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Abstract

We introduce the notion of generalized hyperpolygon, which arises as a representation, in the
sense of Nakajima, of a comet-shaped quiver. We identify these representations with rigid geo-
metric figures, namely pairs of polygons: one in the Lie algebra of a compact group and the other
in its complexification. To such data, we associate an explicit meromorphic Higgs bundle on a
genus-g Riemann surface, where g is the number of loops in the comet, thereby embedding the
Nakajima quiver variety into a Hitchin system on a punctured genus-g Riemann surface (generally
with positive codimension). We show that, under certain assumptions on flag types, the space of
generalized hyperpolygons admits the structure of a completely integrable Hamiltonian system of
Gelfand-Tsetlin type, inherited from the reduction of partial flag varieties. In the case where all
flags are complete, we present the Hamiltonians explicitly. We also remark upon the discretization
of the Hitchin equations given by hyperpolygons, the construction of triple branes (in the sense of
Kapustin—Witten mirror symmetry), and dualities between tame and wild Hitchin systems (in the
sense of Painlevé transcendents).

1. Introduction

One constant theme in the work of Michael Atiyah has been the interplay of algebra, geometry
and physics. The construction of complete, asymptotically locally Euclidean (ALE), hyperkahler
4-manifolds—in other words, of gravitational instantons—from a graph of Dynkin type is the
capstone of a particular program for constructing Kahler—Einstein metrics, relevant to both geome-
try and physics and using only linear algebra. This construction is at once the geometric realization
of the McKay correspondence for finite subgroups of SU(2) [38], a generalization of the Gibbons—
Hawking ansatz [15], and the analogue of the Atiyah—Drinfel’d—Hitchin—Manin technique [2] for
constructing Yang-Mills instantons. The construction completes a circle of ideas. First, an instanton
metric is determined, up to isometry and the integration of certain periods, by the metric on the tan-
gent cone at infinity, as in Kronheimer [33]. The metric data at infinity are given by a copy of C? with
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2 S. RAYAN AND L P. SCHAPOSNIK

the standard norm subjected to a Kleinian singularity. The Kleinian singularity is produced by quo-
tienting C? by a finite subgroup I' < SU(2). Finally, I is determined by an affine ADE Dynkin
diagram (or quiver). Bringing this full circle, the quiver variety for the diagram, in an
appropriate sense and with appropriate labels, is an instanton in the isometry class of the
original one.

Historically, the Gibbons—Hawking ansatz (the type A case of the above correspondences) and
the ADHM method anctipate the Nakajima quiver variety construction [39], which goes beyond
instantons and 4-manifolds. The construction is a recipe for producing non-compact hyperkahler
varieties with arbitrarily large dimension from representation-theoretic data. Our present interest in
these quiver varieties stems from some formal similarities between Nakajima quiver varieties and
the Hitchin system, which is an integrable system defined on the total space of the moduli space of
semistable Higgs bundles on an algebraic curve. The Hitchin system is a non-compact, complete
hyperkahler variety and, as with every Nakajima quiver variety, possesses an algebraic C*-action.
While Nakajima quiver varieties are finite-dimensional hyperkahler quotients, the Hitchin system is
an infinite-dimensional hyperkahler one in the sense of [24]. By some estimate, the Nakajima variety
that comes ‘closest’ to the parabolic Hitchin system in genus 0 is the one arising from a star-shaped
quiver, which is an object interlacing a number of A-type quivers. This particular quiver variety can
be regarded as a moduli space of so-called hyperpolygons: this is both the hyperkahler analogue of
the moduli space of polygons studied, for instance, in [28] and the ALE analogue of the moduli space
of parabolic Higgs bundles at genus 0. Hyperpolygon spaces first appeared in [32] and were studied
from symplectic and toric points of view in [18].

The connection between hyperpolygon spaces and rank-2 parabolic Higgs bundle moduli spaces
at genus O is initiated in the work of [6, 16]. This was generalized to arbitrary rank in [12], where
the hyperpolygon space is explicitly identified with a degenerate locus of a corresponding Hitchin
system. They prove that this locus forms a sub-integrable system and furthermore show that the
cohomology of the quiver variety has the hyperkahler Kirwan surjectivity property (which was later
established for all Nakajima quiver varieties in [37]). A compact version of the rank 3 correspondence
appears in [27] while a version of this correspondence for logarithmic connections appears in [44].
A general overview of the relationship between hyperpolygons and Higgs bundles at genus 0 is also
provided in [42].

In this article, we extend this interaction between quiver varieties and Hitchin systems further
by considering comet-shaped quivers, which are star-shaped quivers with extra loops on the central
vertex. These are depicted in Fig. 1. In addition to the extra loops, we allow arbitrary flags along
each ‘arm’ of the comet.

These quivers have been considered from a number of perspectives, such as in [11, 19]. The work
of [19] in particular suggests a close connection between Hitchin systems, character varieties and
comet-shaped quiver varieties. The role of the extra loops is to increase the genus of the associated
Hitchin system or character variety. In this paper, we formalize this relationship. After reviewing the
construction of the Nakajima quiver variety associated to such a quiver, we describe classes in the
Nakajima quiver variety associated to Fig. 1 geometrically as generalized hyperpolygons, which are
pairs of polygons, one in the Lie algebra of a compact group and the other in its complexification.
A Hamiltonian action of U(1) is described, in analogy with the Hitchin system: it acts on one polygon
while preserving the other, much as Higgs fields are rescaled while the holomorphic vector bundle
is left invariant. We also remark upon how the real and complex moment map equations for gener-
alized hyperpolygons are discrete analogues of the Hitchin equations, which to our knowledge has
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Figure 1. A ‘comet-shaped’ quiver.

not been remarked upon in prior literature on hyperpolygons. Motivated by these observations, we
describe how to associate an explicit meromorphic Higgs bundle on a Riemann surface of genus g
to such a pair of polygons, where g is the number of loops in the quiver, leading to an embedding
map from the generalized hyperpolygon space into a moduli space of meromorphic, or equivalently
twisted, Higgs bundles on a complex curve. This is Theorem 4.2. The image of the map generally has
positive codimension and does not respect the hyperkahler structures, as the Nakajima metric on the
generalized hyperpolygon space is already completed. We discuss a particular example, where the
quiver has no loops and is the affine Dynkin diagram D,. In this special case, the dimensions of the
quiver variety and the associated Hitchin system are equal and the complement of the embedding is
the Hitchin section.

We then specialize to the case where each arm is either complete or minimal (where ‘minimal’
means that the arm has exactly two nodes, an outer node and the central node, and the outer nodes
are labelled ‘1’). In this case, we prove Theorem 5.1: the generalized hyperpolygon space admits
the structure of an algebraically-completely integrable Hamiltonian system of Gelfand-Tsetlin type.
We do this by appealing to the point of view that the quiver variety is a symplectic reduction of
the product of cotangent bundles of partial flag varieties originating from the arms of the quiver,
together with a product of contangent spaces of Lie algebras coming from the loop data. Our argu-
ment relies essentially on being able to pass back and forth between the symplectic and geometric
quotient. As a result, we provide a maximal set of explicit, functionally independent, Poisson-
commuting Hamiltonians in the case where every arm is complete (Corollary 5.2). This result is
significant as it establishes the existence of explicit sub-integrable systems within parabolic Hitchin
systems defined using only representation-theoretic data and not the complex structure on a Riemann
surface.

Finally, in section 6 we anticipate two dualities involving hyperpolygons: mirror symmetry and a
tame-wild duality. For the former, we consider the construction of triple branes in the moduli space
of generalized hyperpolygons, as per the considerations of Kapustin—Witten [29]. For the latter, we
discuss briefly an ambiguity between two types of comet quiver that leads to a passage from wild
Higgs bundles to tame ones. Both of these discussions anticipate further work.

2. Review of Nakajima quiver varieties

The literature on Nakajima quiver varieties is, by now, more or less standard, although there are a
few competing conventions. We take a moment to establish ours. We also feel it might be useful to
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4 S. RAYAN AND L P. SCHAPOSNIK

establish the ‘calculus’ of quiver moment maps—that is, the rules out of which moment maps for
group actions on the representation space of a quiver are built.

