
allowed the design of branched liquid crystal polyethers able to
self-organize liquid crystal phases [92,102-104] and through this
accelerated process to select the building blocks required to construct
the first and only willow-like liquid crystal dendrimers by iterative
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methods [103]. Unexpectedly, these liquid crystal dendrimers display
lower melt viscosity and shorter switching times in display applications
than conventional liquid crystals.

2.4. Self-organizable mega dendronized macromolecules: columnar and
spherical

Conventional radical polymerization of self-assembling dendronized
monomers in self-assembled state generated a methodology to produce
up to 3,500,000 molar mass self-organizable polymers forming
columnar hexagonal arrays, in only 5 min reaction time [105-107].
Lower molar mass dendronized polymers made by conventional radical
polymerization in dilute solution produced spherical self-organizable
polymers that generate Frank-Kasper phases [105,107]. More details
of this polymerization process and on the self-organization in
Frank-Kasper phases will be presented in subchapter 2.4.1.

2.4.1. Frank-Kasper phases in soft matter. From supramolecular
dendrimers and self-organizable dendronized polymers to block copolymers,
surfactants, giant molecules and DNA

The discovery of Frank-Kasper phases and quasicrystals, that were
known in metals and metal alloys, in supramolecular dendrimers and
self-organizable dendronized polymers started in 1997 [107,109-111].
Investigation of many rational libraries of self-assembling dendrons and
dendrimers [112-128] generated a table of supramolecular
nano-assemblies that was elaborated in 2009 [128]. This table of su-
pramolecular  nano-assemblies  inspired similar  tables  of
nano-assemblies for proteins [129,130]. Frank-Kasper phases were in
the meantime discovered in block copolymers, surfactants, giant mole-
cules and DNA nanoparticles [131-146] and created a large new field of
research in self-organized soft condensed matter that is only briefly
mentioned here. Large efforts in theoretical, computation, simulation
[147-150] were also initiated by the discovery of Frank-Kasper phases.

2.4.2. Spherical monodisperse supramolecular mega macromolecules and
their Frank-Kasper Phases

770 monodisperse self-assembling dendrons, with the short name (4-
3,4-3,5)BpPr12G2-CO5CHs, of molar mass 2239 (362 atoms/dendron),
prepared by iterative synthesis, self-organized monodisperse supramo-
lecular spheres of molar mass 1,724,030 (278, 740 atoms/sphere).
These supramolecular monodisperse spheres self-organize into Pm3n or
Frank-Kasper Al5 periodic arrays (containing 2,229, 920 atoms and
13,792,240 M mass per unit cell or lattice [128]. These supramolecular
spheres and their A15 phase are self-organized from conical dendrons
and are in the range of the molar mass of the ribosome.

2.4.3. Homochiral spherical monodisperse supramolecular mega
macromolecules

482 chiral conical dendrons of (R)-(4-3,4-3,4)BpPr12G2-CON-
HsecBu containing 372 atoms/molecule of 2280 M mass self-assemble
into monodisperse chiral spheres of 1,098,960 M mass generated from
9179, 304 atoms/sphere [151]. These chiral monodisperse spheres
self-organize a Pm3n or Frank-Kasper A15 phase containing 1,434,432
atoms per lattice or unit cell with a molar mass of 8,791,680/unit cell.

3. Methodologies for the analysis of self-organized structures

3.1. The transplant of helical diffraction theory and of Watson-Crick
structure determination methodology from biological macromolecules to
synthetic supramolecular macromolecules

The transplant of helical diffraction theory from biological macro-
molecules to supramolecular macromolecules provided access to the
detailed structural analysis of columnar supramolecular helical poly-
mers with the same level of precision as that of biological macromole-
cules such as proteins and DNA [152] and facilitated the development of
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many previously unknown columnar and spherical assemblies. Briefly is used to build molecular models that are optimized until they recon-
we have developed a methodology of structural and retrostructural struct the oriented-fiber X-ray diffractogram of the columnar assemblies
analysis based on the DNA structural analysis method elaborated by or the X-ray diffractogram of the spherical assemblies. A detailed
Watson and Crick [19,30]. A combination of DSC, XRD, TEM, electron explanation of this concept is presented in several review articles [19,

diffraction, UV, CD, experimental density and helical diffraction theory 30] and it will not be repeated here.
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4. The early days of the self-organization of columnar
supramolecular macromolecules

