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Abstract

Background: The current computational methods on identifying conserved protein complexes across multiple
Protein-Protein Interaction (PPI) networks suffer from the lack of explicit modeling of the desired topological
properties within conserved protein complexes as well as their scalability.

Results: To overcome those issues, we propose a scalable algorithm—ClusterM—for identifying conserved protein
complexes across multiple PPI networks through the integration of network topology and protein sequence similarity
information. ClusterM overcomes the computational barrier that existed in previous methods, where the complexity
escalates exponentially when handling an increasing number of PPI networks; and it is able to detect conserved
protein complexes with both topological separability and cohesive protein sequence conservation. On two
independent compendiums of PPI networks from Saccharomyces cerevisiae (Sce, yeast), Drosophila melanogaster (Dme,
fruit fly), Caenorhabditis elegans (Cel, worm), and Homo sapiens (Hsa, human), we demonstrate that ClusterM
outperforms other state-of-the-art algorithms by a significant margin and is able to identify de novo conserved protein
complexes across four species that are missed by existing algorithms.

Conclusions: ClusterM can better capture the desired topological property of a typical conserved protein complex,
which is densely connected within the complex while being well-separated from the rest of the networks.
Furthermore, our experiments have shown that ClusterM is highly scalable and efficient when analyzing multiple PPI
networks.
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Background
Advanced high-throughput technologies for measuring
protein interactions [1, 2] have provided researchers with
rich information about protein-protein interactions (PPI)
in various species [3–5]. In order to translate such infor-
mation into meaningful biological knowledge about the
underlying cellular functions and evolutionary mecha-
nisms, one arising computational challenge is how to
integrate these PPI data with other available data—such
as sequence data—to identify conserved protein com-
plexes that have similar cellular functions across multiple
species.
Intuitively, conserved protein complexes should have

the following properties with respect to their network
topology and sequence homology. Within each species,
proteins within a protein complex is densely connected to
each other while being loosely connected to and well sep-
arated from the rest of the PPI networks [6]. Across differ-
ent species, conserved protein complexes should contain
many orthologs with high sequence similarity. Therefore,
it appears reasonable to expect that the problem of iden-
tifying such complexes could be effectively addressed by a
comparative network analysis approach.
In recent years, efforts have been made to develop

computational techniques for the comparison of PPI net-
works across different species through global network
alignment [7–12]. Most of the existing global network
alignment algorithms aim to identify the one-to-one map-
ping with themaximum total similarity of aligned proteins
across networks. However, this approach may not directly
lead to accurate identification of conserved protein com-
plexes, where an important focus is on grouping proteins
that work together towards similar functionalities across
species. Furthermore, proteins in conserved protein com-
plexes often have many-to-many orthologous relation-
ships. Local network alignment [13–18] searches for con-
served subnetworks across species, which better resem-
bles the task of identifying conserved protein complexes.
However, many of them focus on the topological criteria
based on conserved edges or other network motifs with
specific topological structures, often motivated by con-
jectured evolutionary or functional models [14, 18, 19].
To the best of our knowledge, none of the existing local
alignment algorithms explicitly considers the characteris-
tic topological properties of protein complexes, in which
proteins within the complex highly interact with each
other but rarely interact with the rest of the network.
Therefore, directly applying existing local network align-
ment algorithms may not result in accurate detection of
conserved protein complexes with the maximum cover-
age of the given PPI networks. Furthermore, both local
and global network alignment problems essentially reduce
to the (sub)graph isomorphism problem and the align-
ment results tend to be sensitive to topological errors

in the PPI networks. This is certainly problematic, since
currently available PPI networks may contain a signifi-
cant number of false positive interactions while many true
interactions are still missing. In comparison, detecting
conserved protein complexes is generally more robust to
similar topological errors, as we focus on interaction den-
sity within complexes and their topological separability
(i.e., whether they are well separated from the rest of the
PPI networks). In other words, the focus lies on groups of
proteins that may potentially belong to the same complex
rather than individual proteins, which makes the overall
prediction less sensitive to errors in the PPI networks.
In addition to the lack of explicit modeling of the desired

topological properties within conserved protein com-
plexes, most of the existing network alignment and clus-
tering algorithms [13–15, 17, 18] do not scale well with
the number of species and the network size. For example,
it is prohibitive for the network alignment algorithms in
[13–15, 17, 18] to handle more than three PPI networks
due to the exponential growth of the alignment graph with
the number of species and the network size. Finally, to the
best of our knowledge, currently, there is neither a gold
standard for conserved protein complexes that contains
protein complexes from multiple species nor commonly
accepted metrics for assessing the performance of algo-
rithms for predicting conserved protein complexes. As
a consequence, it has been practically difficult to effec-
tively evaluate the capability of such algorithms to unveil
“true” conserved protein complexes, just based on the fact
that the identified conserved protein complexes may over-
lap with well-known protein complexes in another species
[13, 14, 17, 18].
To fill these critical gaps in a conserved protein com-

plex identification, we propose a scalable algorithm—
ClusterM—that explicitly characterizes the desired topo-
logical separability of protein complexes and also incor-
porates sequence similarity of proteins across the given
PPI networks. ClusterM consists of three major steps.
The first step is to find a set of protein spines (sets of
proteins, one from each network) across different PPI net-
works. In the second step, well-separated subnetworks
around proteins in each protein spine are identified. The
final step is to look for conserved subnetworks within
those identified well-separated subnetworks, which have
both cohesive protein-protein interaction similarity and
sequence similarity.
Last but not least, in order to evaluate and compare

the performance of ClusterM and other existing algo-
rithms, we have curated a new yeast-human reference
conserved protein complex dataset based on yeast and
human gold-standard complexes and propose effective
evaluation metrics based on the existing measures for
assessing protein complex identification algorithms for
individual PPI networks. Experimental results based on
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comparative analysis of yeast and human PPI networks
show that ClusterM clearly outperforms the current state-
of-the-art algorithms.

