A CONTINUATION PRINCIPLE FOR PERIODIC BV-CONTINUOUS
STATE-DEPENDENT SWEEPING PROCESSES*

MIKHAIL KAMENSKIIT, OLEG MAKARENKOV?#, AND LAKMI N. WADIPPULI}

Abstract. We consider a Caratheodory differential equation with a state-dependent convex con-
straint that changes BV-continuously in time (a perturbed BV-continuous state-dependent sweeping
processes). By setting up an appropriate catching-up algorithm we prove solvability of the initial
value problem. Then, for sweeping processes with T-periodic right-hand-sides, we prove the existence
of at least one T-periodic solution. Finally, we investigate a T-periodic sweeping process which is
close to an autonomous sweeping process with a constant constraint and prove the existence of a
T-periodic solution specifically located near the boundary switched equilibrium of the autonomous
sweeping process.
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1. Introduction. A variety of applications in elastoplasticity, economics, elec-
trical circuits (see Adly et al [1, 2] and references therein) lead to a constrained
differential equation

(L.1) —@(t) € Nawy(x(t)) + f(t,2(t)),  z€E,

with a convex moving set t — A(t) of just bounded variation (with respect to the
Hausdorff metric). Here F is a finite-dimensional vector space and N4 (z) is a so-called
normal cone defined for closed convex A C E as

(1.2) NA(z){ é?eE:(f,o—x)SO, for any c € A}, i;;ﬁ

Whereas the case of Lipschitz t — A(t) always leads (Edmond-Thibault [15]) to the
existence and uniqueness of an absolutely continuous solution x(t) for any initial
condition (under natural assumptions on f), the case where ¢t — A(t) is a convex-
valued function of bounded variation doesn’t ensure solvability of (1.1) in the class of
absolutely continuous functions. That is why an extended concept of the derivative
(called Radon-Nikodym concept) is required in (1.1) when the map ¢t — A(t) is a
function of bounded variation, in which case equation (1.1) is usually formulated in
terms of differential measure dxr of BV-continuous function z and Lebesgue measure
dt as

(1.3) —dx € NA(t)(SU) + f(t,x)dt, z€E.
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The formulation (1.3) follows Edmond and Thibault [15]. A formulation of a slightly
different form —Dz € Ny (x) + f(t,x) is used in Castaing and Monteiro Marques
[10]. Existence and uniqueness of solutions to (1.3) as well as the existence of periodic
solutions has been established by Castaing and Monteiro Marques in [10]. We also
note that [10] is probably the only paper that addresses BV periodic solutions in
sweeping processes for measures (compared to a relatively intensively studied case of
absolutely continuous periodic solutions, see [3, 23, 22, 4, 19, 20, 30, 37] or [8], that
can be used to design tracking to a periodic solution). The problem of existence and
uniqueness of solutions in the unperturbed case (f = 0) was addressed in Moreau
[34], Monteiro Marques [32], Valadier [41]. Further state-independent extensions of
(1.3) were considered in Adly et al [2], Edmond-Thibault [15], Colombo and Monteiro
Marques [11].

Motivated by applications to elastoplastic models with hardening and softening (see
e.g. Francfort-Stefanelli [17], Kunze [23]), the goal of the present paper is to investi-
gate the existence of T-periodic solutions to the following state-dependent version of
(1.3)

(1.4) —dx € Nagoy(x) + f(t,z)dt, =€k,

whose right-hand-side is T-periodic in ¢. To achieve this goal, we use topological degree
methods. Our main idea is in establishing a nondegenerate deformation between
sweeping process (1.4) and a simpler sweeping process, for which certain topological
characteristics (topological degree) are readily available. Such a strategy is known as
continuation principle in the literature, see e.g. Capietto et al [9] in references therein.
To implement the proposed strategy, the continuity of solutions of (1.4) with respect
to both initial conditions and small deformations is required. Important results on
the existence of solutions to (1.4) have been achieved in Kunze and Monteiro Marques
[25], Nacry [36] (that also contain interesting ideas towards continuity), but continuity
results are not explicitly stated. Furthermore, the analysis in [25, 36] assumes A(t, )
Lipschitz-continuous in both the variables, so the solutions of (1.4) are absolutely
continuous and don’t require any Radon-Nikodym derivative concepts.

That is why a significant part of the paper is devoted to developing a solution ap-
proximation scheme for (1.4) (called catching-up algorithm), whose individual ap-
proximations satisfy the requirement of continuous dependence on initial conditions
and parameter perturbation. As explained in Remark 6.5, we can establish such a
catching-up algorithm only for sweeping process (1.4) of the following particular form

(15) —dz € NA+a(t)+C(z) (ZIZ) + f(t,l’)dt, zek,

where a is a BV-continuous function and ¢ : F — E is a Lipschitz function. The
existence of T-periodic solutions to (1.5) is then proved by showing that

(1.6) d(I — P",Q) #0

for the Poincaré maps P™ : Q — FE of the n-th approximation of the catching-up
scheme and suitable Q C E. Here d(I — P", Q) is the topological degree of the map
P™ with respect to an open bounded set @ (see Krasnoselskii-Zabreiko [29]). After
we get the existence of a fixed point for P™ we pass to the limit as n — oo on the
respective T-periodic solutions of sweeping process (1.5) and get the existence of a
T-periodic solution to (1.5) even though we don’t know whether lim,,_, ., P"(z) exists
or not.



The paper offers both global and local sufficient conditions to ensure (1.6). The global
sufficient condition is based on construction of such a convex set () which contains
all possible values of the set A + a(t) + c(z(t)) for all possible solutions of (1.5). In
this way, we can show that P"(Q) C @ for sufficiently large n € N, which ensures
(1.6) (here P™(Q) stays for the image of @ under the action of the map P™ and
Q stays for the closure of Q). Global sufficient conditions don’t need constructing
any nondegenerate transformation of sweeping process (1.5) (i.e. doesn’t require any

continuation principle).

A continuation principle is required to discover local sufficient conditions ensuring
(1.6). To design sufficient conditions that ensure the validity of (1.6) in a desired
region @ (called local sufficient conditions), we are no longer allowed to enlarge @ as
much as we want, so we have to seek for alternative deformations of (1.6) that stick
to the given region ). We go here by a continuation approach and replace (1.5) by a
parameter dependent sweeping process

(1.7) —dx € Napa )+ezn (@) + f(t, 2, N)dt, e E, AeR.
Accordingly, we don’t deal with the relation (1.6) but rather replace it by
(1.8) d(I - P>,Q) #0,

where PM™ : () — E is the Poincaré map of the n-th approximation of the catching-up
scheme for sweeping process (1.7) (the formal definition of P is given in Section 7.1).

We, therefore, assume that (1.6) corresponds to (1.8) with some A = A\; and prove
the validity of (1.8) for A = A; building upon some good properties of P for A\ = 0
that guarantee

(1.9) d(I — P>, Q) #0

combined with nondegenerate homotopy between P> and P%",

To ensure (1.9), we offer both topological (Theorem 5.1) and algebraic (Theorem 8.6)
conditions. The topological condition simply assumes that (1.8) holds for n = oo,
that leads to an analogue of standard continuation principles available for ordinary
differential equations, see e.g. Capietto et al [9] and Kamenskii et al [21].

To obtain easily verifiable algebraic conditions ensuring (1.9), this paper takes a
straightforward route and offers sufficient conditions for asymptotic stability of a
point zq of the target set @. Such an approach is based on the fact that the topolog-
ical degree of a Poincaré map in the neighborhood of an asymptotically stable fixed
point equals 1. However, considering xy to be an asymptotically stable equilibrium
of (1.7) with A = 0 that doesn’t interact with the boundary of the constraint is not
of interest. Periodic solutions generated by such an equilibrium when A changes from
A =0 to A > 0 will simply be solutions of the differential equation

(1.10) —dz = f(t,z,\)dt, z€E, \eR.

Considering x to be an equilibrium of (1.10) that belongs to the boundary of A+c(xg)
is structurally unstable. Small deviation of A from A = 0 to A > 0 may include
a perturbation that moves the equilibrium towards the interior of the constraint in
which case the periodic solutions obtained will again be solutions of (1.10) rather than
solutions of (1.7).



That is why a non-equilibrium concept of an asymptotically stable point xg is required
to design periodic solutions of (1.7) which are intrinsically sweeping (i.e. interact with
the boundary of the constraint of (1.7)).

The required concept of asymptotically stable point xg has been recently developed
in Kamenskii-Makarenkov [20] based on the notion of switched boundary equilibrium
well known in control theory (see e.g. Bolzern-Spinelli [6]). To introduce the concept
of switched boundary equilibrium for sweeping process (1.7) at A = 0, we will assume
that, at A = 0, sweeping process (1.7) takes the form

(1.11) — & € Na(z) + folx), x€E,

where A is just a constant convex closed bounded set and fy is Lipschitz continu-
ous. Following Kamenskii-Makarenkov [20], x is a switched boundary equilibrium of
(1.11), if fo(xo) is normal to the boundary 0A of A and if fo(xo) points inwards A.
To prove the validity of (1.8) for A = 0, we use a result by Krasnoselskii-Zabreiko [29]
which allows to deduce the value of the topological degree of a Poincaré map from
asymptotic stability of a fixed point of this map. To this end, we offer sufficient con-
ditions for asymptotic stability of switched boundary equilibrium zy of (1.11). Such
a result (Theorem 8.5) is established in the present paper for the first time ever.

