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ABSTRACT
Thanks to the widespread deployment of TLS, users can access

private data over channels with end-to-end confidentiality and in-

tegrity. What they cannot do, however, is prove to third parties the

provenance of such data, i.e., that it genuinely came from a particu-

lar website. Existing approaches either introduce undesirable trust

assumptions or require server-side modifications.

Users’ private data is thus locked up at its point of origin. Users

cannot export data in an integrity-protected way to other applica-

tions without help and permission from the current data holder.

We proposeDECO (short for decentralized oracle) to address the

above problems. DECO allows users to prove that a piece of data

accessed via TLS came from a particular website and optionally

prove statements about such data in zero-knowledge, keeping the

data itself secret. DECO is the first such system that works without

trusted hardware or server-side modifications.

DECO can liberate private data from centralized web-service

silos, making it accessible to a rich spectrum of applications. To

demonstrate the power of DECO, we implement three applications

that are hard to achieve without it: a private financial instrument

using smart contracts, converting legacy credentials to anonymous

credentials, and verifiable claims against price discrimination.
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1 INTRODUCTION
TLS is a powerful, widely deployed protocol that allows users to

access web data over confidential, integrity-protected channels. But

TLS has a serious limitation: it doesn’t allow a user to prove to third

parties that a piece of data she has accessed authentically came

from a particular website. As a result, data use is often restricted

to its point of origin, curtailing data portability by users, a right

acknowledged by recent regulations such as GDPR [8].

Specifically, when a user accesses data online via TLS, she cannot

securely export it, without help (hence permission) from the current

data holder. Vast quantities of private data are thus intentionally or

unintentionally locked up in the “deep web”—the part of the web

that isn’t publicly accessible.

To understand the problem, suppose Alice wants to prove to Bob

that she’s over 18. Currently, age verification services [1] require

users to upload IDs and detailed personal information, which raises

privacy concerns. But various websites, such as company payroll

records or DMV websites, in principle store and serve verified birth

dates. Alice could send a screenshot of her birth date from such

a site, but this is easily forged. And even if the screenshot could

somehow be proven authentic, it would leak information—revealing

her exact birth date, not just that she’s over 18.

Proposed to prove provenance of online data to smart contracts,

oracles are a step towards exporting TLS-protected data to other sys-
tems with provenance and integrity assurances. Existing schemes,

however, have serious limitations. They either only work with dep-

recated TLS versions and offer no privacy from the oracle (e.g.,

TLSNotary [7]) or rely on trusted hardware (e.g., Town Crier [78]),

against which various attacks have recently emerged, e.g., [24].

Another class of oracle schemes assumes server-side coopera-

tion, mandating that servers install TLS extensions (e.g., [65]) or

change application-layer logic (e.g., [31, 77]). Server-facilitated ora-

cle schemes suffer from two fundamental problems. First, they break

legacy compatibility, causing a significant barrier to wide adoption.

Moreover, such solutions only provide conditional exportability be-

cause the web servers have the sole discretion to determine which

data can be exported, and can censor export attempts at will. A

mechanism that allows users to export any data they have access to
would enable a whole host of currently unrealizable applications.

1.1 DECO
To address the above problems, we propose DECO, a decentralized

oracle for TLS. Unlike oracle schemes that require per-website sup-

port, DECO is source-agnostic and supports any website running

standard TLS. Unlike solutions that rely on websites’ participation,

DECO requires no server-side cooperation. Thus a single instance

of DECO could enable anyone to become an oracle for any website.
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DECO makes rich Internet data accessible with authenticity and

privacy assurances to a wide range of applications, including ones

that cannot access the Internet such as smart contracts. DECO
could fundamentally shift today’s model of web data dissemination

by providing private data delivery with an option for transfer to

third parties or public release. This technical capability highlights

potential future legal and regulatory challenges, but also anticipates

the creation and delivery of appealing new services. Importantly,

DECO does not require trusted hardware, unlike alternative ap-

proaches that could achieve a similar vision, e.g., [54, 78].

At a high level, the prover commits to a piece of data 𝐷 and

proves to the verifier that 𝐷 came from a TLS server 𝑆 and option-

ally a statement 𝜋𝐷 about 𝐷 . E.g., in the example of proving age,

the statement 𝜋𝐷 could be the predicate “𝐷 =𝑦/𝑚/𝑑 is Alice’s date

of birth and the current date - 𝐷 is at least 18 years.”

Informally, DECO achieves authenticity: The verifier is con-

vinced only if the asserted statement about 𝐷 is true and 𝐷 is

indeed obtained from website 𝑆 . DECO also provides privacy in

that the verifier only learns the that the statement 𝜋𝐷 holds for

some 𝐷 obtained from 𝑆 .

1.2 Technical challenges
Designing DECO with the required security and practical perfor-

mance, while using legacy-(TLS)-compatible primitives, introduces

several important technical challenges. The main challenge stems

from the fact that TLS generates symmetric encryption and authen-

tication keys that are shared by the client (prover in DECO) and
web server. Thus, the client can forge arbitrary TLS session data,

in the sense of signing the data with valid authentication keys.

To address this challenge, DECO introduces a novel three-party
handshake protocol among the prover, verifier, and web server that

creates an unforgeable commitment by the prover to the verifier

on a piece of TLS session data 𝐷 . The verifier can check that 𝐷 is

authentically from the TLS server. From the prover’s perspective,

the three-party handshake preserves the security of TLS in presence

of a malicious verifier.

Efficient selective opening. After committing to 𝐷 , the prover

proves statements about the commitment. Although arbitrary state-

ments can be supported in theory, we optimize for what are likely

to be the most popular applications—revealing only substrings of

the response to the verifier. We call such statements selective open-
ing. Fine-grained selective opening allows users to hide sensitive

information and reduces the input length to the subsequent proofs.

A naïve solution would involve expensive verifiable decryption

of TLS records using generic zero-knowledge proofs (ZKPs), but we

achieve an orders-of-magnitude efficiency improvement by exploit-

ing the TLS record structure. For example, a direct implementation

of verifiable decryption of a TLS record would involve proving

correct execution of a circuit of 1024 AES invocations in zero-

knowledge, whereas by leveraging the MAC-then-encrypt structure

of CBC-HMAC, we achieve the same with only 3 AES invocations.

Context integrity. Selective opening allows the prover to only re-

veal a substring𝐷 ′ of the server’s response𝐷 . However, a substring
may mean different things depending on when it appears and a

malicious prover could cheat by quoting out of context. Therefore

we need to prove not just that 𝐷 ′ appears in 𝐷 , but that it appears

in the expected context, i.e., 𝐷 ′ has context integrity with respect

to 𝐷 . (Note that this differs from “contextual integrity” in privacy

theory [57].)

Context-integrity attacks can be thwarted if the session content

is structured and can be parsed. Fortunately most web data takes

this form (e.g., in JSON or HTML). A generic solution is to parse

the entire session and prove that the revealed part belongs to the

necessary branch of a parse tree. But, under certain constraints

that web data generally satisfies, parsing the entire session is not

necessary. We propose a novel two-stage parsing scheme where the
prover pre-processes the session content, and only parses the out-

come that is usually much smaller. We draw from the definition of

equivalence of programs, as used in programming language theory,

to build a formal framework to reason about the security of two-

stage parsing schemes. We provide several practical realizations for

specific grammars. Our definitions and constructions generalize to

other oracles too. For example, it could prevent a generic version

of the content-hidden attack mentioned in [65].

1.3 Implementation and evaluation
We designed and implemented DECO as a complete end-to-end

system. To demonstrate the system’s power, we implemented three

applications: 1) a confidentiality-preserving financial instrument us-
ing smart contracts; 2) converting legacy credentials to anonymous
credentials; and 3) verifiable claims against price discrimination.

Our experiments with these applications show that DECO is

highly efficient. For example, for TLS 1.2 in the WAN setting, online

time is 2.85s to perform the three-party handshake and 2.52s for 2PC

query execution. It takes 3-13s to generate zero-knowledge proofs

for the applications described above. More details are in Sec. 7.

Contributions. In summary, our contributions are as follows:

• We introduce DECO, a provably secure decentralized oracle

scheme, along with an implementation and performance eval-

uation. DECO is the first oracle scheme for modern TLS ver-

sions (both 1.2 and 1.3) that doesn’t require trusted hardware or

server-side modifications. We provide an overview of the proto-

col in Sec. 3 and specify the full protocol in Sec. 4.

• Selective opening: In Sec. 5.1, we introduce a broad class of

statements for TLS records that can be proven efficiently in

zero-knowledge. They allow users to open only substrings of

a session-data commitment. The optimizations achieve substan-

tial efficiency improvement over generic ZKPs.

• Context-integrity attacks andmitigation: We identify a new

class of context-integrity attacks universal to privacy-preserving

oracles (e.g. [65]). In Sec. 5.2, we introduce our mitigation in-

volving a novel, efficient two-stage parsing scheme, along with

a formal security analysis, and several practical realizations.

• Security definitions and proofs: Oracles are a key part of the

smart contract ecosystem, but a coherent security definition

has been lacking. We formalize and strengthen existing oracle

schemes and present a formal security definition using an ideal

functionality in Sec. 3.2. We prove the functionality is securely

realized by our protocols in App. D.

• Applications and evaluation: In Sec. 6, we present three rep-

resentative applications that showcase DECO’s capabilities, and
evaluate them in Sec. 7.
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• Legal and compliance considerations:DECO can export data

from websites without their explicit approval or even awareness.

We discuss the resulting legal and compliance issues in Sec. 8.

2 BACKGROUND
2.1 Transport Layer Security (TLS)
We now provide necessary background on the TLS handshake and

record protocols on which DECO builds.

TLS is a family of protocols that provides privacy and data in-

tegrity between two communicating applications. Roughly speak-

ing, it consists of two protocols: a handshake protocol that sets up

the session using asymmetric cryptography, establishing shared

client and server keys for the next protocol, the record protocol, in

which data is transmitted with confidentiality and integrity protec-

tion using symmetric cryptography.

Handshake. In the handshake protocol, the server and client first

agree on a set of cryptographic algorithms (also known as a cipher

suite). They then authenticate each other (client authentication

optional), and finally securely compute a shared secret to be used

for the subsequent record protocol.

DECO supports the recommended elliptic curve DH key ex-

change with ephemeral secrets (ECDHE [20]).

Record protocol. To transmit application-layer data (e.g., HTTP

messages) in TLS, the record protocol first fragments the appli-

cation data 𝑫 into fixed sized plaintext records 𝑫 = (𝐷1, ··· ,𝐷𝑛).
Each record is usually padded to a multiple of blocks (e.g., 128 bits).

The record protocol then optionally compresses the data, applies a

MAC, encrypts, and transmits the result. Received data is decrypted,

verified, decompressed, reassembled, and then delivered to higher-

level protocols. The specific cryptographic operations depend on

the negotiated ciphersuite. DECO supports the AES cipher in two

commonly used modes: CBC-HMAC and GCM. We refer readers

to [36] for how these primitives are used in TLS.

Differences between TLS 1.2 and 1.3. Throughout the paper we
focus on TLS 1.2 and discuss how to generalize our techniques to

TLS 1.3 in Sec. 4.1.2. Here we briefly note the major differences

between these two TLS versions. TLS 1.3 removes the support for

legacy non-AEAD ciphers. The handshake flow has also been re-

structured. All handshake messages after the ServerHello are now

encrypted. Finally, a different key derivation function is used. For

a complete description, see [64].

2.2 Multi-party computation
Consider a group of 𝑛 parties P1,...,P𝑛 , each of whom holds some

secret 𝑠𝑖 . Secure multi-party computation (MPC) allows them to

jointly compute 𝑓 (𝑠𝑖 ,···,𝑠𝑛) without leaking any information other

than the output of 𝑓 , i.e., P𝑖 learns nothing about 𝑠 𝑗≠𝑖 . Security for

MPC protocols generally considers an adversary that corrupts 𝑡

players and attempts to learn the private information of an honest

player. Two-party computation (2PC) refers to the special case of

𝑛 = 2 and 𝑡 = 1. We refer the reader to [52] for a full discussion of

the model and formal security definitions.

There are two general approaches to 2PC protocols. Garbled-

circuit protocols based on Yao [76] encode 𝑓 as a boolean circuit, an

approach best-suited for bitwise operations (e.g., SHA-256). Other

protocols leverage threshold secret sharing and are best suited for

arithmetic operations. The functionswe compute in this paper using

2PC, though, include both bitwise and arithmetic operations. We

separate them into two components, and use the optimized garbled-

circuit protocol from [75] for the bitwise operations and the secret-

sharing basedMtA protocol from [41] for the arithmetic operations.

3 OVERVIEW
In this section we state the problem we try to solve with DECO
and present a high-level overview of its architecture.

3.1 Problem statement: Decentralized oracles
Broadly, we investigate protocols for building “oracles,” i.e., entities

that can prove provenance and properties of online data. The goal is

to allow a prover P to prove to a verifierV that a piece of data came

from a particular website S and optionally prove statements about

such data in zero-knowledge, keeping the data itself secret. Access-

ing the data may require private input (e.g., a password) from P
and such private information should be kept secret fromV as well.

We focus on servers running TLS, the most widely deployed se-

curity protocol suite on the Internet. However, TLS alone does not

prove data provenance. Although TLS uses public-key signatures

for authentication, it uses symmetric-key primitives to protect the

integrity and confidentiality of exchanged messages, using a shared

session key established at the beginning of each session. Hence

P, who knows this symmetric key, cannot prove statements about

cryptographically authenticated TLS data to a third party.

A web server itself could assume the role of an oracle, e.g., by sim-

ply signing data. However, server-facilitated oracles would not only

incur a high adoption cost, but also put users at a disadvantage: the

web server could impose arbitrary constraints on the oracle capabil-

ity. We are interested in a scheme where anyone can prove prove-

nance of any data she can access, without needing to rely on a single,

central point of control, such as the web server providing the data.

We tackle these challenges by introducing decentralized oracles
that don’t rely on trusted hardware or cooperation fromweb servers.

The problem is much more challenging than for previous oracles,

as it precludes solutions that require servers to modify their code

or deploy new software, e.g., [65], or use of prediction markets,

e.g., [12, 62], while at the same time going beyond these previous

approaches by supporting proofs on arbitrary predicates over data.

Another approach, introduced in [78], is to use trusted execution

environments (TEEs) such as Intel SGX. The downside is that recent

attacks [24] may deter some users from trusting TEEs.

Authenticated data feeds for smart contracts. An important

application of oracle protocols is to construct authenticated data

feeds (ADFs, as coined in [78]), i.e., data with verifiable provenance

and correctness, for smart contracts. Protocols such as [78] gen-

erate ADFs by signing TLS data using a key kept secret in a TEE.

However, the security of this approach relies on that of TEEs. Us-

ing multiple TEEs could help achieve stronger integrity, but not

privacy. If a single TEE is broken, TLS session content, including

user credentials, can leak from the broken TEE.

DECO operates in a different model. Since smart contracts can’t

participate in 2PC protocols, they must rely on oracle nodes to par-

ticipate asV on their behalf. Therefore we envision DECO being

Session 6D: Web Security  CCS '20, November 9–13, 2020, Virtual Event, USA

1921



Functionality FOracle between S,P and V
Input: The prover P holds some private input 𝜃𝑠 . The verifier V holds a query

templateQuery and a statement Stmt.
Functionality:
• If at any point during the session, a message (sid, receiver, 𝑚) with

receiver ∈ {S, P, V} is received from A, forward (sid, 𝑚) to receiver
and forward any responses to A.