Results
Identifying conserved complexes in yeast and human
networks
We first evaluated ClusterM on the yeast and human
PPI networks based on two constructed datasets: DIPYH
and IntActYH. In the DIPYH dataset, yeast (Sce) and
human (Hsa) PPI networks are obtained from Database
of Interacting Proteins (DIP) version 20150101 [3] and
the protein sequence similarity between proteins across
networks are computed by BLAST [20]. The human PPI
network has 4,278 proteins and 6,446 interactions, and the
yeast PPI network has 5,138 proteins and 22,835 inter-
actions. Similarly, the IntActYH dataset contains yeast
and human PPI networks extracted from the IntAct
database version 20150120 [4] and the corresponding pro-
tein sequence similarity across networks. The human PPI
network has 23,246 proteins and 106,031 interactions, and
the yeast PPI network has 6,392 proteins and 78,287 inter-
actions. We compared ClusterM with the state-of-the-art

algorithms—AlignNemo [17], AlignMCL [21], MaWISh
[14], NetworkBLAST [22], and NetworkBLAST-M [23].
The selection of parameters of different methods is dis-
cussed in the Methods section. We assessed the quality
of the identified conserved protein complexes based on
the yeast-human reference conserved protein complexes
generated from hand-curated yeast and human protein
complex data obtained from CYC2008 [24] and the Com-
prehensive Resource of Mammalian protein complexes
(CORUM) [25]. The detailed description of the reference
complexes can be found in the Methods section.
In this study, we define a composite score for perfor-

mance evaluation, which consists of (i) the fraction of
the reference conserved protein complexes matched by
at least one identified conserved protein complex, (ii) the
accuracy score [6], and (iii) the maximum matching ratio
for conserved complexes (MMRC). The description of
these three evaluation metrics is detailed in the Methods
section.
As shown in Fig. 1a, ClusterM outperformed all com-

peting algorithms by a large margin on every evaluation
metric for both datasets. Figure 1b and c illustrate two
conserved protein complexes identified by ClusterM that

Fig. 1 a Performance comparison on the yeast-human reference conserved protein complex dataset. NetworkBLAST-M failed to obtain meaningful
results due to the large sizes of the PPI networks in IntActYH. b The conserved NuA4 histone acetyltransferase protein complex detected by
ClusterM and AlignNemo. c The conserved multimeric ribonuclease P complex detected by ClusterM and AlignMCL. The nodes with red border
edges represent the proteins that do not bear any sequence similarity between two PPI networks. Solid lines denote protein-protein interactions
and gray dotted lines indicate sequence similarity
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cannot be fully recovered by other methods. Clearly,
ClusterM utilizes the network topology to facilitate the
detection of conserved protein complexes without con-
sidering the restriction shared by most of the algorithms
(AlignNemo, AlignMCL, NetworkBLAST, and MaWISh),
which is only proteins with similar sequences across
species can exist in the predicted conserved complexes.
NetworkBLAST-M does not have such a restriction but
failed to characterize the property of the conserved com-
plexes.
We discuss two specific conserved protein complexes

in Figs. 1b and c in detail to highlight the advantages
of ClusterM over other competing methods. In Fig. 1b,
there are a relatively larger number of unidentified pro-
teins in the predicted conserved protein complex detected
by AlignNemo. The precision of the identified complex
is also small as it includes a larger number of irrele-
vant proteins such as Ing2, P06897, and ZNHIT1 in the
conserved protein complex in human PPI network and
VPS71 and HTA1 in yeast PPI network. However, Clus-
terM correctly predicted a larger number of proteins in
the NuA4 histone acetyltransferase protein complex with
a higher precision. One possible explanation for the sig-
nificant difference is that ClusterM can correctly identify
the proteins without a sequence similarity by effectively
utilizing the sequence information and topological struc-
ture of PPI networks. On the contrary, AlignNemo failed
to identify the proteins in the candidate complexes if they
do not have corresponding homology with high sequence
similarity. This illustration clearly shows the distinctive
advantages of ClusterM over the competing methods to
identify conserved protein complex across different PPI
networks. In Fig. 1c, AlignMCL also failed to identified the
proteins without homology information. Moreover, the
predicted conserved complex in human PPI network is ill-
connected. That is, only POP4 and POP5 are connected
and RPP21 and RPP30 are not connected. This illustration
shows that AlignMCL could have a limitation to effective
utilization of the topological separability of the conserved
protein complexes and AlignMCL can fail to identify the
inserted (or deleted) proteins in the conserved complex if
there are insufficient or noisy sequence similarity infor-
mation. In Fig. 2, we show other representative examples
of conserved protein complexes detected by ClusterM,
which cannot be correctly identified by other algorithms.
We have also applied Gene Ontology (GO) enrichment
analysis to every identified conserved complexes and the
results indicate that ClusterM achieves remarkably higher
coverage (i.e., total number of proteins in the predicted
complexes) than all competing methods and more than
90% of the predicted complexes identified by ClusterM
are significantly enriched in certain GO terms (detailed
results and discussions can be found in Supplementary
Materials).