The paper is organized as follows. In the next section of the paper we introduce a
formal definition of sweeping process (1.7) following Castaing and Monteiro Marques
[10]. The fundamental result of the paper (Theorem 3.1) on solvability of the initial-
value problem for (1.5) (and, therefore, for (1.7) too) is formulated in Section 3. In
the same section we introduce our concept of generalized initial condition that we
repeatedly use in the paper later and which allows us to consider solutions of (1.5)
with initial conditions outside of A+a(t)+c(z). We simply say that x(¢) is a solution of
(1.5) with a generalized initial condition ¢ € E, if (0) is the solution of the equation
x(0) = proj(q, A + a(0) + ¢(z(0))), which has a unique solution z(0) according to
Lemma 6.3 (this unique solution is denoted by V°(gq) in the sequel).

Sections 4 and 5 contain formulations of our results on the existence of T-periodic
solutions to (1.5). Section 4 offers a theorem (Theorem 4.1) saying that any 7-
periodic state-dependent sweeping process (1.5) always admits at least one T-periodic
solution, if the right-hand-sides of (1.5) are T-periodic. Remarkably, the theorem
doesn’t assume uniqueness or continuous dependence of solutions of (1.5) on initial
conditions.

Abstract results on continuation of T-periodic solutions to (1.7) are presented in
Section 5. We assume that for A = 0 the sweeping process (1.7) admits a Poincaré
map P (over time T') and formulate (Theorem 5.1) a standard continuation principle:
if the topological degree d(I — P° o V°, Q) # 0 for some open bounded set Q C E and
if none points of the boundary of @ are initial conditions of T-periodic solutions of
sweeping process (1.7) for any A € [0, \1] (non-degenerate deformation), then, for
any A € [0, \1], sweeping process (1.7) admits a T-periodic solution x. A result on
the existence of A\; > 0 such that the non-degenerate deformation assumption of
Theorem 5.1 holds is also presented (Theorem 5.2) in Section 5.

Section 6 contains proofs of Theorems 3.1-5.2. The proof of the existence of solutions
is based on introducing (section 6.2) an implicit catching-up scheme (6.4)-(6.7), which
in turn relies on the following two ideas: (i) Castaing and Monteiro Marques change
of the variables [10, Theorem 4.1] that converts (section 6.1) the perturbed sweeping
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process (1.7) with differential measure dzx into a non-perturbed sweeping process (6.2)
for the derivative ‘Z—Zl with respect to the variation measure |du| of du; (ii) Kunze
and Monteiro Marques lemma ([23, Lemma 7]) to resolve (Lemma 6.3) the implicit
catching-up scheme (6.4)-(6.7) with respect to the implicit variable. Furthermore, our
Lemma 6.3 extends [23, Lemma 7] by proving continuous dependence of scheme (6.4)-
(6.7) on initial condition, that gave us continuity of Poincaré maps PM" (section 7.1).
The convergence of the scheme (6.4)-(6.7) is established in section 6.3 where we prove
(Lemma 6.7) convergence of the approximations {uy}nen of solution u of (6.2) and
then prove (Lemma 6.9) convergence of the respective approximations {z,},en of
solution x of sweeping process (1.7). In other words, Lemma 6.9 states that the change
of the variables of Castaing and Monteiro Marques [10, Theorem 4.1] is continuous
with respect to time-discretization. Finally, a result by Monteiro Marques [32, p. 15-
16] (which is also Proposition 6 in Valadier [41]) is used to prove (Theorem 6.11 of
section 6.4) that the limit of catching-up scheme (6.4)-(6.7) is a solution of (1.7).

Section 8 is devoted to establishing conditions for the validity of (1.8) at A =0in a
neighborhood @ of a switched boundary equilibrium zg. Specifically, as mentioned
earlier, we assume that, for A = 0 sweeping process (1.7) takes the form (1.11) and
discover conditions for asymptotic stability of zyp € JA. In particular, in section 8
we extend the two-dimensional approach of Makarenkov and Niwanthi Wadippuli [30]
and derive a differential equation of sliding motion along d A, for which xg is a regular
equilibrium whose stability can be investigated (Theorem 8.5) over the eigenvalues
of the respective linearization. Assuming that the real parts of these eigenvalues
are negative we conclude that d(I — P° o V° Q) = 1 and establish (Theorem 8.6)
the existence of T-periodic solutions near xy for all BV-continuous state-dependent
sweeping processes (1.7) that approaches (1.11) when A\ — 0.

Conclusions and Acknowledgments sections follows Section 8.

The very end of the paper (Appendix A) includes a flowchart of the results of the
paper that the reader can use to navigate through the proofs easier.

2. Definition of solution. In what follows, B([0,7]) is the family of Borel
subsets of [0, T]. A Borel vector measure on [0,T] is a map p : B([0,T]) — E such that
w (U2 B,) = 522, u(By,) for any sequence {B,}52; of mutually disjoint elements of
B([0,T]), see Recupero [38, §2.4] or Dinculeanu [14, Definition 1, §I11.14.4, p. 297].

According to Dinculeanu [14, Theorem 1, § II1.17.2, p. 358] (see also Recupero [38]),
any BV-continuous function z : [0, 7] — E admits a unique vector measure of bounded
variation dz : B([0,7]) — E (called Stieltjes measure in [14]) such that for every
0 <ty <ty <T we have

dz((t1,t2)) = x(t2) — x(t1), da([ts,t2]) = x(t2) — x(t1),
ddf([tl,tg)) = x(tg) - Qi(tl), dil?((tl,tg]) = LE(tQ) - Q?(t1).

A vector Borel measure dy is called continuous with respect to a scalar Borel measure
dv (or simply dv-continuous), if lim,p)_o u(D) = 0, see Diestel-Uhl [13, p. 11]. If a
vector measure du is dv-continuous then, according to Radon-Nikodym Theorem [13,
p. 59] there is a dv-integrable function g : [0,7] — E such that

du(D) = /ngu, for all D € B([0,T)).

In this case, the function g is called Radon-Nikodym derivative of du with respect
5



d
to dv (or density) and is denoted by o Furthermore, according to Moreau-Valadier

v
[35, Proposition 1] (see also Valadier [41, Theorem 3]), the Radon-Nikodym derivative
d

 can be computed as

dv

dj(t) i Gttt e])

= — a.e. .
dv 50,850 dv([t,t +¢])’ dv — a.e. on [0,T]

We will use the following definition of the solution of (1.5) (Castaing and Monteiro
Marques [10, §1]).

DEFINITION 2.1. A BV-continuous function x is called a solution of (1.5), if there
exists a finite measure dv for which both differential measure dx and Lebesgue measure
dt are dv-continuous, such that

d d
S ) € Naateysetaton (2(0) + (1 x(t))i(t), dv —a.e. on [0,T],

and x(t) € A+ a(t) + c(z(t)), for all t € [0,T].

3. Existence of solutions. It is customary (see [24, Theorem 6]) to assume
that the initial condition ¢ of sweeping process (1.5) satisfies

(3.1) q € A+ a(0)+ c(q).

However, it will be convenient for our analysis to define solutions of (1.5) for any
initial condition ¢ € FE, that we will term a generalized initial condition. We take
advantage of the fact, that for a contracting map ¢, the equation

v = proj(g, A + a(0) + ¢(v))

always has a solution v = V(q) (see Lemma 6.3) and V € C°(E, E). In other words,
we say that x is a solution of (1.5) with a generalized initial condition ¢ € E, if z is
a solution of (1.5) with the initial condition z(0) = V(q).

As itself, the theorem won’t loose anything by dropping the generalized initial con-
dition concept. However, considering the generalized initial conditions will be con-
venient for applications of Theorem 3.1 to the problem of the occurrence of periodic
solutions from a boundary equilibrium, that we consider in this paper later (Theo-
rem 8.6).

Following Filippov [16, Ch. 1, §1], we say that a function f : [0,T] x E — E satisfies
a Carathéodory condition, if

(i) the function f(t, ) is continuous in x for a.a. t € [0,T;

(ii) the function f(¢,z) is Lebesgue measurable in t for each x;

(iii) for each bounded D C E, there exists a function m(t) that is summable on

[0,T] and such that ||f(¢,z)|| < m(t), for all t € [0,T] and all z € D.
The Carathéodory conditions (i)-(ii) ensure that the composition t — f(¢,x(t)) is
Lebesgue measurable on [0, T'] for any Lebesgue measurable z(t), see e.g. Krasnoselskii
et al [28, §17.1]. Condition (iii) further ensures that t — f(¢, 2(t)) is summable on
[0,T]. In what follows, we will always assume that f(¢,x) is Lipschitz in z, so that
condition (i) will always hold automatically. Therefore, assuming that (¢, z) — f(¢,x)
is Carathéodory we effectively impose conditions (ii) and (iii).
6



THEOREM 3.1. Assume that A C E is a nonempty closed convex bounded set,
a:[0,T] —» E is BV-continuous on [0,T], © — c(x) is globally Lipschitz with Lips-
chitz constant Lo € [0,1), and (t,z) — f(t,x) is Carathéodory in (t,x) and globally
Lipschitz in x. Then, for any generalized initial condition q € E, the sweeping process
(1.5) admits a solution, defined on [0,T), with the initial condition x(0) = V(q). In
particular, sweeping process (1.5) admits a solution on [0,T], for any initial condition
x(0) = q, where q satisfies (3.1).