• Upon receiving input (sid,Query,Stmt) from V , send (sid,Query,Stmt) to P.
Wait for P to reply with “ok” and 𝜃𝑠 .

• Compute𝑄 =Query(𝜃𝑠 ) and send (sid,𝑄) to S and record its response (sid,𝑅) .
Send (sid, |𝑄 |, |𝑅 |) to A.

• Send (sid,𝑄,𝑅) to P and (sid, Stmt(𝑅),S) to V .

Figure 1: The oracle functionality.

deployed in a decentralized oracle network similar to [39], where

a set of independently operated oracles are available for smart con-

tracts to use. Note that oracles running DECO are trusted only for

integrity, not for privacy. Smart contracts can further hedge against

integrity failures by querying multiple oracles and requiring, e.g.,

majority agreement, as already supported in [39]. We emphasize

that DECO’s privacy is preserved even all oracles are compromised.

Thus DECO enables users to provide ADFs derived from private

data to smart contracts while hiding private data from oracles.

3.2 Notation and definitions
We use P to denote the prover,V the verifier and S the TLS server.

We use letters in boldface (e.g., 𝑴) to denote vectors and 𝑀𝑖 to

denote the 𝑖th element in 𝑴 .

We model the essential properties of an oracle using an ideal

functionality F
Oracle

in fig. 1. To separate parallel runs of F
Oracle

,

all messages are tagged with a unique session id denoted sid. We

refer readers to [30] for details of ideal protocol execution.

F
Oracle

accepts a secret parameter 𝜃𝑠 (e.g., a password) from P, a
query template Query and a statement Stmt fromV . A query tem-

plate is a function that takes P’s secret 𝜃𝑠 and returns a complete

query, which contains public parameters specified byV . An exam-

ple query template would beQuery(𝜃𝑠 ) = “stock price of GOOG on

Jan 1st, 2020 with API key = 𝜃𝑠 ”. The prover P can later prove that

the query sent to the server is well-formed, i.e., built from the tem-

plate, without revealing the secret. The statement Stmt is a function
thatV wishes to evaluate on the server’s response. Following the

previous example, as the response 𝑅 is a number, the following state-

ment would compare it with a threshold: Stmt(𝑅) = “𝑅>$1,000”.

After P acknowledges the query template and the statement (by

sending “ok” and 𝜃𝑠 ), FOracle retrieves a response 𝑅 from S using a

query built from the template. We assume an honest server, so 𝑅 is

the ground truth. F
Oracle

sends Stmt(𝑅) and the data source toV .

As stated in Def. 3.1, we are interested in decentralized oracles

that don’t require any server-side modifications or cooperation, i.e.,

S follows the unmodified TLS protocol.

Definition 3.1. A decentralized oracle protocol for TLS is a three-

party protocol Prot= (ProtS,ProtP ,ProtV ) such that 1) Prot real-
izes F

Oracle
and 2) ProtS is the standard TLS, possibly along with

an application-layer protocol.

Adversarialmodel and security properties.We consider a static,

malicious network adversary A. Corrupted parties may deviate ar-

bitrarily from the protocol and reveal their states toA. As a network

adversary, A learns the message length from F
Oracle

since TLS is

not length-hiding. We assume P andV choose and agree on an ap-

propriate query (e.g., it should be idempotent for most applications)

and statement according to the application-layer protocol run by S.
For a given query 𝑄 , denote the server’s honest response by

S(𝑄). We require that security holds when either P orV is cor-

rupted. The functionality F
Oracle

reflects the following security

guarantees:

• Prover-integrity: A malicious P cannot forge content provenance,

nor can she cause S to accept invalid queries or respond in-

correctly to valid ones. Specifically, if the verifier inputs (Query,Stmt)
and outputs (𝑏,S), then P must have sent 𝑄 =Query(𝜃𝑠 ) to S in

a TLS session, receiving response 𝑅=S(𝑄) such that 𝑏=Stmt(𝑅).
• Verifier-integrity: A maliciousV cannot cause P to receive incor-

rect responses. Specifically, if P outputs (𝑄,𝑅) then 𝑅 must be

the server’s response to query 𝑄 submitted by P, i.e., 𝑅=S(𝑄).
• Privacy:AmaliciousV learns only public information (Query,S)
and the evaluation of Stmt(𝑅).

3.3 A strawman protocol
We focus on two widely used representative TLS cipher suites: CBC-

HMAC and AES-GCM. Our technique generalizes to other ciphers

(e.g., Chacha20-Poly1305, etc.) as well. Throughout this section we

use CBC-HMAC to illustrate the ideas, with discussion of GCM

deferred to later sections.

TLS uses separate keys for each direction of communication.

Unless explicitly specified, we don’t distinguish between the two

and use kEnc and kMAC
to denote session keys for both directions.

In presenting our design of DECO, we start with a strawman

protocol and incrementally build up to the full protocol.

A strawman protocol. A strawman protocol that realizes F
Oracle

between (P,V) is as follows. P queries the server S and records

all messages sent to and received from the server in 𝑸̂ = (𝑄̂1,...,𝑄̂𝑛)
and 𝑹̂= (𝑅1,...,𝑅𝑛), respectively. Let 𝑴̂ = (𝑸̂,𝑹̂) and (kMAC,kEnc) be
the session keys.

She then proves in zero-knowledge that 1) each 𝑅𝑖 decrypts to

𝑅𝑖 ∥𝜎𝑖 , a plaintext record and a MAC tag; 2) each MAC tag 𝜎𝑖 for 𝑅𝑖

verifies against kMAC
; and 3) the desired statement evaluates to 𝑏

on the response, i.e., 𝑏=Stmt(𝑹). Using the now standard notation

introduced in [28], P computes

𝑝𝑟 =ZK-PoK{kEnc,𝑹 :∀𝑖 ∈ [𝑛],Dec(kEnc,𝑅𝑖 )=𝑅𝑖 ∥𝜎𝑖
∧Verify(kMAC,𝜎𝑖 ,𝑅𝑖 )=1∧Stmt(𝑹)=𝑏}.

She also proves that 𝑸 is well-formed as 𝑸 =Query(𝜃𝑠 ) similarly

in a proof 𝑝𝑞 and sends (𝑝𝑞,𝑝𝑟 ,kMAC,𝑴̂,𝑏) toV .

Given that 𝑴̂ is an authentic transcript of the TLS session, the

prover-integrity property seems to hold. Intuitively, CBC-HMAC

ciphertexts bind to the underlying plaintexts, thus 𝑴̂ can be treated

as secure commitments [42] to the session data. That is, a given 𝑴̂
can only be opened (i.e., decrypted and MAC checked) to a unique

message. The binding property prevents P from opening 𝑴̂ to a

different message other than the original session with the server.

Unfortunately, this intuition is flawed. The strawman protocol

fails completely because it cannot ensure the authenticity of 𝑴̂ .

The prover P has the session keys, and thus she can include the

encryption of arbitrary messages in 𝑴̂ .
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Prover P VerifierVServer S

Three-party handshake (Sec. 4.1)

Session keys k kP kV

Query execution (Sec. 4.2)
Send 𝑄 =Query(𝜃𝑠 )
Receive response 𝑅

commit to (𝑄,𝑅)

kV
verify 𝑅 using kP and kV

Proof generation (Sec. 5)𝜃𝑠
kP

Figure 2: An overview of the workflow in DECO.

Moreover, the zero-knowledge proofs that P needs to construct

involve decrypting and hashing the entire transcript, which can be

prohibitively expensive. For the protocol to be practical, we need

to significantly reduce the cost.

3.4 Overview of DECO
The critical failing of our strawman approach is that P learns the

session key before she commits to the session. One key idea in

DECO is to withhold the MAC key from P until after she commits.

The TLS session between P and S must still provide confidentiality

and integrity. Moreover, the protocol must not degrade performance

below the requirements of TLS (e.g., triggering a timeout).

As shown in fig. 2, DECO is a three-phase protocol. The first

phase is a novel three-party handshake protocol in which the

proverP, the verifierV , and the TLS serverS establish session keys

that are secret-shared between P andV . After the handshake is a

query execution phase during which P accesses the server follow-

ing the standard TLS protocol, but with help fromV . After P com-

mits to the query and response,V reveals her key share. Finally, P
proves statements about the response in a proof generation phase.

3.4.1 Three-party handshake. Essentially, P andV jointly act as a

TLS client. They negotiate a shared session key with S in a secret-

shared form.We emphasize that this phase, like the rest ofDECO, is

completely transparent toS, requiring no server-side modifications.

For the CBC-HMAC cipher suite, at the end of the three-party

handshake, P andV receive kMAC
P and kMAC

V respectively, while

S receives kMAC=kMAC
P +kMAC

V . As with the standard handshake,

both P and S get the encryption key kEnc.
Three-party handshake can make the aforementioned session-

data commitment unforgeable as follows. At the end of the session,

P first commits to the session in 𝑴̂ as before, thenV reveals her

share kMAC
V . FromV’s perspective, the three-party handshake pro-

tocol ensures that a fresh MAC key (for each direction) is used for

every session, despite the influence of a potential malicious prover,

and that the keys are unknown to P until she commits. Without

knowledge of the MAC key, P cannot forge or tamper with session

data before committing to it. The unforgeability of the session-data

commitment in DECO thus reduces to the unforgeability of the

MAC scheme used in TLS.

Other ciphersuites such as GCM can be supported similarly. In

GCM, a single key (for each direction) is used for both encryption

and MAC. The handshake protocol similarly secret-shares the key

between P andV . The handshake protocol are presented in Sec. 4.1.

3.4.2 Query execution. Since the session keys are secret-shared, as

noted, P andV execute an interactive protocol to construct a TLS

message encrypting the query. P then sends the message to S as a

standard TLS client. For CBC-HMAC, they compute the MAC tag of

the query, while for GCM they perform authenticated encryption.

Note that the query is private to P and should not be leaked toV .

Generic 2PC would be expensive for large queries, so we instead

introduce custom 2PC protocols that are orders-of-magnitude more

efficient than generic solutions, as presented in Sec. 4.2.

As explained previously, P commits to the session data 𝑴̂ be-

fore receivingV’s key share, making the commitment unforgeable.

Then P can verify the integrity of the response, and prove state-

ments about it, which we present now.

3.4.3 Proof generation. With unforgeable commitments, ifP opens

the commitment 𝑴̂ completely (i.e., reveals the encryption key)

thenV could easily verify the authenticity of 𝑴̂ by checking MACs

on the decryption.

Revealing the encryption key for 𝑴̂ , however, would breach

privacy: it would reveal all session data exchanged between P and

S. In theory, P could instead prove any statement Stmt over 𝑴̂ in

zero knowledge (i.e., without revealing the encryption key). Generic

zero-knowledge proof techniques, though, would be prohibitively

expensive for many natural choices of Stmt.
DECO instead introduces two techniques to support efficient

proofs for a broad, general class of statement, namely selective open-
ing of a TLS session transcript. Selective opening involves either

revealing a substring toV or redacting, i.e., excising, a substring,
concealing it fromV .

As an example, fig. 3 shows a simplified JSON bank statement for

Bob. Suppose Bob (P) wants to reveal his checking account balance
toV . Revealing the decryption key for his TLS session would be

undesirable: it would also reveal the entire statement, including

his transactions. Instead, using techniques we introduce, Bob can

efficiently reveal only the substring in lines 5-7. Alternatively, if

he doesn’t mind revealing his savings account balance, he might

redact his transactions after line 7.

The two selective opening modes, revealing and redacting sub-

strings, are useful privacy protection mechanisms. They can also

serve as pre-processing for a subsequent zero-knowledge proof. For

example, Bob might wish to prove that he has an account with a

balance larger than $1000, without revealing the actual balance. He

would then prove in zero knowledge a predicate (“balance > $1000”)

over the substring that includes his checking account balance.

Selective opening alone, however, is not enough for many appli-

cations. This is because the context of a substring affects its meaning.

Without what we call context integrity, P could cheat and reveal

a substring that falsely appears to prove a claim toV . For example,

Bob might not have a balance above $1000. After viewing his bank

statement, though, he might in the same TLS session post a mes-

sage to customer service with the substring "balance": $5000
and then view his pending messages (in a form of reflection attack).

He could then reveal this substring to foolV .

Various sanitization heuristics on prover-supplied inputs toV ,

e.g., truncating session transcripts, could potentially prevent some
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1 {"name": "Bob",
2 "savings a/c": {
3 "balance ": $5000
4 },
5 "checking a/c": {
6 "balance ": $2000
7 },
8 "transactions ": {...}}

Figure 3: Example bank statement to demonstrate selective opening
and context-integrity attacks.

such attacks, but, like other forms of web application input sani-

tization, are fragile and prone to attack [68].

Instead, we introduce a rigorous technique by which session data

are explicitly but confidentially parsed. We call this technique zero-
knowledge two-stage parsing. The idea is that P parses 𝑴̂ locally

in a first stage and then proves to V a statement in zero knowl-

edge about constraints on a resulting substring. For example, in

our banking example, if bank-supplied key-value stores are always

escaped with a distinguished character 𝜆, then Bob could prove

a correct balance by extracting via local parsing and revealing to

V a substring "balance": $5000 preceded by 𝜆. We show for a

very common class of web API grammars (unique keys) that this

two-phase approach yields much more efficient proofs than more

generic techniques.

Section 5 gives more details on proof generation in DECO.

4 THE DECO PROTOCOL
We now specify the full DECO protocol, which consists of a three-

party handshake in Sec. 4.1, followed by 2PC protocols for query

execution in Sec. 4.2, and a proof generation phase. We prove its

security in Sec. 4.3.

4.1 Three-party handshake
The goal of the three-party handshake (3P-HS) is to secret-share

between the prover P and verifier V the session keys used in a

TLS session with server S, in a way that is completely transparent

to S. We first focus on CBC-HMAC for exposition, then adapt the

protocol to support GCM.

As with the standard TLS handshake, 3P-HS is two-step: first,

P and V compute additive shares of a secret 𝑍 ∈ 𝐸𝐶 (F𝑝 ) shared
with the server through a TLS-compatible key exchange protocol.

ECDHE is the recommended and the focus here; second, P and

V derive secret-shared session keys by securely evaluating the

TLS-PRF [36] with their shares of 𝑍 as inputs. The full protocol

is specified in fig. 6. Below we give text descriptions so formal

specifications are not required for understanding.

4.1.1 Step 1: key exchange. Let 𝐸𝐶 (F𝑝 ) denote the EC group used

in ECDHE and 𝐺 its generator.

The prover P initiates the handshake by sending a regular TLS

handshake request and a random nonce 𝑟𝑐 to S (in the ClientHello

message). On receiving a certificate, the server nonce 𝑟𝑠 , and a

signed ephemeral DH public key 𝑌𝑆 =𝑠𝑆 ·𝐺 from S (in the Server-

Hello and ServerKeyExchange messages), P checks the certificate

and the signature and forwards them toV . After performing the

same check,V samples a secret 𝑠𝑉 and sends her part of the DH

public key 𝑌𝑉 = 𝑠𝑉 ·𝐺 to P, who then samples another secret 𝑠𝑃
and sends the combined DH public key 𝑌𝑃 =𝑠𝑃 ·𝐺+𝑌𝑉 to S.