2.1. Doubled quivers

Let Q be an ordinary quiver, meaning a directed graph with finitely many vertices and directed
edges. We will use the terms ‘vertex’ and ‘node’ interchangeably; likewise, ‘edge’ and ‘arrow’.
We will denote the vertex set by V(Q) and the edge set by E(Q). These data completely determine
Q up to graph isomorphism. We will permit multi-edges; that is, we will allow two or more edges to
have the same tail and head. If u, v € V(Q), we will denote the set of edges with tail u and head v by
E,,(Q). Clearly, we have

E(Q) = Eu,V(Q)
(uv)EV(Q)xV(Q)

as a disjoint union. The subset

LQ = |J EwlQ)

uev(Q)

is the loop set of Q. Finally, we shall denote by O the associated doubled or Nakajima quiver, which
is fashioned from Q in the following way. First, we define a set D, ,(Q). To begin, the set is empty.
Then, for each e € E, ,(Q), we create an element —e of D,,,(Q). This element —e will be given a
graph-theoretic interpretation as an arrow from the node v to the node u. Next, we form the disjoint
union E,,(Q) =E,,(Q)UD, ,(Q). We subsequently define a graph Q by setting V(Q) = V(Q)

and E,,(Q) = E,,(Q). A key feature of a Nakajima quiver is that we remember which edges came
from the original quiver, and so for each (i, v) we have the distinguished subset E,,(Q) C E,,,(Q).
In other words, we remember which edges are ‘e’ arrows and which are ‘—e’ arrows. (It is often
the case that the original set E,,,(Q) is empty while E,,,(Q) is non-empty, for example when there
is an arrow in Q pointing from v to u but none from u to v.) Typically the extra edges —e, called
doubled edges, are drawn dashed to emphasize the original quiver. An example appears in Fig. 2.
In particular, the set of loops of the Nakajima quiver, L(Q), has a distinguished subset L(Q)
consisting of precisely the loops of the original quiver.

For our purposes, we need not only a quiver but also a set of labels for the quiver. A labelling

consists of a tuple (r,),ev(g) Where each r, is a positive integer. A representation of Q is the choice

Figure 2. Left, a quiver Q with nodes u;; right, the doubled quiver 'O obtained from Q.
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of a linear map x4, € Hom(C", C™) for each u,v € V(Q) and each e € E,,,(Q). If the set E,,(Q) is

u,v

empty, then we take x = 0 € Hom(C", C'v). We put
Repu,v(Q) — Hom(cru,Cr\')ea‘Eu,v(Q)l.

The direct sum of these vector spaces for all pairs (u, v) is denoted Rep(Q), which we shall refer to as
the space of representations of Q. For 0, however, we do not construct its space of representations
in this way. Consider an edge e € E,,,(Q) # @ and its corresponding doubled edge —e € E, ,(Q).
For e, we choose a representation x{,, € Rep, ,(Q) as above. On the other hand, for —e, we assign

to it an element y, ¢ of the cotangent space
T Rep,,(Q) = T;Hom(C™, C") = Hom(C"™, C")" = Hom(C",C"™).

The right-most duality, given simply by the trace pairing, makes it clear that the ‘direction’ of y, ¢
as a map is consistent with the direction of the actual arrow given by —e. If, on the other hand, we
have E, ,(Q) = @, then x=0 and y € 7 (0) and so y =0 too.

In general, a representation of Qisa point

(5, 9) = (Xg, 0 Yok ) () €V(Q) x V(Q), ecEr(Q) € Rep(Q) = T*Rep(Q).

The main idea here is that the y data (that is the representations of the doubled edges) are not
independent of the x data (that is the choices made for the original edges). In some instances, we will
write y; ¢(x) to emphasize the dependence.

For our purposes we will declare a single node x € V(Q) to be the central node. This node will
play a special role with regard to the construction of the so-called (Nakajima) quiver variety, a
(quasi)projective variety associated to the quiver and its labelling. We will also impose the following
rules: only the central node may have loops. In other words, L(Q) = L, . (Q) (and likewise for Q).
Furthermore, we demand that the set E, ,,(Q) is empty for every v # x in V(Q). In other words, if e is
an edge in Q that is not a loop, then x cannot be the tail vertex of that edge. We will typically use a*
to denote a representation of a loop £ € L(Q) based at the central node and b—* for a representa-
tion of the corresponding doubled loop. Furthermore, we impose the condition that a’ is always a
trace-free element of Hom(C"~,C"+), and so a’ can be identified with an element of sl(r,, C) (and
then so can b* by the duality between sl(r,, C) and its cotangent space at a*).

2.2. Calculus of quiver moment maps

Consider now the decomposition of the vertex set V(Q) into AU{s}. We construct the group

G= (H U(r,) x SU(r)> /+1,

ueA

and denote by g its Lie algebra. This group acts by change of basis in the expected way on Rep(Q):
U(r,) and U(r,) act by multiplication on the right and the left, respectively, of x{, . The component
SU(r) acts by multiplication on one side of representations of arrows entering or leaving the central
node, and specifically by conjugation on any element of L (Q). We regard G as acting through its

complexified adjoint action on pairs (x{,,y;.¢) in Rep(Q) := T*Rep(Q).
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6 S. RAYAN AND L P. SCHAPOSNIK

The action by G (respectively, by G®) is Hamiltonian with respect to the standard symplectic form
on Rep(Q) (respectively, Rep(Q)). In particular, there are two moment maps that one can associate
to the complex action. These are the real moment map,

u:Rep(Q) — g7, (2.1

and the complex moment map,
v:Rep(Q) — (g")C. (2.2)
Each node u of Q generates a component of the codomain of each moment map, which will be the
dual of an appropriate Lie algebra (either u(r,)* = R" or su(r)* = R~ or their complexifications).

We can denote this component of . (respectively, of v) by p, (respectively, by v,,).
If u # %, then we have

/’Lu('x’y) = Z Z vu Vll (yuv)*y;\f - Z Z eV uv yvu(yvu) ’

veV(Q)e€E,,(Q) veV(Q) e€E,,(Q)

where * denotes the conjugate transpose. Note that this map does not actually take values in the
Lie algebra, but rather in the image of the Lie algebra under multiplication by an imaginary factor.
For our purposes, this multiplication (which amounts of an isomorphism of complex varieties) is
insignificant. On the other hand, if u = %, then we have

pexyab) = [ > > X, — 0|+ DD @) T+ 7Y,
veV(Q) e€E, (Q) o (EL(Q)

where the subscript o means that we have removed the trace.
We similarly have

Vu(x’y): Z Z xvuyuv - Z Z y\jue ftv
vEV(Q) e€E, . (Q) veV(Q) e€E,,(Q)
whenever u # %, and
vioyab) = > > x| + > [dhphL
vEV(Q) e€E, . (Q) 0 ‘EL(Q)

Let Z(g) denote the centre of the Lie algebra. We can now define the following moduli spaces of
representations of Q and Q, respectively:
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MODULI SPACES OF GENERALIZED HYPERPOLYGONS 7

DEFINITION 2.1. If o € Z(g), then

Po(a) =Rep(Q)//aG ="' (2)/G

and

Xg(a) =Rep(Q)///aG = (1" () Nv7(0))/G

are the (ordinary) quiver variety and the Nakajima quiver variety, respectively, associated to the
labelled quiver Q at level a.

In this definition, the former variety is a symplectic (or Marsden—Weinstein [36]) quotient while
the latter is a hyperkahler (or Hitchin—Karlhede-Lindstom—Rocek [24]) quotient. Here, the element
« is regarded as a choice of symplectic (or Kahler) modulus. Algebro-geometrically, the former
is projective while the latter is quasiprojective (in fact, affine). Both quotients can be realized as
geometric invariant theory (GIT) quotients by G®, as per the Kempf-Ness Theorem [30]. In the
definition of Pg(«), all of the y and b inputs in the moment maps x and v are zet to 0. We denote
elements of Pg(«) by [, a] and elements of X () by [x,y, a, b].

By theorems of King [31] and Nakajima [39], these quotients are smooth whenever « is
sufficiently generic. It is also true that

dim¢ Po (o) = dimgRep(Q) — 2rankec G
and
dim(c XQ(Ot) = Zdim(c PQ(G).
The dimension of the Nakajima quiver variety follows from the fact that the containment
T*Pg(a) C Xg(a)
as is open dense (and in some instances the complement is in fact empty). The variety Po(«) is the
zero section of the bundle, which is where all of the y maps are 0.