In the late 1980s self-assembling dendrons were employed to self-
organize columnar supramolecular polymers by a combination of H-
bonding, ionic interactions, conventional and living polymerizations
[153-161]. The first experiments comparing the strength of noncovalent
supramolecular and covalent polymer backbones were performed at this
time [19,30]. Their detailed supramolecular structures were analyzed
by X-ray diffraction experiments [162-166] to produce the first
self-organized ionic conductors with high mobility of their charge car-
riers. Quite a number of review articles were published also at the same
time [19,30,167-170]. The co-assembly process for supramolecular
polymers was also elaborated at the same time (Fig. 3) [171-173].
However, the order of these self-organized assemblies was for many
years not competitive with the order of biological assemblies and
therefore high-resolution structural analysis was not accessible until in
the last several years.

4.1. The early days that combined living polymerization with
supramolecular chemistry to self-organize complex condensed matter

The living polymerization of vinyl ethers, the living cationic ring
opening polymerization of cyclic imino ethers (ROP), ring-opening
metathesis polymerization (ROMP), the living cationic polymerization
of cyclic siloxanes and their living anionic polymerization were shown
to be very powerful when combined with self-assembly to self-organize
complex soft condensed matter [29,173-181]. These polymerization
methodologies were employed in the field of self-organization at the
same time other groups [25] were using only conventional
polymerizations.

4.2. Some comments on self-assembly and self-organization: fluorous
phase

H-bonding [19], ionic and many other supramolecular interactions

[19,30] were conventionally employed in self-organization by our and
many other laboratories. However, the investigation of the role of flu-
orous phase in self-organization and supramolecular polymerization by
our laboratory generated a new concept to stabilize supramolecular
assemblies, insulate them from moisture and oxygen in order to protect
their active components and also reduce the molar mass of supramo-
lecular building blocks required for self-organization to mini-building
blocks [182-190] Ultimately fluorous phase provided access to one of
the simplest methodologies to enhance charge carries mobility of
organic electronic components and protect the electronic components
from moisture [19,30,186].

5. Aquaporin-like porous supramolecular polymers

The self-organization of dendritic dipeptides into porous supramo-
lecular macromolecules facilitated the development of synthetic water
channels and of membranes for water purification via aquaporin-mimics
[191-194]. The (4-3,4-3,4)12G2-CHy-Boc-L-Tyr-L-Ala-OMe constitu-
tional isomer of the self-assembling building block from Fig. 4
self-organizes hollow spherical supramolecular dendrimers forming an
Al5 Frank-Kasper phase. The aquaporin-like porous supramolecular
polymers [191-194] act as very selective water channels [194] and
inspired similar concepts in other laboratories [195-199]. Once the
elucidation of the mechanism of self-organization of both constitutional
isomeric dendritic dipeptides became available, they provided access to
the study of the role of all stereochemical permutations of the dendritic
dipeptides on supramolecular polymerization and on their order in the
self-organized state (Fig. 4) that will be discussed in subchapter 5.1.

5.1. Why are biological systems homochiral?

In order to address this question all stereochemical permutations of
dendritic dipeptides starting from the enantiomerically pure homo-
chiral, to heterochiral and racemic were investigated in supramolecular
polymerization process of (4-3,4-3,5)12G2-CHy-Boc-L-Tyr-L-Ala-OMe
(Fig. 4) [200,201]. A combination of X-ray analysis of the structures of
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the resulting supramolecular polymers combined with their mechanism
of supramolecular polymerization in solution demonstrated that the
order of the resulting polymer decreases from homochiral to hetero-
chiral and to racemic when it forms only a disordered micellar
like-structure rather than a highly crystalline order as in the case of the
homochiral assembly [200,201]. This correlation of order with stereo-
chemical purity and its decrease from homochiral to heterochiral and to
racemic provides one explanation on why biology selected homochiral
building blocks for its creation and not heterochiral or racemic. It must
be stressed that in this self-organization process produces strongly
H-bonded structures that are closed in their strength to a covalent bond
and therefore, their components cannot deracemize. These results also
explain why the majority rules and the sergeant and soldiers concepts
are not used in biology [201]. Briefly, while the handedness of a helical
structure would be selected by these two concepts, the order of the
biological assembly will decrease at the transition from homochiral to
heterochiral and to racemic even in the case of the same handedness of
their helix when the handedness will be selected by these two concepts
[201]. When deracemization is possible, as it will be discussed in sub-
chapter 8.1., a different mechanism of self-organization applies.