Since the server S runs the standard TLS, S will compute a

DH secret as 𝑍 = 𝑠𝑆 ·𝑌𝑃 . P (and V) computes its share of 𝑍 as

𝑍𝑃 = 𝑠𝑃 ·𝑌𝑆 (and 𝑍𝑉 = 𝑠𝑉 ·𝑌𝑆 ). Note that 𝑍 = 𝑍𝑃 +𝑍𝑉 where + is
the group operation of 𝐸𝐶 (F𝑝 ). Assuming the discrete logarithm

problem is hard in the chosen group, 𝑍 is unknown to either party.

4.1.2 Step 2: key derivation. Now that P andV have established

additive shares of 𝑍 (in the form of EC points), they proceed to

derive session keys by evaluating the TLS-PRF [36] keyed with the

𝑥 coordinate of 𝑍 .

A technical challenge here is to harmonize arithmetic operations

(i.e., addition in 𝐸𝐶 (F𝑝 )) with bitwise operations (i.e., TLS-PRF) in

2PC. It is well-known that boolean circuits are not well-suited for

arithmetic in large fields. As a concrete estimate, an EC Point addi-

tion resulting in just the 𝑥 coordinate involves 4 subtractions, one

modular inversion, and 2 modular multiplications. An estimate of

the AND complexity based on the highly optimized circuits of [34]

results in over 900,000 AND gates just for the subtractions, multi-

plications, and modular reductions—not even including inversion,

which would require running the Extended Euclidean algorithm

inside a circuit.

Due to the prohibitive cost of adding EC points in a boolean cir-

cuit, P andV convert the additive shares of an EC point in 𝐸𝐶 (F𝑝 )
to additive shares of its 𝑥-coordinate in F𝑝 , using the ECtF protocol
presented below. Then the boolean circuit just involves adding two

numbers in F𝑝 , which can be done with only ∼3|𝑝 | AND gates, that

is ∼768 AND gates in our implementation where 𝑝 is 256-bit.

ECtF: Converting shares in 𝐸𝐶 (F𝑝 ) to shares in F𝑝 . The inputs
to an ECtF protocol are two EC points 𝑃1,𝑃2 ∈ 𝐸𝐶 (F𝑝 ), denoted
𝑃𝑖 = (𝑥𝑖 ,𝑦𝑖 ). Suppose (𝑥𝑠 ,𝑦𝑠 ) = 𝑃1★𝑃2 where ★ is the EC group

operation, the output of the protocol is 𝛼,𝛽 ∈F𝑝 such that 𝛼+𝛽 =𝑥𝑠 .
Specifically, for the curve we consider, 𝑥𝑠 = 𝜆

2 − 𝑥1 − 𝑥2 where

𝜆= (𝑦2−𝑦1)/(𝑥2−𝑥1). Shares of the 𝑦𝑠 can be computed similarly but

we omit that since TLS only uses the 𝑥𝑠 .

ECtF uses a Multiplicative-to-Additive (MtA) share-conversion
protocol as a building block. We use 𝛼,𝛽 :=MtA(𝑎,𝑏) to denote a

run ofMtA between Alice and Bob with inputs 𝑎 and 𝑏 respectively.

At the end of the run, Alice and Bob receive 𝛼 and 𝛽 such that

𝑎 ·𝑏=𝛼+𝛽 . The protocol can be generalized to handle vector inputs

without increasing the communication complexity. Namely for vec-

tors 𝒂,𝒃 ∈F𝑛𝑝 , if 𝛼,𝛽 :=MtA(𝒂,𝒃), then ⟨𝒂,𝒃⟩=𝛼+𝛽 . See, e.g., [41] for
a Paillier [61]-based construction.

Now we specify the protocol of ECtF. ECtF has two main ingre-

dients. Let [𝑎] denote a 2-out-of-2 sharing of 𝑎, i.e., [𝑎] = (𝑎1,𝑎2)
such that party 𝑖 has 𝑎𝑖 for 𝑖 ∈ {1,2} while 𝑎 = 𝑎1 +𝑎2. The first

ingredient is share inversion: given [𝑎], compute [𝑎−1]. As shown
in [41], we can use the inversion protocol of Bar-Ilan and Beaver

[17] together with MtA as follows: party 𝑖 samples a random value

𝑟𝑖 and executesMtA to compute 𝛿1,𝛿2 :=MtA((𝑎1,𝑟1),(𝑟2,𝑎2)). Note
that 𝛿1+𝛿2=𝑎1 ·𝑟2+𝑎2 ·𝑟1. Party 𝑖 publishes 𝑣𝑖 =𝛿𝑖 +𝑎𝑖 ·𝑟𝑖 and thus

both parties learn 𝑣 =𝑣1+𝑣2. Finally, party 𝑖 outputs 𝛽𝑖 =𝑟𝑖 ·𝑣−1. The
protocol computes a correct sharing of 𝑎−1 because 𝛽1+𝛽2 =𝑎−1.
Moreover, the protocol doesn’t leak 𝑎 to any party assumingMtA
is secure. In fact, party 𝑖’s view consists of (𝑎1+𝑎2) (𝑟1+𝑟2), which
is uniformly random since 𝑟𝑖 is uniformly random.

The second ingredient is share multiplication: compute [𝑎𝑏]
given [𝑎],[𝑏]. [𝑎𝑏] can be computed using MtA as follows: parties
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execute MtA to compute 𝛼1,𝛼2 such that 𝛼1 +𝛼2 = 𝑎1 ·𝑏2 +𝑎2 ·𝑏2.
Then, party 𝑖 outputs𝑚𝑖 =𝛼𝑖+𝑎𝑖 ·𝑦𝑖 . The security and correctness

of the protocol can be argued similarly as above.

Combining these two ingredients, fig. 7 in the Appendix presents

the ECtF protocol, with communication complexity 8 ciphertexts.

Secure evaluation of the TLS-PRF. Having computed shares of

the 𝑥-coordinate of 𝑍 , the so called premaster secret in TLS, in

ECtF, P andV evaluate the TLS-PRF in 2PC to derive session keys.

Beginning with the SHA-256 circuit of [29], we hand-optimized

the TLS handshake circuit resulting in a circuit with total AND

complexity of 779,213.

Adapting to support GCM. For GCM, a single key (for each di-

rection) is used for both encryption and MAC. Adapting the above

protocol to support GCM in TLS 1.2 is straightforward. The first

step would remain identical, while output of the second step needs

to be truncated, as GCM keys are shorter.

Adapting to TLS 1.3. The specification of TLS 1.3 [64] has been

recently published. To support TLS 1.3, the 3P-HS protocol must

be adapted to a new handshake flow and a different key derivation

circuit. Notably, all handshake messages after the ServerHello are

now encrypted. A naïve strategy would be to decrypt them in 2PC,

which would be costly as certificates are usually large. However,

thanks to the key independence property of TLS 1.3 [37], we can

construct a 3P-HS protocol of similar complexity to that for TLS

1.2, as outlined in App. C.1.

4.2 Query execution
After the handshake, the prover P sends her query 𝑄 to the server

S as a standard TLS client, but with help from the verifierV . Specif-

ically, since session keys are secret-shared, the two parties need

to interact and execute a 2PC protocol to construct TLS records

encrypting 𝑄 . Although generic 2PC would in theory suffice, it

would be expensive for large queries. We instead introduce custom

2PC protocols that are orders-of-magnitude more efficient.

We first focus on one-round sessions where P sends all queries

toS before receiving any response. Most applications ofDECO, e.g.,

proving provenance of content retrieved via HTTP, are one-round.

Extending DECO to multi-round sessions is discussed in App. C.

4.2.1 CBC-HMAC. Recall that P andV hold shares of the MAC

key, while P holds the encryption key. To construct TLS records

encrypting 𝑄—potentially private to P, the two parties first run a

2PC protocol to compute the HMAC tag 𝜏 of𝑄 , and then P encrypts

𝑄 ∥𝜏 locally and sends the ciphertext to S.
Let H denote SHA-256. Recall that the HMAC of message𝑚 with

key k is HMAC(k,𝑚)=H((k⊕opad)∥H((k⊕ ipad)∥𝑚)︸               ︷︷               ︸
inner hash

) .

Adirect 2PC implementationwould be expensive for large queries,

as it requires hashing the entire query in 2PC to compute the inner

hash. The key idea in our optimization is to make the computation

of the inner hash local to P (i.e., without 2PC). If P knew k⊕ ipad,
she could compute the inner hash. We cannot, though, simply give

k⊕ ipad to P, as she could then learn k and forge MACs.

Our optimization exploits the Merkle–Damgård structure in

SHA-256. Suppose𝑚1 and𝑚2 are two correctly sized blocks. Then

ProtDECO

ProtS : follow the standard TLS protocol.

ProtP and ProtV :
• V sends (sid,Query, Stmt) to P, whereQuery is the query template and Stmt

the statement to be proven over the response to P.
• P examines them and chooses whether to proceed. If so, P starts the handshake.

• (3P-HS) P,V execute the three-party handshake protocol. P gets the encryption

key kEnc and a share of the MAC key kMAC
P , while V gets the other share kMAC

V .

• (Query) P computes a query using the template 𝑄 = Query(𝜃𝑠 ) . P invokes

2PC-HMAC with V to compute a tag 𝜏 . P sends (sid,𝑄̂ =Enc(kEnc,𝑄 ∥𝜏)) to S.
• (Commit and verify) After receiving a response (sid, 𝑅̂) from S, P sends

(sid, 𝑄̂, 𝑅̂, kMAC
P ) to V as a commitment to the session data. After receiv-

ing (sid, kMAC
V ) from V , P computes kMAC = kMAC

V + kMAC
P , decrypts

𝑅 ∥𝜏 =Dec(kEnc,𝑅̂) , and verifies 𝜏 against kMAC
.

• (Proof gen) Let 𝑏 = Stmt(𝑅) , 𝑥 = (kEnc, 𝜃𝑠 ,𝑄,𝑅) and 𝑤 = (𝑄̂, 𝑅̂, kMAC,𝑏) .
P sends (sid, “prove”, 𝑥, 𝑤) to FZK and outputs (𝑄, 𝑅) . If V receives

(sid,“proof”,1, (𝑄̂,𝑅̂, ˆkMAC
,𝑏)) from FZK , V checks if

ˆk
MAC

= kMAC
P +kMAC

V . If

so, V outputs (sid,𝑏,S) .

Figure 4: The DECO protocol. We only show the CBC-HMAC
variant for clarify, while the GCM variant is described in Sec. 4.3.

H(𝑚1∥𝑚2) is computed as 𝑓H (𝑓H (IV,𝑚1),𝑚2) where 𝑓H denotes

the one-way compression function of H, and IV the initial vector.

After the three-party handshake, P andV execute a simple 2PC

protocol to compute 𝑠0= 𝑓H (IV,kMAC⊕ ipad), and reveal it to P. To
compute the inner hash of a message𝑚, P just uses 𝑠0 as the IV

to compute a hash of𝑚. Revealing 𝑠0 does not reveal kMAC
, as 𝑓H

is assumed to be one-way. To compute HMAC(k,𝑚) then involves

computing the outer hash in 2PC on the inner hash, a much shorter

message. Thus, we manage to reduce the amount of 2PC compu-

tation to a few blocks regardless of query length, as opposed to up

to 256 SHA-2 blocks in each record with generic 2PC. The protocol

is formally specified in fig. 8.

4.2.2 AES-GCM. For GCM, P andV perform authenticated en-

cryption of 𝑄 . 2PC-AES is straightforward with optimized circuits

(e.g., [11]), but computing tags for large queries is expensive as

it involves evaluating long polynomials in a large field for each
record. Our optimized protocol makes polynomial evaluation local

via precompution. We refer readers to App. B.2 for details. Since

2PC-GCM involves not only tag creation but also AES encryption,

it incurs higher computational cost and latency than CBC-HMAC.

In App. C.4, we present a highly efficient alternative protocol that

avoids post-handshake 2PC protocols altogether, with additional

trust assumptions.

4.3 Full protocol
After querying the server and receiving a response, P commits to

the session by sending the ciphertexts toV , and receivesV’s MAC

key share. ThenP can verify the integrity of the response, and prove

statements about it. Figure 4 specifies the full DECO protocol for

CBC-HMAC (the protocol for GCM is similar and described later).

For clarity, we abstract away the details of zero-knowledge

proofs in an ideal functionality FZK like that in [45]. On receiving

(“prove”,𝑥,𝑤) from P, where 𝑥 and 𝑤 are private and public wit-

nesses respectively,FZK sends𝑤 and the relationship 𝜋 (𝑥,𝑤) ∈ {0,1}
(defined below) toV . Specifically, for CBC-HMAC, 𝑥,𝑤,𝜋 are de-

fined as follows: 𝑥 = (kEnc,𝜃𝑠 ,𝑄,𝑅) and 𝑤 = (𝑄̂,𝑅,kMAC,𝑏). The
relationship 𝜋 (𝑥,𝑤) outputs 1 if and only if (1) 𝑄̂ (and 𝑅) is the
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CBC-HMAC ciphertext of 𝑄 (and 𝑅) under key kEnc, kMAC
; (2)

Query(𝜃𝑠 )=𝑄 ; and (3) Stmt(𝑅)=𝑏. Otherwise it outputs 0.
Assuming functionalities for secure 2PC and ZKPs, it can be

shown that ProtDECO UC-securely realizes F
Oracle

for malicious ad-

versaries, as stated in Theorem 4.1. We provide a simulation-based

proof (sketch) in App. D.

Theorem 4.1 (Security of ProtDECO). Assuming the discrete
log problem is hard in the group used in the three-party handshake,
and that 𝑓 (the compression function of SHA-256) is an random ora-
cle, ProtDECO UC-securely realizes FOracle in the (F2PC,FZK)-hybrid
world, against a static malicious adversary with abort.

The protocol for GCM has a similar flow. We’ve specified the

GCM variants of the three-party handshake and query construction

protocols. Unlike CBC-HMAC, GCM is not committing [42]: for

a given ciphertext 𝐶 encrypted with key k, one knowing k can

efficiently find k′≠k that decrypts 𝐶 to a different plaintext while

passing the integrity check. To prevent such attacks, we require P
to commit to her key share kP before learningV’s key share. In

the proof generation phase, in addition to proving statements about

𝑄 and 𝑅, P needs to prove that the session keys used to decrypt 𝑄̂

and 𝑅 are valid against the commitment to kP . Proof of the security
of the GCM variant is like that for CBC-HMAC.

5 PROOF GENERATION
Recall that the prover P commits to the ciphertext 𝑴̂ of a TLS

session and proves toV that the plaintext 𝑴 satisfies certain prop-

erties. Without loss of generality, we assume 𝑴̂ and 𝑴 contain

only one TLS record, and henceforth call them the ciphertext record
and the plaintext record. Multi-record sessions can be handled by

repeating the protocol for each record.

Proving only the provenance of𝑴 is easy: just reveal the encryp-

tion keys. But this sacrifices privacy. Alternatively, P could prove

any statement about 𝑴 using general zero-knowledge techniques.

But such proofs are often expensive.

In this section, we present two classes of statements optimized

for what are likely to be the most popular applications: reveal-

ing only a substring of the response while proving its provenance

(Sec. 5.1), or further proving that the revealed substring appears in

a context expected byV (Sec. 5.2).

5.1 Selective opening
We introduce selective opening, techniques that allowP to efficiently

reveal or redact substrings in the plaintext. Suppose the plaintext

record is composed of chunks 𝑴 = (𝐵1,···,𝐵𝑛) (details of chunking
are discussed shortly). Selective opening allows P to prove that the

𝑖th chunk of 𝑴 is 𝐵𝑖 , without revealing the rest of 𝑴 ; we refer to

this as Revealmode. It can also prove that𝑴−𝑖 is the same as𝑴 but

with the chunks removed.We call this Redactmode. Bothmodes are

simple, but useful for practical privacy goals. The granularity of se-

lective opening depends on the cipher suite, which we now discuss.

