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A B S T R A C T   

Biological macromolecules such as nucleic acids and proteins are homochiral, display monodisperse chain length 
with mega, multimillion, molecular weight and encode functions by their precise sequence via self-organization. 
The functions of biological macromolecules are either independent on molecular weight or, like in the case of 
ribosome, are programmed by the self-organization of their mega molecular weight. In spite of the fact that 
Staudinger coined the name macromolecule 100 years ago, self-organizable synthetic covalent and supramo
lecular mega macromolecules exhibiting the symptoms of biological macromolecules started to emerge only 
recently. This personal perspective will discuss, with examples mostly from our laboratory, methodologies for the 
synthesis of self-organizable covalent and supramolecular mega macromolecules for which functions are enco
ded, programmed and perfected via homochiral, sequence-defined and monodisperse components. Methodolo
gies to generate them together with historical developments will be briefly discussed.   

1. Introduction 

This year we celebrate the 100-years anniversary of the landmark 
publication of Hermann Staudinger that first draw the covalent structure 
of macromolecules [1] and subsequently defined it in words [1,2]. This 
anniversary was celebrated via several International Symposia orga
nized during the Spring ACS Meeting 2020 from Philadelphia. One of us 
(VP) organized an International Symposium entitled “From Staudinger 
Macromolecules to the Genome of Macromolecules.” Since Staudinger 
was a highly regarded organic chemist, most of the plenary lecturers at 
this symposium were given by organic chemists including two Nobel 
Prize laureates. The opening lecture given by VP was entitled “From 
Berzelius to Staudinger through Polymers and Macromolecules.” Several 
years ago, one of us (VP) edited a two-volume book that celebrated the 
60 years anniversary of the 1953 Nobel Prize of Hermann Staudinger 
“for his discoveries in the field of macromolecular chemistry” [3,4]. The 
preface to this two-volumes book [5] and a manuscript from this book 
[6] provide additional details on Staudinger concept and professional 
career. While editing this book I learned about Staudinger’s life more 
than he would have liked anybody to know about him except for himself. 
My connection with the Hermann Staudinger House that hosts the 
Institute of Macromolecular Chemistry from the University of Freiburg, 

Germany was presented by invitation in a recent publication from a 
special volume dedicated to Staudinger with the occasion of the 100 
anniversary of his paper that coined the name macromolecule [7] and in 
an invited lecture given on September 29, 2020 at the Royal Swedish 
Academy of Engineering Sciences IVA. This lecture was presented, 
submitted to publication, and published after this manuscript was sub
mitted to publication [8]. References [5–8] give more details on refer
ences [1,2] and subsequent publications of Staudinger defining covalent 
macromolecules and also tell the story that almost took me back from US 
to Freiburg on the Staudinger chair. This explains the number of many 
volumes, symposia and publications that I dedicated to Staudinger. A 
number of other remarkable, comprehensive but short publications that 
refer to Staudinger life and accomplishments are also available [9–15]. 
These publications can introduce anybody interested in learning as 
much as possible about Staudinger and his work and therefore it will not 
be repeated here. The first review article in the field of polymerization 
published by Carothers in 1931 [16] and the classic first polymer 
chemistry textbook published by Flory in 1953 [17] must be on the desk 
of everybody reading this paper. While Flory received a Nobel Prize in 
1974, in my opinion, Carothers, would have received a Nobel Prize 
maybe even before Staudinger if he would not have committed suicide 
on April 29, 1937 in Philadelphia (he was 41 years old at that time), one 
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year before the commercialization of Nylon fibers from the polymers he 
discovered at DuPont. In 1953, when Staudinger received the Nobel 
Prize (Staudinger was 72 years old at that time), Carothers would have 
been only 57 years old. This perspective is part of the expanded and 
updated invited lecture entitled “From Frank-Kasper Phases to Early 
Events of Life” given by VP during the USA-Israel Joint Symposium 
“Polymeric Material from Synthesis to Applications” organized also 
during the spring ACS meeting in Philadelphia in 2020 and dedicated to 
the 100s anniversary of the Staudinger paper [1] that coined the name 
macromolecule. Since mega covalent and supramolecular macromole
cules as well as the self-organization concept emerged after Staudinger 
days, they will be both introduced in the independent subchapter 2. 

2. Definitions and nomenclature. Mega macromolecules and 
self-organization 

Mega is a prefix in the metric system of units denoting a factor of one 
million. It originated when the corresponding Ancient Greek word was 
Romanized. To my knowledge Mega was connected for the first time to 
macromolecules or polymers by Elias in his beautiful book Mega Mole
cules [18]. Since all mega molecules are in fact natural and synthetic 
macromolecules, we decided in this personalized perspective, that relies 
mostly on research from our laboratory, to use the word mega macro
molecules when referring to multimillion covalent and supramolecular 
synthetic macromolecules. The decision on the specific selection of 
which macromolecules will be discussed in this perspective was based 
on their ability to self-organize and through their self-organization to 
create functions. Most of the functions selected here generate new 
pathways and mechanisms for the synthesis of covalent and supramo
lecular macromolecules, create motion in organized macromolecular 
systems, select stereochemistry and even provide an extraordinary ac
celeration of their own process of self-organization. Water channels and 
membranes, ionic and electronic conductors mediated by 
self-organization will also be discussed very briefly. Self-organization is 
encountered in all complex systems [19,20] such as biology [21–23] 
social and political organizations, technological systems, internet and 
the highways, financial systems, many physical and chemical systems. 