Theorem 3.1 can be potentially derived using the ideas of Nacry [36] (and even for
a general form A(t,x) of the constraint A + a(t) + ¢(z)), but in the present paper
Theorem 3.1 comes as a corollary of a more general Theorem 6.11, that we were
unable to extend to the case of a general constraint A(t, x).

4. Global existence of periodic solutions. In this section we offer a result
saying that, under the conditions of Theorem 3.1, sweeping process (1.5) always has
a periodic solution, if the right-hand-sides are T-periodic.

We remind the reader that a solution ¢ — x(t) of sweeping process (1.5) that is defined
on R is called T-periodic, if z(t + T') = z(t), for a fixed positive constant T" and for
all t e R.

THEOREM 4.1. Assume that conditions of theorem 5.1 hold and let Ly € [0,1)
be the Lipschitz constant of ¢ as introduced in theorem 3.1. Denoting by € € E the
unique solution of ¢(§) = &, consider the set

b
o= J % %= U {x:x—£||<1|_£}.
®

t€[0,T) beAta
Then sweeping process (1.5) admits a solution t — x(t) such that
(4.1) z(T) = z(0) € Q.

In particular, t — xz(t) is a T-periodic solution of (1.5) (i.e. verifies x(t +T) = x(t),
t € R), if both t — a(t) and t — f(t,x) are T-periodic on R.

A constant solution z(t) = const, t € R, is a T-periodic solution for any 7' > 0. For
example, when A = [—1,1] and a(t) = ¢(z) = 0, we have Q = (=1,1). If, further,
f(t,x) =z, then z(t) = 0 is a T-periodic solution of (1.5) for any T > 0. If, however,
f(t,x) =  — 2, then a T-periodic solution of (1.5) is given by x(¢) = 1 for any 7" > 0.

REMARK 4.2. Throughout the paper we prefer to work with functions defined on
[0,T] only. When saying t — x(t) is a T-periodic solution of (1.5), we mean that t —
x(t) becomes a T-periodic solution after both functions t — a(t) and t — f(t,x) are
extended to R by T-periodicity. In particular, a solution t — x(t) with a generalized
initial condition q and defined on [0,T)] is called T-periodic, if x(T) = q. If we happen
to establish the existence of a T-periodic solution x with a generalized initial condition
q, then q¢ must necessary equal x(0). Indeed, every solution t — x(t) of (1.5) satisfies
2(T) € A+ a(T)+ c(x(T)) which implies ¢ € A+ a(0)+c(q). Therefore, v = q is one
of the solutions of v = proj(q, A + a(0) + c(v)). Therefore, x(0) = q.

5. The continuation principle. This section introduces the main abstract re-

sults of the paper. These abstract results are mainly motivated by an application to
a specific practical situation considered in section 8.

We consider a A-dependent sweeping process (1.7) for measures dx and dt, and dis-
cover how the existence of periodic solutions for A = A; > 0 (where even continuous
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dependence of solutions on initial conditions is not given) can be concluded from an
appropriate knowledge about sweeping process (1.7) for A = 0 (which possesses fairly
good properties). In this way, we obtain conditions for the existence of periodic so-
lutions to sweeping process (1.7) for A = A;, which denotes sweeping process (1.5) of
our initial interest. We recall that such an approach is referred to as “continuation
principle” in the literature.

We will assume that BV-continuity of a of Theorem 3.1 holds uniformly with respect
to A, i.e.

(5.1) var(a(-, A), [s,t]) < var(a, [s,t]), A€ [0,1],
’ where a : [0,7] — R is a BV-continuous function.

The map V* for (1.7) now depends on the parameter A and is defined as the unique

solution (according to Lemma 6.3) of the equation

U= proj(q, A+ CL(O, >‘) + C(Ua )‘))

Accordingly, we say that x is a solution of (1.7) with a generalized initial condition
q € E, if x is a solution of (1.7) with the initial condition z(0) = V*(q).

We will call sweeping process (1.7) T-periodic, if
(5.2) alt+T,\) =a(t,N), [ft+T,z,\)=f(t,z,N).

In what follows, d(I — P, Q) is the topological degree of the vector field I — P on an
open bounded set @ C E, see e.g. Krasnoselskii-Zabreiko [29]. To give a brief intuition
to the reader unfamiliar with the notion of topological degree, we can mention that, in
R?, the quantity d(I — P, Q) is the number of complete turns that the vector x — P(x)
makes (clockwise and counter-clockwise turns are counted with opposite signs) when
the point x makes one complete turn along the boundary of @ (provided that the
boundary is smooth). Computing d(I — P, Q) for an arbitrary vector field I — P in R"
requires the knowledge of I — P on the entire boundary of Q too and is discussed in
Remark 5.3 for completeness. However, important classes of vector fields I — P lead to
d(I—P,Q) = 1 just because of certain easily verifiable qualitative criteria, such as e.g.
(I-P) (Q) C Q with @ being convex (Brouwer-Bohl Theorem, see [29, Theorem 6.2]).
The present paper takes advantage of these qualitative criteria (Theorem 8.1), rather
than computes d(I — P, Q) = 1 from first principles of Remark 5.3.

We remind the reader that the Poincaré map P°(q) of T-periodic sweeping sweeping
process (1.7) with A = 0 and ¢ € E is the value of the solution z(t) of (1.7) with the
initial condition x(0) = ¢ at time t = T.

THEOREM 5.1. Assume that T-periodic sweeping process (1.7) possesses the fol-
lowing regqularity:

I) The set A C E is nonempty, convex, closed, and bounded. The function a
satisfies (5.1). The function x — c(x, A) is globally Lipschitz with Lipschitz
constant 0 < Lo < 1. The function (t,x) — f(t,x, ) is Carathéodory in (t,x)
and globally Lipschitz in x, and both the Lipschitz constants are independent
of A € [0,1]. Furthermore, a, ¢, and f are continuous in X\ € [0,1] uniformly
with respect to t € [0,T] and z € E.

Assume, that the existence of a T-periodic solution for A = 0 is given in the following
extended way:



IT) There exists an open bounded Q C E such that, when \ = 0, the solution of
(1.7) is unique for any initial condition z(0) € V°(Q), none of the elements
of 0Q are generalized initial conditions of T-periodic solutions of (1.7) with
A =0, and for the Poincaré map P° of (1.7) with A = 0 one has

d(I — P°oV° Q) #0.

Finally, assume the following homotopy through X\ € [0, A1]:
IIT) There exists A1 € (0, 1] such that sweeping process (1.7) doesn’t have periodic
solutions = with generalized initial conditions x(0) € 0Q, X € [0, \1].

Then, for any X € [0, \1], sweeping process (1.7) admits a T-periodic solution x with
the initial condition (0) € VA(Q).

To illustrate conditions of Theorem 5.1, we slightly extend the example that we
considered right after the formulation of Theorem 4.1. Let £ = R, A = [-1,1],
a(t,\) = ¥t — 1 f(t,z,\) = x4+ Asint — 2, ¢(z) = 0, Q = (0,2), which implies
that T' = 27r. Condition I) holds trivially and we first focus on verifying condition IT).
Observe that V9(z) computes as

1, x> 1,
(*) VOx)=1{ =, xel-1,1],
-1, z< -1

Ignoring the moving constraint A + a(t, \), the solution of (1.7) with the initial con-
dition x(0) = z¢ computes for A = 0 as

(**) z(t) = (zo — 2)e " + 2.
In particular, z(27) > 1 for all g € A. Therefore, accounting for A gives
P'(VO(x)) =1, we€0Q={0,2},

which implies that the map x +— 2 — P°(V%(x)) points outwards of the interval Q at
its boundary point and so (see e.g. Krasnoselskii-Zabreiko [29, §3.2])

d(I —P°o V% Q) =1.

1
We now claim that Condition III) holds with e.g. A\; = 3 In other words, we claim

that solutions of sweeping process (1.7) with generalized initial conditions in {0, 2}
never get T-periodic when one varies A in [0, \].

Step 1. Consider the solution x of (1.7) with a generalized initial condition 0, i.e.
consider the solution z of (1.7) with the initial condition x(0) = V*(0). Since the
moving constraint A+ a(t, \) computes as A+a(t,\) = [—2 + ersint oA Sint], we have
A+a(0,\) = [~1,1] for any A € [0,1/2]. Therefore, V*(z) = VO(x) for all z € R,
and based on (*) we conclude z(0) = 0. It now follows from (**) that, in the absence
of the moving constraint, the solution ¢ +— x(t) would be strictly increasing for all
A € [0,1/2]. But the right end of the constraint is always greater than 1/2 when
A € [0,1/2] and t € [0, 27]. Therefore, even though the increasing solution z(t) will
interact with the right end of A + a(t, A) when ¢ grows from 0 to 2, the right end of
A+ a(t, A) is not capable to pull (sweep) the solution z(t) to = 0. In other words,
t — x(t) cannot be T-periodic.