5.1.1 CBC-HMAC. Recall that for proof generation, P holds both

the encryption andMAC keys kEnc and kMAC
, whileV only has the

MAC key kMAC
. Our performance analysis assumes a ciphersuite

with SHA-256 and AES-128, which matches our implementation,

but the techniques are applicable to other parameters. Recall that

MAC-then-encrypt is used: a plaintext record 𝑴 contains up to

1024 AES blocks of data and 3 blocks of MAC tag 𝜎 , which we

denote as 𝑴 = (𝐵1,...,𝐵1024,𝜎) where 𝜎 = (𝐵1025,𝐵1026,𝐵1027). 𝑴̂ is

a CBC encryption of 𝑴 , consisting of the same number of blocks:

𝑴̂ = (𝐵̂1,...,𝐵̂1024,𝜎̂) where 𝜎̂ = (𝐵̂1025,𝐵̂1026,𝐵̂1027).
Revealing a TLS record.A naïve way to prove that 𝑴̂ encrypts𝑴
without revealing kEnc is to prove correct encryption of each AES

block in ZKP. However, this would require up to 1027 invocations

of AES in ZKP, resulting in impractical performance.

Leveraging the MAC-then-encrypt structure, the same can be

done using only 3 invocations of AES in ZKP. The idea is to prove

that the last few blocks of 𝑴̂ encrypt a tag 𝜎 and reveal the plain-

text directly. Specifically, P computes 𝜋𝜎 = ZK-PoK{kEnc : 𝜎̂ =

CBC(kEnc, 𝜎)} and sends (𝑴, 𝜋𝜎 ) to V . Then V verifies 𝜋 and

checks the MAC tag over 𝑴 (note thatV knows the MAC key.) Its

security relies on the collision-resistance of the underlying hash

function in HMAC, i.e., P cannot find 𝑴 ′≠𝑴 with the same tag 𝜎 .

Revealing a record with redacted blocks. Suppose the 𝑖th block

contains sensitive information that P wants to redact. A direct strat-

egy is to prove that 𝑩𝑖−= (𝐵1,···,𝐵𝑖−1) and 𝑩𝑖+= (𝐵𝑖+1,···,𝐵𝑛) form
the prefix and suffix of the plaintext encrypted by 𝑴̂ , by computing

𝜋𝜎 (see above) and ZK-PoK{𝐵𝑖 : 𝜎 =HMAC(kMAC,𝑩𝑖−∥𝐵𝑖 ∥𝑩𝑖+)}.
This is expensive though as it would involve 3AES and 256 SHA-256

compression in ZKP.

Leveraging theMerkle-Damgård structure of SHA-256 (c.f. Sec. 4.2.1),

several optimization is possible. Let 𝑓 denote the compression func-

tion of SHA-256, and 𝑠𝑖−1 the state after applying 𝑓 on 𝑩𝑖−. First, if
both 𝑠𝑖−1 and 𝑠𝑖 can be revealed, e.g., when 𝐵𝑖 contains high-entropy
data such as API keys, the above goal can be achieved using just 1

SHA-256 in ZKP. To do so,P computes 𝜋 =ZK-PoK{𝐵𝑖 : 𝑓 (𝑠𝑖−1,𝐵𝑖 )=
𝑠𝑖 } and sends (𝜋,𝑠𝑖−1,𝑠𝑖 ,𝑩𝑖−,𝑩𝑖+) toV , who then 1) checks 𝑠𝑖−1 by
recomputing it from 𝑩𝑖−; 2) verifies 𝜋 ; and 3) checks the MAC tag

𝜎 by recomputing it from 𝑠𝑖 and 𝑩𝑖+. Assuming 𝐵𝑖 is high entropy,

revealing 𝑠𝑖−1 and 𝑠𝑖 doesn’t leak 𝐵𝑖 since 𝑓 is one-way.
On the other hand, if both 𝑠𝑖−1 and 𝑠𝑖 cannot be revealed toV

(e.g., when brute-force attacks against 𝐵𝑖 is feasible), we can still

reduce the cost by having P redact a prefix (or suffix) of the record

containing the block 𝐵𝑖 . The cost incurred then is 256− 𝑖 SHA-2
hashes in ZKP. We relegate the details to App. A.2. Generally ZKP

cost is proportional to record sizes so TLS fragmentation can also

lower the cost by a constant factor.

5.1.2 GCM. Unlike CBC-HMAC, revealing a block is very efficient

in GCM. First, P reveals AES(k,𝐼𝑉 ) and AES(k,0), with proofs of

correctness in ZK, to allowV to verify the integrity of the cipher-

text. Then, to reveal the 𝑖th block, P just reveals the encryption of

the 𝑖th counter 𝐶𝑖 =AES(k,inc𝑖 (𝐼𝑉 )) with a correctness proof.V
can decrypt the 𝑖th block as 𝐵̂𝑖 ⊕𝐶𝑖 . 𝐼𝑉 is the public initial vector for

the session, and inc𝑖 (𝐼𝑉 ) denotes incrementing 𝐼𝑉 for 𝑖 times (the

exact format of inc is immaterial.) To reveal a TLS record, P repeat

the above protocol for each block. We defer details to App. B.3.

5.2 Context integrity by two-stage parsing
For many applications, the verifierV may need to verify that the

revealed substring appears in the right context.We refer to this prop-

erty as context integrity. In this section we present techniques forV
to specify contexts and for P to prove context integrity efficiently.
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For ease of exposition, our description below focuses on the

revealing mode, i.e., P reveals a substring of the server’s response

toV . We discuss how redaction works in Sec. 5.2.3.

5.2.1 Specification of contexts. Our techniques for specifying con-

texts assume that the TLS-protected data sent to and from a given

server S has a well-defined context-free grammar G, known to

both P andV . In a slight abuse of notation, we let G denote both a

grammar and the language it specifies. Thus, 𝑅 ∈G denotes a string

𝑅 in the language given by G. We assume that G is unambiguous,
i.e., every 𝑅 ∈ G has a unique associated parse-tree 𝑇𝑅 . JSON and

HTML are examples of two widely used languages that satisfy these

requirements, and are our focus here.

When P then presents a substring 𝑅open of some response 𝑅

from S, we say that 𝑅open has context integrity if 𝑅open is produced

in a certain way expected by V . Specifically, V specifies a set 𝑆

of positions in which she might expect to see a valid substring

𝑅open in 𝑅. In our definition, 𝑆 is a set of paths from the root in a

parse-tree defined by G to internal nodes. Thus 𝑠 ∈𝑆 , which we call

a permissible path, is a sequence of non-terminals. Let 𝜌𝑅 denote the

root of 𝑇𝑅 (the parse-tree of 𝑅 in G). We say that a string 𝑅open has

context-integrity with respect to (𝑅,𝑆) if 𝑇𝑅 has a subtree whose

leaves yield (i.e. concatenate to form) the string 𝑅open, and that

there is a path 𝑠 ∈𝑆 from 𝜌𝑅 to the root of the said subtree.

Formally, we define context integrity in terms of a predicate

CTXG in Def. 5.1. At a high level, our definition is reminiscent of

the production-induced context in [67].

Definition 5.1. Given a grammar G on TLS responses, 𝑅 ∈ G,
a substring 𝑅open of 𝑅, a set 𝑆 of permissible paths, we define a

context function CTXG as a boolean function such that CTXG :

(𝑆,𝑅,𝑅open) ↦→ true iff ∃ a sub-tree 𝑇𝑅open of 𝑇𝑅 with a path 𝑠 ∈ 𝑆
from 𝜌𝑇𝑅 to 𝜌𝑇𝑅open and 𝑇𝑅open yields 𝑅open. 𝑅open is said to have

context integrity with respect to (𝑅,𝑆) if CTXG (𝑆,𝑅,𝑅open)= true.

As an example, consider the JSON string 𝐽 in fig. 3. JSON contains

(roughly) the following rules:

Start → object object → { pairs }
pair → “key” : value pairs → pair | pair, pairs
key → chars value → chars | object

In that example,V was interested in learning the derivation of

the pair 𝑝balance with key “balance” in the object given by the

value of the pair 𝑝checking with key “checking a/c”. Each of

these non-terminals is the label for a node in the parse-tree𝑇𝐽 . The

path from the root Start of 𝑇𝐽 to 𝑝checking requires traversing a

sequence of nodes of the form Start → object → pairs∗ →
𝑝checking, where pairs∗ denotes a sequence of zero or more pairs.
So 𝑆 is the set of such sequences and 𝑅open is the string “checking
a/c”: {“balance”: $2000}.

5.2.2 Two-stage parsing. Generally, proving 𝑅open has context in-

tegrity, i.e., CTXG (𝑆,𝑅,𝑅open) = true, without directly revealing 𝑅

would be expensive, since computing CTXG may require comput-

ing 𝑇𝑅 for a potentially long string 𝑅. However, we observed that

under certain assumptions that TLS-protected data generally satis-

fies, much of the overhead can be removed by having P pre-process
𝑅 by applying a transformation Trans agreed upon by P andV , and

prove that 𝑅open has context integrity with respect to 𝑅′ (a usually

much shorter string) and 𝑆 ′ (a set of permissible paths specified by

V based on 𝑆 and Trans).
Based on this observation, we introduce a two-stage parsing

scheme for efficiently computing𝑅open and provingCTXG (𝑆,𝑅,𝑅open)=
true. Suppose P and V agree upon G, the grammar used by the

web server, and a transformation Trans. Let G′ be the grammar of

strings Trans(𝑅) for all 𝑅 ∈G. Based on Trans,V specifies permissi-

ble paths 𝑆 ′ and a constraint-checking function consG,G′ . In the first
stage, P: (1) computes a substring 𝑅open of 𝑅 by parsing 𝑅 (such that

CTXG (𝑆,𝑅,𝑅open)= true) (2) computes another string 𝑅′=Trans(𝑅).
In the second stage, P proves to V in zero-knowledge that (1)

consG,G′ (𝑅,𝑅′)= true and (2) CTXG′ (𝑆 ′,𝑅′,𝑅open)= true. Note that
in addition to public parameters G,G′, 𝑆,𝑆 ′,Trans, consG,G′ , the
verifier only sees a commitment to 𝑅, and finally, 𝑅open.

This protocol makes the zero-knowledge computation signifi-

cantly less expensive by deferring actual parsing to a non-verifiable

computation. In otherwords, the computation ofCTXG′ (𝑆 ′,𝑅′,𝑅open)
and consG,G′ (𝑅,𝑅′) can bemuchmore efficient than that ofCTXG (𝑆,
𝑅,𝑅open).

We formalize the correctness condition for the two-stage parsing

in an operational semantics rule in Def. 5.2. Here, ⟨𝑓 ,𝜎⟩ denotes ap-
plying a function 𝑓 on input 𝜎 , while 𝑃

𝐶
denotes that if the premise

𝑃 is true, then the conclusion 𝐶 is true.

Definition 5.2. Given a grammar G, a context function and per-

missible paths CTXG (𝑆, ·, · ), a transformation Trans, a grammar

G′ = {𝑅′ : 𝑅′ = Trans(𝑅),𝑅 ∈ G} with context function and per-

missible paths CTXG′ (𝑆 ′, · , · ) and a function consG,G′ , we say

(consG,G′,𝑆 ′) are correct w.r.t. 𝑆 , if for all (𝑅,𝑅′,𝑅open) such that

𝑅 ∈G, booleans b the following rule holds:

⟨consG,G′,(𝑅,𝑅′)⟩⇒ true ⟨CTXG′,(𝑆 ′,𝑅′,𝑅open)⟩⇒b

⟨CTXG,(𝑆,𝑅,𝑅open)⟩⇒b
.

Below, we focus on a grammar that mostDECO applications use,

and present concrete constructions of two-stage parsing schemes.

5.2.3 DECO focus: Key-value grammars. A broad class of data for-

mats, such as JSON, have a notion of key-value pairs. Thus, they

are our focus in the current version of DECO.
A key-value grammar G produces key-value pairs according

to the rule, “pair → start key middle value end”, where
start, middle and end are delimitors. For such grammars, an ar-

ray of optimizations can greatly reduce the complexity for proving

context. We discuss a few such optimizations below, with formal

specification relegated to App. F.

Revelation for a globally unique key. For a key-value grammar

G, set of paths 𝑆 , if for an 𝑅 ∈G, a substring 𝑅open satisfying context-
integrity requires that 𝑅open is parsed as a key-value pair with a

globally unique key K (formally defined in App. F.4), 𝑅open simply

needs to be a substring of 𝑅 and correctly be parsed as a pair.
Specifically, Trans(𝑅) outputs a substring 𝑅′ of 𝑅 containing the

desired key, i.e., a substring of the form “start K middle value
end” and P can output 𝑅open=𝑅

′
. G′ can be defined by the rule SG′

→ pair where SG′ is the start symbol in the production rules for

G′. Then (1) consG,G′ (𝑅,𝑅′) checks that 𝑅′ is a substring of 𝑅 and

(2) for 𝑆 ′={SG′ }, CTXG′ (𝑆 ′,𝑅′,𝑅open) checks that (a) 𝑅′ ∈G′ and (b)

𝑅open=𝑅
′
. Globally unique keys arise in Sec. 6.2 when selectively

opening the response for age.
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Redaction in key-value grammars. Thus far, our description of

two-stage parsing assumes the Reveal mode in which P reveals

a substring 𝑅open of 𝑅 toV and proves that 𝑅open has context in-

tegrity with respect to the set of permissible paths specified byV .

In the Redact mode, the process is similar, but instead of revealing

𝑅open in the clear, P generates a commitment to 𝑅open using tech-

niques from Sec. 5.1 and reveals 𝑅, with 𝑅open removed, for e.g. by

replacing its position with a dummy character.

6 APPLICATIONS
DECO can be used for any oracle-based application. To showcase

its versatility, we have implemented and evaluated three applica-

tions that leverage its various capabilities: 1) a confidential financial

instrument realized by smart contracts; 2) converting legacy cre-

dentials to anonymous credentials; and 3) privacy-preserving price

discrimination reporting. Due to lack of space, we only present con-

crete implementation details for the first application, and refer read-

ers to App. E for others. Evaluation results are presented in Sec. 7.2.

6.1 Confidential financial instruments
Financial derivatives are among the most commonly cited smart

contract applications [32, 60], and exemplify the need for authen-

ticated data feeds (e.g., stock prices). For example, one popular

financial instrument that is easy to implement in a smart contract

is a binary option [9]. This is a contract between two parties betting

on whether, at a designated future time, e.g., the close of day D,
the price P∗ of some asset N will equal or exceed a predetermined

target price P, i.e., P∗ ≥ P. A smart contract implementing this

binary option can call an oracle O to determine the outcome.

In principle, O can conceal the underlying asset N and target

price P for a binary option on chain. It simply accepts the option

details off chain, and reports only a bit specifying the outcome

Stmt := P∗ ≥? P. This approach is introduced in [48], where it is

referred to as a Mixicle.
A limitation of a basic Mixicle construction is that O itself learns

the details of the financial instrument. Prior to DECO, only oracle

services that use TEE (e.g., [78]) could conceal queries from O. We

now show how DECO can support execution of the binary option

without O learning the details of the financial instrument, i.e.,N or P1.
The idea is that the option winner plays the role of P, and ob-

tains a signed result of Stmt from O, which plays the role ofV . We

now describe the protocol and its implementation.

