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Abstract

Background: Single-cell RNA sequencing (scRNA-seq) is a powerful profiling technique at the single-cell resolution.
Appropriate analysis of scRNA-seq data can characterize molecular heterogeneity and shed light into the underlying
cellular process to better understand development and disease mechanisms. The unique analytic challenge is to
appropriately model highly over-dispersed scRNA-seq count data with prevalent dropouts (zero counts), making
zero-inflated dimensionality reduction techniques popular for scRNA-seq data analyses. Employing zero-inflated
distributions, however, may place extra emphasis on zero counts, leading to potential bias when identifying the latent
structure of the data.

Results: In this paper, we propose a fully generative hierarchical gamma-negative binomial (hGNB) model of
scRNA-seq data, obviating the need for explicitly modeling zero inflation. At the same time, hGNB can naturally
account for covariate effects at both the gene and cell levels to identify complex latent representations of scRNA-seq
data, without the need for commonly adopted pre-processing steps such as normalization. Efficient Bayesian model
inference is derived by exploiting conditional conjugacy via novel data augmentation techniques.

Conclusion: Experimental results on both simulated data and several real-world scRNA-seq datasets suggest that
hGNB is a powerful tool for cell cluster discovery as well as cell lineage inference.
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Background
Single-cell RNA sequencing (scRNA-seq) has emerged as
a powerful tool for unbiased identification of previously
uncharacterized molecular heterogeneity at the cellular
level [1]. This is in contrast to standard bulk RNA-seq
techniques [2], which measures average gene expression
levels within a cell population, and thus ignore tissue het-
erogeneity. Consideration of cell-level variability of gene
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expressions is essential for extracting signals from com-
plex heterogeneous tissues [3], and also for understanding
dynamic biological processes, such as embryo develop-
ment [4] and cancer [5].
A large body of statistical tools developed for scRNA-

seq data analysis include a dimensionality reduction step.
This leads to more tractable data, from both statistical and
computational point of views. Moreover, the noise in the
data can be decreased, while retaining the often intrin-
sically low-dimensional signal of interest. Dimensionality
reduction of scRNA-seq data is challenging. In addition
to high gene expression variability due to cell heterogene-
ity, the excessive amount of zeros in scRNA-seq hinders
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the application of classical dimensionality reduction tech-
niques such as principal component analysis (PCA). For
instance, in real-world datasets, it has been reported that
the first or second principal components often depend
more on the proportion of detected genes per cell (i.e.,
genes with at least one read) than on the actual biological
signal [6].
Several existing computational tools adopt explicit zero-

inflation modeling to infer the latent representation of
scRNA-seq data. Zero-inflated factor analysis (ZIFA) [7]
extends the framework of probabilistic PCA [8] to the
zero-inflated setting, by modeling the excessive zeros
using Bernoulli distributed random variables which indi-
cate the dropout event. Zero-inflated negative binomial-
based wanted variation extraction (ZINB-WaVE) [9]
directly models the scRNA-seq counts using a zero-
inflated negative binomial distribution, while accounting
for both gene- and cell-level covariates. It infers the model
parameters using a penalized maximum likelihood proce-
dure.
Despite its popularity, using an explicit zero-inflation

term may place unnecessary emphasis on the zero counts,
leading to complication in discovering the latent repre-
sentation of scRNA-seq data. In this paper, we propose
a hierarchical gamma-negative binomial (hGNB) model
to both perform dimensionality reduction and adjust for
the effects of the gene- and cell-level confounding factors
simultaneously. Exploiting the hierarchical structure, the
proposed hGNB model is capable of capturing the high
over-dispersion present in the scRNA-seq data. More pre-
cisely, we factorize the logit of the negative-binomial (NB)
distribution probability parameter to identify latent rep-
resentation of the data. In addition to factorization, linear
regression terms are also included in that logit function to
adjust for the impact of covariates.
In hGNB, a gamma distribution with varying rate

parameter is used to model the cell dependent dispersion
parameter of the NB distribution. The cell-level disper-
sion serves as a means of representing the prevalence of
the dropout events. For instance, cells that are sequenced
deeply will naturally include less dropped-out genes with
zero counts, and thus this will be reflected in the cell
specific dispersion parameter of NB distribution.
We follow a Bayesian framework, similar to bulk RNA-