Step 2. Consider the solution x of (1.7) with a generalized initial condition 2, i.e.
consider the solution x of (1.7) with the initial condition z(0) = V*(2). Since V*(2) =
V9(2) for any A € R, we conclude from (*) that z(0) = 1. Since the right end of
A + a(t,\) never exceeds 3/2 for ¢ € [0,2x], A € [0,1/2], the value x(T") can never
get larger than 3/2. In particular, the solution x of (1.7) with a generalized initial
condition 2 can never be T-periodic (see also Remark 4.2).

We showed that all conditions of Theorem 5.1 hold and, therefore, for any A € [0,1/2],
sweeping process (1.7) admits a 27-periodic solution & with the initial condition 2:(0) €
[0,1].

Note, for A > 0, we don’t know whether or not the solutions of sweeping process (1.7)
are uniquely defined by the initial condition or depend continuously on A. That is why
the statement of the theorem is not a direct consequence of I1) as it usually happens
in topological degree based existence results. In particular, we cannot establish any
type of continuity of solutions as A — 0. That is why the next theorem is not a direct
consequence of Theorem 5.1.

THEOREM 5.2. Assume that sweeping process (1.7) is T-periodic. Assume that
conditions I) and II) of Theorem 5.1 hold. Then, there exists \y > 0 such that
condition III) of Theorem 5.1 holds, and, therefore, for any A € [0,\1], sweeping
process (1.7) admits a T-periodic solution x with the initial condition x(0) € V*(Q).

We conclude this section with a remark on the computation of the topological degree.

Remark 5.3. Here we follow Krasnoselskii-Zabreiko [29, §3.4] and the interested
reader is referred to this reference for further details and for alternative formulas for
d(I — P,Q). Assuming that the boundary 9Q is smooth (one passes to a suitable
smooth approximation of the boundary otherwise), we consider an auxiliary vector
field ¥(z) = (x—P(x))/ ||z — P(x)|| which is assumed to be smooth as well (a suitable
smooth approximation is introduced otherwise). A point yo with |lyo|| = 1 is called
regular with respect to the differentiable mapping W, if the following two conditions
are satisfied: (i) the pre-image of yo under ¥ must be a finite set; (ii) for each point
that is mapped into yo by ¥ the Jacobian (with respect to a certain local coordinate
system) must be different from zero. Let ¢ and s be the numbers of points which are
mapped to yo with positive and negative Jacobian respectively. The difference t — s
is independent of the choice of yo and d(I — P,U) =t — s.

6. The catching-up algorithm and proofs of the abstract existence re-
sults.

6.1. An equivalent non-perturbed formulation of the initial perturbed
sweeping process. Recall, that for a BV-continuous function w : [0,7] — E, the
variation measure |du| (also called modulus measure) is defined, for any D € B([0,T]),
as (see Diestel-Uhl [13, Definition 4, p. 2], Recupero [38, §2.4])

|dul(D) =

= sup{z lu(Dn)|l : D = U D,,, D, € B([0,T]), D,ND; =0 if ¢ ;éj}.

n=1 n=1
For a BV-continuous function « : [0,7] — R, the differential measure du is always
|du|-continuous (it follows e.g. from Diestel-Uhl [13, Theorem 1, p. 10]), i.e. a |du|-

U
integrable density m is well defined. Moreover, according to Castaing and Monteiro
U
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Marques [10, Theorem 4.1}, if « is a BV -continuous solution of the perturbed sweeping
process (1.7), then the BV-continuous function u defined by

(6.1) u(t) = x(t) Jr/o flrz(r))dr

is a solution to the non-perturbed sweeping process

du
(62) - w(t) € Nata(t ) +eladN+ [ fra)nar (W), |du| —a.e. on [0, T].

LEMMA 6.1. Assume that (t,x,A) — f(t,z,\) is Carathéodory in (t,z) and is
globally Lipschitz in x with Lipschitz constant independent of t € [0,T] and X € [0, 1].
Then, for any BV-continuous u : [0,T] — E, the integral equation (6.1) admits a
unique BV-continuous solution = : [0,T] — E.

Lemma 6.1 is a direct consequence of Lemma 6.9 that we prove below.

Combining [10, Theorem 4.1] and Lemma 6.1, we can formulate the following equiv-
alent definition of the solution of (1.7).

DEFINITION 6.2. A BV-continuous function x is called a solution of perturbed
sweeping process (1.7), if the function u given by (6.1) is a solution of the non-
perturbed sweeping process (6.2).

6.2. The catching-up algorithm. For each fixed n € N, we partition [0, 7
into smaller intervals by the points {tg,t1,...,t,} C [0,7T] defined by

T .
t():O, tn:T, ti—&-l*tizga zel,n.

In what follows, we fix some initial condition

2(0) = u(0) = ¢,
where ¢ satisfies
(6.3) g€ A+a(0,\)+c(q,N),

and use the ideas of Definition 6.2 in order to construct pieceiwise-linear functions
u, and z, (linear on each [t;,t;11]) that serve as approximations of the solutions u
and z of Definition 6.2. The construction will be implemented iteratively through the
intervals [t;, t;41] starting from ¢ = 0, and moving towards i = n — 1.

Denoting




we apply the implicit iterative scheme

tq

uiy = proj |ug, A+ a(tivi, A) +c | uj, — /f(T, T (T), A)dT, A
0

0
t—t;
(6.6)  un(t) =ui + T_zt(u?ﬁ-l —u), tE€ [t tita],
% i
t—1t;
% i

successively from i = 0 to ¢ = n — 1. Next lemma uses the idea of the implicit
scheme of Kunze and Monteiro Marques ([24, Lemma 7]) and it proves that for each
i € 0,n — 1 we can extend the definition of u,, and z,, from [0, ¢;] to [0,¢;41] according
0 (6.4)-(6.7).

LEMMA 6.3. Consider a set-valued function

0(81,82,U75> = A+a<5175) +é(82,u,€)7 81,82 € [07T]7 (S Ea 66 VV7

where A C E is a nonempty closed convexr bounded set, a : Rx W — FE, ¢: R x E x
W — E, and W is a finite dimensional Fuclidean space. Assume that

var(a(-, ), [s,t]) < var(a,[s,t]), &e€W,

where @ : [0,T] — R is a BV-continuous function,

and (s,€) — a(s,§) is continuous in & € W uniformly in s € [0,T]. Assume that
(s,u,8) — é(s,u,&) is continuous in & € W wniformly in (s,u) € [0,T] x E and
satisfies the Lipschitz condition
||E(s,u, 5) - é(tvvvg)H < L1|S - tl + LQHU‘ - ’U”,
for any s,t € [0,T), u,v € B, £E€ W,

with Ly > 0 and Ly € (0,1). Then, for any 71,72,51,82 € [0,T] and any u € E there
exists an unique v = v(T1, T2, $1, S2,u, &) such that

(
(6.8) v e C(m,m,v,€&) and v =proj(u,C(r1,72,v,§)).
Moreover, v € C°([0,T] x [0,T] x [0,T] x [0,T] x E x W, E). If, in addition,
u € C(s1, $2,u,€),
then

var(a, [s1,71]) + L1|m2 — s2]

. - <
(69) o —ul < e

The following key estimate is required for the proof of Lemma 6.3.
12



LEMMA 6.4. Let C' be a convez set of E. Then, for any vectors u,c € E,
[proj(u, C) — proj(u, C' + c)|| < lc]|.

Proof. From the definition of projections v; = proj(u, C) and vy = proj(u, C' + ¢)
we have (see e.g. Kunze and Monteiro Marques [24, §2])

(6.10) u—v; € No(v1) and u— vy € Noge(va).
Since v2 — c € C' and v1 + ¢ € C + ¢, we conclude from (6.10) that
(u—wv1,v9—c—v1) <0 and (u—wve,v1+c—uvy) <0,
or, rearranging the terms,
(v1 —u,v1 —v2) < (u—w1,¢) and (u—vy,v1 —v2) < (Vg —u,c).
Finally, we add both inequalities together and get
(v1 = v2,v1 —v2) < (V2 — w1, 0) < [lur — va| - [l
which implies the statement. ]

Proof of Lemma 6.3. Step 1. The existence of v(71, T2, 81,82, u, ). Define F €
C°(E,E) as F(v) = proj(u, C(r1, T2, v,€)). Using Lemma 6.4, we have
[F(v1) — F(va)]| =
= ||pr0j(ua A+ &(7-1’ g) + 6(7—27 U1, 5)) - pI‘Oj(U, A+ d(Tlv 5) + 5(7—27 V2, g))” <
< ||5(7—2’U17€) - &(T27’02’§)H <
(6.11) S L2HU1 — UQH,

so the existence of v = v(7y, 7o, 81, S2, u, {) with the required property (6.8) follows by
applying the contraction mapping theorem (see e.g. Rudin [39, Theorem 9.23]).

Step 2. Continuity of v(T1, T2, 51,52,u,§). To prove the continuity of v, let v =
v(T1, T2, 81, 82,4, &) and ¥ = v(Ty, T2, 51, 82, U, §) where 51, 83,581,852 € [0, T], 71,72, 71, T2 €
[0,T],& €W and u,u € E.