Protocol. Let {skO ,pkO} denote the oracles’ key pair. In our scheme,

a binary option is specified by an asset name N, threshold price P,
and settlement date D. We denote the commitment of a message

𝑀 by C𝑀 = com(𝑀,𝑟𝑀 ) with a witness 𝑟𝑀 . Figure 5 shows the

workflow steps in a confidential binary option:

1) Setup: Alice and Bob agree on the binary option {N,P,D}
and create a smart contract SC with identifier IDSC , The contract
contains pkO , addresses of the parties, and commitments to the

option {CN,CP,CD}withwitnesses known to both parties. They also
agree on public parameters 𝜃𝑝 (e.g., the URL to retrieve asset prices).

1
The predicate direction ≥? or ≤? can be randomized. Concealing winner and loser

identities and payment amounts is discussed in [48]. Additional steps can be taken

to conceal other metadata, e.g., the exact settlement time.

Alice Bob

Oracle O Contract SC

1. Set up contract

SC, shared
randomness 𝑟N,𝑟P,𝑟D

IDSC ,pkO , {CN,CP,CD }

2. ZKP using DECO

𝑆 = Sig(skO , IDSC )

3. Send 𝑆

Receive payout

> GET /query?function=GLOBAL_QUOTE&

↩→ symbol= GOOGL
Host: www.alphavantage.co

>
{

"Global Quote": {

"01. symbol": "GOOGL" ,

"05. price": "1157.7500" ,

"07. day": "2019-07-16"

}
}

Figure 5: Two parties Alice and Bob execute a confidential binary
option. Alice uses DECO to access a stock price API and convince
O she has won. Examples of request and response are shown to the
right. Text in red is sensitive information to be redacted.

2) Settlement: Suppose Alice wins the bet. To claim the pay-

out, she uses DECO to generate a ZK proof that the current as-

set price retrieved matches her position. Alice and O execute the

DECO protocol (with O acting as the verifier) to retrieve the asset

price from 𝜃𝑝 (the target URL). We assume the response contains

(N∗,P∗,D∗). In addition to the ZK proof in DECO to prove origin

𝜃𝑝 , Alice proves knowledge of (P,N∗,P∗,D∗,𝑟N,𝑟P,𝑟D) such that

(P≤P∗)∧CN=com(N∗,𝑟N)∧CP=com(P,𝑟P)∧CD=com(D∗,𝑟D).
Upon successful proof verification, the oracle returns a signed

statement with the contract ID, 𝑆 =Sig(skO ,IDSC).
3) Payout: Alice provides the signed statement 𝑆 to the contract,

which verifies the signature and pays the winning party.

Alice and Bob need to trust O for integrity, but not for privacy.

They can further hedge against integrity failure by using multiple

oracles, as explained in Sec. 3.1. Decentralizing trust over oracles

is a standard and already deployed technique [39]. We emphasize

that DECO ensures privacy even if all the oracles are malicious.

Implementation details. Figure 5 shows the request and response
of a stock price API. Let 𝑅 and 𝑅 denote the response ciphertext and

the plaintext respectively. To settle an option, P proves toV that

𝑅 contains evidence that he won the option, using the two-stage

parsing scheme introduced in Sec. 5.2. In the first stage, P parses 𝑅

locally and identifies the smallest substring of 𝑅 that can convince

V . E.g., for stock prices, 𝑅price="05. price": "1157.7500" suf-

fices. In the second stage, P proves knowledge of (𝑅price,P, 𝑟P)
in ZK such that 1) 𝑅price is a substring of the decryption of 𝑅; 2)

𝑅price starts with "05. price"; 3) the subsequent characters form
a floating point number P∗ and that P∗ ≥ P; 4) com(P,𝑟P)=CP.

This two-stage parsing is secure assuming the keys are unique

and the key "05. price" is followed by the price, making the

grammar of this response a key-value grammar with unique keys, as
discussed in Sec. 5.2. Similarly, P proves that the stock name and

date in 𝑅 match the commitments. With the CBC-HMAC cipher-

suite, the zero-knowledge proof circuit involves redacting an entire

record (408 bytes), computing commitments, and string processing.

6.2 Legacy credentials
to anonymous credentials: Age proof

User credentials are often inaccessible outside a service provider’s

environment. Some providers offer third-partyAPI access via OAuth
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tokens, but such tokens reveal user identifiers. DECO allows users

holding credentials in existing systems (what we call legacy cre-
dentials) to prove statements about them to third parties (verifiers)

anonymously. Thus, DECO is the first system that allows users to

convert any web-based legacy credential into an anonymous cre-

dential without server-side support [65] or trusted hardware [78].

We showcase an example where a student proves her/his age is

over 18 using credentials (demographic details) stored on a Univer-

sity website. A student can provide this proof of age to any third

party, such as a state issuing a driver’s license or a hospital seeking

consent for a medical test. We implement this example using the

AES-GCM cipher suite and two-stage parsing (See fig. 10) with

optimizations based on unique keys as in Sec. 5.2.

6.3 Price discrimination
Price discrimination refers to selling the same product or service at

different prices to different buyers. Ubiquitous consumer tracking

enables online shopping and booking websites to employ sophis-

ticated price discrimination [72], e.g., adjusting prices based on

customer zip codes [47]. Price discrimination can lead to economic

efficiency [59], and is thus widely permissible under existing laws.

In the U.S., however, the FTC forbids price discrimination if it

results in competitive injury [40], while new privacy-focused laws

in Europe, such as the GDPR, are bringing renewed focus to the

legality of the practice [21]. Consumers in any case generally dislike

being subjected to price discrimination. Currently, however, there is

no trustworthy way for users to report online price discrimination.

DECO allows a buyer to make a verifiable claim about perceived

price discrimination by proving the advertised price of a good is

higher than a threshold, while hiding sensitive information such as

name and address. We implement this example using the AES-GCM

cipher suite for the TLS session and reveal 24 AES blocks containing

necessary order details and the request URL (See fig. 11).

7 IMPLEMENTATION AND EVALUATION
In this section, we discuss implementation details and evaluation

results for DECO and our three applications.

7.1 DECO protocols
We implemented the three-party handshake protocol (3P-HS) for

TLS 1.2 and query execution protocols (2PC-HMAC and 2PC-GCM)

in about 4700 lines of C++ code. We built a hand-optimized TLS-

PRF circuit with total AND complexity of 779,213. We also used

variants of the AES circuit from [11]. Our implementation uses

Relic [13] for the Paillier cryptosystem and the EMP toolkit [74]

for the maliciously secure 2PC protocol of [75].

We integrated the three-party handshake and 2PC-HMAC pro-

tocols with mbedTLS [14], a popular TLS implementation, to build

an end-to-end system. 2PC-GCM can be integrated to TLS simi-

larly with more engineering effort. We evaluated the performance

of 2PC-GCM separately. The performance impact of integration

should be negligible. We did not implement 3P-HS for TLS 1.3, but

we conjecture the performance should be comparable to that for

TLS 1.2, since the circuit complexity is similar (c.f. Sec. 4.1.2).

Evaluation.We evaluated the performance of DECO in both the

LAN and WAN settings. Both the prover and verifier run on a

Table 1: Run time (in ms) of 3P-HS and query execution protocols.

LAN WAN

Online Offline Online Offline

3P-Handshake TLS 1.2 only 368.5 (0.6) 1668 (4) 2850 (20) 10290 (10)

2PC-HMAC TLS 1.2 only 133.8 (0.5) 164.9 (0.4) 2520 (20) 3191 (8)

2PC-GCM (256B) 1.2 and 1.3 36.65 (0.02) 392 (8) 1208.5 (0.2) 12010 (70)

2PC-GCM (512B) 1.2 and 1.3 53.0 (0.5) 610 (10) 2345 (1) 12520 (70)

2PC-GCM (1KB) 1.2 and 1.3 101.9 (0.5) 830 (20) 4567 (4) 14300 (200)

2PC-GCM (2KB) 1.2 and 1.3 204.7 (0.9) 1480 (30) 9093.5 (0.9) 18500 (200)

Table 2: Costs of generating and verifying ZKPs in proof-generation
phase of DECO for applications in Sec. 6.

Binary Option Age Proof Price Discrimination

prover time 12.97 ± 0.04s 3.67 ± 0.02s 12.68 ± 0.02s

verifier time 0.01s 0.01s 0.05s

proof size 861B 574B 1722B

# constraints 617k 164k 535k

memory 1.78GB 0.69GB 0.92GB

c5.2xlarge AWS node with 8 vCPU cores and 16GB of RAM. We

located the two nodes in the same region (but different availability

zones) for the LAN setting, but in two distinct data centers (in Ohio

and Oregon) in the WAN setting. The round-trip time between two

nodes in the LAN and WAN is about 1ms and 67ms, respectively,

and the bandwidth is about 1Gbps.

Table 1 summarizes the runtime ofDECO protocols during a TLS

session. 50 samples were used to compute the mean and standard

error of the mean (in parenthesis). The MPC protocol we used relies

on offline preprocessing to improve performance. Since the offline

phase is input- and target-independent, it can be done prior to the

TLS session. Only the online phase is on the critical path.

As shown in table 1, DECO protocols are very efficient in the

LAN setting. It takes 0.37 seconds to finish the three-party hand-

shake. For query execution, 2PC-HMAC is efficient (0.13s per record)

as it only involves one SHA-2 evaluation in 2PC, regardless of record

size. 2PC-GCM is generally more expensive and the cost depends

on the query length, as it involves 2PC-AES over the entire query.

We evaluated its performance with queries ranging from 256B to

2KB, the typical sizes seen in HTTP GET requests [63]. In the LAN

setting, the performance is efficient and comparable to 2PC-HMAC.

In the WAN setting, the runtime is dominated by the network

latency because MPC involves many rounds of communication.

Nonetheless, the performance is still acceptable, given that DECO
is likely to see only periodic use for most applications we consider.

7.2 Proof generation
We instantiated zero-knowledge proofs with a standard proof sys-

tem [18] in libsnark [5]. We have devised efficiently provable state-

ment templates, but users of DECO need to adapt them to their

specific applications. SNARK compilers enable such adaptation in

a high-level language, concealing low-level details from developers.

We used xjsnark [50] and its Java-like high-level language to build

statement templates and libsnark compatible circuits.

Our rationale in choosing libsnark is its relatively mature tooling

support. The proofs generated by libsnark are constant-size and

very efficient to verify, the downside being the per-circuit trusted

setup. With more effort, DECO can be adapted to use, e.g., Bullet-

proofs [25], which requires no trusted setup but has large proofs

and verification time.
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Evaluation.Wemeasure five performancemetrics for each example—

prover time (the time to generate the proofs), verifier time (the time

to verify proofs), proof size, number of arithmetic constraints in

the circuit, and the peak memory usage during proof generation.

Table 2 summarizes the results. 50 samples were used to com-

pute the mean and its standard error. Through the use of efficient

statement templates and two-stage parsing, DECO achieves very

practical prover performance. Since libsnark optimizes for low veri-

fication overhead, the verifier time is negligible. The number of con-

straints (and prover time) is highest for the binary option applica-

tion due to the extra string parsing routines. We use multiple proofs

in each application to reduce peakmemory usage. For the most com-

plex application, thememory usage is 1.78GB. As libsnark proofs are

of a constant size 287B, the proof sizes shown are multiples of that.

7.3 End-to-end performance
DECO end-to-end performance depends on the available TLS ci-

phersuites, the size of private data, and the complexity of application-

specific proofs. Here we present the end-to-end performance of

the most complex application of the three we implemented—the

binary option. It takes about 13.77s to finish the protocol, which in-

cludes the time taken to generate unforgeable commitments (0.50s),

to run the first stage of two-stage parsing (0.30s), and to gener-

ate zero-knowledge proofs (12.97s). These numbers are computed

in the LAN setting; in the WAN setting, MPC protocols are more

time-consuming (5.37s), pushing the end-to-end time up to 18.64s.

In comparison, Town Crier uses TEEs to execute a similar appli-

cation in about 0.6s [78, Table I], i.e., around 20x faster than DECO,

but with added trust assumptions. Since DECO is likely to be used

only periodically for most applications, its overhead in achieving

cryptographic-strength security assurances seems reasonable.

8 LEGAL AND COMPLIANCE ISSUES
Although users can already retrieve their data fromwebsites,DECO
allows users to export the data with integrity proofs without their
explicit approval or even awareness. We now briefly discuss the

resulting legal and compliance considerations.

Critically, however, DECO users cannot unilaterally export data
to a third party with integrity assurance, but rely on oracles as

verifiers for this purpose. While DECO keeps user data private,

oracles learn what websites and types of data a user accesses. Thus

oracles can enforce appropriate data use, e.g., denying transactions

that may result in copyright infringement.

Both users and oracles bear legal responsibility for the data they

access. Recent case law on the Computer Fraud and Abuse Act

(CFAA), however, shows a shift away from criminalization of web

scraping [69], and federal courts have ruled that violating websites’

terms of service is not a criminal act per se [46, 49]. Users and or-

acles that violate website terms of service, e.g., “click wrap” terms,

instead risk civil penalties [15]. DECO compliance with a given

site’s terms of service is a site- and application-specific question.

Oracles have an incentive to establish themselves as trustwor-

thy within smart-contract and other ecosystems. We expect that

reputable oracles will provide users with menus of the particular

attestations they issue and the target websites they permit, vet-

ting these options to maximize security and minimize liability and

perhaps informing or cooperating with target servers.

The legal, performance, and compliance implications of incorrect

attestations based on incorrect (and potentially subverted) data are

also important. Internet services today have complex, multi-site

data dependencies, though, so these issues aren’t specific to DECO.

Oracle services already rely on multiple data sources to help ensure

correctness [39]. Oracle services in general could ultimately spawn

infrastructure like that for certificates, including online checking

and revocation capabilities [56] and different tiers of security [19].

9 RELATED WORK
Application-layer data-provenance. Signing content at the ap-
plication layer is a way to prove data provenance. For example,

[31, 77] aim to retrofit signing capabilities into HTTP. Application-

layer solutions, however, suffer from poor modularity and reusabil-

ity, as they are application-specific. They also require application-

layer key management, violating the principle of layer separation

in that cryptographic keys are no longer confined to the TLS layer.

Cinderella [33] uses verifiable computation to convert X.509 cer-

tificates into other credential types. Its main drawback is that few

users possess certificates. Open ID Connect [6] providers can issue

signed claims about users. However, adoption is still sparse and

claims are limited to basic info such as names and email addresses.

Server-facilitated TLS-layer solutions. Several proposed TLS-

layer data-provenance proofs [22, 44, 65] require server-side mod-

ifications. TLS-N [65] is a TLS 1.3 extension that enables a server

to sign the session using the existing PKI, and also supports chunk-

level redaction for privacy. We refer readers to [65] and references

therein for a survey of TLS-layer solutions. Server-facilitated solu-

tions suffer from high adoption cost, as they involve modification

to security-critical server code. Moreover, they only benefit users

when server administrators are able to and choose to cooperate.

Smart contract oracles. Oracles [26, 39, 78] relay authenticated

data from, e.g., websites, to smart contracts. TLSNotary [7], used

by Provable [10], allows a third party auditor to attest to a TLS

connection between a server and a client, but relies on deprecated

TLS versions (1.1 or lower). Town Crier [78] is an oracle service

that uses TEEs (e.g., Intel SGX) for publicly verifiable evidence of

TLS sessions and privacy-preserving computation on session data.