seq setting [10–14], and derive closed-form Gibbs sam-
pling update equations for the model parameters of
hGNB, by exploiting sophisticated data augmentation
techniques. More specifically, we apply the data augmen-
tation technique of [15] (2015) for the NB distribution,
and the Polya-Gamma distributed auxiliary variable tech-
nique of [16] (2013) for the closed-form inference of
regression coefficients and also latent factor parameters,
removing the need for non-trivial Metropolis-Hastings
correction steps [17]. Experimental results on several

real-world scRNA-seq datasets demonstrate the superior
performance of hGNB to identify cell clusters, especially
in complex settings, and also its potential application in
cell lineages inference.

Methods
hGNBmodel
In this section we present the hierarchical gamma-
negative binomial (hGNB) model for factor analysis of
scRNA-seq data. The graphical representation of hGNB
is shown in Fig. 1. The parameters of the hGNB model
with their interpretations in the context of scRNA-seq
experiments are presented in Table 1. Let nvj denote the
number of sequencing reads mapped to gene v ∈ {1, ...,V }
in the cell j ∈ {1, ..., J}. Under the hGNB model, gene
counts are distributed according to a negative binomial
(NB) distribution:

nvj ∼ NB
(
rj, pvj

)
, (1)

where rj and pvj are dispersion and probability param-
eters of NB distribution, respectively. The probability
mass function (PMF) of this distribution can be expressed
as fN

(
nvj

) = �(nvj+rj)
nvj !�(rj)

pnvjvj
(
1 − pvj

)rj , where �(·) is the
gamma function.
Data from scRNA-seq experiments exhibit high vari-

ability between different cells, even for genes with
medium or high levels of expression. To capture this
variability, we impose a gamma prior on the cell-level
dispersion parameters as

rj ∼ Gamma(e0, 1/h), (2)

where for simplification, the hyper-parameter e0 is set to
0.01 in our experiments, and the rate h is learned during
the Gibbs sampling inference, presented in the following
section. This hierarchical prior on the dispersion param-
eter, enhances the flexibility of NB distribution to capture
the high over-dispersion of scRNA-seq counts, without
the need for explicit zero-inflation modeling.
To account for various technical and biological effects

common in scRNA-seq technologies, we impose a regres-
sion model on the logit of NB probability parameter as

ψvj = logit
(
pvj

) = βT
v xj + δTj zv + φT

v θ j. (3)
With this particular formulation, the expected count for
gene v in cell j can be written as

E
[
nvj

] = rjeψvj . (4)

Thus the regression and factorization terms in (3) can
directly adjust the value of expected gene counts in differ-
ent samples.
The three terms in (3) are integrated to capture dif-

ferent expression variability sources. In the first term, xj
is a known vector of P covariates for cell j and βv is
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Fig. 1 Graphical representation of the hierarchical gamma-negative binomial (hGNB) model

the regression-coefficient vector adjusting the effect of
covariates on gene v. The covariate vector xj can represent
variations of interest, such as cell types, or unwanted vari-
ations, such as batch effects or quality control measures.
An intercept term can also be included in these cell-
level covariates to account for gene dependent baseline
expressions.
In the second term, zv is a vector of Q covariates for

gene v, representing gene length or GC-content for exam-
ple [18], and δj is its associated regression-coefficient
vector. We also include a fixed intercept element in zv
to account for cell-specific expressions, such as the size
factors representing differences in sequencing depth.
In the third term, φT

v θ j corresponds to the latent factor
representation of the count nvj, after accounting for the
effects of gene- and cell-level covariates. More precisely,

Table 1 Parameters of the hierarchical gamma-negative
binomial (hGNB) model and their interpretations in the context
of scRNA-seq data