6. From helical stereochemically-defined Poly(phenylacetylene)
(PPA) to molecular machines via living polymerization and self-

organization

The driving force behind the discovery of the helical stereoisomers of

PPA was discussed in a recent paper from 2020 [7]. The cis-ster-
eoisomers of PPA produced one of the most investigated helical polymer
[202-214]. The combination of living polymerization, cis-, trans--
stereoisomerism combined with self-organization generated one of the
richest tools available today to produce new concepts in organic
chemistry, polymer chemistry, supramolecular assemblies, membranes
for separation processes including separation of enantiomers and mo-
lecular machines [215-225] (Fig. 5). Fig. 5 illustrates how a cis--
dendronized poly(phenyl acetylene) changes the irreversible cis-trans
thermal isomerization accompanied by intramolecular electro-
cyclization and chain cleavage at the helix-coil transition of the parent
polymer into an unprecedented thermal reversible cis-cisoidal to cis--
transoidal helix-helix transition. This helix-helix transition produced a
new concept in molecular machines [222-225]. New concepts in this
area appear every other day even so many years after the original dis-
covery [217].

7. From chiral columnar polydisperse to chiral spherical
monodisperse supramolecular polymers

7.1. From columnar supramolecular polymers to monodisperse spherical
supramolecular macromolecules

By analogy with biological macromolecules, monodisperse quasi-
equivalent self-assembling dendrons prepared by iterative synthesis,
have been discovered to self-organize into monodisperse spherical
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Fig. 7. (a) Conventional radical polymerizations of conical dendronized monomers and the structure and shape of the resulting polymers. (a-d) Radical poly-
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supramolecular polymers (Fig. 6) [108,109]. Scanning through ratio-
nally designed libraries of conformational isomeric self-assembling
building blocks led to the discovery of Pm3n or Al5 Frank-Kasper
phase [107-109,112-128], tetragonal or ¢ Frank-Kasper phase [110]
and liquid quasicrystal (LQC) assemblies [111]. This has been shown to
be a general concept in organized soft matter [111-131]. All spherical
assemblies are monodisperse and chiral. Additional Frank-Kasper phases
self-organized from at least two different size spheres such as C14, C15
and Z phases [135,138,143] are not shown. First order phase transitions
from chiral polydisperse columnar supramolecular polymers to mono-
disperse chiral spherical supramolecular macromolecules have been
discovered [118-128] (Fig. 6).

7.2. Self-interrupted iterative synthesis (SIIS) of dendrons and dendrimers

Our laboratory discovered both the convergent self-interrupted
iterative synthesis of self-assembling dendrons [226] and the diver-
gent self-interrupted synthesis of dendrimers [227]. The reduced reac-
tivity as the generation number increases during divergent synthesis of
dendrimers was predicted by deGennes [228] and observed by Tomalia
[229]. However, complete self-interruption of the convergent or diver-
gent iterative syntheses of dendrimers at a certain generation number
was neither predicted not observed until our laboratory discovered both
of them [226,227].

7.3. From self-interrupted convergent and divergent iterative synthesis
(SIIS) to self-interrupted polymerization (SIP)

A self-interrupted iterative organic synthesis (SIIS) is an unproduc-
tive concept for the field of organic synthesis. However, a self-
interrupted conventional radical or other traditional polymerization
(SIP) is expected to produce a new concept for the synthesis of polymers
with narrow molecular weight distribution by a living-like polymeri-
zation. This concept was indeed observed when polymerizable func-
tional groups such as methacrylate or styrene were attached to quasi-
equivalent self-assembling dendrons and their conventional radical
polymerization was investigated and elucidated (Fig. 7) [105,107]. At
low concentration in dilute ideal solution an unprecedented living-like

radical polymerization by SIP producing polymers with narrow molec-
ular weight distribution was observed (Fig. 7) [105,107]. At high con-
centration in self-assembled state high molecular weight polymers with
broader polydispersity were obtained by a self-accelerated polymeriza-
tion (SAP) process in self-assembled state (Fig. 7a and b).

7.4. Self-accelerated polymerization (SAP) in self-assembled state

The reverse of SIP is to perform the same polymerization in the self-
assembled state or even in bulk melt state when the polymerizable group
of the monomer produces a very high concentration in a supramolecular
reactor. In this case up to 3,500,000 molar mass polymers could be
obtained in only 5 min reaction time by SAP with conventional poly-
merizable groups such as styrene and methacrylate and radical initiators
(Fig. 7) [105-107]. It is important to stress that 5 min is the required
time to assemble a Schlenk tube and take the first sample during the
polymerization process. Most probably, this polymerization is sponta-
neous. This is a concentration dependent polymerization process
(Fig. 7).