While flexible and efficient, it relies on TEEs, which some users

may reject given recently reported vulnerabilities, e.g., [24].

Selective openingwith context integrity. Selective opening, i.e.,
decrypting part of a ciphertext to a third party while proving its

integrity, has been studied previously. Sanitizable signatures [16,

23, 55, 70] allow a signed document to be selectively revealed. TLS-

N [65] allows “chunk-level” redacting of TLS records. These works,

however, consider aweaker adversarial model thanDECO. They fail

to address the critical property of context integrity. DECO enforces

proofs of context integrity in the rigorous sense of Sec. 5.2, using a

novel two-stage parsing scheme that achieves efficiency by greatly

reducing the length of the input to the zero-knowledge proof.
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A PROTOCOLS DETAILS
A.1 Formal specification
We gave a self-contained informal description of the three-party

handshake protocol in Sec. 4.1. The formal specification is given

in fig. 6 along with its building block ECtF in fig. 7. The post-

handshake protocols for CBC-HMAC described in Sec. 4.2 is spec-

ified in fig. 8.

A.2 Selective opening (CBC-HMAC)
Redacting a suffix. When a suffix 𝑩𝑖+ is to be redacted, P com-

putes 𝜋 =ZK-PoK{𝑩𝑖+,kEnc : 𝑓 (𝑠𝑖 ,𝑩𝑖+) = 𝑖ℎ∧𝐻 (kMAC⊕opad| |𝑖ℎ) =
𝜎 ∧ 𝐵1025∥𝐵1026∥𝐵1027 = CBC(kEnc,𝜎)} and 𝑠𝑖 is the state after

applying 𝑓 on 𝑩𝑖−∥𝐵𝑖 . P sends (𝜋,𝑩𝑖−∥𝐵𝑖 ) toV . The verifier then

1) checks 𝑠𝑖−1 by applying 𝑓 on 𝑩𝑖−∥𝐵𝑖 , and 2) verifies 𝜋 . Essen-

tially, the security of this follows from pre-image resistance of 𝑓 .

Moreover,V doesn’t learn the redacted suffix since 𝑖ℎ= 𝑓 (𝑠,𝑩𝑖+)
is kept secret from V . The total cost is 3 AES and 256−𝑖 SHA-2
hashes in ZKP.

Redacting a prefix. P computes two ZKPs: 1) 𝜋1=ZK-PoK{𝑩𝑖−,
kMAC

:𝐻 (kMAC ⊕ ipad| |𝑩𝑖−) = 𝑠𝑖−1}; 2) 𝜋2 = ZK-PoK{kMAC,kEnc :
𝐻 (kMAC ⊕ opad| |𝑖ℎ) = 𝜎 ∧𝐵1025∥𝐵1026∥𝐵1027 = CBC(kEnc,𝜎)}. P
sends (𝜋1,𝜋2,𝑠𝑖−1,𝐵𝑖 ∥𝑩𝑖+) toV . The verifier checks that 1) 𝑠𝑖−1 is
correct using 𝜋1 and then computes 𝑓 (𝑠𝑖−1,𝐵𝑖 ∥𝑩𝑖+) to obtain the

inner hash 𝑖ℎ, 2) 𝜋2 is verified using the computed 𝑖ℎ. The cost

incurred is 3 AES and 256−𝑖 SHA-2 hashes in ZKP.

Note that redacting a prefix/suffix only makes sense if the re-

vealed portion does not contain any private user data. Otherwise,

P would have to find the smallest substring containing all the

sensitive blocks and redact either the prefix/suffix similar to above.

B PROTOCOLS DETAILS FOR GCM
B.1 Preliminaries
GCM is an authenticated encryption with additional data (AEAD) ci-

pher. To encrypt, the GCM cipher takes as inputs a tuple (k,𝐼𝑉 ,𝑴,𝑨):

The three-party handshake (3P-HS) protocol among P, V and S
Public information: Let 𝐸𝐶 be the Elliptic Curve used in ECDHE over F𝑝 with

order 𝑝 ,𝐺 a parameter, and 𝑌S the server public key.

Output: P andV output kMAC
P and kMAC

V respectively, while the TLS server outputs

kMAC =kMAC
P +kMAC

V . Besides, both S and P outputs kEnc .

TLS server S: follow the standard TLS protocol.

Prover P:
On initialization: P samples 𝑟𝑐 ← ${0,1}256 and sends ClientHello(𝑟𝑐 ) to S to

start a standard TLS handshake.

On receiving ServerHello(𝑟𝑠 ), ServerKeyEx(𝑌,𝜎,cert) from S:
• P verifies that cert is a valid certificate and that 𝜎 is a valid signature over

(𝑟𝑐 ,𝑟𝑠 ,𝑌𝑆 ) signed by a key contained in cert. P sends (𝑟𝑐 ,𝑟𝑠 ,𝑌𝑆 ,𝜎,cert) to V .

• V checks cert and 𝜎 similarly. V then samples 𝑠𝑉 ← $ F𝑝 and computes

𝑌𝑉 =𝑠𝑉 ·𝐺 . Send 𝑌𝑉 to P.
• P samples 𝑠𝑃 ← $F𝑝 and computes𝑌𝑃 =𝑠𝑃 ·𝐺 . Send ClientKeyEx(𝑌𝑃 +𝑌𝑉 ) to S.
• P and V run ECtF to compute a sharing of the 𝑥-coordinate of 𝑌𝑃 +𝑌𝑉 , denoted

𝑧𝑃 ,𝑧𝑉 .

• P (and V) send 𝑧𝑃 (and 𝑧𝑉 ) to Fhs
2PC

(specified below) to compute shares of

session keys and the master secret. P receives (kEnc, kMAC
P ,𝑚P ) , while V

receives (kMAC
V ,𝑚V ) .

• P computes a hash (denoted ℎ) of the handshake messages sent and received thus

far, and runs 2PC-PRF with V to compute 𝑠 =PRF(𝑚P ⊕𝑚V ,“client finished”,ℎ)
on the hash of the handshake messages and send a Finished(𝑠) to S.

On receiving other messages from S:

• If it’s Finished(𝑠), P and V run a 2PC to check 𝑠
?

=PRF(𝑚P ⊕
𝑚V ,“server finished”,ℎ) and abort if not.

• Otherwise respond according to the standard TLS protocol.

Fhs2PC with P and V

Public Input: nonce 𝑟𝑐 ,𝑟𝑠
Private Input: 𝑧𝑃 ∈F𝑝 from P; 𝑧𝑉 ∈F2𝑝 from V

• 𝑧 :=𝑧𝑃 +𝑧𝑣
• 𝑚 :=PRF(𝑧,“master secret”,𝑟𝑐 ∥𝑟𝑠 ) (truncate at 48 bytes)
• kMAC,kEnc :=PRF(𝑚,“key expansion”,𝑟𝑠 ∥𝑟𝑐 ) // key expansion

• Sample 𝑟𝑘 ,𝑟𝑚 ← $F𝑝 . Send (kEnc,𝑟𝑘 ,𝑟𝑚) to P , and (𝑟𝑘 ⊕kMAC,𝑟𝑚 ⊕𝑚)
to V privately.

Figure 6: The protocol of three-party handshake.

a secret key, an initial vector, a plaintext of multiple AES blocks,

and additional data to be included in the integrity protection; it

outputs a ciphertext 𝑪 and a tag𝑇 . Decryption reverses the process.

The decryption cipher takes as input (k,𝐼𝑉 ,𝑪,𝑨,𝑇 ) and first checks

the integrity of the ciphertext by comparing a recomputed tag with

𝑇 , then outputs the plaintext.

The ciphertext is computed in the counter mode: 𝐶𝑖 = AES(k,
inc𝑖 (𝐼𝑉 ))⊕𝑀𝑖 where inc𝑖 denotes incrementing 𝐼𝑉 for 𝑖 times (the

exact format of inc is immaterial.)

The tag Tag(k,𝐼𝑉 ,𝑪,𝑨) is computed as follows. Given a vector

𝑿 ∈F𝑚
2128

, the associated GHASH polynomial 𝑃𝑿 :F2128→F2128 is
defined as 𝑃𝑿 (ℎ) =

∑𝑚
𝑖=1𝑋𝑖 ·ℎ𝑚−𝑖+1 with addition and multiplica-

tion done in F2128 . Without loss of generality, suppose 𝑨 and 𝑪 are

properly padded. Let ℓ𝐴 and ℓ𝐶 denote their length. A GCM tag is

Tag(k,𝐼𝑉 ,𝑪,𝑨) :=AES(k,𝐼𝑉 )⊕𝑃𝑨∥𝑪 ∥ℓ𝐴 ∥ℓ𝐶 (ℎ) (1)

where ℎ=AES(k,0).
When GCM is used in TLS, each plaintext record 𝐷 is encrypted

as follows. A unique nonce 𝑛 is chosen and the additional data 𝜅 is

computed as a concatenation of the sequence number, version, and

length of 𝐷 . GCM encryption is invoked to generate the payload
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ECtF between P and V

Input: 𝑃1 = (𝑥1,𝑦1) ∈𝐸𝐶 (F𝑝 ) from P, 𝑃2 = (𝑥2,𝑦2) ∈𝐸𝐶 (F𝑝 ) from V .

Output: P and V output 𝑠1 and 𝑠2 such that 𝑠1+𝑠2 =𝑥 where (𝑥,𝑦) =𝑃1+𝑃2
in 𝐸𝐶 .

Protocol:
• P (and V) sample 𝜌𝑖 ← $Z𝑝 for 𝑖 ∈ {1,2 } respectively. P and V run

𝛼1,𝛼2 :=MtA( (−𝑥1,𝜌1),(𝜌2,𝑥2)) .
• P computes 𝛿1 =−𝑥1𝜌1+𝛼1 and V computes 𝛿2 =𝑥2𝜌2+𝛼2 .
• P (and V) reveal 𝛿1 (and 𝛿2) to each other and compute 𝛿 =𝛿1+𝛿2 .
• P (and V) compute 𝜂𝑖 =𝜌𝑖 ·𝛿−1 for 𝑖 ∈ {1,2 } respectively.
• P and V run 𝛽1,𝛽2 :=MtA( (−𝑦1,𝜂1),(𝜂2,𝑦2)) .
• P computes 𝜆1 =−𝑦1 ·𝜂1+𝛽1 and V computes 𝜆2 =𝑦2 ·𝜂2+𝛽2 . They

run 𝛾1,𝛾2 :=MtA(𝜆1,𝜆2) .
• P (and V) computes 𝑠𝑖 =2𝛾𝑖 +𝜆2𝑖 −𝑥𝑖 for 𝑖 ∈ {1,2 } respectively.
• P outputs 𝑠1 and V outputs 𝑠2 .

Figure 7: (ECtF) A protocol for converting shares of EC points in
𝐸𝐶 (F) to shares of coordinates in F.

2PC-HMAC between P and V

Input: P inputs kMAC
P ,𝑚 and V inputs kMAC

V .

Output: P outputs HMAC(kMAC,𝑚) where kMAC =kMAC
P ⊕kMAC

V .

One-time setup: P and V use 2PC to compute 𝑠0 = 𝑓 (IV,kMAC ⊕ ipad) and
reveal 𝑠0 to P.
To compute a tag for message𝑚:

• P computes inner hash ℎ𝑖 = 𝑓 (𝑠0,𝑚) .
• P inputs kMAC

P , ℎ𝑖 and V inputs kMAC
V to 2PC which reveals

H(kMAC ⊕opad∥ℎ𝑖 ) to both parties.

Figure 8: The 2PC-HMAC protocol. 𝑓 denotes the compression
function of the hash function H and IV denotes the initial value.

record as 𝑀 = 𝑛∥GCM(k,𝑛,𝐷,𝜅). We refer readers to [38] for a

complete specification.

B.2 Query execution
The 2PC protocols for verifying tags and decrypting records are

specified in fig. 9.

Tag creation/verification. Computing or verifying a GCM tag in-

volves evaluating eq. (1) in 2PC. A challenge is that eq. (1) involves

both arithmetic computation (e.g., polynomial evaluation in F2128 )
as well as binary computation (e.g., AES). Performing multiplication

in a large field in a binary circuit is expensive, while computing AES

(defined in GF(28)) in F2128 incurs high overhead. Even if the com-

putation could somehow separated into two circuits, evaluating the

polynomial alone—which takes approximately 1,000 multiplications

in F2128 for each record—would be unduly expensive.

Our protocol removes the need for polynomial evaluation. The

actual 2PC protocol involves only binary operations and thus can

be done in a single circuit. Moreover, the per-record computation

is reduced to only one invocation of 2PC-AES.

The idea is to compute shares of

{
ℎ𝑖
}
(in a 2PC protocol) in a

preprocessing phase at the beginning of a session. The overhead of

preprocessing is amortized over the session because the sameℎ used

for all records that follow. With shares of

{
ℎ𝑖
}
, P andV can com-

pute shares of a polynomial evaluation 𝑃𝑨∥𝑪 ∥ℓ𝐴 ∥ℓ𝐶 (ℎ) locally. They
also compute AES(k,𝐼𝑉 ) in 2PC to get a share of Tag(k,𝐼𝑉 ,𝑪,𝑨). In
total, only one invocation of 2PC-AES in needed to check the tag

for each record.

Post-handshake protocols for GCM

Private input: kP and kV from P andV respectively. k=kP +kV is the encryption

key.

Protocol for preprocessing

On initialization: P (and V) sends kP and (kV ) to FPP and wait for output{
ℎP,𝑖

}
𝑖
(and

{
ℎV,𝑖

}
𝑖
).

FPP
After receiving k1,k2 from two parties, compute ℎ :=AES(k1+k2,0) . Sample 𝑛

random numbers {𝑟𝑖 }𝑛𝑖=1 and compute

{
ℎ𝑖

}𝑛
𝑖=1

in F2128 . For 𝑖 ∈ [𝑛], send 𝑟𝑖
to player 1 and 𝑟𝑖 ⊕ℎ𝑖 to player 2.

Protocol for decrypting TLS records

Prover P:
On receiving a record (𝐼𝑉 ,𝑪,𝑨,𝑇 ) from S:

• Let 𝑿 =𝑨∥𝑪 ∥ℓ𝐴 ∥ℓ𝐶 .

• Send (kP ,𝐼𝑉 ) to FAES-EqM and wait for output 𝑐P .
• Send (𝐼𝑉 ,𝑿 ) to V and wait for the response 𝑃 .

• Compute𝑇 ′=𝑃+𝑐P +
∑

𝑖𝑋𝑖 ·ℎP,𝑖 in F2128 .
• Abort if𝑇 ′≠𝑇 . Otherwise, compute 𝑲 such that 𝐾𝑖 = inc𝑖 (𝐼𝑉 ) for
𝑖 ∈ [ℓ𝐶 ]. Send (𝐼𝑉 ,ℓ𝐶 , Decrypt) to V .

• Send (kP ,𝑲 ) to FAES-EqM-Asym as party 1 and wait for output 𝑲 ′
.

• Decrypt the message as𝑀𝑖 =𝐾
′
𝑖 ⊕𝐶𝑖 .

Verifier V:
On receiving (𝐼𝑉 ,𝑿 ) from P:

• If 𝐼𝑉 found in store, abort. Otherwise store 𝐼𝑉 and proceed.