Parameter Constraint Interpretation

rj rj > 0 Expression heterogeneity of
genes in sample j

φvk
∑V

v=1 φvk = 1, φvk > 0 Gene-latent factor association

θjk θkj > 0 Popularity of factor k in sample j

βvp βvp ∈ R Impact of cell covariate p on
expression of gene v

δjq βvp ∈ R Impact of gene covariate q on
expression of cell j

The inputs of hGNB are gene counts nvj and vector of cell- and gene-level
covariates xj and zv

the unknown K × 1 vector φv contains the factor load-
ing parameters which determine the association between
genes and latent factors. Moreover, the unknown K × 1
vector θ j encodes the popularity of the K factors in the
expression of cell j.
We place independent zero-mean normal distributions

on the components of the regression coefficient parame-
ters βv and δj as

βv ∼
P∏

p=1
N

(
βvp; 0,α−1

p

)
,

δj ∼
Q∏

q=1
N

(
δjq; 0, η−1

q

)
, (5)

where αp and ηq are precision parameters of the normal
distributions and gamma priors are imposed on them.
These priors are known as automatic relevance deter-
mination (ARD), which are effective tools for pruning
large numbers of irrelevant covariates [19, 20]. In addi-
tion, by assuming identical precision for components of
the regression coefficients across all genes or samples,
hGNB borrows statistical strengths to infer these preci-
sion parameters.
We impose independent normal priors on latent factor

loading and score parameters φv and θ j:

φv ∼ N
(
φv; 0, IK

)
,

θ j ∼
K∏

k=1
N

(
θjk ; 0, γ −1

k

)
. (6)
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Note that the posterior for these terms is not generally
independent or normal, but accounts for the statistical
dependence as reflected in the data.
We complete the model by imposing a gamma prior on

the precision parameters of normal distributions, and also
the rate parameter of gamma distributions. Specifically,
throughout the experiments, we set both the shape and
rate of these gamma priors to 0.01.

Inference via Gibbs sampling
In this section, we provide an efficient inference algorithm
that adopts data augmentation techniques tailored to our
hGNBmodel. Algorithm 1 summarizes all the steps in the
Gibbs sampling algorithm.

Sample dispersion parameter We start with the data
augmentation technique developed for inferring the NB
dispersion parameter [15]. More precisely, the negative
binomial random variable n ∼ NB(r, p) can be generated
from a compound Poisson distribution as

n =
�∑

t=1
ut , ut ∼ Log(p), � ∼ Pois (−r ln(1 − p)) ,

where u ∼ Log(p) corresponds to the logarithmic ran-
dom variable [21], with the PMF fU(u) = − pu

u ln(1−p) ,
u ∈ {1, 2, ...}. As shown in [15], given n and r, the distribu-
tion of � is a Chinese Restaurant Table (CRT) distribution,
(�|n, r) ∼ CRT(n, r), which can be generated as � =
∑n

t=1 bt , bt ∼ Bernoulli
(

r
r+t−1

)
.

Utilizing this augmentation technique, for each
observed count nvj, an auxiliary count is sampled as

(
�vj|−

) ∼ CRT
(
nvj, rj

)
. (7)

Using gamma-Poisson conjugacy, the cell-dependent dis-
persion parameters are updated as

(
rj|−

) ∼ Gamma
(

e0 +
∑

v
�vj,

1
h − ∑

v ln
(
1 − pvj

)

)

.

(8)

Sample regression coefficients For the regression coef-
ficients modeling potential covariate effects, the lack of
conditional conjugacy precludes immediate closed-form
inference. Therefore we adopt another data augmenta-
tion technique, specifically designed for hGNB, to infer
the regression coefficients βv and δj, relying on the Polya-
Gamma (PG) data augmentation [16, 22].
Denote ωvj as a random variable drawn from the

PG distribution as ωvj ∼ PG(nvj + rj, 0). Since

Eωvj

[
exp

(
−ωvjψ

2
vj/2

)]
= cosh(nvj+rj)

(
ψ2
vj/2

)
, the likeli-

hood of ψvj in (3) can be expressed as

L
(
ψvj

) ∝
(
eψvj

)nvj
(
1 + eψvj

)nvj+rj

∝ exp
(nvj − rj

2
ψvj

)
Eωvj

[
exp

(
−ωvjψ

2
vj/2

)]
.