The simplest definition of self-organization is “order for free” or “spon
taneous order” In the simplest words “self-organization is a process in which 
overall order arises from local interactions between parts of an initially 
disordered system” [19,24–31]. Some of the most important features of 
self-organization are self-control, self-repair, adaptability and emer
gence [19]. Due to the very general and limited scope of this perspective 
we will not discuss similarities between equilibrium and far from equi
librium self-organization. It is sufficient to mention that any equilibrium 
self-organized system proceeds through many far from equilibrium 
states during the first order phase transition from order to disorder. 
Numerous Frank-Kasper phases that will be discussed are far from 
equilibrium. Micellar assemblies are equilibrium while closely related 
vesicles are far from equilibrium. For the non-expert, we believe that it is 
sufficient to provide the example of one of the most common and simple 
self-organized system that is “the pattern of wind-blown ripples on the 
surface of a sand dune” [23]. Self-organization in low molar mass and 
macromolecular systems was pioneered by low molar mass and 
macromolecular lyotropic and thermotropic liquid crystals [25] 
including the use of living polymerizations for their engineering [32], by 
biological membrane mimics [25,27,31], by the discovery and ultrafast 
development of the new field of supramolecular chemistry [24,26,28, 
29,33–38] and by many other remarkable contributors to this field 
[39–55] and many other whom we apologize to for not mentioning their 
names. 

2.1. Covalent linear mega macromolecules 

Surprisingly, there are relatively few reports on the accessible and 
simple synthesis of linear mega macromolecules even based on non-self- 
assembling monomers that are or can be functionalized (Table 1) 
[56–72]. Some of them required quite specialized high-pressure reaction 
set-ups for their synthesis [56,62,63] and are less interesting. The 
photo-RAFT synthesis of mega poly(N,N-dimethylacrylamide) (Mn = 8, 
570,000; Mw/Mn = 1.17) in water reported by Sumerlin laboratory in 
2017 is remarkable [69]. 

Single-electron transfer living radical polymerization (SET-LRP) was 
the method used in our laboratory to generate mega linear poly 

Table 1 
Covalent linear mega homopolymers prepared by various polymerization techniques.  

Mega 
homopolymera 

Polymerization technique Solvent T (◦C) Mn
b (g/ 

mol) 
Mw/ 
Mn 

Conv. 
(%) 

Laboratory (year) Ref. 

PMMA RAFT under high pressure (5 kbar) toluene 65 1.25 × 106c 1.03 99 J. Penelle (2004) 56 
PDMAEMA ATRP MeOH/water (10/1, v/ 

v) 
50 1.10 × 106 1.26 85 L.H. Gan (2006) 57 

PMA SET-LRP DMSO 25 1.42 × 106 1.15 70 V. Percec (2006) 58 
PBMA Reverse ATRP in miniemulsion water 60 9.89 × 105 1.24 83 M.F. Cunningham 

(2007) 
59 

PMA SET-LRP EtOH/water (95/5, v/v) 25 8.00 × 105 1.15 80 V. Percec (2008) 60 
Poly oxanorbornene ROMP 1,2-dichloroethane 100 1.23 × 106 1.38 97 N. G. Lemcoff (2009) 61 
PS AGET ATRP under high pressure (6 

kbar) 
anisole/DMF (31/6, v/v) 22 1.20 × 106 1.64 55 P. Kwiatkowski (2011) 62 

PHEMA SET-LRP DMSO 25 1.01 × 106 1.49 56 V. Percec (2013) 63 
PHEA SET-LRP TFE with 30% DMSO 50 9.13 × 105 1.21 67 V. Percec (2013) 64 
PAM RAFT/MADIX water 10 1.27 × 106 1.32 100 M. Destarac (2014) 65 
PDMA RAFT/MADIX water 20 1.04 × 106 1.06 100 M. Destarac (2014) 65 
PMA PET-RAFT DMSO rt 2.18 × 106 1.08 98 C. Boyer (2014) 66 
PA ICAR ATRP under high pressure (6 kbar) DMSO 60 1.03 × 106d – 73 X. Cheng (2016) 67 
PSM-PS Cu(0)-RDRP DMSO 100 1.6 × 106 1.39 N/A J. Rzayev (2016) 68 
PDMA photo-RAFT water rt 8.57 × 106c 1.17 89 B.S. Sumerlin (2017) 69 
Poly norbornene ROMP benzene 25 2.05 × 106 1.12 N/A K. Nomura (2017) 70 
PMMA Frustrated Lewis Pair-LP toluene rt 1.93 × 106 1.10 92 Y. Zhang (2018) 71 
PNFHMA Chain-Transfer-Light LP DMSO rt 3.05 × 106 1.12 99 M. Chen (2019) 72  

a PMMA: poly(methyl methacrylate), PDMAEMA: poly[2-(dimethylamino)ethyl methacrylate], PMA: poly(methyl acrylate), PBMA: poly(butyl methacrylate), PS: 
polystyrene, PHEMA: poly(2-hydroxyethyl methacrylate), PHEA: poly(2-hydroxyethyl acrylate), PAM; poly(acrylamide), PDMA: poly(N,N-dimethyl acrylamide), PA: 
polyacrylonitrile, PNFHMA: poly(nonafluorohexyl methacrylate), PSM: poly(solketal methacrylate). 

b Number-average molecular weight determined by GPC. 
c Number-average molecular weights determined by GPC equipped with MALS detector. 
d Viscosity-average molecular weight value determined by the Mark–Houwink equation. 
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(acrylate)s and poly(methactylate)s under very mild conditions at room 
temperature [58,60,63,64]. Thus, in 2006 a poly(methyl acrylate) of 
Mn = 1,420,000 with Mw/Mn = 1.15 was obtained by SET-LRP in 
DMSO at room temperature [58]. At high conversion this polymeriza
tion self-organizes a biphasic system containing the perfectly colorless 
and transparent polymer together with very little DMSO solvent and 
monomer in one phase and the catalyst, ligand and most of the 
remaining solvent in the second phase [58]. In 2013, poly 
(2-hydroxyethyl methacrylate) of Mn = 1,017,900 with Mw/Mn =

1.49 was also reported by SET-LRP [63], poly(2-ethylhexyl acrylate) of 
Mn = 913,100 and Mw/Mn = 1.20 was reported in 2014 [64], while a 
bifunctional poly(methyl acrylate) with Mn = 800,000 and Mw/Mn =
1.20 was reported in 2008 [60]. To give a simple example, by scanning 
through most of the living polymerization methodologies from Table 1 
we discovered that only ROMP was efficient for the development of 

Self-Interrupted Living Polymerization (SILP) that recently produced the 
first monodisperse polymers by chain reactions rather than by iterative 
methods (see subchapter 7.5). Therefore, we encourage more activity to 
be dedicated to the synthesis of mega macromolecules by methodologies 
that also tolerate a large diversity of functional groups. This will help the 
development of self-organizable monodisperse mega macromolecules. 