Robustness analysis
To investigate the degree to which the competing algo-
rithms are sensitive to small changes in the input so that
meaningful results can be derived even with noisy or
incomplete data, we performed a robustness analysis of
the algorithms considered in this study. For each algo-
rithm, we optimized the parameters based on the original
DIPYH dataset (yeast and human PPI from DIP database
and the protein sequence similarity across species) and
tested the performance on a perturbed DIPYH dataset, in
which we re-wired 10% edges in both yeast and human
PPI networks through the M-P procedure [26] to instill
topological noise. Furthermore, we treated the protein
sequence similarity between yeast and human as a bipar-
tite network, and thereby perturbed 10% of the homolo-
gous relationships (i.e., a sequence similarity) also using
theM-P procedure [26]. To remove the randomness in the
M-P procedure, we generated 10 perturbed networks for
each test case and reported the averaged scores.
Figure 3 shows the evaluation results—i.e., fraction,

accuracy, and MMRC scores—based on four datasets: the
noise-free dataset, the dataset with only topological noise,
the dataset with only homology noise, and the dataset with
both topological and homology noise. Each table corre-
sponds to each dataset in Fig. 3. We first computed the
composite score by summing over the fraction, accuracy
and MMRC scores. Then, we computed the mean and
standard deviation of the four composite scores. Themean
of the composite score for ClusterM, MaWISh, Network-
BLAST (NB), AlignMCL, NetworkBLAST-M (NBM), and
AlignNemo were 0.890, 0.588, 0.552, 0.486, 0.405, and
0.368, respectively. The standard deviation of the compos-
ite score for ClusterM, MaWISh, NB, AlignMCL, NBM,
and AlignNemo were 0.066, 0.075, 0.073, 0.079, 0.047, and
0.053, respectively. We can see that ClusterM achieves
the largest mean and the third smallest standard devia-
tion among all compared algorithms, which implies that
ClusterM is relatively less sensitive to small changes in the
input data as well as the parameter selection. Although
AlignNemo achieved the smallest standard deviation, it
showed the smallest composite score as well and there is
a clear gap to the composite score of ClusterM. MaWISh
attained the second best composite score for the noise-
free dataset, but for noisy datasets, its performance was
unstable. This unstable behavior may be due to its depen-
dence on the choice of the seven parameters. Even for
relatively small changes in the input, those seven param-
eters may have to be simultaneously (and significantly)
changed to obtain the best performance, which may make
it practically difficult to find the optimal parameters for
large datasets in a robust manner. NB and NBM showed
similar performance in term of the changes of the com-
posite scores, and they turned out to be more sensitive
to noise compared to ClusterM but less sensitive when
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Fig. 2 Examples of conserved protein complexes identified by ClusterM on DIPYH and IntActYH. Blue nodes represent proteins in the corresponding
reference protein complexes in yeast PPI network. Green nodes represent proteins in the corresponding reference protein complexes in human PPI
network. White nodes are proteins that do not belong to the reference protein complexes. Proteins with red bold edges are not identified by
ClusterM. Proteins are annotated with their gene names. Solid lines denote protein-protein interactions and dashed lines denote sequence similarity

compared to MaWISh. These results show that ClusterM
is the most user-friendly algorithm among the compared
methods, considering that it is robust to noise and that
it does not require the joint optimization of multiple
parameters to achieve good performance.

Conserved protein complex identification for multiple
networks
In this section, we present and discuss a specific example
that demonstrates the potential of ClusterM in identify-
ing conserved protein complexes in multiple (more than
two) PPI networks. We have constructed two PPI datasets
for benchmarking protein complex identification across
four PPI networks: DIPPPIs and IntActPPIs, based on
the corresponding PPI networks and protein amino acids
sequences for human (Hsa), yeast (Sce), fly (Dme), and
worm (Cel) from DIP (version 20150101) and IntAct (ver-
sion 20150120). The detailed description to construct PPI

networks can be found in the Method section. Table 1
provides a basic statistical summary and the abbrevi-
ation of PPI networks. In Fig. 4a, we show the con-
served proteasome core complex identified by ClusterM
in IntActPPIs. This complex was completely missed by
all other algorithms that were considered in this study.
Proteins in light blue, green, pink, and purple represent
proteins in yeast, human, fly, and worm, respectively.
We further tested the statistical significance of each of
the four protein complexes in the respective organisms
based on the GO term annotated to proteasome core
complex (GO:0005839). The p-values associated to the
corresponding yeast, human, fly, and worm complexes are
5.58E-41, 2.80E-48, 4.88E-16, and 5.48E-9, respectively. In
Fig. 4b, the spliceosomal complex (GO:0005681) is sig-
nificantly enriched in the yeast, human, fly, and worm
conserved complex with the p-values 2.37E-08, 4.16E-
12, 6.03E-11, and 2.97E-08, respectively. Note that red
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Fig. 3 Robustness analysis on yeast and human PPI networks from DIP dataset. We display the fraction, accuracy and MMRC scores for dataset with
different noise level. There are four small tables in the figure. The top-left table shows scores for noise free data. The top-right table exhibits scores
for data with 10% topological noise but 0% homology noise. The bottom-left table shows scores for 10% homology noise but 0% topological noise.
The bottom-right table displays scores for data with 10% topological noise but 10% homology noise

solid lines are PPIs missed in IntAct database but we
can identify the interactions in STRING database [27].
The enrichment analysis of these conserved protein com-
plexes, which could be detected solely by ClusterM, clearly
shows that ClusterM can effectively mine biologically
meaningful protein complexes in multiple large-scale PPI
networks.