(9)

Exploiting the exponential tilting of the PG distribution in
[16], we draw ωvj as

(
ωvj|−

) ∼ PG
(
nvj + rj,ψvj

)
. (10)

Given the values of the auxiliary variablesωvj for j = 1, ..., J
and the prior in (5), the conditional posterior of βv can be
updated as

(
βv|−

) ∼ N
(
μ

(β)
v ,
(β)

v
)
, (11)

where 

(β)
v =

(
diag (α1, ...,αP) + ∑

j ωvjxjxTj
)−1

and

μ
(β)
v = 


(β)
v

[∑
j

(
nvj−rj

2 − ωvj
(
δTj zv + φT

v θ j
))

xj
]
.

A similar procedure can be followed to derive the con-
ditional updates for cell-level regression coefficients as

(
δj|−

) ∼ N
(
μ

(δ)
j ,
(δ)

j

)
, (12)

where 

(δ)
j = (

diag
(
η1, ..., ηQ

) + ∑
v ωvjzvzTv

)−1 and

μ
(δ)
j = 


(δ)
j

[∑
v

(
nvj−rj

2 − ωvj
(
βT
v xj + φT

v θ j
))

zv
]
.

Sample latent factor parameters Using the likelihood
function in (9) and the priors in (6), we can derive closed-
form update steps for factor loading and score parameters.
More specifically, the full conditional for factor loading φv
is a normal distribution:

(
φv|−

) ∼ N
(
μ

(φ)
v ,
(φ)

v
)
, (13)

where 

(φ)
v =

(
IK + ∑

j ωvjθ jθ
T
j

)−1
and μ

(φ)
v =



(φ)
v

[∑
j

(
nvj−rj

2 − ωvj
(
βT
v xj + δTj zv

))
θ j

]
.

The full conditional for factor score θ j is also a normal
distribution:

(
θ j|−

) ∼ N
(
μ

(θ)
j ,
(θ)

j

)
, (14)

where 

(θ)
j = (

diag (γ1, ..., γK ) + ∑
v ωvjφvφ

T
v
)−1 and

μ
(θ)
j = 


(θ)
j

[∑
v

(
nvj−rj

2 − ωvj
(
βT
v xj + δTj zv

))
φv

]
.
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Sample precision and rate The precision parameters of
normal distributions in (5) and (6) can be updated using
the normal-gamma conjugacy:

αp ∼ Gamma
(

e0 + V/2,
1

f0 + ∑V
v=1 βvp/2

)

,

ηq ∼ Gamma
(

e0 + J/2,
1

f0 + ∑V
v=1 δjq/2

)

,

γk ∼ Gamma
(

e0 + J/2,
1

f0 + ∑V
v=1 θjk/2

)

. (15)

Finally, the rate of gamma distribution in (2) can be
updated using the gamma-gamma conjugacy with respect
to the rate parameter:

Algorithm 1 hGNB model inference
Inputs: scRNA-seq counts, design matrix of covariate
effects, N
Output: gene module membership matrix

Initializemodel parameters
# Do Gibbs sampling:
for iter = 1 to N do

Sample �vj using the CRT distribution (Eq. (7))
Update rj using the gamma-Poisson conjugacy

(Eq. (8))
Sample auxiliary variables ωvj, using the PG distri-

bution (Eq. (10))
Update cell- and gene-level regression coefficients

(Eq. (12),(11))
Update factor loadings and scores (Eq. (13),(14))
Update αp, ηq and γk (Eq. (15))

end for

h ∼ Gamma
(

e0(1 + J),
1

f0 + ∑J
j=1 rj

)

. (16)