First observe that
[0 —vf| =
= ||proj(a, A + a(71,€) + &(72
< |lproj(a, A + a(71,€) + (f v
+ ||pI'O‘](U7A+a/(77'1,§) ( ’U

) — proj(u, A + a(71,£) + &(r2,v,€))||
)) — proj(u, A+ a(71,€) + &(72, 0, )|l
,€)) — proj(u, A + a(ry, &) + &(12,v,6))|-

Since for any nonempty, closed, convex set C' C E and any vectors u,u € E, we have
(see e.g. Mordukhovich-Nam [33, Proposition 1.79])

0.8
4

(6.12) [proj(a, C) — proj(u, )| < [|u — ul|,
then, using also Lemma 6.4, we conclude that
H{)_UH < ||12—u||—|—H&(ﬂ, ) ( U é)_&(Tlaf)_é(T%vvf)H <
<l —ull + ||a(71,€) — a(71, )| + var(a, [r1,71]) +

(6.13) +|é(72, v, &) — (12,0, &)|| + L1 |72 — 72| + La|jo — 0|,
13



so that the required continuity of v(71, 72, 51, 82, u, £) follows from 0 < Ly < 1.

Step 3. Proof of the estimate (6.9). Assuming that u € C(sq, s2,u,§), we follow the
lines of (6.13) to get

”U_u” = ||pI‘Oj(U,C(T1,’7'2,’U,£))—'LLH = min ”u_’EH
v€C(T1,72,v,§)

But 0(817827u7§) =A + d(slag) + 5(827u7§) and C(T17T27U7§) = A + d(Tlvé-) +
é(12,v,€). Therefore,

, min ||u_17|| < ||&(81,£)+5(82,u7£) _d(Tlag) _6(7_%”;5)” <
veC(11,72,0,§)
(6.14) < var(a, [s1,71]) + L1|m2 — s2| + La|ju — v||,
which implies (6.9).

The proof of the lemma is complete. 0

U
IR
T
o

Fi1G. 1. Illustration of the incorrectness of formula (6.16). Here h = dy(C,D), and r =
||pr0j(u, C) - proj(u, D)”

REMARK 6.5. On the validity of Lemma 6.3 when A+ c(t,€) is replaced by a more
general term A(t, ).

One can observe that estimate (6.11) holds also in the case where A + a(t,&) takes
a more general form A(t,&). Furthermore, if dp(A;, A3) is the Hausdorff distance
between nonempty closed sets Ay, Ay C E and A(t, ) satisfies

(6.15) di(A(s), A(t)) < var(a, [s, t]),
then (6.14) holds as well since

min u—0| <dg(A(s1,&) +
ot o] < da(A(s1,6)

+é(523ua 5)7 A(Thg) + &(7—271}75))'
14



To summarize, the existence of v(7y, 72, $1, 82,u,&) (Step 1) and the estimate (6.9)
(Step 3) still hold, if A + a(¢, &) is replaced by A(t, ) satisfying (6.15).

At the same time, the continuity of the function v(7y, 7o, 81, $2,u,£) can no longer
be established when A + a(¢,€) is replaced by A(t,&). Indeed, the core of estimate
(6.13) is Lemma 6.4 which doesn’t allow a generalization when C'+ ¢ is replaced by an
arbitrary set D. One might be tempted to believe that the conclusion of Lemma 6.4
can be replaced by

(6.16) [[proj(u, C) — proj(u, D)|| < du(C, D),

when C + ¢ is replaced by just D, but formula (6.16) appears to be wrong as our
Fig. 1 illustrates.

On the other hand Monteiro Marques [31, Proposition 4.7, p. 26] implies that

(6.17) |]proj(u, C) — proj(u, D)|| < \/2(dist(u, C) + dist(u, D)) - \/du(C, D),

which could potentially help to obtain other versions of Lemma 6.3, that we don’t
pursue in this paper.

COROLLARY 6.6. Assume that condition I) of Theorem 5.1 holds. Then, for any
(g, \) satisfying (6.3) the implicit scheme (6.4)-(6.7) is solvable iteratively from i =0
to i = n — 1 and the respective iterations z?' = x(q,\) and ul = ul(g,\) are
continuous in (g, \) on E x [0,1]. Moreover,

V&I‘(ﬁ, [ti, ti-{-l]) + LlT/n
1— Lo ’

where L1 > 0 and Ly € (0,1).
Proof. Let & = ((&1,&2, -+ 1 &n+1)s Engz) € E"T1 x R be defined as

éizmz’ih ie€l,n+1 | £n+2:>\~

Therefore, the rule (6.7) defines a function ¥ : E"*! x R — C9([0, T, E) that relates
€ € E"t X R to a piecewise linear function x,(t) defined on [0,7]. The statement of
the Corollary 6.6 now follows by applying Lemma 6.3 with

5(57 U, g) =|lu—- /f(Tv \II(&) (T)’ §n+2)d7-7 £n+2 =+ /f(Tv \Il(ﬁ) (T)v §n+2)d77
0 0

a(s, &) = a(s; Ent2)-

The proof of the corollary is complete. 0

6.3. Convergence of the catching-up algorithm. Let (u, (¢, ¢, A), (¢, g, \))
be the solution (uy, (), 2, (t)) of the catching-up algorithm (6.4)-(6.7) with the param-
eter A € [0,1] and the initial condition u,(0) = z,(0) = q.

LEMMA 6.7. Assume that condition I) of Theorem 5.1 holds. Consider a sequence
(Ans@n) = (Ao, q0) asm — oo of [0,1] X E satisfying (6.3) for each n € N. Then, there
exists a subsequence {ny}tren such that {un, (t,dn,,  n,)}ken converges as k — oo
uniformly in t € [0,T].
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Proof. Step 1. Boundedness of {un(t,qn, \n)}nen. Let ul', i € 0,n, be the

approximations given by (6.4)-(6.7) with ¢ = ¢,, and A = \,,. By Corollary 6.6,

[[n (8, gn, An) | < llgnll + var(a, [0, T]) + L1 T),

o
(1-Lo)
so the sequence {uy, (¢, gn, An)}nen is bounded uniformly on [0, T7].

Step 2. Equicontinuity of {un(t,qn, \n)}nen. Fix € > 0. Since var(a,[s,t]) — 0 as
|s —t| — 0 (see e.g. Lojasiewicz [27, Theorem 1.3.4, p. 16]), we can choose d; > 0
such that

var(a, [s,t]) + L1 (t — s)

(6.18) S <

L %, forall 0 < s <¢<T witht—s < d;.

Fix some 0 < s < t < T satisfying ¢ — s < §; and denote by is,7; € 0,n — 1 such
indexes that
s € [tisatis-‘rl]v t S [tit7tit+1]~

Then we can estimate ||u,(t) — u,(s)|| as follows:

lun(t) — un(s)|| <
< lun(s) = un (i)l + llun (i, 41) = wn(ta) | + llun(ts,) — un(t)]] <
<var(up, [ti,, ti +1]) + var(un, [ti,+1,t:,]) + var(un, [ti,, ti, +1])-
The second term is smaller than £/3 by (6.18) right away. Assuming that n > T'/41,

the property (6.18) ensures that first and third terms are each smaller than /3 as
well. So we proved that

lun(t) —un(s)|| <e, forall0<s<t<T witht—s<d, andn>T/d.

Since there is only a finite number of n € N with n < T//é;, we can find d2 > 0 such
that

lun(t) —un(s)|| <e, forall0<s<t<T witht—s<dy, and n <T/d.
Letting § = min{d;, 02}, we finally obtain
[lun(t) —un(s)]| <e, forall0<s<t<T witht—s<d, andn € N.

The conclusion of the Lemma now follows by applying the Arzela-Ascoli theorem (see
e.g. Rudin [39, Theorem 7.25]). O

REMARK 6.8. FEstablishing the existence of a converging subsequence
{Zn, (t,qn, s An,) ken needs more work compared to what we did in the proof of
Lemma 6.7 because the direct corollary of (6.5)

ti
2Py -l =l —ul / F (7,2 (7), Ndr
ti—1

doesn’t imply uniform boundedness of x,(t, qn, An), n € N, directly.

To prove the convergence of {xn, (t, qn,, An, ) ken We will now extend the discrete
map (6.6) to such an operator F, : C([0,T],E) — C([0,T], E) whose fixed point is

16



exactly t — 2, (t, gn, An). The convergence of z,,, will then follow from the continuity
of F,, in n at n = oo.

Let us define P, : C([0,T],E) — E"* |- : E"*l — E"*l and Q,, : E"™! —
C([0,T], E"T') as

Po(z) = (x(O),x (T) e ((n - 1)T> ,x(T)) , zeC(0,T),E),

n
= (y)], =0, (W), = ¥i—1, 1€2,n+1,y¢€ Entl

t—t —t . —
Qn(y)(t) lez+1 + 1/ —FYi, Y S E +1 te [tiflati)a 1€ ]-777/7

Qn()(tn) = Ynsi1, y € E"! sincet, =T.

For a fixed A € [0,1] and a continuous function u : [0,7] — E, we introduce a
continuous extension of (6.6) as

(Fnz)(t) = (QuPru)(t) = (Qnl™ Py J)() te[0,T],

(@
(6.19) where J(t j f(r A)dr.
0

Then, for x € C([0,T], E) satisfying x = F,,x, one has

x(tr) = [Poula = [I7 PoJ]2 = u(ty) — [PnJh = u(t1) — ( ) = ( )
(t2) = u(tz) — J(t1),

x

x(tn) = ulty) — J(tn—1).