Regarding the hyperkéhler geometry of Xg(«), note that we are taking the quotient of
three level sets (of p and of the real and imaginary parts of v) inside a trivial hyperkahler
space. If i is the square root of —1 as per usual acting by multiplication on T*Rep(Q), then
T*Rep(Q) is a quaternionic affine space with standard Hermitian norm A quaternions I,J, K

given by

I:(x,yab)w— (ix iy, ia, ib), (2.3)
J:(xy,ab)— (—y",x*, =" a"), 2.4)

K:(x,yab)— (—iy", ix", —ib*,ia"). (2.5)
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8 S. RAYAN AND L P. SCHAPOSNIK

There are respective symplectic forms given by
wl(’) :h([})’ wl(,) :h(.],), wK(,) :h(K,), (26)

The quotient Xg(«) inherits 1,J,K and h, and the respective symplectic forms—we repeat
these names without confusion. The quotient metric 4 is now a non-trivial one, the Nakajima
metric. Its asymptotics are part of separate work (with H. Weil}); here, all we require is its
existence.

3. Generalized hyperpolygons

The moment maps in section 2 can be used to define (Nakajima) quiver varieties for any quiver with
a central node as defined in that section. We now restrict our attention to particular shapes of quivers,
leading to what we call moduli spaces of generalized (hyper)polygons. Rather than doing this in one
fell swoop, we will do this in stages, first by constructing partial flag varieties and then by interlacing
their quivers to produce star-shaped and comet-shaped quivers.

3.1. Flag varieties and comets

A natural starting point for the whole subject of quiver varieties is the partial flag variety (over C,
for us). We can think of a partial flag variety as an operation that associates to a string of positive
integers r; < ry < --- <, a complex projective variety F,, . , that parametrizes, up to isomor-
phism, nested subspaces V| C --- C V,, whose dimensions are determined respectively by the string
and where V, is fixed (that is its automorphisms are not permitted to act). The string 1,2, ..., r leads
to the complete flag variety of rank r. On the other hand, the short string 1,7 is the minimal flag
variety of rank r. Computing the dimension of the flag variety is a standard exercise, from which we
obtain

m—1

Sripeory =dime Fyy - = Zri(ri+1 = ri).

i=1
In the case of the complete flag variety, this dimension becomes

fl,...,r - Q

In the case of the minimal flag variety, which only has one subspace, this dimension becomes
f1.-=r— 1. For economy, we will denote the string as a vector r = (ry,...,r,) and thus refer to
F, and f,. We will also put [r] :==(L,2,...,r).

The flag variety F, is the (ordinary) quiver variety for an A-type quiver Q labelled by the string r,
with equioriented arrows pointing towards the largest number in the string, as in Fig. 3(a). The node
with the largest label, r,,, is declared to be the central node x. We may also consider the Nakajima
quiver variety for Q (see Fig. 3(b)), which in this case is identified precisely with 7* J,as ahypertoric
variety.

To see how the variety J, arises as a quiver variety as in the sense of Definition 2.1, we fix the
data of a matrix « € u(ry). We construct a group G associated to the quiver as in the previous section
except that we do not include the group determined by the mth node, and so G = U(1)" ~!. We denote
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Figure 3. (a) An A-type quiver Q; (b) the corresponding doubled quiver Q.

by xi_1 € Hom(V;_y, Vi) = C*=D* a choice of representation for the arrow that points towards
the kth node; likewise, the arrow leaving that node is represented by some x; € Hom(Vj, Vi) &
CK*+1) | as in Fig. 3 above. For each k within 1<k<m, the corresponding moment map for the
U(ry)-component of the action is

Pi(X1s o X 1) = X1 X — XXk,
by the previous section. When k = 1, this moment map is simply

P (X, X 1) = XX,

where we omit a minus sign without loss of generality. Then,

m—1 m—1
F, = Po(a,0,...,0) = (ull(a)ﬂ N Mk(0)> /TT U@
k=2 k=1

Note that we take the choice of « to be understood when we write simply F,.
Because of how we constructed G, there is a residual action of U(r,) on F, with moment
map

(X1, <oy X 1) = X1 X .

The map g, : F, — u(r,,) embeds the flag variety as a coadjoint orbit for U(r,,). Likewise, the
residual action of U(r,,)© = GL(r,, C) on T*F, has moment map

Vm(xb e Xm—15Y1 - ~-:ym—l) =Xm—1Ym—1-

The image of this map is a subvariety of the nilpotent cone in gl(r,,, C) and, for the complete flag,
this map is the Springer resolution for the Lie algebra sl(r, C).

If we were to quotient of either F, or T*F, by the (complexified) residual action then we would
obtain a zero-dimensional variety. However, if take a number of A-type quivers that share a common
maximal label r and identify the nodes with those maximal labels, then we produce a new shape of
quiver, the star-shaped quiver, an example of which appears in Fig. 4.

If there are sufficiently many A-type quivers glued in this way and we quotient by the full action
(that is by the group G that includes the automorphisms of the central node), the dimension of
the resulting quiver variety will be non-zero. We refer to the A-type quivers as the arms of the
star-shaped quiver. In Fig. 4 above, the ith arm of the star-shaped quiver has been given labels.
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10 S. RAYAN AND L P. SCHAPOSNIK

""" @

Figure 4. Several A-type quivers sharing a common maximal label r have been joined together to form a star-shaped
quiver Q.

Figure 5. A comet-shaped quiver.

To the star-shaped quiver, we also add g loops to the central node of Q (hence, 2g loops to the cen-
tral node of Q). This produces the so-called comet quiver, an example of which is shown in Fig. 5
below.

As per the conventions of the previous section, a representation of the jth loop of Q is a choice of
matrix a; € 5[( C). Suppose that there are n arms. Consider the ith arm and let its string be given by
the vector r' = (r{,r}, ..., In.)» Where 7, = r, as in Fig. 4. When each and every arm is the complete
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Figure 6. (a) A complete comet; (b) a minimal comet.

flag, we refer to the quiver as the complete comet, as in Fig. 6(a). When each and every arm is the
minimal flag, we refer to the quiver as the minimal comet, as in Fig. 6(b).
Let the ordinary quiver variety associated to the comet quiver be denoted Pfl  .(a). This

quiver variety arises, as a symplectic quotient, from the choice a of n matrices a; € u(r}).
Considering the residual action on the central node by SU(r), the associated moment map is
now

st (Fp(an) - X Falan)) x sl(r,C)$ — su(r)

given by
n ] 8
pexa) = D (k6 ) Za,, arl,

i=1

where the subscript 0 is again an instruction to remove the trace (and we have identified Lie algebras
with their duals). Then, we have

Ps () = p(0)/SU(n).

PROPOSITION 3.1. The complex dimension ofP;iwi( a)is Y fi+(g—1D(F*—1).

Proof. The formula follows immediately from the fact that the quotient variety 73 ,,,(oz) is

equivalent, by the Kempf—Ness Theorem, to the geometric quotient of the Cartesian product
(Folan) x -+ x Fula)) x sl(r, C)¢

by the diagonal SL(r, C) action. O

Note that the dimension is independent of the choices of the «;.
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12 S. RAYAN AND L P. SCHAPOSNIK

COROLLARY 3.2. The complex dimension of Pﬁ] ] () (that is where the quiver is the complete
comet) is

]

The complex dimension of 73(21’ ., )( ) (that is where the quiver is the minimal comet) is

n(r—1)+(g—1(r*=1).
For the Nakajima quiver variety of the comet, the corresponding moment maps are

fu: (T*Fp (o) X o X T* F (o)) x T*sl(r, C)8 — su(r)
Vet (T*Fp(ar) x -+ X T* Fpa(a)) x T*sl(r, C)¥ — sl(r, C)

given respectively by

n 8

meeyiab) = S0 () = 0k Yo+ S laal] + 557

i=1 j=1

n

g
vi(xy,a,b) = Z( m,—lym/—l Zap

i=1

Then, we have
X5 (@) = (u;'(0) N (0)/SU).

We are particularly interested in the quotient X’ 8 r,( «), which has dimension twice that in
Proposition (3.1). Note that the containment of T*Pg ,,,(g) is now strict and so the projection
XS (@) =P .(a)is only rationally defined.

The relationship of P§ (o) and XS

the subject of section (3.2).