2.1.1. From self-generated biphasic to programmed biphasic SET-LRP 
The biphasic system observed during the SET-LRP of methyl acrylate 

in DMSO at room temperature [58] was induced by the very high sol
ubility of Cu(I)X/ligand and Cu(II)X2/ligand in DMSO in the absence of 
monomer and polymer and by the higher solubility of the polymer in 
DMSO and monomer that does not contain Cu(I)X and Cu(II)X2 species 
and ligand [58]. When methyl acrylate was replaced with n-butyl 
acrylate this biphasic system was observed at lower degrees of 

Fig. 1. (a) Externally regulated macrocyclics; (b) Experimental dependence of the isotropization temperature (Ti) of cyclic (Ls < Lm) and linear LC monodisperse 
polymers on DP (Ti and DP are in arbitrary units). Reproduced with permission from Refs. [91,94]. Copyright 1997 and 2000, American Chemical Society. 

Fig. 2. Mechanism and the structural models which explain the formation of the LC phases and the phase behavior of side chain LC polymers and main chain LC 
polymers. Reproduced with permission from Refs. [93]. Copyright 1996, American Chemical Society. 
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polymerization than for the case of poly(methyl acrylate). Haddleton 
laboratory investigated the SET-LRP of n-butyl acrylate in DMSO and 
named it “self-generated biphasic” SET-LRP [73]. Perfect chain end 
functionality polymers free of Cu species were obtained by the self-
generated biphasic SET-LRP [58,73]. Inspired by the self-generated 
SET-LRP system Percec laboratory elaborated a large diversity of “pro
grammed biphasic” SET-LRP systems in which an even better solvent for 
Cu catalyst, water, generates biphasic systems with many combinations 
of organic solvents including water soluble solvents and monomers that 
are not miscible with water containing Cu species and ligand [74–80]. 
The self-generated and programmed biphasic SET-LRP systems provide 
a simple example in which the selective partitioning of monomer, 
polymer, catalysts, ligand and solvent in two different phases provides 
an extremely efficient and economic SET-LRP process by 
self-organization in which activation and deactivation of the growing 
chain occurs at the interface of the two phases. No purification of the 
resulting polymer is required. This self-organization is dependent on the 
nature of the solvents, monomer, their concentrations and occurs at a 
certain monomer conversion or it can be programmed to start even at 
zero-conversion [74–80]. 

2.2. Covalent cyclic mega DNA and liquid crystals 

The classic cyclic biological compounds are phospholipids [81–83] 
and DNA [84–86]. Linear phospholipids self-organize biological human 
membranes that are stable at room temperature and above but not at 
very high temperature while archaebacterial extremophiles survive at 
high temperatures since their membranes are based on cyclic phos
pholipids [81–83]. Inspired by the cyclic phospholipids of the mem
branes of archaebacterial extremophiles our laboratory synthesized 
monodisperse macrocyclic main chain polyether liquid crystal (LC) 
oligomers based on conformational isomerism and compared their 
structures and phase transitions with those of the corresponding 
monodisperse linear homologous compounds. This comparison 
demonstrated that isotropization phase transitions of the cyclic LCs are 
higher than those of the corresponding linear compounds, invalidating a 
hypothesis advanced in 1888, that linear rather than cyclic are the most 
favorable topology for the self-organization of LC phases [87]. The 
explanation for this unexpected result known by cell membranes bi
ologists but not by synthetic LC experts relies on the fact that cyclic LCs 
fold into more rigid rods than the corresponding linear components 
(Fig. 1) [88–94]. 

Self-organizable main-chain and side-chain liquid crystal polymers 
containing cyclic mesogenic groups that fold into supramolecular rods 
were also elaborated [93] (Fig. 2).Cyclic DNA is widely spread in 
biology, exists as catenanes and knots [84–86] and may have inspired 
Stoddart [36] and Sauvage [38] to assemble their synthetic homologues 
into molecular machines. There are quite a number of books on cyclic 
polymers that do not self-organize. They will not ne enumerated here. 

2.3. Covalent and supramolecular branched-dendritic mega 
macromolecules 

A TERminator Multifunctional INItiator (TERMINI) methodology 
was elaborated to generate closed to mega dendritic poly(methyl 
methacrylate) [95,96]. This method applies to the synthesis of den
drimers from any commercial monomers. Its expansion via thio-bromo 
click led to the synthesis of poly(acrylate) dendrimers also from com
mercial monomers [97,98]. Supramolecular dendrimers were elabo
rated by numerous elegant methods developed by Lehn [99–101] and 
other laboratories [44]. Phase transfer catalyzed polyetherification of 
properly designed AB2 monomers based on conformational isomerism 
allowed the design of branched liquid crystal polyethers able to 
self-organize liquid crystal phases [92,102–104] and through this 
accelerated process to select the building blocks required to construct 
the first and only willow-like liquid crystal dendrimers by iterative 

methods [103]. Unexpectedly, these liquid crystal dendrimers display 
lower melt viscosity and shorter switching times in display applications 
than conventional liquid crystals. 