7.5. Monodisperse polymers by self-interrupted living polymerization
(SILP)

In all polymerization reactions, including chain and step, the reac-
tivity of growing species is independent of chain length [17]. A decrease
in reactivity with the increase of chain length is expected to provide
monodisperse macromolecules if the reactivity of all chains becomes
zero at a certain chain length. This concept was recently employed to
generate for the first time monodisperse macromolecules by a
self-interrupted ROMP living chain polymerization (SILP) (Fig. 8) [230,
231]. This concept was born after the detection of the shape change of
the self-organized polymer during the polymerization could be observed
by kinetic experiments [94]. We would like to mention that many of the
living polymerization methodologies reported in Table 1 for the syn-
thesis of mega macromolecules were tested for this SILP process. We
found only ROMP to be suitable so far for it. SILP vs shape change of the
polymer during the living polymerization process is strongly dependent
on the concentration of the reaction mixture and on the stability of the
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Fig. 8. (a) Comparison of conventional
chain, step, and living polymerizations with
SILP, k, vs DP. DPg; denotes the degree of

chain, step & living

polymerization at which polymerization
self-interrupts. (b) Mechanism of SILP (top).
Polymer chains with DP < 16 and non-
polymerizable dendrons with ester, acid, or
alcohol apex groups self-assemble into
monodisperse spheres. A sphere can be
formed from a single chain with DP = 16), at
which point the active polymer chain end is
sequestered inside the sphere and polymer-
ization ceases (center). Comparison of
experimental (black), simulated (blue), and
theoretical Poisson (red) MW distributions
(bottom). Reproduced with permission from
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supramolecular assembly and polymer resulting during this process.

7.6. Narrow molecular weight distribution supramolecular polymer
assemblies with defined molar mass by self-organization of amphiphilic
Janus dendrimers (JDs) and amphiphilic Janus glycodendrimers (JGDs)

Mimics of cell membranes, vesicles, are generated by self-assembly
of amphiphilic Janus dendrimers (JD) and Janus glycodendrimers
(JGD) including sequence-defined JGD by very simple injection of their
ethanol or THF solution in water or in buffer [232]. It must be
mentioned that vesicles are far from equilibrium self-organized systems

80,b00

90,000  100'000

while micellar systems are equilibrium assemblies. Narrow poly-
dispersity and well-defined molar masses can be accomplished by this
injection process (Fig. 9) [31,232-235]. A mechanism explaining this
concept was elaborated [234]. Although the reason for almost mono-
disperse structures is not yet clear the current level of understanding of
the mechanism provides an almost living-like supramolecular poly-
merization methodology in which the molar mass of the resulting as-
semblies can be predicted [234]. Self-assembly of phospholipids [236]
and of block-copolymers [237] do not produce narrow molecular weight
distribution vesicles even by injection or any other method of
self-organization. It is very important to mention that sequence-defined
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Fig. 9. Illustration of Janus dendrimers, dendrimersomes, Janus glycodendrimers, glycodendrimersomes, sequence-defined Janus dendrimers, and sequence-defined

glycodendrimersomes [31,232-235].

Janus dendrimers and glycodendrimers provide by self-organization a
morphology on their surface that enhances the reactivity of carbohy-
drates towards interaction with sugar binding proteins knows as lectins
and galectins at lower rather than higher concentration [238-241]. It is
also very important to mention here that the mechanical properties of
dendrimersomes and their interaction with bacteria can mediate endo-
cytosis via a related mechanism close to that of natural cells [242].

8. Supramolecular polymerization accompanied by
deracemization

8.1. Isotactic or homochiral dynamic macromolecules by deracemization
of an atactic or racemic dynamic supramolecular polymer: The hat-shaped
model

This concept is illustrated in Fig. 10 [243]. A mixture of racemic
hat-like-shape forming columnar hexagonal assemblies is similar to an
atactic polymer (Fig. 10a) and therefore, it produces a disordered su-
pramolecular polymer as discussed in subchapter 5.1. If this polymer is
self-organized in a columnar hexagonal periodic array, a spontaneous
deracemization occurs in the crystal state upon annealing to create a
highly crystalline isotactic-homochiral supramolecular polymer. The
driving force for this concept is generated by the fact that the hexagonal
unit cell is produced from 4 quarters of supramolecular columns or a
single column (Fig. 10b). Therefore, single-handed helical columns are
required for helical columnar crystallization and therefore, minimiza-
tion of the free energy of the system is generated by crystallization via
deracemization. This is a new concept in supramolecular polymerization
that does not exist in covalent stereospecific polymerization.