High-level GO term consistency
To examine the biological significance of the conserved
protein complexes identified by ClusterM and other exist-
ing algorithms, we calculated the coverage and the mean

normalized entropy (MNE) score [7] based on high-level
GO annotations for the results obtained by ClusterM,
MaWISh, AlignMCL, and NetworkBLAST-M. Note that
the lowerMNE indicates that the proteins in the predicted
conserved complex are more consistent in terms of GO
annotations. We selected the three algorithms—MaWISh,
AlignMCL, and NetworkBLAST-M—as they show the
best performance among all compared algorithms except
for ClusterM. For the blanks in Tables 2 and 3, MaW-
ISh and AlignMCL cannot deal with more than 3 net-
works. We applied these four algorithms to identify con-
served protein complexes for every combination of PPI

Table 1 Abbreviation and information for protein-protein interaction (PPI) networks used in the study

Dataset Database Version Species Abbreviation #. proteins #. interactions

DIPPPIs DIP 20150101 Yeast SceDIP 5,138 22,835

DIP 20150101 Human HsaDIP 4,278 6,446

DIP 20150101 Fly DmeDIP 7,679 23,182

DIP 20150101 Worm CelDIP 2,712 4,117

IntActPPIs IntAct 20150120 Yeast SceIntAct 6,392 78,287

IntAct 20150120 Human HsaIntAct 23,246 106,031

IntAct 20150120 Fly DmeIntAct 11,517 41,483

IntAct 20150120 Worm CelIntAct 9,721 16,668
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Fig. 4 a The conserved proteasome core complex identified by ClusterM. Yeast, human, fly, and worm proteins are shown in light blue, green, pink
and purple, respectively. Gray dotted lines indicate protein sequence similarity and blue solid lines represent protein-protein interactions. b The
conserved spliceosomal complex identified by ClusterM. Yeast, human, fly, and worm proteins are shown in light blue, green, pink and purple,
respectively. Gray dotted lines indicate protein sequence similarity and blue solid lines represent protein-protein interactions. Red solid lines are PPIs
in STRING database

Table 2 GO consistency and coverage comparison on DIPPPIs dataset

PPI networks measure MaWISh AlignMCL NB-M CM1 CM10 CM100

SceDIP+HsaDIP MNE 5.274 3.766 6.110 4.195 4.224 3.912

Coverage 1013 1379 814 2533 2406 942

SceDIP+DmeDIP MNE 3.149 2.434 3.383 2.300 2.286 2.204

Coverage 1327 1945 1242 3496 3400 1395

SceDIP+CelDIP MNE 3.105 2.476 3.490 2.344 2.339 2.134

Coverage 383 809 488 1140 1099 353

HsaDIP+DmeDIP MNE 5.823 4.976 6.252 4.753 4.734 4.757

Coverage 1076 2909 1538 4239 3952 904

HsaDIP+CelDIP MNE 6.972 5.359 6.483 4.937 4.978 4.724

Coverage 260 1202 554 1656 1542 349

DmeDIP+CelDIP MNE 3.366 2.599 3.317 2.246 2.232 2.123

Coverage 522 1706 1044 1988 1928 403

SceDIP+HsaDIP+DmeDIP MNE 6.168 4.470 4.444 4.614

Coverage 1895 3628 3410 1525

SceDIP+HsaDIP+CelDIP MNE 6.425 4.572 4.611 4.720

Coverage 886 2415 2232 814

SceDIP+DmeDIP+CelDIP MNE 3.746 2.554 2.563 2.414

Coverage 1162 2736 2659 1200

HasDIP+DmeDIP+CelDIP MNE 6.616 4.527 4.542 4.136

Coverage 1610 2762 2516 697

SceDIP+HsaDIP+DmeDIP+CelDIP MNE 5.981 4.305 4.339 4.149

Coverage 1351 2049 1871 599

Abbreviations: CM1 = ClusterM(λ = 1), CM10 = ClusterM(λ = 10), CM100 = ClusterM(λ = 100), NME = Mean Normalized Entropy, NB-M = NetworkBLAST-M
Bold values denote the best scores corresponding to specific criteria
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Table 3 GO consistency and coverage comparison on IntAct dataset