2.4. Self-organizable mega dendronized macromolecules: columnar and 
spherical 

Conventional radical polymerization of self-assembling dendronized 
monomers in self-assembled state generated a methodology to produce 
up to 3,500,000 molar mass self-organizable polymers forming 
columnar hexagonal arrays, in only 5 min reaction time [105–107]. 
Lower molar mass dendronized polymers made by conventional radical 
polymerization in dilute solution produced spherical self-organizable 
polymers that generate Frank-Kasper phases [105,107]. More details 
of this polymerization process and on the self-organization in 
Frank-Kasper phases will be presented in subchapter 2.4.1. 

2.4.1. Frank-Kasper phases in soft matter. From supramolecular 
dendrimers and self-organizable dendronized polymers to block copolymers, 
surfactants, giant molecules and DNA 

The discovery of Frank-Kasper phases and quasicrystals, that were 
known in metals and metal alloys, in supramolecular dendrimers and 
self-organizable dendronized polymers started in 1997 [107,109–111]. 
Investigation of many rational libraries of self-assembling dendrons and 
dendrimers [112–128] generated a table of supramolecular 
nano-assemblies that was elaborated in 2009 [128]. This table of su
pramolecular nano-assemblies inspired similar tables of 
nano-assemblies for proteins [129,130]. Frank-Kasper phases were in 
the meantime discovered in block copolymers, surfactants, giant mole
cules and DNA nanoparticles [131–146] and created a large new field of 
research in self-organized soft condensed matter that is only briefly 
mentioned here. Large efforts in theoretical, computation, simulation 
[147–150] were also initiated by the discovery of Frank-Kasper phases. 

2.4.2. Spherical monodisperse supramolecular mega macromolecules and 
their Frank-Kasper Phases 

770 monodisperse self-assembling dendrons, with the short name (4- 
3,4-3,5)BpPr12G2-CO2CH3, of molar mass 2239 (362 atoms/dendron), 
prepared by iterative synthesis, self-organized monodisperse supramo
lecular spheres of molar mass 1,724,030 (278, 740 atoms/sphere). 
These supramolecular monodisperse spheres self-organize into Pm3n or 
Frank-Kasper A15 periodic arrays (containing 2,229, 920 atoms and 
13,792,240 M mass per unit cell or lattice [128]. These supramolecular 
spheres and their A15 phase are self-organized from conical dendrons 
and are in the range of the molar mass of the ribosome. 

2.4.3. Homochiral spherical monodisperse supramolecular mega 
macromolecules 

482 chiral conical dendrons of (R)-(4-3,4-3,4)BpPr12G2-CON
HsecBu containing 372 atoms/molecule of 2280 M mass self-assemble 
into monodisperse chiral spheres of 1,098,960 M mass generated from 
9179, 304 atoms/sphere [151]. These chiral monodisperse spheres 
self-organize a Pm3n or Frank-Kasper A15 phase containing 1,434,432 
atoms per lattice or unit cell with a molar mass of 8,791,680/unit cell. 

3. Methodologies for the analysis of self-organized structures 

3.1. The transplant of helical diffraction theory and of Watson-Crick 
structure determination methodology from biological macromolecules to 
synthetic supramolecular macromolecules 

The transplant of helical diffraction theory from biological macro
molecules to supramolecular macromolecules provided access to the 
detailed structural analysis of columnar supramolecular helical poly
mers with the same level of precision as that of biological macromole
cules such as proteins and DNA [152] and facilitated the development of 
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many previously unknown columnar and spherical assemblies. Briefly 
we have developed a methodology of structural and retrostructural 
analysis based on the DNA structural analysis method elaborated by 
Watson and Crick [19,30]. A combination of DSC, XRD, TEM, electron 
diffraction, UV, CD, experimental density and helical diffraction theory 

is used to build molecular models that are optimized until they recon
struct the oriented-fiber X-ray diffractogram of the columnar assemblies 
or the X-ray diffractogram of the spherical assemblies. A detailed 
explanation of this concept is presented in several review articles [19, 
30] and it will not be repeated here. 

Fig. 3. (a) Self-assembly and self-organization of dendrimers and dendronized polymers in supramolecular dendrimers or polymers. Their structure during late 1980s 
to early 1990s. (b) Structural and retrostructural analysis of supramolecular dendrimers or supramolecular polymers. As of mid 1990s to early 2000. Reproduced with 
permission from Refs. [19]. Copyright 2011, Wiley-VCH Verlag GmbH &Co. KGaA. 

Fig. 4. Self-assembly of constitutional and conformational isomeric dendritic dipeptides into homochiral helical Aquaporin-like channels via the stereochemistry of 
the dendritic dipeptide. Reproduced with permission from Ref. [201]. Copyright 2011, Wiley-VCH Verlag GmbH &Co. KGaA. 
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4. The early days of the self-organization of columnar 
supramolecular macromolecules 

In the late 1980s self-assembling dendrons were employed to self- 
organize columnar supramolecular polymers by a combination of H- 
bonding, ionic interactions, conventional and living polymerizations 
[153–161]. The first experiments comparing the strength of noncovalent 
supramolecular and covalent polymer backbones were performed at this 
time [19,30]. Their detailed supramolecular structures were analyzed 
by X-ray diffraction experiments [162–166] to produce the first 
self-organized ionic conductors with high mobility of their charge car
riers. Quite a number of review articles were published also at the same 
time [19,30,167–170]. The co-assembly process for supramolecular 
polymers was also elaborated at the same time (Fig. 3) [171–173]. 
However, the order of these self-organized assemblies was for many 
years not competitive with the order of biological assemblies and 
therefore high-resolution structural analysis was not accessible until in 
the last several years. 