Results
We evaluate our hGNB model on four different sets of
real-world scRNA-seq data from different platforms, and
compare its performance to those of principal component
analysis (PCA), ZIFA [7], and ZINB-WaVE [9]. In the fol-
lowing, We briefly describe these scRNA-seq datasets. To
pre-process these datasets when needed, we followed the
same procedures as in [9].
V1 dataset. This dataset characterizes more than 1600

cells from the primary visual cortex (V1) in adult male
mice, using a set of established Cre lines [23]. A subset
of three Cre lines, including Ntsr1-Cre, Rbp4-Cre, and
Scnn1a-Tg3-Cre, that respectively label layer 4, layer 5,

and layer 6 excitatory neurons were selected. We only
retained 285 cells that passed the authors’ quality control
(QC) filters. The dimensionality reduction methods were
only applied to the 1000 most variable genes.
S1/CA1 dataset. This dataset characterizes 3005 cells

from the primary somatosensory cortex (S1) and the hip-
pocampal CA1 region, using the Fluidigm C1 microflu-
idics cell capture platform followed by Illumina sequenc-
ing [24]. Gene expression is quantified by UMI counts.
mESC dataset. This dataset includes the transcrip-

tome measurement of 704 mouse embryonic stem cells
(mESCs), across three culture conditions (serum, 2i, and
a2i), using the Fluidigm C1microfluidics cell capture plat-
form followed by Illumina sequencing [25]. We excluded
the samples that did not pass the authors’s QC filters,
resulting in a total of 169 serum cells, 141 2i cells, and 159
a2i cells. The dimensionality reductionmethods were only
applied to the 1000 most variable genes.
OE dataset. This data characterizes 849 FACS-purified

cells from the mouse OE, using the Fluidigm C1 microflu-
idics cell capture platform followed by Illumina sequenc-
ing [26]. We followed the filtering procedure of [27],
and filtered the cells that exhibited poor sample quality,
retaining a total of 747 cells.
For all datasets, hGNB was run using 2000 MCMC iter-

ations, where after the first 1000 burn-in iterations, the
posterior samples with the highest likelihood were col-
lected as the point estimates of model parameters corre-
sponding to latent factors. In the dimensionality reduction
analysis below, following [9], for S1/CA1 dataset we set
the number of latent factors K = 3, and for V1 and mESC
we set K = 2. The average run time for hGNB with 2000
MCMC iterations on a cluster compute node with Intel
Xeon 2.5GHz processor was approximately 4 hours.

Goodness-of-fit of hGNBmodel
We have examined the goodness-of-fit of hGNB model
on V1, S1/CA1 and mESC datasets, using the mean-
difference (MD) plots. Figure 2 shows the MD plot for
the S1/CA1 dataset, where the y-axis is the difference
between observed counts and the expected counts under
hGNB, and x-axis is the average of these two sets of
counts. The solid red line in this figure, which repre-
sents the local regression fit [28] to the data, resides near
zero for various average levels. This supports the good
fit of hGNB model to the highly over-dispersed scRNA-
seq data. Similar trends are observed for V1 and mESC
datasets (Supplementary materials).

Capturing zero-inflation
Next we evaluate the performance of hGNB on simu-
lated data based on the zero-inflated NB distribution of
[9] (ZINB-WaVE) to show that hGNB faithfully captures
zero inflation without the need of explicit zero-inflation
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Fig. 2Mean-difference (MD) plot for S1/CA1 dataset. The solid red line represents the local regression fit to the data

modeling. Specifically, the capability of hGNB to recover
true clustering structure of cells under three zero-count
prevalence levels with two different total numbers of cells.
ZINB-WaVE models the gene count n as

n ∼ πδ0 + (1 − π)NB
(
n;μ, σ 2) ,

where π is the zero-inflation probability and μ and σ 2 are
mean and variance of the NB distribution. For each gene
and cell, the zero-inflation probability π and the NBmean
μ are linked to regression and factorization as in (3). In
our simulations, the parameters were learned based on
the S1/CA1 dataset. Genes that did not have at least five
reads in at least five cells were filtered out and 1000 genes
were then sampled at random for each dataset. The num-
ber of latent factors was set to K = 2. To simulate cell
clustering, a K-variate Gaussian mixture distribution with
three components was fitted to the inferred factor score
parameters, and then for each simulated dataset, factor
scores were generated from K-variate Gaussian distribu-
tions. By adjusting the value of regression coefficients in
the zero-inflation term of ZINB-WaVE model, we gen-
erated synthetic datasets with three levels of zero-count

Table 2 Clustering performance based on synthetic data
(J = 100)