() to polygons and hyperpolygons, respectively, is

3.2. Geometry of generalized (hyper)polygons

When ri = 1 for each arm of the comet, each matrix o is simply a real number and we will always
take a; € Rs. In this situation, we refer to isomorphism classes of representations of the comet—
that is, classes [x,a] € Prgl’__ﬂ .(a)—as generalized n-gons of rank 1, genus g and length «.. These
objects generalize isomorphism classes of ordinary n-gons (closed, with fixed side lengths and
barycentre) in the Euclidean space R3, which are elements of 7)?1,2),...,(1,2) («). As such, we refer

to Pf,’_“’ () as the moduli space of generalized n-gons of rank r, genus g and length a.

A representation in Pfi,-<~, () determines a closed polygon in R” = su(r) in the following

way: the sides are given by the matrices (x;, _ (x;, _;)*)o, Which are determined respectively by the
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MODULI SPACES OF GENERALIZED HYPERPOLYGONS 13

representation of the closest arrow along the ith arm to the central node, as well as the matrices [a;, ajfk]
determined by the loops. From the symplectic point of view, the moment map condition x4, = 0 on

(Fri(a) X === X Fra(ay)) X sl(r, C)*

is equivalent to asking that these matrices, when viewed as vectors in R’Z*I, make a closed figure
with n + g sides. If we move outward along any arm, each node (save for the terminal node with
label ri = 1) produces the moment map condition

()" = X (xy)”

in ROV =1 = gy(r 1) from the associated partial flag variety F,i(c;). The terminal node yields the
single condition

(1) () = i P =

In combination with the other moment map conditions, the condition |x{|> = o7 fixes the norms of
the matrices x,é(x,i)* and (x})*x} for all k. In particular, each side (xki—l(xm,-—l) )o has Euclidean
length given by \[a, and the length of Zg 1laj, a;] is given by % > ai.

Classes in X" f _.(a) have a similar geometric interpretation as pairs of polygons, one with
2n+2g sides in su(r) and the other with n+ g sides in sl(r, C). The data of a representation
[x,, a, b] satisfying the moment map equations yield a closed figure in su(r) with sides of the form
1 (om 1) )0s —((p—1) X0, _1)0s [ @;], and [by, b¥], with i ranging from 1 to n and j ranging
from 1 to g. At the same time, we have a closed figure in 5[(r, C) with sides of the form (X, —1Ym—1)o
and [aj, b;]. We refer to pairs of polygons of this form as hyperpolygons. Specifically, the pair here
is a hyper-n-gon of rank r, genus g, and length o and X o () is their moduli space. Note that,
for the polygon in su(r), the length of the side (x;, 1( X, 71) )o needs not be \/a, Rather, it is the
length of the difference (x}, _ (x} _1)*) — (ym,,l) x}, _1)o that must be \/a, This feature makes
plain the non-compactness of X ,,,( «) (as opposed to Pg ,,,( «), which is necessarily compact).

We refer to the polygon in 5u( ) as the bundle polygon and the one in 5 [(r, C) as the Higgs polygon.
The discussion in section 4 will make clear the reason for this nomenclature.

3.3. U(1)-action on hyperpolygons

The quasiprojective variety XS (a) comes with an action of U(1) defined as so: if [x,y,a,b] €
X 5 _«(a) is a generalized hyperpolygon, then we have

[x, v, a, b] 4, [x, exp(if)y, a, exp(i6)b].

It is easy enough to check that this action is Hamiltonian with regard to the w; symplectric form.
Had we defined X ,,l( a) as a GIT quotient, this action can be promoted to an algebraic action
by C*, preserving the I complex structure.

This action was used in section 3 of [12] to compute, via Morse—Bott localization, the Betti num-
bers of the rational cohomology ring in the case of the minimal comet with no loops. The calculations
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14 S. RAYAN AND L P. SCHAPOSNIK

would be similar in the case of an arbitrary comet, although as our interests are more geometrical
rather than topological here, we leave this aside. Rather, we focus on the following observation.
While every Nakajima quiver variety enjoys such an action, it is interesting to note its interpre-
tation in terms of the geometry of hyperpolygons. Note that the expressions ((y,",,‘.,l)*y,",,,.q)o and
b, b]*] are invariant under the action, and so the bundle polygon is invariant geometrically. On the
other hand, the expressions (x,,—1Ym—1)o and [a;, bj| are not generally invariant under the action.
In particular, the moduli space of generalized polygons P ,,,( ), which sits inside X mla)as
the zero locus of 7*P% m(a), is fixed under the action.

As such, in any hyperpolygon [x, y, a, b] the bundle polygon is static while the Higgs polygon is
rotated through 6 within the ambient Lie algebra. This feature of the U(1)-action resembles that of
the action on the moduli space of Higgs bundles on a compact Riemann surface [21], which has a
Hamiltonian U(1)-action (respectively, an algebraic C*-action). This leads to a localization for the
Higgs bundle cohomology, as originally done in rank 2 in [21] (cf [41] for a survey in arbitary rank).
On the Higgs bundle moduli space, the action leaves vector bundles invariant while rotating Higgs
fields—and in particular, the moduli space of stable bundles is invariant. This similarity between
hyperpolygons and Higgs bundles motivates the analogy of the next section.

4. Relationship to Higgs bundles
4.1. Analogy with Hitchin equations

We take 7' =1, ri =r from now on, to maintain the hypotheses of the preceding section. The
construction above realizes the Nakajima quiver variety Xfl,_“, () as the set of solutions to a
set of equations in spaces of matrices, divided by the complexified adjoint action of the group
G = SU(r) x U(1)". We isolote these equations here:

DEFINITION 4.1. For each a € RY;, the hyperpolygon equations are:

n

g
(i) Z(xrln;—l(xrln,-—l)* = 1) yml—] 0"‘201’ 1+ (b, b1 =0

i=1 j=1
(i) x () 0 — () — i) i, =0, k=2,...,m;—2 i=1,...,n
(iii) [xi[* =i =ani=1...n

n

g
I Z(xrz,-—lyziz,—l Z aj, b

i=1
) x{_yi, —y,gx,gzo, k=2...,m—2i=1,...,n
(1) yix{=0,i=1,...,n

We single out these equations for the reason that they are discrete analogues of the Hitchin

equations [21], which are equations on a smooth Hermitian bundle E over a Riemann surface X.
In particular, equation (i) is the analogue of the first Hitchin equation

FA)+¢Ag* =0
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MODULI SPACES OF GENERALIZED HYPERPOLYGONS 15

in which the failure of a unitary connection A on E to be flat is expressed in terms of a Higgs field
¢ E— E® K, where ¢ is linear in functions (that is ¢(fs) =f¢(s) for any section s € I'(E) and any
function f€ C*°(X)) and K is the canonical line bundle of X (that is the bundle of holomorphic
one-forms). Here, we may identify the term Y7, (x;, _; (x/, _1)*)o+ Zle laj, a}] with F(A) and the
term —((yp, 1) "V —1)o + 25—, [bj, b} ] with ¢ A ¢". In particular, the failure of the connection to
be flat is paralleled in the failure of the (ordinary) polygon to close. The way in which the Higgs
field ‘flattens’ the connection (we have F(A + ¢ + ¢*) = 0) is analogous to the way in which the y
and b data close the figure in su(r). Likewise, equation (I) is the analogue of the second Hitchin
equation

&i6=0

that makes ¢ holomorphic with respect to the holomorphic structure on E induced by A. Equation (I)
can be thought of as ‘holomorphicity at infinity’ for an associated Higgs bundle, which we describe
now.

4.2. Associated meromorphic Higgs bundle and tame character varieties

In the g=0 (that is star-shaped) case with sufficiently generic o, one can identify elements
[x,y] € Xr(?,,..,w () with meromorphic Higgs bundles of rank r on an n-punctured complex projective
line, where 3 is an appropriate choice of parabolic weight vector along the divisor of punctures.
This was accomplished in section 4 of [12] in the case that each arm has the minimal flag type. The
construction of an associated Higgs bundle from [12] is actually independent of the flag type. To see
this, let E stand for P! x C” with the trivial holomorphic structure and let D = Z?:l z; be the divisor,
such that the z; are pairwise distinct and none are co. Then, define

n

(X~ 1V —1)0
¢[x,y] (Z) — Z#dz.

i=1 LT

The pair (E, ¢) defines a Higgs structure on the trivial rank-r bundle on P! that is memorphic
along D, associated to the generalized genus-0 hyperpolygon [x, y]. Equation (I), which is a condition
on the z;-residues of ¢y, ), ensures that ¢y, is holomorphic at co € P'. Specifically for g =0, r =2,
it was shown in [16] that the map

o y] = [Ppy]

is an embedding of moduli spaces for « sufficiently generic, where [y, ,;] is the isomorphism class
of ¢y, under the conjugation action of holomorphic automorphisms of E. The corresponding moduli
space of the Higgs fields ¢, is defined using slope stability with respect to a parabolic weight
vector 3. The weights 3 can be used to turn (E, ¢(.)) into a strictly parabolic Higgs bundle and are
determined, albeit non-uniquely, from . This can be done for any r but, for our purposes, we will
not need to compute 3 explicitly. Note also that the residues are nilpotent of order equal to the length
of the corresponding arm. For example, if the ith arm is complete, then (x). _,y;, ;)5 =0 by the
moment map conditions. For a minimal arm, we have (x/, _,y/, _;)§ =0.