4.1. The early days that combined living polymerization with 
supramolecular chemistry to self-organize complex condensed matter 

The living polymerization of vinyl ethers, the living cationic ring 
opening polymerization of cyclic imino ethers (ROP), ring-opening 
metathesis polymerization (ROMP), the living cationic polymerization 
of cyclic siloxanes and their living anionic polymerization were shown 
to be very powerful when combined with self-assembly to self-organize 
complex soft condensed matter [29,173–181]. These polymerization 
methodologies were employed in the field of self-organization at the 
same time other groups [25] were using only conventional 
polymerizations. 

4.2. Some comments on self-assembly and self-organization: fluorous 
phase 

H-bonding [19], ionic and many other supramolecular interactions 

[19,30] were conventionally employed in self-organization by our and 
many other laboratories. However, the investigation of the role of flu
orous phase in self-organization and supramolecular polymerization by 
our laboratory generated a new concept to stabilize supramolecular 
assemblies, insulate them from moisture and oxygen in order to protect 
their active components and also reduce the molar mass of supramo
lecular building blocks required for self-organization to mini-building 
blocks [182–190] Ultimately fluorous phase provided access to one of 
the simplest methodologies to enhance charge carries mobility of 
organic electronic components and protect the electronic components 
from moisture [19,30,186]. 

5. Aquaporin-like porous supramolecular polymers 

The self-organization of dendritic dipeptides into porous supramo
lecular macromolecules facilitated the development of synthetic water 
channels and of membranes for water purification via aquaporin-mimics 
[191–194]. The (4-3,4-3,4)12G2-CH2-Boc-L-Tyr-L-Ala-OMe constitu
tional isomer of the self-assembling building block from Fig. 4 
self-organizes hollow spherical supramolecular dendrimers forming an 
A15 Frank-Kasper phase. The aquaporin-like porous supramolecular 
polymers [191–194] act as very selective water channels [194] and 
inspired similar concepts in other laboratories [195–199]. Once the 
elucidation of the mechanism of self-organization of both constitutional 
isomeric dendritic dipeptides became available, they provided access to 
the study of the role of all stereochemical permutations of the dendritic 
dipeptides on supramolecular polymerization and on their order in the 
self-organized state (Fig. 4) that will be discussed in subchapter 5.1. 

5.1. Why are biological systems homochiral? 

In order to address this question all stereochemical permutations of 
dendritic dipeptides starting from the enantiomerically pure homo
chiral, to heterochiral and racemic were investigated in supramolecular 
polymerization process of (4-3,4-3,5)12G2-CH2-Boc-L-Tyr-L-Ala-OMe 
(Fig. 4) [200,201]. A combination of X-ray analysis of the structures of 

Fig. 5. Intramolecular electrocyclization followed by chain cleavage of cis-transoidal and cis-cisoidal stereoisomers of PPA is eliminated by dendronizing PPA (a). 
The helix-coil transition accompanied by electrocyclization (b) was eliminated and replaced by an unprecedented helix-helix cis-cisoidal to cis-transoidal transition 
that provides a molecular machine (c, d, e). Reproduced with permission from Refs. [7]. Copyright 2020, Wiley-VCH Verlag GmbH &Co. KGaA. 
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the resulting supramolecular polymers combined with their mechanism 
of supramolecular polymerization in solution demonstrated that the 
order of the resulting polymer decreases from homochiral to hetero
chiral and to racemic when it forms only a disordered micellar 
like-structure rather than a highly crystalline order as in the case of the 
homochiral assembly [200,201]. This correlation of order with stereo
chemical purity and its decrease from homochiral to heterochiral and to 
racemic provides one explanation on why biology selected homochiral 
building blocks for its creation and not heterochiral or racemic. It must 
be stressed that in this self-organization process produces strongly 
H-bonded structures that are closed in their strength to a covalent bond 
and therefore, their components cannot deracemize. These results also 
explain why the majority rules and the sergeant and soldiers concepts 
are not used in biology [201]. Briefly, while the handedness of a helical 
structure would be selected by these two concepts, the order of the 
biological assembly will decrease at the transition from homochiral to 
heterochiral and to racemic even in the case of the same handedness of 
their helix when the handedness will be selected by these two concepts 
[201]. When deracemization is possible, as it will be discussed in sub
chapter 8.1., a different mechanism of self-organization applies. 

6. From helical stereochemically-defined Poly(phenylacetylene) 
(PPA) to molecular machines via living polymerization and self- 
organization 

The driving force behind the discovery of the helical stereoisomers of 

PPA was discussed in a recent paper from 2020 [7]. The cis-ster
eoisomers of PPA produced one of the most investigated helical polymer 
[202–214]. The combination of living polymerization, cis-, trans-
stereoisomerism combined with self-organization generated one of the 
richest tools available today to produce new concepts in organic 
chemistry, polymer chemistry, supramolecular assemblies, membranes 
for separation processes including separation of enantiomers and mo
lecular machines [215–225] (Fig. 5). Fig. 5 illustrates how a cis-
dendronized poly(phenyl acetylene) changes the irreversible cis-trans 
thermal isomerization accompanied by intramolecular electro
cyclization and chain cleavage at the helix-coil transition of the parent 
polymer into an unprecedented thermal reversible cis-cisoidal to cis-
transoidal helix-helix transition. This helix-helix transition produced a 
new concept in molecular machines [222–225]. New concepts in this 
area appear every other day even so many years after the original dis
covery [217]. 