Zero-Inflation 40% 60% 80%

hGNB 0.3645 ±0.011 0.1698 ±0.007 0.0905 ±0.009

PCA 0.2929 ±0.012 0.1265 ±0.012 0.0631 ±0.013

ZIFA 0.2642 ±0.019 0.1314 ±0.011 0.0728 ±0.010

ZINB 0.3501 ±0.022 0.1641 ±0.011 0.0911 ±0.010

Monocle 0.2453 ±0.015 0.1155 ±0.017 0.0613 ±0.010

scVI 0.3122 ±0.029 0.1476 ±0.023 0.0593 ±0.005

percentages as 40%, 60% and 80% (for details refer to [9]).
The number of cells were set to J = 100 and J = 1000.
For each scenario, including cell numbers and zero-count
prevalence (sparsity) levels, we simulated 10 datasets.
We evaluate the performance of our method for the

clustering task based on the average silhouette width
measure. The silhouette width sj of sample j is defined as

sj = bj − aj
max

{
aj, bj

} ,

where aj is the average distance between sample j and all
samples in the cluster that it belongs to, and bj is the min-
imum average distance between sample j and samples in
other clusters.
Tables 2 and 3 show the mean and standard deviation

of clustering average silhouette width based on multiple
runs of the above simulation setup, for different zero-
count prevalence levels and cell numbers. In the setting
with small sample size, for 40% and 60% zero fractions,
hGNB has the best clustering silhouette width, and for
the 80% zero fraction its performance is identical to that
of ZINB-WaVE. In the setting with moderate sample size,

Table 3 Clustering performance based on synthetic data
(J = 1000)

Zero-Inflation 40% 60% 80%

hGNB 0.3697 ±0.007 0.1470 ±0.010 0.0669 ±0.008

PCA 0.2594±0.009 0.0964 ±0.018 0.0349 ±0.018

ZIFA 0.3189 ±0.011 0.1191 ±0.004 0.0475 ±0.002

ZINB 0.3574 ±0.019 0.1534 ±0.013 0.0770 ±0.009

Monocle 0.2316 ±0.015 0.0995 ±0.011 0.0490 ±0.001

scVI 0.2590 ±0.046 0.1025 ±0.014 0.0351 ±0.006
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Fig. 3 Low-dimensional representations of the S1/CA1 dataset. Panels correspond to (a) PCA (on total-count normalized data), (b) ZIFA (on
total-count normalized data), (c) ZINB-WaVE, and (d) hGNB

hGNB has the best clustering silhouette width for 40%
zero fraction, and for 60% and 80% zero fractions it closely
follows the performance of ZINB-WaVE. This suggests
that the hierarchical structure of hGNB equips it with the
capacity to capture highly over-dispersed count data, even
though an explicit zero-inflation term is not included in its
model. Also, ZINB-WaVE requires large enough samples
to have robust inference results due to the introduction
of zero-inflation terms in its model. ZIFA and PCA have
a less competitive performance, as they normalize the
data before learning its latent representation. Further-
more, in these tables, we have included the performance of
Monocle [29] and scVI [30]. Despite exploiting indepen-
dent component analysis (Monocle) or a deep generative
framework (scVI), these two methods also fail to compete
with hGNB in terms of cell clustering quality.

Dimensionality reduction
We applied hGNB to the three scRNA-seq datasets, V1,
S1/CA1 and mESC, to assess its power to separate cell
clusters in the low dimensional space, and compared
it to PCA, ZIFA, and ZINB-WaVE methods. Figure 3
illustrates the projected scRNA-seq expression of pro-
filed cells in the two-dimensional space for S1/CA1
dataset. The proposed hGNB model provides more

biologically meaningful latent representations of scRNA-
seq gene expressions for S1/CA1 cells, especially com-
pared to PCA and ZIFA that do not model the counts
directly. Furthermore, hGNB leads to more separated
clusters of cells in the two-dimensional space, com-
pared to ZINB-WaVE. Specifically, hGNB distinguishes
microglia from endothelial-mural cells, while
ZINB-WaVE fails to accomplish this task.
To examine the dimensionality reduction results more