PPI networks measure MaWISh AlignMCL NB-M CM1 CM10 CM100

SceIntAct+HsaIntAct MNE 4.734 3.137 4.028 3.089 3.103 3.018

Coverage 1552 4181 478 6355 6216 3023

SceIntAct+DmeIntAct MNE 3.679 2.705 4.208 2.307 2.310 2.446

Coverage 1548 1290 423 2403 2391 1209

SceIntAct+CelIntAct MNE 3.378 2.918 3.679 2.647 2.635 2.697

Coverage 797 818 346 1578 1543 637

HsaIntAct+DmeIntAct MNE 7.587 4.148 4.988 3.421 3.477 3.668

Coverage 4413 5898 219 7069 6730 1941

HsaIntAct+CelIntAct MNE 6.463 4.490 4.639 3.449 3.448 3.367

Coverage 2263 3724 167 4077 3907 1202

DmeIntAct+CelIntAct MNE 4.497 4.013 5.154 2.745 2.785 2.477

Coverage 545 1120 204 1891 1833 520

SceIntAct+HsaIntAct+DmeIntAct MNE 4.317 3.154 3.165 3.315

Coverage 631 8640 8354 4233

SceIntAct+HsaIntAct+CelIntAct MNE 3.848 3.294 3.307 3.352

Coverage 408 6160 5952 2675

SceIntAct+DmeIntAct+CelIntAct MNE 4.479 2.657 2.659 2.574

Coverage 640 3321 3222 1282

HasIntAct+DmeIntAct+CelIntAct MNE 5.321 3.196 3.246 3.109

Coverage 435 6213 5895 2168

SceINTACT+HsaINTACT+DmeINTACT+CelINTACT MNE 4.344 3.139 3.153 3.252

Coverage 456 5907 5668 2246

Abbreviations: CM1 = ClusterM(λ = 1), CM10 = ClusterM(λ = 10), CM100 = ClusterM(λ = 100), NME = Mean Normalized Entropy, NB-M = NetworkBLAST-M
Note: Bold values denote the best scores corresponding to specific criteria

networks in DIPPPIs, where the obtained results are
presented in Table 2. The evaluation results based on
IntActPPIs datasets can be found in Table 3. Both tables
reveal that the conserved protein complexes identified
by ClusterM consistently achieve lower MNE and higher
coverage scores, where it means that ClusterM can pre-
dict a larger number of proteins with a high functional
consistency.

Discussion
In this paper, we proposed a scalable algorithm—
ClusterM—that can identify conserved protein complexes
by integrating protein sequence information and topo-
logical structure of the PPI networks. As demonstrated
by our results, ClusterM can better capture the desired
topological property of a typical conserved protein com-
plex, which is densely connected within the complex
while being well-separated from the rest. Experimen-
tal results based on real-world PPI networks and pro-
tein complexes show that ClusterM significantly out-
performs other state-of-the-art algorithms in the task
of identifying conserved protein complexes. Addition-
ally, the conserved protein complexes identified by

ClusterM have been shown to boast better high-level
GO term consistency compared to other competing
algorithms.
ClusterM is an enhanced approach that directly consid-

ers the characteristic topological structure of conserved
protein complexes, which are typical densely connected
within the complex and well-separated from the rest of
the network. Unlike ClusterM, existing state-of-the-art
algorithms (e.g., NetworkBLAST, NetworkBLAST-M, and
MaWISh) focus on the interaction density of the con-
served protein complex but do not explicitly consider the
separability of conserved complexes from the rest of the
PPI network. Furthermore, compared to algorithms such
as NetworkBLAST and MaWISh, which only consider
proteins with homology correspondence (determined
based on protein sequence similarity) across PPI networks
to reduce the overall computational complexity, ClusterM
does not impose such restriction and integrates the topol-
ogy and homology information in a very flexible manner.
Finally, another important advantage of ClusterM is that
the algorithm can easily handle multiple (more than two)
PPI networks and yield biologically meaningful results.
While NetworkBLAST-M can also deal with multiple PPI
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networks, NetworkBLAST-M is not capable of handling
large-scale networks.

Conclusions
We propose a scalable algorithm—ClusterM—that explic-
itly characterizes the desired topolog-ical separability of
protein complexes and also incorporates sequence simi-
larity of proteins across the given PPI networks. Thanks
to the computational framework used by ClusterM, it can
easily handle multiple PPI networks at the same time.
We have extensively compared ClusterM with other state-
of-the-art algorithms on various of PPI networks. The
experiments show its out-performance over other meth-
ods. In addition, ClusterM shows its potential on analyz-
ing four PPI networks and identifying conversed protein
complexes that have not been identify before.

Materials andmethods
The ClusterM algorithm
Topological separability by conductance
One of the major innovations in ClusterM as well as its
core strength is that it explicitly considers topological sep-
arability when searching for conserved protein complexes.
In this paper, we adopt the definition of conductance to
measure the topological separability of a subnetwork. Let
G = (V ,E) represent a PPI network, where V denotes the
set of proteins in G and E is the interaction set. A is the
corresponding adjacency matrix of G, where the element
Aij = 1 denotes the protein i interacts with the protein
j and Aij = 0 otherwise. The degree matrix D of G is a
diagonal matrix with Dii = di, where di is the number of
interactions connecting to the protein i.
For a subnetwork S as a potential protein complex, the

conductance of S in G is defined as

φ(S) = |E(S, S̄)|
min

{
vol(S), vol(S̄)

} , S ∪ S̄ = V , (1)

where E(S, S̄) denotes the set of edges between S and the
rest of the network S̄, and vol(S) = ∑

i∈S di is the num-
ber of interactions in S. As vol(S) is typically much smaller
than the total number of interactions in G: vol(S) �
vol(V ), indicating vol(S) = min

{
vol(S), vol(S̄)

}
, we have

φ(S) = |E(S, S̄)|
vol(S)

=
∑

i,j∈VS
Dij − Aij

∑
i∈VS

Dii
, (2)

where VS is the vertex set containing all vertexes in the
subnetwork S.