7. From chiral columnar polydisperse to chiral spherical 
monodisperse supramolecular polymers 

7.1. From columnar supramolecular polymers to monodisperse spherical 
supramolecular macromolecules 

By analogy with biological macromolecules, monodisperse quasi- 
equivalent self-assembling dendrons prepared by iterative synthesis, 
have been discovered to self-organize into monodisperse spherical 

Fig. 6. (a) Self-organization of conical and 
crown-like conformations of dendrimers into 
chiral spheres and their BCC, A15, σ and 
liquid quasicrystal (LQC) assemblies, and 
tappered conformations of dendrimers into 
hexagonal columns. (b) Self-organization 
dendronized polymers into chiral spheres 
and their BCC, A15, σ and LQC assemblies. 
Reproduced with permission from Ref. [7]. 
Only Frank-Kasper phases produced from 
identical size spheres are shown. Copyright 
2020, Wiley-VCH Verlag GmbH &Co. KGaA, 
and from Refs. [223]. Copyright 2008, 
American Chemical Society.   
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supramolecular polymers (Fig. 6) [108,109]. Scanning through ratio
nally designed libraries of conformational isomeric self-assembling 
building blocks led to the discovery of Pm3n or A15 Frank-Kasper 
phase [107–109,112–128], tetragonal or σ Frank-Kasper phase [110] 
and liquid quasicrystal (LQC) assemblies [111]. This has been shown to 
be a general concept in organized soft matter [111–131]. All spherical 
assemblies are monodisperse and chiral. Additional Frank-Kasper phases 
self-organized from at least two different size spheres such as C14, C15 
and Z phases [135,138,143] are not shown. First order phase transitions 
from chiral polydisperse columnar supramolecular polymers to mono
disperse chiral spherical supramolecular macromolecules have been 
discovered [118–128] (Fig. 6). 

7.2. Self-interrupted iterative synthesis (SIIS) of dendrons and dendrimers 

Our laboratory discovered both the convergent self-interrupted 
iterative synthesis of self-assembling dendrons [226] and the diver
gent self-interrupted synthesis of dendrimers [227]. The reduced reac
tivity as the generation number increases during divergent synthesis of 
dendrimers was predicted by deGennes [228] and observed by Tomalia 
[229]. However, complete self-interruption of the convergent or diver
gent iterative syntheses of dendrimers at a certain generation number 
was neither predicted not observed until our laboratory discovered both 
of them [226,227]. 

7.3. From self-interrupted convergent and divergent iterative synthesis 
(SIIS) to self-interrupted polymerization (SIP) 

A self-interrupted iterative organic synthesis (SIIS) is an unproduc
tive concept for the field of organic synthesis. However, a self- 
interrupted conventional radical or other traditional polymerization 
(SIP) is expected to produce a new concept for the synthesis of polymers 
with narrow molecular weight distribution by a living-like polymeri
zation. This concept was indeed observed when polymerizable func
tional groups such as methacrylate or styrene were attached to quasi- 
equivalent self-assembling dendrons and their conventional radical 
polymerization was investigated and elucidated (Fig. 7) [105,107]. At 
low concentration in dilute ideal solution an unprecedented living-like 

radical polymerization by SIP producing polymers with narrow molec
ular weight distribution was observed (Fig. 7) [105,107]. At high con
centration in self-assembled state high molecular weight polymers with 
broader polydispersity were obtained by a self-accelerated polymeriza
tion (SAP) process in self-assembled state (Fig. 7a and b). 

7.4. Self-accelerated polymerization (SAP) in self-assembled state 

The reverse of SIP is to perform the same polymerization in the self- 
assembled state or even in bulk melt state when the polymerizable group 
of the monomer produces a very high concentration in a supramolecular 
reactor. In this case up to 3,500,000 molar mass polymers could be 
obtained in only 5 min reaction time by SAP with conventional poly
merizable groups such as styrene and methacrylate and radical initiators 
(Fig. 7) [105–107]. It is important to stress that 5 min is the required 
time to assemble a Schlenk tube and take the first sample during the 
polymerization process. Most probably, this polymerization is sponta
neous. This is a concentration dependent polymerization process 
(Fig. 7). 

7.5. Monodisperse polymers by self-interrupted living polymerization 
(SILP) 

In all polymerization reactions, including chain and step, the reac
tivity of growing species is independent of chain length [17]. A decrease 
in reactivity with the increase of chain length is expected to provide 
monodisperse macromolecules if the reactivity of all chains becomes 
zero at a certain chain length. This concept was recently employed to 
generate for the first time monodisperse macromolecules by a 
self-interrupted ROMP living chain polymerization (SILP) (Fig. 8) [230, 
231]. This concept was born after the detection of the shape change of 
the self-organized polymer during the polymerization could be observed 
by kinetic experiments [94]. We would like to mention that many of the 
living polymerization methodologies reported in Table 1 for the syn
thesis of mega macromolecules were tested for this SILP process. We 
found only ROMP to be suitable so far for it. SILP vs shape change of the 
polymer during the living polymerization process is strongly dependent 
on the concentration of the reaction mixture and on the stability of the 

Fig. 7. (a) Conventional radical polymerizations of conical dendronized monomers and the structure and shape of the resulting polymers. (a–d) Radical poly
merizations of (3,4,5)212G2-CO2-S. Dependence of ln Rp on ln [M]0 for the polymerization of (3,4,5)212G2-CO2-S (in benzene and bulk) (a); conversion in time for 
the bulk ([M]0) 0.44 mol/L) polymerization of (3,4,5)212G2-CO2-S (b) and of (3,4,5)212G2-CH2-MA(c) and determination of the kp/kt1/2 for the polymerization of 
(3,4,5)212G2-CO2-S (b) and (3,4,5)212G2-CH2-MA (O) (d). Reproduced with permission from Ref. [7]. Copyright 2020, Wiley-VCH Verlag GmbH &Co. KGaA, and 
Reproduced with permission from Refs. [105]. Copyright 1997, American Chemical Society. 
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supramolecular assembly and polymer resulting during this process. 