10

8.2. The cogwheel helical model of self-organization and supramolecular
polymerization

All supramolecular polymers and assemblies discovered since the
1980s display sufficiently high 2D or 3D order to be investigated by X-
ray diffraction, including by helical diffraction theory [152]. However,
none of them exhibited the degree of order observed by XRD in highly
ordered biological macromolecules. This situation changed in 2016
[244] when our laboratory discovered the cogwheel helical model of
self-organization and supramolecular polymerization that provided an
even higher degree of crystalline order than observed in the most or-
dered biological macromolecules. This self-organization process is
accompanied by deracemization to generate a low order crystalline
helical columnar assembly followed by an extremely high helical crystal
order. The high order was discovered by accident during X-ray diffrac-
tion experiments that required long time exposure and therefore,
annealing at different temperatures. Briefly this transition can be
detected only by heating and cooling with 1 °C/min and annealing for
long times at a certain temperature. The question that came to our mind
was very simple. The cogwheel crystal structure may not be structurally
perfect enough to form with very fast rate as happened in the case of
biological macromolecules. Can a sequence-defined primary structure
provide the perfect tertiary structure required to form the precise
cogwheel crystal with high rate? This idea was encouraged by the use of
a combination of sequence-defined and monodisperse component to
discover that macrocyclic liquid crystals and not linear are the optimum
topology to create liquid crystals [90,91,245-252] including the dis-
covery of a biaxial nematic liquid crystal [250] and by the discovery via
conformational isomerism that dendritic LC molecules display faster
dynamics than the corresponding linear topologies [102-104,249-252]
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Fig. 12. Polymerization of dendronized poly(2-oxazoline) and summary of periodic and quasiperiodic arrays self-organized from assemblies of poly[(3,4)17G1-Oxz].
Reproduced with permission from Ref. [260]. Copyright 2018, American Chemical Society.

(see subchapters 2.2 and 2.3).

8.2.1. Extraordinary acceleration of cogwheel helical self-organization by
the sequence encoding the tertiary structure

The first series of experiments were encouraging [253] since they
provided a sequence that could detect the cogwheel self-organization at
10 °C/min only on heating and not on cooling but could not predict the
outcome of the second series of experiments. The second series of ex-
periments discovered the sequence that would encode the cogwheel
helical self-organization and crystallization with the highest rate avail-
able in the conventional instrumentation such as DSC and X-ray ma-
chines (50 °C/min) [254] (Fig. 11).

9. Constructing self-assembling building blocks for
supramolecular polymerization and self-organization via living
oligomerization

All the experiments described so far were generated with self-
assembling building blocks, some of them mediating a similar/
different supramolecular assembly via additional supramolecular or
covalent backbones. An additional unrelated methodology is to employ
mini-building blocks like minidendrons that upon living oligomerization
will generate building block that undergo supramolecular polymeriza-
tion and self-organization. A classic example is provided by cyclic imino
ethers (2-oxazolines) that can produce self-assembling building block via
living cationic ring opening polymerization (ROP) even when are
substituted with minidendrons or other functional groups [255-260].
The power of this strategy is demonstrated by the experiment illustrated
in Fig. 12 [260]. It is expected that this ROP can be monitored in situ to
generate highly order assemblies within record time [261,262]. Mono-
disperse spheres are self-organized in this case from narrow molecular

weight distribution polymers. How can polydispersity be tolerated
during the self-organization of monodisperse spheres? This is a very
fundamental question for the entire field of polymer self-organization. It
is not the goal of this perspective to discuss this issue in great details
here, but we feel that we must at least address the similarities and dif-
ferences between monodisperse self-assembling dendrons and narrow
molecular weight distribution self-organizable polymers in a qualitative
manner. This will be briefly done in subchapter 9.1.

9.1. Limitations of narrow molecular weight distribution vs monodisperse
building blocks in self-organization

The spherical supramolecular polymers illustrated in Fig. 12 are
monodisperse even if they are generated from narrow molecular weight
distribution building blocks produced by living ROP of dendronized 2-
oxazolines [260]. Since a living polymerization provides a Poisson
molecular weight distribution with a maximum 1-3% chains of the
desirable length (Fig. 13a), the as generated self-organized system
contains a mixture of molecular weights and therefore assemblies
(Fig. 13b). Is the de-mixing based on chain length occurring to generate
the monodisperse spheres (Fig. 12)? This is one of the most fundamental
questions of both supramolecular and macromolecular science that must
be addressed and must be answered.