Therefore, if u,, and x,, are given by (6.4)-(6.7), then, letting u = u,, in (6.19), the fixed
point x of F, verifies z(t;) = x,(t;), i € 0,n. And, since the function ¢ — (F,x)(t) is
linear on [t;,t;11], ¢ € 0,n — 1, we conclude z,, = z. In other words, if v in (6.19) is
given by u = uy, then z,, is the unique fixed point of F,.

LEMMA 6.9. Assume that the conditions of Lemma 6.1 hold. Then, there exists
a>0and L €0,1) such that

[Fn (1) = Fa(z2)||" < Lz — 22", neN,
for any x1,z2,u € C([0,T], E), A € [0,1], and

— —at
Il = max e~ x(t)].

Moreover, for each x,u € C([0,T],E), and A € [0,1], one has

nl;rr;o |En(z) — F(x)]| =0, with F(x) / fra(

where || - || is the maz-norm on [0,T]. Moreover, F is a contraction in the norm | - ||*.
17



Proof. Step 1. Using the definition of @,,, [~, and P,, we have
(infpn'])(ti_l) = [lipn,]]l = [PnJ]i—l = J(ti_g), te€2n+1.

So that

Fix i € 1,n — 1 and choose any t € [t;,t;+1]. Then,

[En(z1)(t) = Fulz2)(t)] <
< max {[|Fo(21) () — Fo(22) @[], [ Fn (1) (tig1) — Fu(@2)(ti) [} =

ti—1 ti—1
= max {‘ / f(ryzi(7), N)dr — / f(ryza(T), N)dr
0 0
ti ti
‘ f(ryzi (1), N)dr — f(ryxa(r), N)dr } <
0 0
_ ti _ ti
< L/ lz1(7) — z2(7)||dT < L/ e ||lx1 — x2||*dr,
0 0
where L > 0 is the global Lipschitz constant of z +— f(¢,2,A) and @ > 0 is an arbitrary
constant. Therefore,

)

™| Fy (1) (t) — Fa(z2) ()] <

O |t

L
(50 — et oy = aa]|* < Zlor — a2,
[}

which holds for any t € [0,7T]. The case ¢t € [0,¢;] can be considered along the same
lines. This proves the contraction part of the lemma.

Step 2. To prove the convergence part, fix i € 1,n — 1 again and consider t € [t;,t;11].
Since (QnPu)(t;) = u(t;), we have

1(@nPru)(t) — w(t)]] < [[(QnPru)(t) — (QuPru) ()]l + llu(t) — ult:) <
< flultivn) — u(t)ll + llu@) — ut)ll,
so that the convergence of (Q,P,u)(t) to u(t) as n — oo follows from conti-

nuity of u. The convergence of (Q,l~P,J)(t) follows same lines. Indeed, since
(Qul™PnJ)(ti+1) = J(t;), one has

(@nl™ P ) (t) = J(B)]| <
< (@nl™ Prd) () = (Qnl™ PuJ) (i) + 1 (8) = J ()] <
ST (Eia) = J@)I + (1T (E) = T (&)
and the convergence of (Q,l~ P,J)(t) to J(t) as n — oo follows from continuity of
J(t).

The proof of the lemma is complete.

COROLLARY 6.10. Assume that condition I) of Theorem 5.1 holds.  Let
{nk}ren be the subsequence given by Lemma 6.7 (which ensures the convergence of
{tn, (t, Gnys Ang ) treen). Consider the limit

u(t) = kli—>Holo Uny, (s Gy y Ay, )-
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Let z(t) be the solution of the respective equation (6.1) (which exists according to
Lemma 6.1). Then {xn, (t, Gn, s Any, ) teen converges uniformly in t € [0,T], and

(6.20) x(t) = kli_}rrolo Ty, (s Qg y Ay, )-
Proof. The conclusion follows from the inequality
[ = @n|"=[F () = Fu(en)[I” < [ F(2) = Fa(@)[|" + [ Fu(x) = Fa(zn)|" <
<|F(z) = Fu(@)|" + Lz — zall",
where L € (0,1) is given by Lemma 6.9. d

6.4. Verifying that the limit of the catching-up algorithm is indeed a
solution.

THEOREM 6.11. Let the conditions of Corollary 6.10 hold and let u(t) and x(t) be
as given by this corollary. Then, u(t) is a solution of sweeping process (6.2) with the
parameters x(t), A = klim Any, s and the initial condition u(0) = klim Gn,, - Accordingly,

—00 —00

by Definition 6.2, x(t) is a solution of perturbed sweeping process (1.7).

Proof. Let us first observe that both w(t) and z(t) are BV-continuous. Indeed,
according to Corollary 6.6,

var(a, [s,t])  Lq|t — s
1—Lo 1—Ly~’
which implies BV-continuity of u(¢). The BV-continuity of x(¢) follows from (6.1) be-

cause the difference of a BV-continuous function and an absolutely continuous function
is a BV-continuous function.

(6.21) var(up, [s,t]) <

Let us now ¢(t), t € [0,T], be an arbitrary continuous selector of the moving set of
(6.2), i.e.

(1) € A+ alt, \) + c(z(t), \) + /0 F(ra(r), Ndr, te [0,T].

According to Monteiro Marques [32, p. 15-16] (see also Valadier [41, Proposition 6])
it is sufficient to prove that

(lu@®l? = llus)I?), 0<s<t<T,

N |

(6.22) / (6(r), du(r)) >

which we now establish using the ideas of Kunze and Monteiro Marques [24].

Without loss of generality we will assume that {nj}reny = N, and replace ny, k € N,
by n, n € N in the formulation of the theorem. Fix ¢ > 0 and select ¢ € 0,n — 1 such
that ¢ € [t;, ti+1]. Introduce &,(t) as

én(t) = proj <¢(t),A+a(ti+1,/\n)+c(:z:?+1,)\n)+ /0 i f(T,xn(T),)\n)dT>.

Then, by (6.4) and by convexity of A, we have (see e.g. Kunze and Monteiro Marques
[24, formula (4)])

(Un(tit1) — un(ts), un(tivr) — Eu(t)) <0, € [ts, tia],
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from where
<un(ti+1) - un(ti)vun(t) - én(t» <
< (un(tivr) = un(ti), un(t) = un(tiv1)) < lJun(tivr) — ua (1),

or
(un (tig1) = un(ti), én(t) > =llun(tivr) — un ()1 + (un(tivr) = unlts), un(t))
for any t € [t;, t;+1]. Using the linearity of u, on [t;, t;11], we conclude

<én(t)aun(fi+1) - un(ﬂ» >
> (un(t), un(tiv1) — un(i)) — (un(tiz1) — un(ti)), (unltiv1) —un(t:)))

for any ¢; < t; <t < t;41 < tiy1. Therefore, denoting 7, = ¢; + (j + %) t“}c_ti’ for
j€{0,1,--- ,k — 1}, one has (same approach is used e.g. in part (ii) of the proof of

Monteiro Marques [31, Theorem 2.1, p. 12, second formula from below])

/t_tm (en(7), duy (dr)) =

i

k—1 — _

. ~ - . tl 7151 _ {1 751
- klinolozg <C" (Tj.k)  tn (ti +(+ 1)+1k:> — Uy, (ti +j+lk>> >
J:
>hm§ n (73 v (Fa G+ DL o (7B 21N g
7](:—)00]:0 n\1j,k) > tUn 7 J k - : j kl N

— Up <t_i +jt_i+1k_fi> s (tig1) — un(tz)> =
= - <un(£i+1) - Un(fz); un(ti+1) - Un(tz» .

Therefore,

/:“ (en(T), dun(dr)) =

= lim <un(7j)k),u;(7j,k)—~_lk> +R, =

B —f
k

+ R, =

1 d ,
- 3m Y (s luntr1?)

fia d 2 1 Iy 2 12
=5/ Zlu@IFdr + Ry =5 (ln s )N = Nlun(E)1%) + Ra-
t;

T=T)k

dr

This result can now be used to estimate the required integral (6.22) as follows

(lun I = lun(s)]?) + R,
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where

|R| < var(un, [s,t]) - max [lun(tit1) — un(ts)]]-
i€0,n—1

Using (6.21) we now conclude that the desired statement (6.22) follows from (6.23)
by passing to the limit as n — oo (the passage to the limit is valid e.g. by Monteiro
Marques [31, Theorem 2.1(ii)-(iii)] combined with formula (26) of p. 7 of the same
book).

The proof of the theorem is complete. ]

6.5. Proof of Theorem 3.1 (sweeping process without a parameter).
Theorem 3.1 is a direct consequence of Theorem 6.11. One just views sweeping process
(1.5) as sweeping process (1.7) with A = 0.

REMARK 6.12. Using Remark 6.5, Theorem 3.1 can be directly extended to sweep-
ing processes of the form

(6.24) —dx € NA(t,)\)+c(;p7/\) () + f(t,z,N)dt, z€E, NeR,

where A is a set-valued function with nonempty closed convex bounded values that
satisfies the property

625 A (A(s, \), A(t, V) < var(a [s,]), A€ [0,1],
’ where @ : [0,T] = R is a BV-continuous function.

7. Proofs of the theorems on the existence of periodic solutions.

7.1. The Poincaré map associated to the catching-up algorithm. Even
though we cannot ensure the existence of a Poincaré map for sweeping process (1.7),
we can associate the following Poincaré map

P (q) = 2, (T)

to the approximations z, of the catching-up algorithm (6.4)-(6.7). Corollary 6.6
allows to formulate the following property of the map P*™.