• Send (kV ,𝐼𝑉 ) to FAES-EqM and wait for output 𝑐V .
• Compute 𝑃 =𝑐V +

∑
𝑖𝑋𝑖 ·ℎV,𝑖 in F2128

• Send 𝑃 to P.
On receiving (𝐼𝑉 ,𝑛, Decrypt) from P:

• Compute 𝑲 such that 𝐾𝑖 = inc𝑖 (𝐼𝑉 ) for 𝑖 ∈ [𝑛].
• Abort if any 𝐾𝑖 is found in store (as previously used IVs.)

• Send (kV ,𝑲 ) to FAES-EqM-Asym as party 2.

FAES-EqM
Wait for input (k𝑖 ,𝑚𝑖 ) from party 𝑖 for 𝑖 ∈ {1,2 }. Abort if𝑚1 ≠𝑚2 . Sample

𝑟 ← $F. Compute 𝑐 =AES(k1 ⊕k2,𝑚1) . Send 𝑟 to party 1 and 𝑐 ⊕𝑟 to party 2.

FAES-EqM-Asym

Wait for input (k𝑖 ,𝑚𝑖 ) from party 𝑖 for 𝑖 ∈ {1,2 }. Abort if𝑚1≠𝑚2 . Compute

𝑐 =AES(k1 ⊕k2,𝑚1) . Send 𝑐 to party 1 and ⊥ to party 2.

Figure 9: The post-handshake protocols for AES-GCM.

It is critical that V never responds to the same 𝐼𝑉 more than

once; otherwise P would learn ℎ. Specifically, in each response,V
reveals a blinded linear combination of her shares

{
ℎV,𝑖

}
in the

form of L𝐼𝑉 ,𝑋 =AES(k,𝐼𝑉 ) ⊕∑𝑖𝑋𝑖 ·ℎV,𝑖 . It is important that the

value is blinded byAES(k,𝐼𝑉 ) because a single unblinded linear com-

bination of

{
ℎV,𝑖

}
would allow P to solve for ℎ. Therefore, ifV re-

sponds to the same 𝐼𝑉 twice, the blinding can be removed by adding

the two responses (in F2128 ): L𝐼𝑉 ,𝑋 ⊕L𝐼𝑉 ,𝑋 ′ =
∑
𝑖 (𝑋𝑖 +𝑋 ′𝑖 ) ·ℎV,𝑖 .

This follows from the nonce uniqueness requirement of GCM [66].

Encrypting/decrypting records.Once tags are properly checked,
decryption of records is straightforward. P andV simply compute

AES encryption of inc𝑖 (𝐼𝑉 ) with 2PC-AES. A subtlety to note is

thatV must check that the counters to be encrypted have not been
used as 𝐼𝑉 previously. Otherwise P would learn ℎ to P in a manner

like that outlined above.
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B.3 Proof Generation
Revealing a block. P wants to convinceV that an AES block 𝐵𝑖
is the 𝑖th block in the encrypted record ˆrec. The proof strategy is

as follows: 1) prove that AES block 𝐵𝑖 encrypts to the ciphertext

block 𝐵̂𝑖 and 2) prove that the tag is correct. Proving the correct

encryption requires only 1 AES in ZKP. Naïvely done, proving the

correct tag incurs evaluating the GHASH polynomial of degree 512

and 2 AES block encryptions in ZKP.

We manage to achieve a much more efficient proof by allowing

P to reveal two encrypted messages AES(k,𝐼𝑉 ) and AES(k,0) to
V , thus allowingV to verify the tag (see eq. (1)). P only needs to

prove the correctness of encryption in ZK and that the key used

corresponds to the commitment, requiring 2 AES and 1 SHA-2 (P
commits to kP by revealing a hash of the key). Thus, the total cost

is 3 AES and 1 SHA-2 in ZKP.

Revealing a TLS record. The proof techniques are a simple ex-

tension from the above case. P reveals the entire record rec and
proves correct AES encryption of all the AES blocks, resulting in

a total 514 AES and 1 SHA-2 in ZKP.

Revealing a TLS record except for a block. Similar to the above

case, P proves encryption of all the blocks in the record except one,

resulting in a total 513 AES and 1 SHA-2 in ZKP.

C PROTOCOL EXTENSIONS
C.1 Adapting to support TLS 1.3
To support TLS 1.3, the 3P-HS protocol must be adapted to a new

handshake flow and a different key derivation circuit. Notably, all

handshake messages after the ServerHello are now encrypted. A
naïve strategy would be to decrypt them in 2PC, which would be

costly as certificates are usually large. However, thanks to the key

independence property of TLS 1.3 [37], P andV can securely re-

veal the handshake encryption keys without affecting the secrecy

of final session keys [37]. Handshake integrity is preserved because

the Finished message authenticates the handshake using yet an-

other independent key. (In fact [37, §3.1] argues that the signatures

already authenticate the handshake.)

Therefore the optimized 3P-HS work as follows. P andV per-

form ECDHE the same as before. Then they derive handshake and

application keys by executing 2PC-HKDF, and reveal the handshake

keys to P, allowing P to decrypt handshake messages locally (i.e.,

without 2PC). The 2PC circuit involves roughly 30 invocations of

SHA-256, totaling to approximately 70k AND gates, comparable to

that for TLS 1.2. Finally, since CBC-HMAC is not supported by TLS

1.3, DECO can only be used in GCM mode.

C.2 Query construction is optional
For applications that bind responses to queries, e.g., when a stock

ticker is included with the quote, 2PC query construction protocols

can be avoided altogether. Since TLS uses separate keys for each

direction of communication, client-to-server keys can be revealed

to P after the handshake so that P can query the server without

interacting withV .

C.3 Supporting multi-round sessions
DECO can be extended to support multi-round sessions where P
sends further queries depending on previous responses. After each

round, P executes similar 2PC protocols as above to verify MAC

tags of incoming responses, since MAC verification and creation

is symmetric. However an additional commitment is required to

prevent prevent P from abusing MAC verification to forge tags.

In TLS, different MAC keys are used for server-to-client and

client-to-server communication. To support multi-round sessions,

P andV run 2PC to verify tags for former, and create tags on fresh

messages for latter. We’ve specified the protocols to create (and ver-

ify) MAC tags. Now we discuss additional security considerations

for multi-round sessions.

When checking tags for server-to-client messages, we must en-

sure that P cannot forge tags on messages that are not originally

from the server. Suppose P wishes to verify a tag 𝑇 on message𝑀 .

The idea is to have P first commit to 𝑇 , then P andV run a 2PC

protocol to compute a tag 𝑇 ′ on message 𝑀 . P is asked to open

the commitment toV and if 𝑇 ≠𝑇 ′,V aborts the protocol. Since

P doesn’t know the MAC key, P cannot compute and commit to

a tag on a message that is not from the server.

When creating tags for client-to-server messages,V makes sure

MAC tags are created on messages with increasing sequence num-

bers, as required by TLS. This also prevents a malicious P from cre-

ating two messages with the same sequence number, because there

is no way forV to distinguish which one was sent to the server.

C.4 An alternative DECO protocol: Proxy mode
As shown in table 1, the HMAC mode of DECO is highly efficient

and the runtime of creating and verifying HMAC tags in 2PC is

independent of record size (cf. fig. 8). The GCMmode is efficient for

small requests with preprocessing, but can be expensive for large

records. We now present a highly efficient alternative that avoids

post-handshake 2PC protocols altogether.

The idea is to have the verifier V act as a proxy between the

prover P and the TLS server S, i.e., P sends/receives messages

to/from S throughV . The modified flow of the DECO protocol is

as follows: after the three-party handshake, P commits to her key

share kP thenV reveals kV to P. Therefore P now has the entire

session key k=kP+kV . As P uses k to continue the session with

the server,V records the proxy traffic. After the session concludes,

P proves statements about the recorded session the same as before.

It’s worth emphasizing that the three-party handshake is re-

quired for unforgeability. Unlike CBC-HMAC, GCM is not commit-

ting [42]: for a given ciphertext and tag (𝐶,𝑇 ) encrypted with key

k, one can find k′≠k that decrypts 𝐶 to a different plaintext while

computing the same tag, as GCM MAC is not collision-resistant.

To prevent such attacks, the above protocol requires P to commit

to her key share before learning the session key.

Security properties and network assumptions. The verifier-

integrity and privacy properties are clear, as a maliciousV cannot

break the integrity and privacy of TLS (by assumption).

For prover integrity, though, we need to assume that the proxy

can reliably connect to S throughout the session. First, we assume

the proxy can ascertain that it indeed is connected with S. More-

over, we assume messages sent between the proxy and S cannot be
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tampered with by P, who knows the session keys and thus could

modify the session content.

Note that during the three-party handshake, V can ascertain

the server’s identity by checking the server’s signature over a fresh

nonce (in standard TLS). After the handshake, however,V has to

rely on network-layer indicators, such as IP addresses. In practice,

V must therefore have correct, up-to-date DNS records, and that

the network betweenV and the server (e.g., their ISP and the back-

bone network) must be properly secured against traffic injection,

e.g., throught BGP attacks [71]. (Eavesdropping isn’t problematic.)

These assumptions have been embraced by other systems in a

similar proxy setting (e.g., [73]), as BGP attacks are challenging to

mount in practice. We can further enhance our protocol against

traffic interception by distributing verifiers nodes geographically.

Moreover, various detection techniques have been proposed [2,

3, 27, 35, 51, 79, 80] that can be deployed by verifiers. Often BGP

attacks are documented after the fact (e.g., see [4]), therefore, when

applicable, applications of DECO can be enhanced to support re-

vocation of affected sessions (for example, when DECO is used

to issue credentials in an identity system such as [53].) We leave

further exploration as future work.

This alternative protocol represents a different performance-

security tradeoff. It’s highly efficient because no intensive cryp-

tography occurs after the handshake, but it requires additional

assumptions about the network and therefore only withstands a

weaker network adversary.

D SECURITY PROOFS
Recall Theorem 4.1. We now prove that the protocol in fig. 4 se-

curely realizes F
Oracle

. Specifically, we show that for any real-world

adversary A, we can construct an ideal world simulator Sim, such

that for all environments Z, the ideal execution with Sim is in-

distinguishable from the real execution with A. We refer readers

to [30, 58] for simulation-based proof techniques.

Proof. Recall that we assume S is honest throughout the proto-

col. Hence, we only consider cases where A maliciously corrupts

either P or V . This means that we only need to construct ideal-

world simulators for the views of P andV .

Malicious P.We wish to show the prover-integrity guarantee. Ba-

sically, ifV receives (𝑏,S), then P must have input some 𝜃𝑠 such

that S(Query(𝜃𝑠 ))=𝑅 and 𝑏=Stmt(𝑅).
Given a real-world PPT adversary A, Sim proceeds as follows:

(1) Sim runs A, FZK and F2PC internally. Sim forwards any input

𝑧 fromZ to A and records the traffic going to and from A.

(2) Upon request from A, Sim runs 3P-HS as V (using F2PC as

a sub-routine). During 3P-HS, when A outputs a message𝑚

intended for S, Sim forwards it to F
Oracle

as (sid,S,𝑚) and
forwards (sid,𝑚) to A if it receives any messages from F

Oracle
.

By the end, Sim learns 𝑌𝑃 ,𝑠𝑉 ,kMAC
V .

(3) Upon request fromA, Sim runs 2PC-HMAC asV , using kMAC
V

as input. Again, Sim uses F2PC as a sub-routine to run 2PC-

HMAC and forwards messages to S as above and forwards the

response from S to A. Sim records the messages between A
and S during this stage in (𝑄̂,𝑅). Note that these are ciphertext
records.

(4) When A sends (sid,𝑄̂,𝑅,kMAC
P ), reply with (sid,kMAC

V ).
(5) Upon receiving (sid,“prove”,𝑥,𝑤) (with 𝑥 = (kEnc,𝜃𝑠 ,𝑄,𝑅) and

𝑤 = (𝑄̂,𝑅,kMAC,𝑏)) from A, Sim checks that

𝑄̂ =CBC_HMAC(kEnc,kMAC,𝑄)

𝑅=CBC_HMAC(kEnc,kMAC,𝑅)
𝑄 =Query(𝜃𝑠 ) .

(6) If all of the above checks passed, Sim sends 𝜃𝑠 to FOracle and
instructs F

Oracle
to send the output toV . Sim outputs whatever

A outputs.

Now we argue that the ideal execution with Sim is indistinguish-

able from the real execution with A.

Hybrid H1 is the real-world execution of ProtDECO.
Hybrid H2 is the same as 𝐻1, except that Sim simulatesA, FZK

and F2PC internally. Sim records and forwards its private 𝜃𝑠 input to

A. For each step of ProtDECO, Sim forwards all messages between

A andV andA andS, as in the real execution. Since the simulation

of ideal functionality is perfect, 𝐻1 and 𝐻2 are indistinguishable.

Hybrid H3 is the same as 𝐻2, except that V sends input to

F
Oracle

, which sends it to Sim and Sim simulates V internally.

Specifically, Sim samples 𝑠𝑉 and uses 𝑠𝑉 ·𝑌 to derive a share of the

MAC key 𝐾̂ , which it uses in the sequential 2PC-HMAC invocations.

Upon receiving (sid,𝑄̂,𝑅,kMAC
P ), Sim sends (sid,kMAC

V ) toA. If Sim
receives (sid,“prove”,𝑥,𝑤), it internally forwards it to FZK, verifies
its output asV and also, sends𝜃𝑠 toFOracle. The indistinguishability
between 𝐻2 and 𝐻3 is immediate because 𝑠𝑉 is uniformly random.

Hybrid H4 is the same as 𝐻3, except Sim adds the checks in

Step 5. The indistinguishability between 𝐻3 and 𝐻4 can be shown

by checking that if any of the checks fails,V would abort the real-

world execution as well. There are two reasons that Sim may abort:

1) 𝑄,𝑅 from A is not originally from S, or 2) kEnc,kMAC
from A is

not the same key as derived during the handshake. We now show

that both conditions would triggerV to abort in 𝐻3 as well except

with negligible probability.

• Assuming DL is hard in the group used in the handshake, A
cannot learn 𝑠𝑉 . Furthermore, due to the security of 2PC, A can-

not learn the session MAC key kMAC
. If A maliciously selects

𝑌𝑃 correlated with 𝑌𝑉 , it would have to find the discrete log of

𝑌𝑃 −𝑌𝑉 , denoted 𝑠𝑃 . Without such a 𝑠𝑃 , except with negligible

probability, the output shares 𝐾̂MAC
V and 𝐾̂MAC

P of 3P-HS would

fail to verify a MAC from an honest server whose MAC key is

derived using 𝑌𝑃 in 2PC-HMAC, later in the protocol.

• The unforgeability guarantee of HMAC ensures that without

knowledge of kMAC
, A cannot forge tags that verifies against

kMAC
(checked byV in the last step of ProtDECO).

• If A sends a different (kEnc,kMAC) pair than that derived during

the handshake to Sim and the decryption and MAC check suc-

ceeds, then A would have broken the receiver-binding property

of CBC-HMAC [42].

It remains to show that𝐻4 is exactly the same the ideal execution.

Due to Step 5 and 6, F
Oracle

delivers (sid,Stmt(𝑅),S) toV only if

∃𝜃𝑠 from A such that 𝑅 is the response from S to Query(𝜃𝑠 ).
MaliciousV. As the verifier is corrupt, we are interested in show-

ing the verifier-integrity and privacy guarantees. Sim proceeds as

follows:
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(1) Sim runsA, FZK and F2PC internally to simulate the real-world

interaction with the prover P. Given input 𝑧 from the environ-

mentZ, Sim forwards it to A.