10. Instead of conclusions

Research from other laboratories on supramolecular polymers was
also reviewed this year and therefore was not discussed here [48]. Last
but not least, if a Nobel Prize would not have given in 1987 to Donald J.
Cram [35], together with Jean Marie Lehn [24] and Charles J. Pedersen
[34] “for their development and the use of molecules with structure-specific



V. Percec et al.

Conventional
Living Polymerization

Self-Interrupted
Living Polymerization

Polymer 211 (2020) 123252

Fig. 13. (a) Comparison between con-
ventional living polymerization with
Poisson distribution and self-interrupted

| -000000: |-00000060 living  polymerization (SILP) with
monodisperse distribution. (b,c)
| -0000000 ® 0 |-00000000 Dependence of shape of supramolecules
(] @) | -00000000 self-assembled by the dendronized
IW" I o ° 0 | polymer poly[(3,4Bn)14G1-Oxz] on its
000 -
| m o | -©0000000 degree of polymerization (DP) observed
0] ... during the living cationic ROP of its
I m monomer |-00000000 monomer. Selected GPC trace's for ?oly
I _m, I _m: [(3,4Bn)14G1-0Oxz] (a), and its weight
‘ : fraction as a function of the theoretical
Poisson Distribution Monodisperse = [Mlo/[Ilo (b). Reproduced with
) permission from Refs. [230]. Copyright
oTf @ 2020, American Chemical Society, and
Nt O c = ’“ w ® H from Refs. [30]. Copyright 2015 yRo al
(‘N’\-} 75 100 % ! - 1501 Copyrig » RO
n-1 o Society of Chemistry.
@AC’ O(CHy)1aH _DP,=10 20 35 50 75 100
H(CH2)140 arie MM, =1211.13 1.12 1.1 1.09 1.09
O(CH,)14H  O(CH2)14H 1
poly[(3,4Bn)14G1-Oxz]
0.8
0.8 ——bP=130 ‘
>
@ 5 0.6
c 0 Ve
= ©
.q_, :
> =
= 0.4 04
3 o
& =
0.2
0.2 4 |
0
: 0 4 N s 1.5
13 14 15 16 17 18 19 0 20 40 60 80 100 120 140
Elution time (min) DP

interactions of high selectivity”, known today as supramolecular chemis-
try, I wonder if inspiration for some of the work reported here would
have been so powerful. A recent elegant example from E.L.Thomas
laboratory on how improved perfection of self-organized matter con-
tributes to the elucidation of the determination of the structure of su-
pramolecular assemblies is available [263]. Numerous reviews on the
development of helical assemblies with the help of helical PPA are also
available [202-214]. A new methodology to design unprecedented su-
pramolecular columnar arrangements by the supramolecular orienta-
tional memory (SOM) effect was recently discovered and will be
summarized in a different publication [264-266]. The most funda-
mental question that we have at the end of this perspective is the
following. Will soft condensed matter end up displaying the perfect high
order that was required during the discovery and commercialization of
the field-effect transistor? The transistor was discovered at Bell Labs in
Murray Hill, New Jersey in 1947 by William Shockley, John Bardeen
and Walter Brattain who received the Nobel Prize for Physics in 1956
[267-269]. The original transistor produced in 1951 was made from
Germanium. However, it took until mid 1960s to produce the Silicon
based single crystal transistor that is used by all of us today. It all relied
on improving the perfection of inorganic single crystals that are
assembled from few to several atoms per unit cell only. The difference
between inorganic and organic supramolecular materials is that the
organic rely, as discussed earlier in this article, on mega numbers of
atom per unit cell. However biological mega macromolecules are also of
the size of the synthetic macromolecules and they exhibit the same level
of high order as the inorganic matter generated from a small number of

13

metal atoms. Therefore, we believe that perfecting the order, dynamics
and rate of self-organization of highly ordered supramolecular polymer
materials by some of the methods discussed in this perspective including
monodisperse, homochiral and sequence-defined that are widely used in
biology will provide access to unprecedented organic materials and
functions similar to those generated from few metal atoms or from
biological macromolecules. At this point this is only a dream, but so was
the dream of covalent macromolecules of Hermann Staudinger from 100
years ago.
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