7.6. Narrow molecular weight distribution supramolecular polymer 
assemblies with defined molar mass by self-organization of amphiphilic 
Janus dendrimers (JDs) and amphiphilic Janus glycodendrimers (JGDs) 

Mimics of cell membranes, vesicles, are generated by self-assembly 
of amphiphilic Janus dendrimers (JD) and Janus glycodendrimers 
(JGD) including sequence-defined JGD by very simple injection of their 
ethanol or THF solution in water or in buffer [232]. It must be 
mentioned that vesicles are far from equilibrium self-organized systems 

while micellar systems are equilibrium assemblies. Narrow poly
dispersity and well-defined molar masses can be accomplished by this 
injection process (Fig. 9) [31,232–235]. A mechanism explaining this 
concept was elaborated [234]. Although the reason for almost mono
disperse structures is not yet clear the current level of understanding of 
the mechanism provides an almost living-like supramolecular poly
merization methodology in which the molar mass of the resulting as
semblies can be predicted [234]. Self-assembly of phospholipids [236] 
and of block-copolymers [237] do not produce narrow molecular weight 
distribution vesicles even by injection or any other method of 
self-organization. It is very important to mention that sequence-defined 

Fig. 8. (a) Comparison of conventional 
chain, step, and living polymerizations with 
SILP, kp vs DP. DPSI denotes the degree of 
polymerization at which polymerization 
self-interrupts. (b) Mechanism of SILP (top). 
Polymer chains with DP < 16 and non
polymerizable dendrons with ester, acid, or 
alcohol apex groups self-assemble into 
monodisperse spheres. A sphere can be 
formed from a single chain with DP = 16), at 
which point the active polymer chain end is 
sequestered inside the sphere and polymer
ization ceases (center). Comparison of 
experimental (black), simulated (blue), and 
theoretical Poisson (red) MW distributions 
(bottom). Reproduced with permission from 
Ref. [230]. Copyright 2020, American 
Chemical Society. (For interpretation of the 
references to color in this figure legend, the 
reader is referred to the Web version of this 
article.)   
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Janus dendrimers and glycodendrimers provide by self-organization a 
morphology on their surface that enhances the reactivity of carbohy
drates towards interaction with sugar binding proteins knows as lectins 
and galectins at lower rather than higher concentration [238–241]. It is 
also very important to mention here that the mechanical properties of 
dendrimersomes and their interaction with bacteria can mediate endo
cytosis via a related mechanism close to that of natural cells [242]. 

8. Supramolecular polymerization accompanied by 
deracemization 

8.1. Isotactic or homochiral dynamic macromolecules by deracemization 
of an atactic or racemic dynamic supramolecular polymer: The hat-shaped 
model 

This concept is illustrated in Fig. 10 [243]. A mixture of racemic 
hat-like-shape forming columnar hexagonal assemblies is similar to an 
atactic polymer (Fig. 10a) and therefore, it produces a disordered su
pramolecular polymer as discussed in subchapter 5.1. If this polymer is 
self-organized in a columnar hexagonal periodic array, a spontaneous 
deracemization occurs in the crystal state upon annealing to create a 
highly crystalline isotactic-homochiral supramolecular polymer. The 
driving force for this concept is generated by the fact that the hexagonal 
unit cell is produced from 4 quarters of supramolecular columns or a 
single column (Fig. 10b). Therefore, single-handed helical columns are 
required for helical columnar crystallization and therefore, minimiza
tion of the free energy of the system is generated by crystallization via 
deracemization. This is a new concept in supramolecular polymerization 
that does not exist in covalent stereospecific polymerization. 

8.2. The cogwheel helical model of self-organization and supramolecular 
polymerization 

All supramolecular polymers and assemblies discovered since the 
1980s display sufficiently high 2D or 3D order to be investigated by X- 
ray diffraction, including by helical diffraction theory [152]. However, 
none of them exhibited the degree of order observed by XRD in highly 
ordered biological macromolecules. This situation changed in 2016 
[244] when our laboratory discovered the cogwheel helical model of 
self-organization and supramolecular polymerization that provided an 
even higher degree of crystalline order than observed in the most or
dered biological macromolecules. This self-organization process is 
accompanied by deracemization to generate a low order crystalline 
helical columnar assembly followed by an extremely high helical crystal 
order. The high order was discovered by accident during X-ray diffrac
tion experiments that required long time exposure and therefore, 
annealing at different temperatures. Briefly this transition can be 
detected only by heating and cooling with 1 ◦C/min and annealing for 
long times at a certain temperature. The question that came to our mind 
was very simple. The cogwheel crystal structure may not be structurally 
perfect enough to form with very fast rate as happened in the case of 
biological macromolecules. Can a sequence-defined primary structure 
provide the perfect tertiary structure required to form the precise 
cogwheel crystal with high rate? This idea was encouraged by the use of 
a combination of sequence-defined and monodisperse component to 
discover that macrocyclic liquid crystals and not linear are the optimum 
topology to create liquid crystals [90,91,245–252] including the dis
covery of a biaxial nematic liquid crystal [250] and by the discovery via 
conformational isomerism that dendritic LC molecules display faster 
dynamics than the corresponding linear topologies [102–104,249–252] 

Fig. 9. Illustration of Janus dendrimers, dendrimersomes, Janus glycodendrimers, glycodendrimersomes, sequence-defined Janus dendrimers, and sequence-defined 
glycodendrimersomes [31,232–235]. 
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Fig. 10. (a) The macromolecular chemist and organic chemist definitions used for stereospecific polymers (b) Isotactic (homochiral) supramolecular polymers by 
stereo-sequence rearrangement of dynamic atactic (racemic) polymers in crystal state. Reproduced with permission from Ref. [7]. Copyright 2020, Wiley-VCH Verlag 
GmbH &Co. KGaA. 