The above construction of a Higgs bundle from a hyperpolygon can be extended to higher genus.
The easiest way to accomplish this is to consider (X, C), where X is either the standard complex or
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16 S. RAYAN AND L P. SCHAPOSNIK

hyperbolic plane and C is a regular tiling of X. We then define a matrix-valued one-form on X from
[xy.a bl € X5 () as follows. First, if g =0, then X is the standard plane with the fundamental
cell equal to the whole plane; if g =1, then X is the standard plane with C a rhombus tiling that is
regular with regard to the standard Euclidean metric; or if g> 1, then X is the hyperbolic plane with
C a tiling by 2g-gons with a unit cell that is regular with regard to the Poincaré metric. Then, we
choose n distinct points z; in the fundamental cell and construct

n

(%, 1Ym,—1)o
Slonan(2) = 3 om0 gy

= i w@)

where ¢, : C — C translates z; to the copy of the fundamental cell to which z belongs (which can
be accomplished by choosing an appropriate element of a Fuchsian group I'). When X = C and the
cell is all of X, we obtain a meromorphic Higgs field for the trivial vector bundle E = P! x C" by
compactifying the plane. (Here, ¢, is the identity.) When X = C and we have the lattice determined
by the thombus tiling, then ¢p, 45 descends to a well-defined object on the compactification of the
quotient by the lattice, yielding a meromorphic Higgs field for the trivial rank-r bundle on an elliptic
curve C, with complex structure determined by the modulus of the cell and punctures along D = "z;.
In the hyperbolic case, ¢jxy.q.1 descends to a meromorphic Higgs field for the trivial rank-r bundle
on genus-g > 2 Riemann surface C punctured along D = z;. The condition

n 8

> Eh V-0 =>_ b, a]

i=1 j=1

intertwines the residues of ¢y, . at the punctures with the fundamental group of the surface. The
construction of ¢y, . as a Higgs field for the trivial bundle on a genus-g surface makes clear the
descriptor ‘of genus g’ attached to our generalized hyperpolygons.

Note that two different representatives of the class [x,y,a,b] € X ﬁ () differ by an element

g € GL(r, C). At the same time, g transforms @pyy.q.4) by

¢[x,y,a,h] =g : qb[x,y,a,b] &

which is precisely the notion of equivalence for Higgs fields for the trivial rank-r bundle. As in the
g =0 case, we can also prove that genericity of o corresponds with S-stability for a parabolic struc-
ture on E induced by the flags and cv. As the weights are unimportant to us, the meromorphic Higgs
bundle (E, Pixy.qp)) can be transformed by clearing denominators into a so-called ‘twisted” Higgs
bundle or ‘Hitchin pair’ (E, (E[X,yya,b]) (that is where the Higgs field is of the form ¢ : E - EQ K®Q L
for some holomorphic line bundle L). Such objects enjoy the same notion of equivalence but are
subject to the usual Mumford-Hitchin slope stability (as opposed to parabolic stability). Further-
more, because the underlying bundle E is trivial, the resulting twisted Higgs bundle is automatically
semistable. This can be packaged into the following result:

THEOREM 4.2. Let the map [x,y,a,b] = [¢.yqp)] and the quotient Riemann surface C be as
above. The map embeds Xfl () into the locus of the moduli space of rank-r, degree-0,

slope-semistable twisted Higgs bundles on C consisting of pairs (E, @[.y,qp)) in which E is holo-
morphically trivial.
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MODULI SPACES OF GENERALIZED HYPERPOLYGONS 17

4.3. Comparison in the Dy case

For an illuminating example of the relationship between hyperpolygons, Higgs bundles and their
moduli spaces, we consider the case where g =0, n =4 and each flag is of the form r’ = (1,2) = [2].
Then, X, [g],[z],[z],[z] («) is the Nakajima quiver variety for the affine Dynkin diagram Dy, which is the
star-shaped quiver with 4 outer nodes. Furthermore, its labelling is such that the complex dimension
of the quotient is 2. Hence, by the aforementioned McKay—Kronheimer—Nakajima correspondence,
X[%],[z],[z],[z] () is a non-compact, complete hyperkihler 4-manifold admitting the structure of an
ALE gravitational instanton. Furthermore, by virtue of its being a complex variety, it is also a non-
compact K3 surface. In this case, the associated Higgs bundles are parabolic of rank 2 on P! with
4 tame punctures. Their stable moduli space is well known to be a non-compact K3 surface with
a hyperkihler metric—Hitchin’s L2-metric—which is also complete and has recently been shown
to be ALG [14]. Unlike the Nakajima metric, the Hitchin one arises from an infinite-dimensional
hyperkahler quotient. As the two metrics are both already complete, the embedding of moduli spaces
cannot be an embedding of hyperkahler varieties (in fact, they are compatible only in the / com-
plex structures). Also, in the Higgs moduli space, there are Higgs bundles with underlying bundle
E=0(1)®0(-1)=K /2@ K'/?, where K'? is the unique spin structure (that is holomorphic
square root of K) on the line. These Higgs bundles are the complement of the embedding. In other
words, the difference between X[%],[z],[z],[z] (a) and the associated parabolic Higgs bundle moduli
space is precisely what is known as the Hitchin section of the Hitchin fibration. (See also section 4.1
‘H3 surfaces’ in [10] for further discussion of these examples.)

Hence, while there is an embedding of X[%],[z],[z],[z] () into a Higgs moduli space, the metrics
are incompatible and one should view the actual geometric relationship in a different way. A more
universal point of view is that X’ ﬁ (@) is a linearization of an appropriately defined character
variety on a punctured, tame genus-g curve, which of course is diffeomorphic to a corresponding
Higgs bundle moduli space by non-abelian Hodge theory. This point of view is made plain in equa-
tion (I), which is the linearization of the usual character variety definition on a punctured surface.
The character variety itself should be thought of as a multiplicative quiver variety, defined using
group-valued moment maps and quasi-Hamiltonian reduction (for example [8, 9]). The geometry of
the multiplicative variety converges less rapidly to a Euclidean geometry at infinity than the corre-
sponding ‘additive’ varieties that we are considering. This is the origin of the ALE/ALG difference in
the D4 example. (One may also wish to compare X[g],[z],[z],[z],[z] () to the 5-punctured case in [43].)
The topic of the asymptotic geometry of the Nakajima metric on hyperpolygon spaces and how
it compares to the Hitchin metric is the topic of forthcoming work of the first named author
and H. WeiB.

5. The integrable system

The relationship of hyperpolygons to Higgs bundles raises the question of whether X ﬁ (@) pos-
sesses an integrable system, in the spirit of the Higgs bundle moduli space [22]. It is generally
expected that Nakajima quiver varieties ought to be algebraically completely integrable Hamiltonian
systems with a Hitchin-like fibration (cf the commentary at the end of [39]). For the minimal-
flag moduli space Xﬁ,r],...,[l,r] () for r <3 and arbitrary n, this was proven explicitly in section 4

of [12] by embedding these spaces into an associated tame parabolic Higgs bundle moduli space
on the punctured sphere. For r = 3, the minimality of the flags means that image of the embedding
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18 S. RAYAN AND L P. SCHAPOSNIK

[x, ¥] /> [@[x,] lies in a non-generic locus of the associated Hitchin system where the derivative of
the Hitchin map drops in rank and thus extra analysis is required to demonstrate that the image con-
stitutes a sub-integrable system (cf [23] for further inquiries along this theme in the context of the
Hitchin system).