COROLLARY 7.1. Assume that condition I) of Theorem 5.1 holds. Consider an
open bounded set Q C E. Then, for each fized A\ € [0,1] and n € N, the Poincaré map
q — PM"(q) is continuous on Q.

7.2. Proof of Theorem 4.1 (sweeping process without a parameter). To
prove Theorem 4.1 we will use the following well-known result (see e.g. Krasnoselskii-
Zabreiko [29, Theorem 6.2]):

THEOREM 7.2. Let_P : B — E be a continuous map and let Q C E be an open
bounded convex set. If P(Q) C Q and if P doesn’t have fixed points on 0Q, then

d(I — P,Q) = 1.

Proof of Theorem 4.1. Let €7 be the neighborhood of € of radius 1. Since €2 is
convex, then € is convex as well. We will view sweeping process (1.5) as sweeping
process (1.7) with A = 0, i.e. we identify a(t), c¢(x), f(¢, ) with a(t, 0), ¢(x,0), f(t, z,0).
So we consider the map

PO (z) = PO (V (@),
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where P9" is as introduced in Section 7.1 and V is as introduced in Section 3. We
claim that

0,n
(

(7.1) P () CcQ, forallneN.

We have V(z) € Q by the definition of the map V. Then, according to the catching-up
scheme (6.4)-(6.7), we have that

i € A+ a(tiy1,0) 4+ c(zy1,0), ie i, €Qy , i€0,n—1

Therefore, 27, | = b+ ¢(x},1,0), where b € A + a(ti11,0). And using & = ¢(£,0), we
conclude |z7,; — || < [|b]| + La|jz},; — &]|, which means that z,,(T) € Qr C Q, i.e.
(7.1) holds.

Using the continuity of P%" (Corollary 7.1) and V (Lemma 6.3) along with Theo-
rem 7.2, we get the existence of ¢, € § such that P%"(q,) = ¢,,, which implies

Po’n(Qn)ZQna n €N,

because V(g,) € Q. In other words, we have =, (T, ¢n,0) = x,(0,¢,,0) for all n €
N. Now, Theorem 6.11 applied with A\, = 0, implies the existence of a convergent
subsequence {z,, (t,qn,,0)} whose limit x(¢) is solution of (1.5) with the required
T-periodicity property (4.1). The proof is complete. d

7.3. Proofs of Theorems 5.1 and 5.2 (sweeping process with a param-
eter).

Proof of Theorem 5.1. Step 1. First we prove that there exists N > 0 such that
d(I — PM o VA" Q) is defined for n > N and A € [0, \;]. Assuming the contrary, we
get a sequence ny — 00, Ay = Ag € [0, \1], and a converging sequence {qx }ren C 0Q
such that

(7.2) P o AR () = qi,, k€N

Applying Lemma 6.7, Corollary 6.10, and Theorem 6.11 we conclude that gy =
limg 00 g € OQ) is a generalized initial condition of a T-periodic solution (6.20) of
sweeping process (1.7) with A = Ag, which contradicts conditions III) of Theorem 5.1.

The conclusion of Step 1, in particular, implies that
d(I — P o V™ Q)=d(I—-P"" oV Q), n>N, \e[0,\]
Step 2. Here we use assumption IT (uniqueness) of Theorem 5.1 to conclude that
P oV (q) = P°oVO(q), asn — oo,

uniformly with respect to ¢ € Q. Thus, we can diminish N > 0 in such a way that
d(I — P o VO Q) =d(I — P°oV° Q), n> N, which gives

d(I = P oV Q)#0, n>N, A& [0, ]

Therefore, for each A € [0,\] there exists ¢, € @ such that the approximations
{zn(*, gn, A) }n>n are T-periodic, so this sequence has a convergent subsequence which
converges to a T-periodic solution x(-) of (1.7) with initial condition ¢ = limy, e ¢n,
as n — oo according to Corollary 6.10.
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We can see that ¢ € V*(Q) directly from the catching-up algorithm (6.4)-(6.7).
Indeed, as in the proof of Theorem 4.1, we observe from (6.4)-(6.7) that =7 , €
A+ a(tizr, \) + ez}, A), for all i € 0,n — 1. Plugging i = n — 1 and passing to the
limit as n — oo, we get 2(T) € A+a(T, \) +c(x(T), \). Therefore, x(T) = V(z(T)).
But ¢ = (T) and so ¢ = V*(q) € VXQ).

The proof of the theorem is complete. ]

The proof of Theorem 5.2 follows the lines of the proof of Theorem 5.1. The only
difference is in the beginning of Step 1, which now proves the existence of both N > 0
and \; € (0,1] such that d(I — PM" o VA" Q) is defined for n > N and A € [0, \q].
Assuming the contrary, we get a sequence ng — oo, Ay — 0 € [0, 1], and a converging
sequence {qi}ren C OQ such that (7.2) holds, that leads to the existence of a T-
periodic solution to sweeping process (1.7) with A = 0, contradicting condition II) of
Theorem 5.1. The rest of the proof of Theorem 5.2 follows the proof of Theorem 5.1
just literally.

8. Existence of periodic solutions in the neighborhood of a boundary
equilibrium (the theorem and its proof). This section uses the following exten-
sion of Theorem 7.2 (see e.g. Krasnoselskii-Zabreiko [29, Theorem 31.1]):

THEOREM 8.1. Let P :E — E be a continuous map and let Q C E be an open
bounded set. If (P)™ maps Q strictly into itself for all m € N sufficiently large, then
d(I — P,Q) =1.

The main assumption of this section is that sweeping processes (1.7) reduces to

(8.1) —& € Na(z) + fo(z), x€E,

when A = 0 and that (8.1) posses a switched equilibrium on the boundary 0A (as was
earlier introduced in Kamenskii-Makarenkov [20] in 2d). To introduce the definition
of a switched boundary equilibrium zy € JA, we assume that in some neighborhood
@ C R™ of 2y the boundary dA is smooth and can be described as

0ANQ ={r€Q: H(x) =0}, where Hc C*(R",R).

DEFINITION 8.2. A point x¢ € 0A is a switched boundary equilibrium of sweeping
process (8.1), if
H(z) >0, forallze Q\A,

and

H'(z0) = afo(xo) for some a < 0.
As the definition says, xq is not an equilibrium of f, however the next two lemmas
imply that the solution of (8.1) with the initial condition at xg don’t leave xg.

If ¢ is a switched equilibrium, then @) can be considered so small that
(8.2) (fo(z),H'(z)) <0, foralzedANnQ.

The next lemma claims that 9A N Q is a sliding region for sweeping process (8.1).

LEMMA 8.3. Let 29 € DA be a switched equilibrium of (8.1) and let Q C E be
such a neighborhood of xq that (8.2) holds. Consider a solution x of (8.1) with an
ingtial condition xog € 0ANQ. Let t1 > 0 be such that x(t) € Q for allt € [0,t1]. Then
z(t) € OA for all t € [0,t].
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Proof. Let us assume, by contradiction, that there exists tescape € [0,%1] where
x(t) escapes from 0A, i.e.

tescape = max{to > 0: x(t) € Q, H(z(t)) =0, t € [0,0]} < t1.

By the definition of tescape, for any 6 > 0 there exist t5 € [tescape, tescape +0] such that
H(z(t)) < 0for each t € (tescape,ts]- Since, the solution x(¢) satisfies £(¢) = — fo(x(t))
on (tescapes ts], by the Mean-Value Theorem

H(x(t5)) — H(2(tescape) = —H'(x(t5)) fo(x(t5))(ts — tescape)s

for some t} € (tescape,ts). This yields

H/(x(tescape))fO(x(tescape)) Z 07
as § — 0, contradicting (8.2).
The proof of the lemma is complete. 0
As it happens in the theory of Filippov systems (see [16]), the dynamics of (8.1) in the

sliding region is described by a smooth differential equation. Indeed, let us introduce
the differential equation

f

where f(z) = fo(z) — g () (fo(z)) and 7 (&) !

(8.3) _ 1
1L]?

(&, L) L.

Next lemma says that (8.3) is the equation of sliding motion for sweeping process
(8.1) in the neighborhood of switched equilibrium zy € JA.

LEMMA 8.4. Let the conditions of Lemma 8.3 hold and let x(t) be the sliding
solution x(t), t € [0,t1], of sweeping process (8.1) as introduced in Lemma 8.3. Then
x(t) is a solution of (8.3) on [0,t1].

Proof. Fix t € [0,t;1] such that #(¢) exists. Then, from (8.1),

—i(t) = aH'(z(t)) + fo(z(t)), with some a > 0,
or
(84)  aH'(z(t)) = —7p(a(e) (fo(2(t) + [~ fo(@(t) + Trr @y (fo(2(1)))] — 2 (1)
From the definition of 7 (£) we have

(=fo(x(t)) + T @iy (Jo(2())), H' (x(t))) = 0.
On the other hand, from Lemma 8.3,
(@(t), H'(2(t))) = 0.

Therefore, taking the scalar product of (8.4) with H'(x(t)), we get

1 !
TGO (fola(t), H' (2(1))) ,

o=

which completes the proof. 0
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Lemma 8.4 implies that the boundary 0A is an invariant manifold for the differential
equation (8.3). The definition (8.3) reduces the dimension of the image of fy by 1.