(2) Upon receipt of Query and Stmt from A, forward them to

F
Oracle

and instruct it to send them to P.
(3) After P sends 𝜃𝑠 to FOracle, FOracle sends the output (sid,𝑄,𝑅)

to P. Sim gets (sid,Stmt(𝑅),S) from F
Oracle

and learns the

record sizes |𝑄 |, |𝑅 |.
(4) Send (sid,S,handshake) to F

Oracle
, where handshake contains

client handshake messages and receive certificate and signa-

tures of S from F
Oracle

. Note that at the end of the server hand-

shake,P receives and sends finishedmessages, whichwe denote

“serverFinished” and “proverFinished”. The finished messages

include HMAC tags, which we denote 𝜏S and 𝜏P (tags on S
and P’s messages respectively).

(5) Upon request from A, Sim runs 3P-HS as P, using the server
handshake messages received in the previous step, learning

𝑠𝑃 ,𝑌𝑉 , kEnc, kMAC
P .

(6) Sim starts 2PC-HMAC as P to compute a tag 𝜏𝑞 on a random

𝑄 ′← ${0,1} |𝑄 | .
(7) Sim uses a random key

ˆ𝑘 to compute a tag 𝜏𝑟 on a random

𝑅′← ${0,1} |𝑅 | .
(8) Let 𝑄̂ = CBC(kEnc,𝑄 ′∥𝜏𝑞) and 𝑅 = CBC(kEnc,𝑅′∥𝜏𝑟 ). At the

commit phase, Sim sends encrypted data (sid,𝑄̂,𝑅,kMAC
P ) to A

and receives kMAC
V from A.

(9) Sim asserts that 𝜏S =HMAC(kMAC,“serverFinished”) and that

𝜏P =HMAC(kMAC,“proverFinished”).
(10) Sim asserts that 𝜏𝑞 =HMAC(kMAC,𝑄 ′).
(11) To simulate the appropriate delay, Sim also runs a dummy com-

putation HMAC(kMAC,𝑅′) in paralell with Step 9.

(12) Sim sends (sid,“proof”,1, (𝑄̂,𝑅,kMAC,Stmt(𝑅))) to A and out-

puts whatever A outputs.

We argue that the ideal execution with Sim is indistinguishable

from the real execution with A in a series hybrid worlds.

Hybrid H1 is the real-world execution of ProtDECO.
HybridH2 is the same as𝐻1, except that Sim simulates FZK and

F2PC internally. Sim also invokes F
Oracle

and gets (sid,Stmt(𝑅),S),
learns record sizes |𝑄 |, |𝑅 |. Since the simulation of ideal function-

ality is perfect, 𝐻1 and 𝐻2 is indistinguishable.

Hybrid H3 is the same as 𝐻2, except that Sim simulates P.
Specifically, Sim samples 𝑠𝑃 and uses 𝑠𝑃 ·𝑌 to derive a share of the

MAC key kMAC
P . Then, Sim uses kMAC

P and a random 𝑄 ′= {0,1} |𝑄 |
as inputs to 2PC-HMAC and receives the tag 𝜏𝑞 . Then, Sim uses

a random key
ˆ𝑘 , and a random 𝑅′= {0,1} |𝑅 | to compute a dummy

tag 𝜏𝑟 . Afterwards, Sim commits, i.e., sends encryption of 𝑄 ′ and
𝑅′ to A. Sim also adds the checks in Step 9 and 10. To simu-

late the appropriate delay for checking a tag on 𝑅′, a plaintext

of length |𝑅 |, Sim runs a dummy tag computation. Finally, Sim
skips invoking FZK and directly provides A with the output ob-

tained earlier from F
Oracle

, i.e., Stmt(𝑅), alongwith kMAC
, i.e. the

tuple (sid,“proof”,1, (𝑄̂,𝑅,kMAC,Stmt(𝑅))). A cannot distinguish

between the real and ideal executions because:

(1) Since input sizes are equal, the number of invocations of 2PC-

HMAC is also equal.

(2) In each invocation of 2PC-HMAC and HMAC, A learns one

SHA-2 hash of the input message which is like a random oracle.

(3) If the value of kMAC
V provided byV is correct, in both the real

and ideal world, all tags should verify and the protocol should

proceed to the next step and the time to run the checks should

be indistinguishable from the real world.

(4) A can provide a malicious kMAC
V in two ways:

• Malicious kMAC
V is provided byV in Step 8: 𝜏S and 𝜏P will

not verify in Step 9. Sim will then abort with the same delay

as in the real world.

• A inputs a malicious kMAC
V to the 2PC-HMAC: 𝜏𝑞 will fail to

verify in 10 by the same argument as in the malicious P case.

(5) Since |𝑄 ′ |= |𝑄 | and |𝑅′ |= |𝑅 |, their encryptions are also of equal
size and indistinguishable.

(6) In the end, A receives the same output as the real execution.

□

E APPLICATION DETAILS
We provide the remaining application details omitted from Sec. 6

here.

Binary Option. The user (P) also needs to reveal enough portion

of the HTTP GET request to oracle (V) in order to convince ac-

cess to the correct API endpoint. The GET request contains several

parameters—some to be revealed like the API endpoint, and others

with sensitive details like stock name and private API key. P redacts

sensitive params using techniques from Sec. 5.1 and reveals the rest

toV . The API key provides enough entropy preventingV from

learning the sensitive params. Without additional care though, a

cheating P can alter the semantics of the GET request and conceal

the cheating by redacting extra parameters. To ensure this does not

happen, P needs to prove that the delimiter “&” and separator “=”

do not appear in the redacted text. The security is argued below.

HTTP GET requests (and HTML) have a special restriction: the

demarcation between a key and a value (i.e., middle) and the start
of a key-value pair (i.e., start) are never substrings of a key or a
value. This means that to redact more than a single contiguous key
or value, P must redact characters in {middle, start }. So we have
consG,G′ (𝑅,𝑅′) check that: (1) |𝑅 | = |𝑅′ |; and (2) ∀𝑖 ∈ |𝑅′ |, either
𝑅′[𝑖] =𝐷∧𝑅 [𝑖] ∉

{
middle, start

}
or 𝑅 [𝑖] =𝑅′[𝑖] (𝐷 is a dummy

character used to do in-place redaction). Checking CTXG′ is then
unnecessary.

Age Proof. Figure 10 shows the demographic details of a student

stored on Univ. website such as the name, birth date, student ID

among others. The prover parses 6-7 AES blocks that contain the

birth date and proves her age is above 18 in ZK to the verifier.

Like other examples, due to the unique HTML tags surrounding

the birth date, this is also a key-value grammar with unique keys

(see Sec. 5.2). Similar to application 1, this example requires addi-

tional string processing to parse the date and compute age.

Price discrimination. Figure 11 shows parts of an order invoice

page on a shopping website (Amazon) with personal details such as

the name and address of the buyer. The buyer wants to convince a

third-party (verifier) about the charged price of a particular product

on a particular date. In this example, we use AES-GCM ciphersuite

and Revealmode. Only necessary details in the invoice like the item
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<title>Demographic Data</title>
<span id='EMPLID '> 111111 </span>
<span id='NAME '> Alice </span>

<span id=’BIRTHDATE’> 01/01/1990 </span> ...

Figure 10: The demographic details of a student displayed on a
Univ. website. Highlighted text contains student age. Reveal mode
is used together with two-stage parsing.

<table>

<tr>Order Placed: November 23, 2018</tr>

<tr>Order Total: $34.28</tr>

<tr>Items Ordered: Food Processor</tr>
</table >
...
<b> Shipping Address: </b>
<ul class="displayAddressUL">
<li class="FullName">Alice</li>
<li class="Address">Wonderland </li>
<li class="City">New York</li>
</ul>

Figure 11: The order invoice page on Amazon in HTML. Reveal
mode is used to reveal the necessary text, while sensitive text below
is kept hidden.

name, item price and order date are revealed, while hiding the rest.

Number of AES blocks revealed from the response is 20 (thanks to

a long product name). In addition, 4 AES blocks from the request

are revealed to prove that the correct endpoint is accessed. Context

integrity is guaranteed by revealing unique strings around, e.g., the

string “<tr>Order Total:” near the item price appears only once in

the entire response.

F KEY-VALUE
GRAMMARS AND TWO-STAGE PARSING

F.1 Preliminaries and notation
We denote context-free grammars as G = (𝑉 , Σ, 𝑃, 𝑆) where 𝑉
is a set of non-terminal symbols, Σ a set of terminal symbols,

𝑃 : 𝑉 → (𝑉 ∪ Σ)∗ a set of productions or rules and 𝑆 ∈ 𝑉 the

start-symbol. We define production rules for CFGs in standard no-

tation using ‘-’ to denote a set minus and ‘..’ to denote a range. For

a string 𝑤 , a parser determines if 𝑤 ∈ G by constructing a parse

tree for𝑤 . The parse tree represents a sequence of production rules

which can then be used to extract semantics.

F.2 Key-value grammars
These are grammars with the notion of key-value pairs. These gram-

mars are particularly interesting for DECO since most API calls

and responses are, in fact, key-value grammars.

Definition F.1. G is said to be a key-value grammar if there exists

a grammar H , such that given any 𝑠 ∈ G, 𝑠 ∈ H , and H can be

defined by the following rules:

S → object
object → noPairsString open pair pairs close
pair → start key middle value end
pairs → pair pairs | ""
key → chars
value → chars | object
chars → char chars | ""
char → Unicode - escaped | escape escaped | addedChars
special → startSpecial | middleSpecial | endSpecial
start → unescaped𝑠 startSpecial

middle → unescaped𝑚 middleSpecial
end → unescaped𝑒 endSpecial
escaped → special | escape | ...

In Def. F.1, S is the start non-terminal (represents a sentence in

H ), the non-terminals open and close demarcate the opening and

closing of the set of key-value pairs and start, middle, end are

special strings demarcating the start of a key-value pair, separation

between a key and a value and the end of the pair respectively.

In order to remove ambiguity in parsing special characters, i.e.

characters which have special meaning in parsing a grammar, a

special non-terminal, escape is used. For example, in JSON, keys
are parsed when preceded by ‘whitespace double quotes’ (“) and
succeeded by double quotes. If a key or value expression itself

must contain double quotes, they must be preceded by a backslash

(\), i.e. escaped. In the above rules, the non-terminal unescaped
before special characters means that they can be parsed as special

characters. So, moving forward, we can assume that the production

of a key-value pair is unambigious. So, if a substring 𝑅′ of a string 𝑅
in the key-value grammar G parses as a pair, 𝑅′ must correspond

to a pair in the parse tree of 𝑅.

Note that in Def. F.1, middle cannot derive an empty string, i.e.

a non-empty string must mark middle to allow parsing keys from
values. However, one of start and end can have an empty deriva-

tion, since they only demarcate the separation between value in
one pair from key in the next. Finally, we note that in our discussion
of two-stage parsing for key-value grammars, we only we consider

permissible paths with the requirement that the selectively opened

string, 𝑅open corresponds to a pair.

F.3 Two-stage parsing for a locally unique key
Many key-value grammars enforce key uniqueness within a scope.

For example, in JSON, it can be assumed that keys are unique within

a JSON object, even though there might be duplicated keys across

objects. The two-stage parsing for such grammars can be reduced

to parsing a substring. Specifically, Trans extracts from 𝑅 a contin-

uous substring 𝑅′, such that the scope of a pair can be correctly

determined, evenwithin𝑅′. For instance, in JSON, if consG,G′ (𝑅,𝑅′)
returns true iff 𝑅′ is a prefix of 𝑅, then only parsing 𝑅′ as a JSON, up
to generating the sub-tree yielding 𝑅open is sufficient for determin-

ing whether a string 𝑅open corresponds to the correct context in 𝑅.

F.4 Grammars with unique keys
Given a key-value grammar G we define a function which checks

for uniqueness of keys, denoted 𝑢G . Given a string 𝑠 ∈ G and an-

other string 𝑘 , 𝑢G (𝑠,𝑘)=true iff there exists at most one substring

of 𝑠 that can be parsed as start 𝑘 middle. Since 𝑠 ∈G, this means,

in any parse tree of 𝑠 , there exists at most one branch with node

key and derivation 𝑘 . Let ParserG be a function that returns true if
its input is in the grammar G. We say a grammar G is a key-value
grammar with unique keys if for all 𝑠 ∈ G and all possible keys 𝑘 ,

𝑢G (𝑠,𝑘)=true, i.e. for all strings 𝑅, 𝐶:

⟨ParserG,𝑅⟩⇒ true

⟨𝑢G,(𝑅,𝐶)⟩⇒ true
.

Session 6D: Web Security  CCS '20, November 9–13, 2020, Virtual Event, USA

1937



F.5 Concrete two-stage
parsing for unique-key grammars

LetU be a unique-key grammar as given above. We assume that

U is LL(1). This is the case for the grammars of interest in Section

6. See [43] for a general LL(1) parsing algorithm.

We instantiate a context function, CTXU for a set 𝑇 , such that

𝑇 contains the permissible paths to a pair for strings in U. We

additionally allow CTXU to take as input an auxiliary restriction,

a key k (the specified key in P’s output 𝑅open). The tuple (𝑇,k) is
denoted 𝑆 and CTXU (𝑆,·,·) as CTXU,𝑆 .

Let P be a grammar given by the rule SP → pair, where pair
is the non-terminal in the production rules for U and SP is the

start symbol in P. We define ParserP,k as a function that decides

whether a string 𝑠 is in P and if so, whether the key in 𝑠 equals k.
On input 𝑅,𝑅open,CTXU,𝑆 checks that: (a) 𝑅open is a valid key-value
pair with key k by running ParserP,k (b) 𝑅open parses as a key-value
pair in 𝑅 by running an LL(1) parsing algorithm to parse 𝑅.

To avoid expensive computation of CTXU,𝑆 on a long string 𝑅,

we introduce the transformation Trans, to extract the substring 𝑅′

of 𝑅, such that 𝑅′=𝑅open as per the requirements.

For string 𝑠,𝑡 , we also define functions 𝑠𝑢𝑏𝑠𝑡𝑟𝑖𝑛𝑔(𝑠,𝑡), that re-
turns true if 𝑡 is a substring of 𝑠 and 𝑒𝑞𝑢𝑎𝑙 (𝑠,𝑡) which returns true
if 𝑠 =𝑡 . We define consU,P with the rule:

⟨𝑠𝑢𝑏𝑠𝑡𝑟𝑖𝑛𝑔(𝑅,𝑅′)⟩⇒ true⟨ParserP,k,𝑅′⟩⇒ true

⟨𝑐𝑜𝑛𝑠U,P ,(𝑅,𝑅′)⟩⇒ true
.

and 𝑆 ′ = {SP }. Meaning, CTXP (𝑆, 𝑅′, 𝑅open) = true whenever

𝑒𝑞𝑢𝑎𝑙 (𝑅′,𝑅open) and the rule

⟨𝑒𝑞𝑢𝑎𝑙,(𝑅′,𝑅open)⟩⇒b

⟨CTXP ,(𝑆 ′,𝑅′,𝑅open)⟩⇒b
holds for all strings 𝑅′,𝑅open.

Claim 1. (consU,P ,𝑆 ′) are correct with respect to 𝑆 .

Proof. We defer a formal proof and pseudocode for CTXU,𝑆
to a full version, but the intuition is that if 𝑅′ is substring of 𝑅, a

key-value pair 𝑅open is parsed by ParserP , then the same pair must

have been a substring ofU. Due to global uniqueness of keys inU,

there exists only one such pair 𝑅open and CTXU (𝑆,𝑅,𝑅open) must

be true. □
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