carefully, we used the average silhouette width as a mea-
sure of goodness for clustering.
Figure 4 shows the average silhouette width of different

methods on V1, S1/CA1, and mESC datasets. For PCA
and ZIFA, the results on both raw counts and normalized
counts are included in this figure. For S1/CA1 dataset,
which has the highest number of clusters, the proposed
hGNB method outperforms all other methods in terms of
clustering average silhouette. For mESC dataset, perfor-
mance of hGNB is comparable to ZINB-WaVE, and it is
significantly better than PCA and ZIFA. For V1 dataset,
however, we observe that hGNB, besides PCA applied to
raw counts, possess the lowest average silhouette. By fur-
ther examination of the latent representations of cells for
this dataset (Supplementary materials), we observe that
all methods split the Rbp4-Cre_KL100 cells into two

Fig. 4 Average silhouette width in scRNA-seq datasets (a) S1/CA1, (b) mESC, and (c) V1. Silhouette widths were computed in the low-dimensional
space, using the groupings provided by the authors of the original publications. PCA and ZIFA were applied with both unnormalized (RAW) data
and after total count (TC) normalization
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clusters, one of them located near Scnn1a-Tg3-Cre
cells, suggesting the presence of batch effects, which have
led to confounding of latent representations [9].

Identification of developmental lineages
In addition to characterization of cell types, we further
demonstrate the capability of hGNB to derive novel bio-
logical insights, by analyzing a set of cells from the mouse
olfactory epithelium (OE). The samples were collected
to identify the developmental trajectories that generate
olfactory neurons (mOSN), sustentacular cells (mSUS),
and microvillous cells (MV) [26].
We first performed dimensionality reduction on the OE

dataset by applying hGNB with K = 50. Next, we clus-
tered the cells using the low-dimensional factor score
parameters θkj. More specifically, the resampling-based
sequential ensemble clustering (RSEC) framework imple-
mented in the RSEC function from the Bioconductor R
package clusterExperiment [31] was applied to fac-
tor scores, leading to identification of 14 cell clusters. The
correspondence between the detected clusters and the
underlying biological cell types is presented in Table 4. In
addition to these already known cell clusters in OE, hGNB
is able to detect new clusters, potentially offering novel
biological insights.
We further investigated the potential benefit of using

the learned latent representation by our proposed hGNB
model to infer branching cell lineages and order cells
by developmental progression along each lineage. To
infer the global lineage structure (i.e., the number of
lineages and where they branch), a minimum spanning
tree (MST) was constructed on the clusters identified
above by RSEC. We used the R package slingshot
[32]. Figure 5 illustrates the inferred lineages for the

Table 4 Correspondence between identified clusters and cell
types in OE dataset

Cell Type Clusters

GBC cl4,cl9

mSUS cl2,cl3,cl5,cl11

mOSN cl8,cl12,cl13

Immature Neurons cl10

MV cl14

OE dataset, in a two-dimensional space obtained by
applying multi-dimensional scaling (MDS) algorithm
to the factor scores learned by hGNB. There are
three branches in the inferred lineages, with endpoints
located in microvillous (MV), mature olfactory sen-
sory neurons (mOSN), and mature sustentacular (mSUS)
cells.

Conclusions
We propose a hierarchical Bayesian gamma-negative
binomial (hGNB) model for extracting low dimen-
sional representations from single-cell RNA sequencing
(scRNA-seq) data. hGNB obviates the need for explicit
modeling of the zero-inflation prevalent in scRNA-seq
count data. Our hGNB can naturally account for covari-
ate effects at both the gene and cell levels, and does not
require the commonly adopted pre-processing steps such
as normalization. By taking advantage of sophisticated
data augmentation techniques, hGNB possesses efficient
closed-formGibbs sampling update equations. Our exper-
imental results on real-world scRNA-seq data demon-
strates that hGNB is capable of identifying insightful cell
clusters, especially in complex settings.

Fig. 5 Lineage inference on the OE dataset. The low dimensional data representation derived by hGNB were used to cluster cells by RSEC. The
minimum spanning tree (MST) of the derived clusters constructed by slingshot is also displayed
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