Fig. 11. The cogwheel helical high order crystal self-organized from the ideal sequence is shown on top-right with the perfect tertiary structure of the column (top). 
DSC traces of PBIs with sequence-defined hybrid r/n-nonyl dendrons recorded upon second heating and first cooling at 10 ◦C/min. Phases determined by fiber XRD, 
transition temperatures (in ◦C), and associated enthalpy changes (in parentheses, in kcal/mol) are indicated (bottom). Reproduced with permission from Ref. [254]. 
Copyright 2020, American Chemical Society. 
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(see subchapters 2.2 and 2.3). 

8.2.1. Extraordinary acceleration of cogwheel helical self-organization by 
the sequence encoding the tertiary structure 

The first series of experiments were encouraging [253] since they 
provided a sequence that could detect the cogwheel self-organization at 
10 ◦C/min only on heating and not on cooling but could not predict the 
outcome of the second series of experiments. The second series of ex
periments discovered the sequence that would encode the cogwheel 
helical self-organization and crystallization with the highest rate avail
able in the conventional instrumentation such as DSC and X-ray ma
chines (50 ◦C/min) [254] (Fig. 11). 

9. Constructing self-assembling building blocks for 
supramolecular polymerization and self-organization via living 
oligomerization 

All the experiments described so far were generated with self- 
assembling building blocks, some of them mediating a similar/ 
different supramolecular assembly via additional supramolecular or 
covalent backbones. An additional unrelated methodology is to employ 
mini-building blocks like minidendrons that upon living oligomerization 
will generate building block that undergo supramolecular polymeriza
tion and self-organization. A classic example is provided by cyclic imino 
ethers (2-oxazolines) that can produce self-assembling building block via 
living cationic ring opening polymerization (ROP) even when are 
substituted with minidendrons or other functional groups [255–260]. 
The power of this strategy is demonstrated by the experiment illustrated 
in Fig. 12 [260]. It is expected that this ROP can be monitored in situ to 
generate highly order assemblies within record time [261,262]. Mono
disperse spheres are self-organized in this case from narrow molecular 

weight distribution polymers. How can polydispersity be tolerated 
during the self-organization of monodisperse spheres? This is a very 
fundamental question for the entire field of polymer self-organization. It 
is not the goal of this perspective to discuss this issue in great details 
here, but we feel that we must at least address the similarities and dif
ferences between monodisperse self-assembling dendrons and narrow 
molecular weight distribution self-organizable polymers in a qualitative 
manner. This will be briefly done in subchapter 9.1. 

9.1. Limitations of narrow molecular weight distribution vs monodisperse 
building blocks in self-organization 

The spherical supramolecular polymers illustrated in Fig. 12 are 
monodisperse even if they are generated from narrow molecular weight 
distribution building blocks produced by living ROP of dendronized 2- 
oxazolines [260]. Since a living polymerization provides a Poisson 
molecular weight distribution with a maximum 1–3% chains of the 
desirable length (Fig. 13a), the as generated self-organized system 
contains a mixture of molecular weights and therefore assemblies 
(Fig. 13b). Is the de-mixing based on chain length occurring to generate 
the monodisperse spheres (Fig. 12)? This is one of the most fundamental 
questions of both supramolecular and macromolecular science that must 
be addressed and must be answered. 

10. Instead of conclusions 

Research from other laboratories on supramolecular polymers was 
also reviewed this year and therefore was not discussed here [48]. Last 
but not least, if a Nobel Prize would not have given in 1987 to Donald J. 
Cram [35], together with Jean Marie Lehn [24] and Charles J. Pedersen 
[34] “for their development and the use of molecules with structure-specific 

Fig. 12. Polymerization of dendronized poly(2-oxazoline) and summary of periodic and quasiperiodic arrays self-organized from assemblies of poly[(3,4)17G1-Oxz]. 
Reproduced with permission from Ref. [260]. Copyright 2018, American Chemical Society. 
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interactions of high selectivity”, known today as supramolecular chemis
try, I wonder if inspiration for some of the work reported here would 
have been so powerful. A recent elegant example from E.L.Thomas 
laboratory on how improved perfection of self-organized matter con
tributes to the elucidation of the determination of the structure of su
pramolecular assemblies is available [263]. Numerous reviews on the 
development of helical assemblies with the help of helical PPA are also 
available [202–214]. A new methodology to design unprecedented su
pramolecular columnar arrangements by the supramolecular orienta
tional memory (SOM) effect was recently discovered and will be 
summarized in a different publication [264–266]. The most funda
mental question that we have at the end of this perspective is the 
following. Will soft condensed matter end up displaying the perfect high 
order that was required during the discovery and commercialization of 
the field-effect transistor? The transistor was discovered at Bell Labs in 
Murray Hill, New Jersey in 1947 by William Shockley, John Bardeen 
and Walter Brattain who received the Nobel Prize for Physics in 1956 
[267–269]. The original transistor produced in 1951 was made from 
Germanium. However, it took until mid 1960s to produce the Silicon 
based single crystal transistor that is used by all of us today. It all relied 
on improving the perfection of inorganic single crystals that are 
assembled from few to several atoms per unit cell only. The difference 
between inorganic and organic supramolecular materials is that the 
organic rely, as discussed earlier in this article, on mega numbers of 
atom per unit cell. However biological mega macromolecules are also of 
the size of the synthetic macromolecules and they exhibit the same level 
of high order as the inorganic matter generated from a small number of 

metal atoms. Therefore, we believe that perfecting the order, dynamics 
and rate of self-organization of highly ordered supramolecular polymer 
materials by some of the methods discussed in this perspective including 
monodisperse, homochiral and sequence-defined that are widely used in 
biology will provide access to unprecedented organic materials and 
functions similar to those generated from few metal atoms or from 
biological macromolecules. At this point this is only a dream, but so was 
the dream of covalent macromolecules of Hermann Staudinger from 100 
years ago. 
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