The algorithm
ClusterM builds on the intuition that conserved pro-
tein complexes should simultaneously possess the follow-
ing two properties. First, topologically, conserved protein
complexes in each PPI network should be well separated

from the rest of the network and proteins within the com-
plexes should be densely connected in order to give rise to
a unique and specific biological form and function. Sec-
ond, across species, there should exist many homologous
proteins in the conserved complexes, which can be practi-
cally reflected by high overall protein sequence similarity.
Given k PPI networks G = {G1,G2, ...Gk}, where Gj(Vj, Ej)
is the jth network with Vj and Ej denoting the correspond-
ing proteins and interactions respectively, we use a binary
adjacency matrix Aj to represent Gj and use a diagonal
matrix Dj to represent the degree matrix of Gj with the
number of interactions of each protein on its diagonal.
To identify conserved protein complexes with the afore-

mentioned properties, our ClusterM algorithm takes
three major steps:
1. Initial seeds with protein spines frommultiple net-

work alignment: In the first step, h homologous seeds
can be identified as protein spines U = {

u1,u2, ...,uh
}

by using a multiple network alignment method, where
ui = {(

vi1, v
i
2, ..., v

i
k
) | vi1 ∈ V1, vi2 ∈ V2, ..., vik ∈ Vk

}
con-

stitutes the ith protein spine detected through network
alignment. In this work, we adopt SMETANA [28], which
has been shown to be accurate and scalable. When detect-
ing these conserved protein spines, SMETANA [28] takes
both protein interaction and sequence information into
account. By iterating through all protein spines in U , Clus-
terM adopts a divide-and-conquer strategy to identify
potential conserved protein complexes from each protein
spine seed across the given networks.
2. Minimum-conductance set for topological separa-

bility (Task 1): First, for protein vij in protein spine ui, a
minimum-conductance protein set Ĥi

j including vij , well
separated from the rest of the network Gj, is identified
based on a novel local optimization algorithm. Initially,
we acquire a set Hi

j consisting of m proteins obtained in
terms of the ranking of the personalized PageRank vector
with respect to vij in Gj [29]. We further refine the results
to yield Ĥi

j based on the definition of the conductance (2)
by solving the following optimization problem:

min:
xT

(
DHi

j − AHi
j
)
x

xTDHi
jx

s.t. xvij = 1, xi ∈ {0, 1},
(3)

where x is a binary vector with xi = 1 indicating that
protein i is assigned into Ĥi

j and xi = 0 otherwise; AHi
j

andDHi
j are adjacency and degree matrices of the induced

subnetwork with respect to the protein set Hi
j . The prob-

lem can be solved by transforming it into a mixed integer
program (MIP) [30]. After algebraic manipulations, (3)
can be transformed into the following equivalent MIP
formulation:
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min: z

s.t. z
∑

i
xid

Hi
j

i −
∑

i

∑

j
(DHi

j − AHi
j )xixj ≥ 0,

xvij = 1, xi ∈ {0, 1},

(4)

where d
Hi

j
i is the ith elements on the diagonal ofDHi

j . After
using standard linearization techniques [30] to linearize
the terms such as zxi and xixj, the optimization problem
can be solved exactly by existing MIP solvers. We empha-
size that we here obtain the exact minimum-conductance
set around the selected seed, which is critical to identify
potential protein complexes with high topological sepa-
rability from the rest of the networks. Because ClusterM
searches for the minimum-conductance set locally around
each involved protein, and since the size of each protein
set Hi

j is much smaller than the size of the entire PPI
network in such a divide-and-conquer strategy, we can
efficiently obtain the minimum-conductance set Ĥi

j inHi
j

based on (4) [30].
Here, Ĥi

j is the subnetwork including protein vij that is
well separated from the other proteins in the PPI network
Gj. The procedure of identifying Ĥi

j explicitly character-
izes the external separability of the subnetwork Ĥi

j , which
is the main advantage of ClusterM over other existing net-
work comparative approaches [13–15, 17, 18] that allows
the algorithm to effectively capture the desired topological
property of conserved protein complexes.
3. Conserved protein complexes with desired topo-

logical and homologous properties (Task 2): The next
task is to collect Hi =

{
Ĥi

1, ..., Ĥi
k

}
for the corre-

sponding protein spine ui with Si = {s(p, q) | p ∈
Ĥi

m, q ∈ Ĥi
n, m �= n, ∀p, q,m, n} denoting poten-

tial homologous correspondence within Hi. The homol-
ogous correspondence between proteins p and q can
be approximated by the protein sequence similarity
s(p, q) ∈[ 0, 1] [31]:

s(p, q) = blast(p, q)
√
blast(p, p) × blast(q, q)

, (5)

where blast(p, q) is the bit score of the sequence sim-
ilarity obtained by the local sequence alignment tool
BLAST [20]. We note that better homologous corre-
spondence by incorporating functional annotations may
further improve the performance of conserved protein
complex identification. However, we do not explore such
directions to avoid biased performance evaluation due to
repeated usage of functional annotations in our algorithm
and evaluation metrics.

To detect conserved complexes with high interaction
density as well as high sequence similarity between pro-
teins across different species, we propose to optimize the
following cost function for protein spine ui:

F i = −

⎛

⎜⎜⎜⎜⎜
⎝

k∑

j=1

∑

a,b∈Ĥi
j

AĤi
j (a, b)δaδb

∑

c∈Ĥi
j

δc
+ λ

∑

j �=l

∑

a∈Ĥi
j

∑

b∈Ĥi
l

s(a, b)δaδb

k∑

j=1

∑

c∈Ĥi
j

δc

⎞

⎟⎟⎟⎟⎟
⎠
,

(6)

where the binary value AĤi
j (a, b) indicates whether there

is an interaction between proteins a and b in the subnet-
work induced by the protein set Ĥi