Therefore, the image of the map f acts to a space of dimension dimFE — 1, which
implies that one eigenvalue of the Jacobian f’(xg) is always zero.

We now offer an asymptotic stability result which can be of independent interest in
applications of perturbed sweeping processes.

THEOREM 8.5. Let xo € 0A be a swilched equilibrium of (8.1). If real parts of
dimE — 1 eigenvalues of the Jacobian f'(xg) are negative, then g is a uniformly
asymptotically stable point of sweeping process (8.1).

Proof. Step 1. Convergence to OA. Let B,(zg) be a ball of radius r centered at
Zo. Let us show that there exists r > 0 such that for any £ € B,.(zg) N A, the solution
t— X(t,€) of

(8.5) &= —fo(z)

with the initial condition X (0,§) = & reaches 0A at time some time 7(£) > 0. The
proof will be through the Implicit Function Theorem applied to

F(t,z) = H(X(t,z)).

We have F(0,20) = 0 and F;(0,z0) = —H'(z¢) fo(xo) # 0 by the definition of switched
equilibrium. Therefore, Implicit Function Theorem (see e.g. Rudin [39, Theorem
9.28]) ensures the existence of £ — 7(&) defined and continuous on a sufficiently small
ball B,.(xg) and such that 7(xg) = 0.

It remains to show that 7(£) > 0 for all £ € B,(x¢) N A. Since, according to the
definition of switched equilibrium, H’(z)? is a normal to A pointing outwards to A,
it is sufficient to prove that 7(£) > 0 for & = 29 — AH'(z0)” with all A > 0 sufficiently
small. So we introduce a scalar function

G(\) = 7(zo — AH (z0)T)

and want to prove that G'(0) > 0. Using the formula for the derivative of the implicit
function (see [39, Theorem 9.28])

' (xz0) = —(H'(20) fo(z0)) ™ H' (z0)
and so
G'(0) = —(H'(w0) fo(wo)) " H' (o) (—H'(x0)") = H'(x0) fo(xo) | H' (x0)]|,

which is indeed positive according to Definition 8.2.

Finally, let us fix £ € B,.(z¢) N A and let z(¢) be the solution of (8.1) with the initial
condition x(0) = . Since the conclusion of the Implicit Function Theorem comes
with uniqueness, we have that X (¢,£) € 0A, t € [0,7(€)). Therefore, X (t,&) = z(t),
for any ¢ € [0,7(£)), which implies that lim,_,.) X(t,§) = limy_,, () 2(t) and so
z(7(€)) € 0A.

Step 2. Convergence along 0A. Lemmas 8.3 and 8.4 combined with the negativeness
of real parts of dimFE —1 eigenvalues of f’(x() imply that there exists an neighborhood
xo € Q C E such that any solution of (8.1) with the initial condition z(0) € Q@ NJA
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converges to xg along 0A as t — oo and the convergence is uniform with respect to
the initial condition.

Making now r > 0 in Step 1 so small that Ugcp, (24) X (7(£),€) € Q (which is possible
by continuity of £ — 7(£)), we combine Step 1 and Step 2 to conclude that any
solution of (8.1) with z(0) € B,(x¢) approaches zq as t — oo.

The proof of the theorem is complete. 0

We are now in the position to combine theorems 5.2, 8.1, and 8.5 when the following
condition holds for (1.7) at A=0:

(8.6) a(t,0) =0, c(z,00=0, f(t z,0)= fo(x) with fo € C'(E, E),

and the T-periodicity condition (5.2) holds for A > 0.

THEOREM 8.6. Assume that condition I) of Theorem 5.1 holds. Assume, that for
A = 0 sweeping process (1.7) is smooth autonomous, i.e. satisfies (8.6). If real parts
of n — 1 eigenvalues of f'(xo) are negative for some switched equilibrium xo € A,
then there exists Ay > 0 such that for all A € (0, \] the T-periodic sweeping process
(1.7) admits a T-periodic solution xx(t) — xo as A — 0.

Proof. Let P(x) = P°(V°(x)). By Theorem 8.5, there exists an open bounded
set g € Q C E such that (P)™ maps @ strictly into itself for all m € N sufficiently
large. Therefore, Theorem 8.1 ensures that condition II) of Theorem 5.1 holds, so

Theorem 5.2 applies. O

Similar to Theorem 8.6 results about periodic perturbations of autonomous ordinary
differential equations have been obtained by Berstein-Halanai [5] and Cronin [12].

9. Conclusions. By extending the implicit catching-up scheme of Kunze and
Monteiro Marques [24] to perturbed sweeping processes, we proved solvability of
BV-continuous state-dependent sweeping processes with Lipschitz dependence on the
state. We further used topological degree arguments to establish the existence of
periodic solutions to sweeping processes of this type. The analysis is carried out for
the simplest possible moving set C'(¢t) = A + a(t) 4+ ¢(x) throughout the entire pa-
per, that allowed us to focus on the development of core mathematical ideas rather
than on its possible generalizations. We explain in Remarks 6.5 and 6.12 how the
existence result (Theorem 3.1) immediately extends to the moving set of the form
C(t) = A(t) + c(x). At the same time, Remark 6.5 shows that our method of proof
of continuity of approximations z,(t) on the initial condition fails for moving sets of
the form C(t) = A(t) + ¢(x). Since continuous dependence of z,(t) on the initial
condition is the main ingredient in our proof of the existence of periodic solutions,
the respective main theorems (Theorem 4.1 and Theorem 8.6) do not readily extend
even to the moving set of the form C(t) = A(t) + c¢(z). We don’t know whether or
not an alternative approach (e.g. formula (6.17) quoted from [31, Proposition 4.7,
p. 26]) can deal with any more general state-dependent moving constraints. Perhaps
the ideas of Nacry [36] can be helpful here.

The existence of T-periodic solutions to a sweeping process with T-periodic right-
hand-sides and convex moving set would be an immediate result when uniqueness
and continuous dependence of solutions on the initial conditions holds. The difficulty
we overcame when proving the existence of periodic solutions comes from the fact
that uniqueness and continuous dependence on the initial conditions of solutions of
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BV-continuous state-dependent sweeping processes is still an open question even when
the dependence on the state is Lipschitz continuous (for state-independent sweeping
processes uniqueness and continuous dependence is established e.g in Castaing and
Monteiro Marques [10] and Adly et al [2]). The way how we overcame the possible
lack of uniqueness and continuous dependence is by considering an approximation
of the sweeping process by a discretization coming from a suitable catching-up algo-
rithm. We then used the uniqueness and continuous dependence of the solutions of
the discretization obtained in order to establish the existence of periodic solutions to
the respective discretized equations. After this step was complete, the existence of
periodic solutions in the initial sweeping process came by passing to the limit upon
the increasing accuracy of the discretization.

The second part of the paper concerns sweeping processes with a parameter A, for
which we developed a topological degree based continuation principle. As an applica-
tion of the continuation principle, we proved the occurrence of periodic solutions at a
specific location being a neighborhood of a switched boundary equilibrium. Specifi-
cally, we assumed that for A = 0, the sweeping process is autonomous and admits an
asymptotically stable switched boundary equilibrium xy. We then proved the occur-
rence of T-periodic solutions from zg when the parameter A increases and the sweeping
process becomes nonautonomous (and T-periodic). The condition for asymptotic sta-
bility of zy can be replaced by assuming that the topological index of z¢ is different
from 0. Such a condition can be also expressed in terms of the eigenvalues of the lin-
earization f(xg) of sliding differential equation (8.3), see e.g. Krasnoselskii-Zabreiko
[29, Theorem 6.1] and [29, Theorem 7.4] (which will be required to account for the
vector field outside of the boundary of the constraint).

We stress that the question of asymptotic stability, Lyapunov stability, and invariance
of absolutely continuous (or more regular) solutions of perturbed sweeping processes
has been intensively addressed in the recent literature, see e.g. Brogliato-Tanwani [7],
Tanwani et al [40], Leine-van de Wouw [26], Kunze and Monteiro Marques [25], Adly
[1], Kamenskii et al [19], Makarenkov-Niwanthi [30], Niwanthi et al [37], Hantoute-
Vilches [18]. Combined with Theorem 8.1, these results can be eventually used for
verifying condition II (the topological degree condition) of Theorem 5.1 on a suitable
region () C E.

Acknowledgments. A significant part of this work has been carried out while
the third author has been a graduate student of mathematics at UT Dallas. She
is grateful to UT Dallas Mathematics Department for offering excellent working
conditions. We acknowledge useful discussions with Ivan Gudoshnikov (Mathe-
matics, UT Dallas) and Supun Samarakoon (Mathematics, A&M University) con-
cerning the proof of Lemma 6.4. The counter-example disproving the inequality
lproj(u, C) — proj(u, D)|| < du(C,D) (see Remark 6.5 and Fig. 1) is also due to
Ivan Gudoshnikov. Useful comments of anonymous referees improved the quality of
the paper and are greatly appreciated.

Appendix A. Flowchart of the results. To ease navigation through the
proofs of the paper a flowchart of the results is given in Fig. 2. An arrow from one
statement to another indicates that the target statement uses the source statement
for the proof.
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