Owing to the map [x,y, a, b] > [P[.y,q.)] ONE Way to proceed, as in [12], is as follows: to equip
X rj o () with appropriate Hamiltonians, we take the real and imaginary parts of the components of
the characteristic polynomial of the one-form-valued endomorphism ¢y, , 4 51. This equips X ;gl, e (@)
with the Hitchin Hamiltonians coming from the 7 complex structure on the corresponding parabolic
Higgs bundle moduli space (cf [34] for the non-strict parabolic case and [3] for the strict case, for
instance). Equivalently, we can again clear the denominators in ¢y, and produce an associated
matrix-valued polynomial (E[X,yya,b], whose characteristic coefficients we then extract. This equips
X4 . () with the Beauville-Markman Hamiltonians [35] from the moduli space of twisted Higgs
bundles. In the case of the complete comet, the integrability is assured because the embedding of
moduli spaces intersects every Hitchin fibre in parabolic Higgs moduli space and so the Hamiltonians
remain globally independent. Here, the codomain of the Hamiltonians is

B:@HO(X,K@(DH)),

where X and D are the Riemann surface and divisor constructed in the previous section. The affine
space B is in fact the base of the corresponding Hitchin fibration for the strictly parabolic Higgs
bundle moduli space with complete flags at the punctures. In the event of a flag that is incomplete,
then the residues will not be generic and only certain non-generic Hitchin fibres (corresponding to
singular spectral curves) will intersect the image of the embedding. In this case, one has to establish
functional independence by some technique, such as the algebraic disingularization technique in
section 4 of [12] used for minimal flags. In this case of the minimal comet, we have

B= éBHO(X, K®(D)).

i=2

In some sense, it is more satisfying to have a description of integrability of X’ ﬁ o () that does
not rely upon an embedding into a Hitchin moduli space, as the embedding necessitates a choice
of marked Riemann surface. Put differently, there ought to be an intrinsic set of Hamiltonians on
X fj o (). We accomplish this in the case of the complete and minimal comets by appealing to the

Gelfand-Tsetlin integrable system on each T* F,..

THEOREM 5.1. When each arm of the comet quiver is either complete or minimal, the moduli space

X f} () is an algebraically completely integrable Hamiltonian system of Gelfand-Tsetlin type

with Hamiltonians depending only on the data [x, v, a, b] of a representation.
Proof. First, note that the quotient map corresponding to the reduction
(T*Falar) x -+ X T*Fu()) x T*sl(r,C)* — X5 . (a)

is a Poisson morphism, and so the Gelfand-Tsetlin Poisson structures on the phase spaces 7™ F,
and the standard Lie—Poisson structure on 7*sl(r, C)¢ descend to a well-defined one on X . (a),
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which we identify with the one arising from w;. (Note that these are all incantations of the
Lie—Poisson structure on sl(r,C), as the T*F,: are resolutions of closures of nilpotent orbits
in sl(r, C), which are singular affine Poisson varieties). In particular, the Hamiltonians on each sum-
mand descend to the quotient and Poisson commute with regard to the quotient Poisson structure.
What needs to be accounted for is dependency in the quotient Hamiltonians.

Suppose the ith arm is complete. Then there is a sequence of trace-free matrices (x; yk Do
of size k X k, k=2, ..,m. The moment map conditions (I)—(III) force the k x k matrix (xk Yi_1)o
to be nilpotent of order k, and so can be put into a form where it has an upper (or lower) block
of size (k — 1)x(k — 1) which in general is not nilpotent. We denote this block by b/iqk- Each of
these blocks contributes k — 1 characteristic coefficients. We think of these as traces #;, where the
trace f; _ is identified with the determinant of b,Ll and so # is the ordinary trace. We can index
these invariants as maps

hjk S i 1)o = 5(bi_y)

for j=1,...,k— 1. These traces are a well-known complete set of complex-valued Hamiltonians
for the Gelfand-Tsetlin integrable system for 7% F|,). The total number of generally non-zero func-
tions of this form is 1 +2+ .-+ (r—1) =r(r—1)/2, which is the complex dimension of F,
as expected.

When the ith arm is minimal rather than complete, then the arm has associated to it a single
rx r matrix (x), _, yml_l)o (xiyh)o that is nilpotent of order 2. A non-trivial complex-valued
Hamiltonian functlon is obtained from the entry in the top-right (or bottom-left) corner of this
matrix. This can be completed to a set of r — 1 Poisson-commuting functions for the Gelfand—
Tsetlin system on T* F(; ) = T*P"~!, whose Hamiltonians we do not make explicit although their
existence can be guaranteed in spite of the irregularity of the associated nilpotent orbit (see for
instance [40]). In particular, we have exactly as many independent invariants as the complex
dimension of F(; ) = P1.

Lastly, the jth copy of T*sl(r, C) is coordinatized by posmon -momentum variables (a/, b/). Prior
to any reduction of this variety, the Hamiltonians are the r*—1 independent entries b’ 1,q of the matrices
b/ themselves. As there are g of these summands, we have a total of g(#>—1) invariants.

Hence, the quotient system on X’ 5 (@) has at most

cr(r—1)/24+(n—c)(r—1)+g(r* = 1)

non-trivial functionally independent Hamiltonians, where c is the number of complete arms and n — ¢
is the number of minimal arms. Now, consider the final reduction yielding X’ rgl () as a geometric

quotient by SL(r, C). This means that we take the complex quotient v, ! (0)/SL(r, C). We divide the
remainder of the proof into two cases.

Consider g = 0 first. Note that the matrices (x;, _,y;, _;)o along the firsti = 1,...,7 arms can all
be fixed via the multiplication action of SL(r, C) on the central node. (In order for the dimension of
the moduli space to be non-negative in this case, we need n to be at least r + 1 anyway.) Moreover,
the data (x/" +1] 1 )’;,::14 )o along the (r + 1)th arm are dependent on the other arms by the complex
hyperpolygon equations (I)—(IIT). Hence, we subtract (r+ 1)(r — 1) = r> — 1 from the upper-bound
in each case to get the exact number of Hamiltonians.

We turn now to g > 1. Here, the multiplication action fixes the matrix a' e sl(r,C) and, subse-
quently, b' € sl(r,C) is completely determined by equation (I). As a result, the invariants b},, g all
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become functionally dependent on the x and y data of the arms, which are untouched by the action.
Hence, we remove r>—1 from the total.
As a final tally, the total number of independent Hamiltonians becomes

cr(r—=1)24+mn—c)(r—1)+(g—1(r*—1).

This is precisely the dimension of P  (a) when there are exactly ¢ complete arms and
n—c minimal ones, as per Proposition (3.1). We therefore have the desired maximal set of
Poisson-commuting, functionally independent Hamiltonians for the induced Poisson structure. [

Immediately, we have:

COROLLARY 5.2. When the comet is complete, a maximal set of independent Gelfand-Tsetlin
Hamiltonians is given by

° hj’;k:(x,é_ly,i:_l)o»—)tj(b,é_l)forj:1,...,k—1,k:2,...,m,i:r+2,...nwheng:0;

° hj{k:(xi71y£71)0'—>tj(b,’€71)f0rj: L...k—Lk=2....mi=1..nwheng=1; '

° h]{k:(x,i_ly,i_l)ol—)tj(b,i_l) for j.: L...k—1, k=2,....m, i=1,...n and b}, for
i=2,...,8 1<p,q<r(but omitb},) when g> I.

Finally, it is worth noting that, when there is at least one arm that is neither complete nor minimal,
the combinatorics do not necessarily align in an obvious way to produce the correct half-dimensional
result.

6. Further directions
6.1. Mirror symmetry and triple branes

Here, we explore a different side of the physics of hyperpolygon spaces—namely mirror symmetry.
Given any hyperkahler variety with quaternions /, J and K and respective symplectic forms wy, wy
and wg, we may ask how a given subvariety is compatible with those structures. Borrowing termi-
nology from string theory, we refer to a Lagrangian subvariety with respect to one of the symplectic
forms as an A-brane and to a complex subvariety with respect to one of the complex structures as a
B-brane. Accordingly, when considering the whole hyperkahler structure of the hyperkahler variety
one can seek subvarieties that are (B, B, B), (A, B, A), (B,A,A) or (A, A, B) with respect to the complex
structures (1, J, K) and the associated symplectic forms. We call these ‘triple branes’ in general.