j , and δa is an indicator
function with δa = 1 if protein a appears in the iden-
tified conserved protein complex with respect to ui and
δa = 0 otherwise. The first term is essentially the sum-
mation of the interaction density [32] of each subnetwork,
which characterizes the topological cohesiveness of each
subnetwork. The second term characterizes the homol-
ogy correspondence represented by the summation of the
protein sequence similarities across subnetworks divided
by the total number of proteins in the identified con-
served protein complex. The coefficient λ balances the
contributions from network topology and protein homol-
ogy information. We optimize the cost function (6) in a
greedy manner by first recruiting all the proteins in Hi,
and greedily removing proteins based on their contribu-
tions to the cost function until further deletion does not
reduce the cost function any more. The greedy algorithm
outputs the conserved protein complex Ci with respect to
the protein spine ui.
Figure 5 illustrates how ClusterM handles a protein

spine in a pair of networks to search for conserved protein
complex locally. Starting from the protein spine in the red
dashed line, ClusterM first identifies the proteins in blue
based on the personalized PageRank vectors. It further
refines the results for separability by MIP (3) and recog-
nize the proteins in the gray shade to be the subnetworks
that are well separated from the rest of the corresponding
networks. Finally, ClusterM finds the conserved protein
complex in golden color based on the cost function (6).
In the post-processing step of ClusterM, we remove

duplicated conserved protein complexes, and delete the
ith conserved complex Ci if the summation of the
sequence similarity score (

∑
(p,q)∈Ci s(p, q)) within Ci is

lower than β (set to β = 0.1 in this work).

Scalability and parallelism
The major computation in ClusterM involves SMETANA
for identifying homologous seeds, approximating the
PageRank vector near a protein, solving the MIP (3), and
the greedy algorithm to optimize (6). The scalability of



Wang et al. BMC Genomics 2020, 21(Suppl 10):615 Page 11 of 14

Fig. 5 Illustration of the ClusterM procedure. The red dashed line circles the protein spine across these two networks. At first, for each network,
based on the personalized PageRank vector starting from the proteins in the protein spine, we select a group of proteins marked in blue for each
network. Then we refine the results by mixed integer programming and obtain the subnetworks in the gray shades, which are well separated from
the rest of the networks. With them, we integrate the topological information of the selected subnetworks and the homology information between
the proteins in the subnetworks, which are represented by the black dashed lines, and identify the conserved protein complex based on the cost
function (6). The proteins in the golden color are proteins in the conserved protein complex identified by ClusterM

SMETANA has been demonstrated in [28]. The computa-
tional complexity for approximating the PageRank vector
near a protein is proportional to the number of involved
local neighbors [29]. There is no scalability issue for solv-
ing the MIP (3) because we only considerm local proteins
near the protein spine for individual PPI networks. Both
the time and space complexities of the greedy algorithm
based on (6) are O(k2m2), where k is the number of
species. Therefore, due to the divide-and-conquer strat-
egy, ClusterM has better scalability for handling multiple
species.
For each protein spine ui, the identification of the well-

separated subnetworks Ĥi
1, ..., Ĥi

k are independent to each
other. Furthermore, the protein spines and the identifica-
tion of the potential conserved protein complexes are also
independent. Therefore, the computation of Ĥi

1, ..., Ĥi
k

and the detection of conserved protein complexes can be
easily parallelized to further reduce the total computa-
tional time for ClusterM.

Datasets
Construction of DIPPPIs and IntActPPIs
We download PPI networks and protein amino acids
sequences for human, yeast, fly, and worm from DIP (ver-
sion 20150101) and IntAct (version 20150120). To obtain a
consistent protein symbol for PPI networks and conserved
protein complexes, we change all protein names utilized
in this study to UniProt protein symbols. The sequence
similarity for each protein pair can be obtained using a
local sequence alignment tool BLAST and we select the
highest BLAST bit score for each protein pair as their
sequence similarity score. Then, we normalize the BLAST
bit score based on the equation (5) to obtain protein
homologous correspondence and threshold the sequence
similarity score at 0.1.

The yeast-human reference conserved protein complexes
We align yeast complexes in CYC2008 [24] and human
complexes in CORUM (February 2012) based on GO
terms to obtain the gold standard for yeast and human
conserved protein complexes. CYC2008 provides a spe-
cific GO term associated to every collected yeast complex.
For human complex in CORUM, we first download the
mapping of human genes and proteins to GO terms (ver-
sion 20150329) [33] and annotate proteins in CORUM
with GO terms that also appear in CYC2008. If a human
complex contains at least half the number of proteins
annotated to a GO term in CYC2008, we align the human
complex and the yeast complex with the same GO term
annotation.

High-level GO terms
When analyzing biological consistency, we only consider
the high-level GO terms, which suggest specific biolog-
ical functions. A GO term is defined as high-level if its
information content is larger than two. The definition
of the information content of a GO term g is IC =
−log(|g|/|root|) [34], where “root” is the corresponding
root GO term (either biological process, molecular func-
tion, or cellular component) of g and the operation | · |
counts the number of proteins annotated to a specified
GO term. Additionally, we remove GO terms “inferred
from electronic annotation”, “inferred from protein inter-
actions”, and “inferred from sequence or structural simi-
larity”, because we utilize protein-protein interactions and
the protein sequence similarities in our algorithm.

Metrics for conserved protein complex prediction for
pairwise PPI networks
The conserved protein complexes from pairwise PPI
network alignment contain proteins from two species.
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Therefore, we need to examine the correspondence
between the reference and the identified conserved com-
plexes species by species. For all competing algorithms, we
remove the identified conserved protein complexes if they
contain fewer than three proteins for any species.