For the moduli space of Higgs bundles without punctures, triple branes were considered in [29],
where this moduli space is the target space for a topological sigma model. Four-dimensional
S-duality for this model corresponds to mirror symmetry between the modui space of G-Higgs
bundles and the moduli space of “G-Higgs bundles, where "G is the Langlands dual of a complex
reductive group G. In particular, triple branes in one moduli space are dual to ones in the mirror.
This observation has inspired the construction of many different types of branes in the Higgs moduli
space through finite group actions and through holomorphic and anti-holomorphic involutions (for
example see [4, 5, 20]). The involution technique has been adapted to the study of framed instantons
in [13], while the group-action technique has been used to construct triple branes in quiver varieties
[25, 26].

On the one hand, there exists a convenient characterization for when A-branes and B-branes arise
from involutions (cf [4] for instance). Given an analytic involution Z on a non-singular hyperkahler
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variety, its fixed-point locus F is an A-brane with respect to the complex structure / if Z and / anti-
commute, that is, if ZI = —IZ. In other words, F is an A-brane if the involution is anti-holomorphic
with respect to 1. On the other hand, F is a B-brane with respect to / if Z is holomorphic with respect
to 7, that is, if ZI = IZ. We can perform the same tests for Z against J and K. If for each of I,J, K
we have that F is either A-type or B-type, then F is a triple brane described accordingly as one
of (B,B,B) or (A, B,A) and so on.

On the other hand, the method in [25, 26] for producing branes in Nakajima quiver varieties uses

quiver automorphisms o of Rep(Q) satisfying certain hypotheses:

i

(i) for all x; and y, the automorphism satisfies o (y;) = o' (x/)*;
(ii) ~either U(x]’) €{xi,....,x;,_} for all i in which case it is Q-symplectic, or o(x) €
1y} for all i, j, in which case it is Q-anti-symplectic.

Turning now to the specific hyperkahler structure on X' rgl (), it is reasonable to ask about the
existence of triple branes. We note here that triple branes within hyperpolygon spaces with r =2
and g =0 were constructed as examples in [25] (and some of these were recently studied in some
detail in [17]). To provide an additional example of a brane—one that does not arise from a o of the

type above and which is furthermore valid for an arbitrary comet — we consider the involution on
X% . (a) that negates cotangent directions:

Z_:|xyab]— [x, —ya —b] 6.1)
The fixed point locus is given by the hyperpolygons of the form [x, 0, a, 0], which is precisely the

PROPOSITION 6.1. The polygon space P4 () is a (B, A, A)-brane within X ().

Proof. Consider the involution Z_ in (6.1) and the complex structures /,J, K on X rgl o («) defined
in (2.3)—(2.5). At any hyperpolygon [x, y, a, b], we can easily check how Z_ behaves with respect to
I, J, K. We compute this for J and K here:

JZ_[x,y,a,b] =Jx,—y,a —b] KZ_|x,y,a,b] = K[x, —y,a, —b]
= [y*, x*, b*, a*] = [iy*, ix*, ib*, ia*]
=T _[y*, —x* b*, —a*] =T _[iy*, —ix*, ib*, —ia*]
=—-7_J[xy,a D] =7_K[—x,—y, —a,—b]
=—-7_K[x,y,a,D]

In other words, Z_ is anti-holomorphic with respect to each of J and K. A repetition of this cal-
culation for 7 reveals Z_ to be holomorphic in that complex structure. Thus, by our characterization
above, the fixed point set Pfl ~ .(a)isa(B,A,A)-brane. O

The reader may wish to compare this result with an analogous one of [13, Section 3.2], where
a sign involution is studied on quiver varieties but whose fixed point set is indicated to be a
(B, B, B)-brane.

IThe partial flags allowed in generalized hyperpolygons could potentially fit within the framework of generalized B-opers
introduced in [7], which yields branes that do not arises from involutions.
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O*—O<—O -0

oo

Figure 7. (a) An example of a tame comet; (b) an example of a wild comet, whose pole order at the marked point is given
by the number of the same direction between two consecutive nodes.

6.2. Dualities between tame and wild hyperpolygons

As an extension of the preceding constructions, we might also allow comet-shaped quivers in which
two or more edges e are permitted between two consecutive nodes along an arm (and hence two or
more corresponding —e arrows in the doubled quiver). We describe this as a wild comet and describe
classes in the resulting quiver variety as wild hyperpolygons, and examples of such quivers appear
below in Fig. 7. From this point of view, our earlier hyperpolygons would be tame hyperpolygons
representing a tame comet. Wild hyperpolygons generalize similar objects arising from star-shaped
quivers with multiple arrows between consecutive nodes in [1].

To motivate one final observation, we wish to consider yet again the case where X’ ﬁ o () arises
from a tame comet in which each flag is the same—for example, the complete and minimal comets.
One can note that there is a certain ambiguity here. We can consider a hyperpolygon [x, y, a, b] as
being a representation a tame comet or from a wild comet with a single arm but with n-many x
arrows and n-many y arrows connecting any two consecutive nodes. The wild comet comes about by
identifying corresponding nodes of the arms. We should note that the moment map equations for the
tame comet are specializations of the ones for the wild comet and so there is a valid sense in which
one quiver variety embeds into the other. At the level of associated Higgs bundles, we are isolating
a locus of wild Higgs bundles with an order-n pole at infinity that is constructed from a tame Higgs
bundle with n-many order-1 poles, simply by rearranging the residues. The passage in and out of this
locus, accomplished by means of quiver mutations, is closely related to degenerations of Painlevé
equations.

1202 Arenigad g1 uo 1sanb Aq 10,9009/9€0€ERY/YIWD/EE0 L 0 L/10p/a[dIlE-00UBAPE/YewWb/WOoo"dNo"olWapED.//:Sd)Y WOy PapEojuMOq



MODULI SPACES OF GENERALIZED HYPERPOLYGONS 23

Acknowledgement

We thank D. Baraglia, 1. Biswas, P. Crooks, J. Fisher, S. Gukov, T. Hausel, J. Kamnitzer, R. Mazzeo,
H. Nakajima, A. Soibelman, J. Szmigielski, and H. Weiss for useful discussions related to this work.
Some formative steps in this work occurred during a research visit to the Fields Institute in May 2017
and during the Workshop on Singular Geometry and Higgs Bundles in String Theory at the Amer-
ican Institute of Mathematics in Fall 2017. We appreciate the stimulating and productive research
environments fostered by both institutes. Both authors are grateful to the Simons Center for Geom-
etry and Physics for its hospitality during the Thematic Program on the Geometry and Physics of
Hitchin Systems during January to June 2019, as well as to the Mathematisches Forschungsinsti-
tut Oberwolfach where the authors had fruitful discussions with various participants of Workshop
1920. This material is also based upon work supported by the National Science Foundation under
Grant No. DMS-1440140 while the authors were in residence at the Mathematical Sciences Research
Institute in Berkeley, California, during the Fall 2019 semester. Finally, we wish to acknowledge an
anonymous referee for constructive feedback that led to improvements to the original manuscript.

Funding

S. Rayan is partially supported by an Natural Sciences and Engineering Research Council of Canada
Discovery Grant, a Canadian Tri-Agency New Frontiers in Research Fund (Canada) Grant, and a
Pacific Institute for the Mathematical Sciences Collaborative Research Group (CRG) Grant. L.P.
Schaposnik is partially supported by the Humboldt Foundation, National Science Foundation Grant
#1509 693, and National Science Foundation CAREER Award #1 749 013.

References

1. L.B. Anderson, J.J. Heckman, S. Katz and L. P. Schaposnik, T-branes at the limits of geometry,
J. High Energy Phys., 10 (2017), 058 front matter+55.

2. M. FE Atiyah, N. J. Hitchin, V. G. Drinfel’d and Y. Manin, I Construction of instantons, Phys.
Lett. A, 65 no. 3 (1978), 185-187.

3. D. Baraglia and M. Kamgarpour, On the image of the parabolic Hitchin map, Q. J. Math.,
69 no. 2 (2018), 681-708.

4. D. Baraglia and L. P. Schaposnik, Higgs bundles and (A, B, A)-branes, Comm. Math. Phys.,
331 no. 3 (2014), 1271-1300.

5. D. Baraglia and L. P. Schaposnik, Real structures on moduli spaces of Higgs bundles, Adv.
Theor. Math. Phys., 20 no. 3 (2016), 525-551.

6. 1. Biswas, C. Florentino, L. Godinho and A. Mandini, Symplectic form on hyperpolygon
spaces, Geom. Dedicata, 179 (2015), 187-195.

7. 1. Biswas, L. P. Schaposnik and M. Yang, (2019), arXiv preprint arXiv:1911.11842.

8. P. Boalch, Quasi-Hamiltonian geometry of meromorphic connections, Duke Math. J. 139,
2 (2007), 369-405.

9. B. P. Global, Weyl groups and a new theory of multiplicative quiver varieties, Geom. Topol.,
19 no. 6 (2015), 3467-3536.

10. P. Boalch, Wild character varieties, meromorphic Hitchin systems and Dynkin diagrams,

Geometry and Physics, Oxford Univ. Press, Oxford, Vol. II (2018), pp. 433-454.

1202 Arenigad g1 uo 1sanb Aq 10,9009/9€0€ERY/YIWD/EE0 L 0 L/10p/a[dIlE-00UBAPE/YewWb/WOoo"dNo"olWapED.//:Sd)Y WOy PapEojuMOq



24

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22,

23.

24,

25.
26.

27.

28.

29.

30.

31.

32.

33.

S. RAYAN AND L P. SCHAPOSNIK

Crawley-Boevey,W., et al. On matrices in prescribed conjugacy classes with no common
invariant subspace and sum zero. Duke Mathematical Journal, 118, no. 2 (2003), 339-352.

J. Fisher and S. Rayan, Hyperpolygons and Hitchin systems, Int. Math. Res. Not. IMRN,
6 (2016), 1839-1870.

E. Franco, M. Jardim and S. Marchesi, Branes in the moduli space of framed sheaves, Bull. Sci.
Math., 141 no. 4 (2017), 353-383.

L. Fredrickson, R.Mazzeo, J. Swoboda, and H. Weiss, Asymptotic geometry of the moduli
space of parabolic SL(2, C)-higgs bundles. arXiv preprint arXiv:2001.03682 (2020).

G. W. Gibbons and S. W. Hawking, Classification of gravitational instanton symmetries, Comm.
Math. Phys., 66 no. 3 (1979), 291-310.

L. Godinho and A. Mandini, Hyperpolygon spaces and moduli spaces of parabolic Higgs
bundles, Adv. Math., 244 (2013), 465-532.

L. Godinho, and A. Mandini, Quasi-parabolic higgs bundles and null hyperpolygon spaces.
arXiv preprint arXiv:1907.01937 (2019).

M. Harada and N. Proudfoot, Hyperpolygon spaces and their cores, Trans. Amer. Math. Soc.,
357 no. 4 (2005), 1445-1467.

T. Hausel, E. Letellier and F. Rodriguez-Villegas, Arithmetic harmonic analysis on character
and quiver varieties, Duke Mathematical Journal, 160 no. 2 (2011), 323-400.

S. Heller and L. P. Schaposnik, 1Branes through finite group actions, J. Geom. Phys.,
129 (2018), 279-293.

N. Hitchin, The self-duality equations on a Riemann surface, Proc. London Math. Soc. (3),
55 no. 1 (1987), 59-126.

N. Hitchin, Stable bundles and integrable systems, Duke Math. J., 54 no. 1 (1987), 91-114.

N. Hitchin, Critical loci for Higgs bundles, Comm. Math. Phys., 366 no. 2 (2019), 841-864.
N. Hitchin, A. Karlhede, U. Lindstrom and M. Rocek, Hyper-Kahler metrics and supersymme-
try, Comm. Math. Phys., 108 no. 4 (1987), 535-5809.

V. Hoskins, and F. Schaffhauser Rational points of quiver moduli spaces.

V. Hoskins and F. Schafthauser, Group actions on quiver varieties and applications, Internat.
J. Math., 30 no. 2 (2019), 1950007, 46.

J. Hurtubise, L. Jeffrey, S. Rayan, P. Selick and J. Weitsman, Spectral curves for the triple
reduced product of coadjoint orbits for SU(3), Geometry and Physics, Oxford Univ. Press,
Oxford, II (2018), pp. 611-622.

M. Kapovich and J. J. Millson, The symplectic geometry of polygons in Euclidean space,
J. Differential Geom., 44 no. 3 (1996), 479-513.

A. Kapustin and E. Witten, Electric-magnetic duality and the geometric Langlands program,
Commun. Number Theory Phys., 1 no. 1 (2007), 1-236.

Kempf, G., and Ness, L. Algebraic geometry (Proc. Summer Meeting, Univ. Copenhagen,
Copenhagen, 1978) (1979), vol. 732 Lecture Notes in Math., Springer, Berlin, pp. 233-243.
A. D. King, Moduli of representations of finite-dimensional algebras, Quart. J. Math. Oxford
Ser: (2), 45 no. 180 (1994), 515-530.

H. Konno, Integrable systems, topology, and physics (Tokyo, 2000), On the cohomology ring
of the hyperKahler analogue of the polygon spaces, Vol, 309, Amer. Math. Soc., Providence,
RI, 2002, pp.129-149 Contemp. Math.

P. B. Kronheimer, The construction of ALE spaces as hyper-Kahler quotients, J. Differential
Geom., 29 no. 3 (1989), 665-683.

1202 Arenigad g1 uo 1sanb Aq 10,9009/9€0€ERY/YIWD/EE0 L 0 L/10p/a[dIlE-00UBAPE/YewWb/WOoo"dNo"olWapED.//:Sd)Y WOy PapEojuMOq



34.

35.

36.

37.

38.

39.

40.

41.

42,
43.

44.

MODULI SPACES OF GENERALIZED HYPERPOLYGONS 25

M. Logares and J. Martens, Moduli of parabolic Higgs bundles and Atiyah algebroids, J. Reine
Angew. Math., 649 (2010), 89-116.

E. Markman, Spectral curves and integrable systems, Compositio Math., 93 no. 3 (1994),
255-290.

J. Marsden and A. Weinstein, Reduction of symplectic manifolds with symmetry, Rep.
Mathematical Phys., S no. 1 (1974), 121-130.

K. McGerty and T. Nevins, Kirwan surjectivity for quiver varieties, Invent. Math., 212 no. 1
(2018), 161-187.

J. McKay, The Santa Cruz Conference on Finite Groups (Univ. California, Santa Cruz,
Calif., Graphs, singularities, and finite groups. Proc. Sympos. Pure Math. Amer. Math. Soc.
Providence, R.1. 1980, vol. 37 pp. 183-186.

H. Nakajima, Instantons on ALE spaces, quiver varieties, and Kac-Moody algebras, Duke
Math. J., 76 no. 2 (1994), 365-416.

D.I. Panyushev and O. S. Yakimova, Poisson-commutative subalgebras and complete inte-
grability on non-regular coadjoint orbits and flag varieties, Mathematische Zeitschrift,
(Jul 2019) 295 no. 1-2 (2020), 101-127.

S. Rayan, Aspects of the topology and combinatorics of Higgs bundle moduli spaces. SIGMA
Symmetry Integrability Geom. Methods Appl. 14 (2018), Paper No. 129, 18.

S. Rayan, Hyperpolygons and Higgs bundles, Oberwolfach Rep., 16 no. 2 (2019), 1361-1363.
Simpson, C. T. An explicit view of the Hitchin fibration on the Betti side for P! minus five
points. Geometry and physics. Vol. II. Oxford Univ. Press, Oxford, 2018, pp. 705-724.

A. Soibelman, Parabolic bundles over the projective line and the Deligne-Simpson problems,
Q. J. Math., 67 no. 1 (2016), 75-108.

1202 Arenigad g1 uo 1sanb Aq 10,9009/9€0€ERY/YIWD/EE0 L 0 L/10p/a[dIlE-00UBAPE/YewWb/WOoo"dNo"olWapED.//:Sd)Y WOy PapEojuMOq



	Moduli Spaces of Generalized Hyperpolygons 
	1. Introduction
	2. Review of Nakajima quiver varieties
	2.1. Doubled quivers
	2.2. Calculus of quiver moment maps

	3. Generalized hyperpolygons
	3.1. Flag varieties and comets
	3.2. Geometry of generalized (hyper)polygons
	3.3. U(1)-action on hyperpolygons

	4. Relationship to Higgs bundles
	4.1. Analogy with Hitchin equations
	4.2. Associated meromorphic Higgs bundle and tame character varieties
	4.3. Comparison in the D"0365D4 case

	5. The integrable system
	6. Further directions
	6.1. Mirror symmetry and triple branes
	6.2. Dualities between tame and wild hyperpolygons

	Acknowledgement
	Funding
	References