Fraction of thematched reference conserved protein
complexes
For two species, given a reference conserved complex
A = {A1,A2} and an identified conserved complex B =
{B1,B2}, whereA1 andB1 are complexes in the first species
and A2 and B2 are complexes in the second species, we
consider B matches A if the neighborhood affinity scores
for complexes w(A1,B1) ≥ 0.25 and w(A2,B2) ≥ 0.25.
The neighborhood affinity score for complexes can be
calculated by

w(X,Y ) = |X ∩ Y |
|X| · |X ∩ Y |

|Y | = |X ∩ Y |2
|X| |Y | , (7)

where X and Y are two protein sets. Therefore, we can
compute the fraction of the number of matched reference
conserved complexes.
Assuming the reference conserved protein complexes

set is R and the identified conserved protein complexes set
is P, then the fraction of the number of matched reference
conserved complexes can be computed as

frac = |C|
|R| , (8)

where C = {S | w(S1,T1) ≥ 0.25 and w(S2,T2) ≥
0.25, ∀S ∈ R, T ∈ P}.
Accuracy score
Suppose that we have n reference conserved complexAj ={
Aj
1,A

j
2

}
, j = 1, 2, ..., n, and m identified complex Bi =

{
Bi
1,B

i
2
}
, i = 1, 2, ...,m, and each has complexes Aj

1 and Bi
1

from the first species and another complexes Aj
2 and Bi

2 in
the second species. Let tij denotes the number of proteins
that exist in both the reference complex Aj and the identi-
fied complex Bi, and wj represent the number of proteins
in the jth reference complex. That is, tij =

∣∣∣Aj
1
⋂

Bi
1

∣∣∣ +
∣∣∣Aj

2
⋂

Bi
2

∣∣∣ and wj =
∣∣∣Aj

1
⋃

Aj
2

∣∣∣. Then, complex-wise sen-
sitivity (Sn) and positive-predictive value (PPV) can be
defined as

Sn =
∑n

j=1 max
i=1,...,m

tij
∑n

j=1 wj
; PPV =

∑m
i=1 max

j=1,...,n
tij

∑m
i=1

∑n
j=1 tij

. (9)

The geometric accuracy (Acc) score is the geometric
mean of Sn and PPV: Acc = √

Sn × PPV.

Themaximummatching ratio for conserved protein
complexes (MMRC)
We can quantify the overlap between the reference
and the identified conserved complexes by the maxi-
mum matching ratio for conserved complexes (MMRC).
MMRC is derived based on MMR [6]. The maximum
matching ratio [6] is the maximum sum of weights of
edges in a bipartite graph, where the two sets of nodes rep-
resent reference complexes C and identified complexes S.
The bipartite graph is represented by a weighted matrix
Bn×m, where each weight Bij is the neighborhood affin-
ity score w(ci, sj) introduced earlier for the corresponding
edge between complexes ci and sj. For efficiency, we only
use Bij ≥ 0.25. The MMR is the solution to the following
maximal matching problem.

max:
1

|C|
n∑

i=1

m∑

j=1
Bijσci,sj

s.t.
m∑

j=1
σci,sj ≤ 1

n∑

i=1
σci,sj ≤ 1,

(10)

where σ is an indicator function with σci,sj = 1 when the
edge between complexes ci and sj is selected and σci,sj = 0
otherwise.
MMRC can be obtained by modifying the overlap-

ping weights w(ci, sj) between reference and identified
conserved complexes. The overlapping weight between
reference conserved complex A and identified conserved
complex B is defined as

o(A,B) = 2w(A1,B1) × w(A2,B2)

w(A1,B1) + w(A2,B2)
. (11)

Metrics for GO term consistency and coverage
Wemeasure the functional consistency for the proteins in
the conserved complexes by computing the mean normal-
ized entropy (MNE) [7, 10] scores. We use the high-level
GO term set F to annotate each protein in a conserved
complex Ri. The union of GO terms used for Ri is Fi =
{f1, f2, ..., fd}. The normalized entropy (NE) of Ri is com-
puted as

NE(Ri) = NE(p1, p2, ..., pd) = − 1
log(d)

∑

j
pj ·log

(
pj

)
,

(12)

where pi is the fraction of Ri with respect to the GO term
fi. The MNE is the mean value over all NE(Ri). For the
coverage, we simply count the number of proteins in all
conserved complexes, each of which consists of at least
three proteins from each network.
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Parameter selection for each method
Among the tested algorithms, ClusterM and
NetworkBLAST-M have only a single tuning parameter,
while NetworkBLAST and MaWISh have 5 and 7 tuning
parameters, respectively. In order to obtain the best per-
forming parameters for fair comparison of the selected
algorithms, we have selected the best performing param-
eter(s) for each algorithm by grid search. Within at most
N combinations of k parameters (p1, p2, ..., pk), we sample
n = ⌊ k√N

⌋
values for each parameter. The sample values

are uniformly distributed between [mini,maxi] for each
parameter pi. For all the competing algorithms, we set
N = 100 and report the results with the best performing
parameters.

Implementation details
The MATLAB code and all used data are available at
http://www.ece.tamu.edu/~xqian/ClusterM/. ClusterM is
computationally efficient for handling multiple genome-
scale PPI networks from different species. The memory
consumption of ClusterM depends on the size of the sub-
networks to be identified and the runtime of ClusterM can
be significantly reduced by parallelization. It takes about
40 minutes for ClusterM to handle four PPI networks in
IntActPPIs with 50,876 proteins in total on a laptop com-
puter (16 GB memory and Intel i7 2.9 GHz cpu) with
2-core parallelization.

Abbreviations
PPI: Protein-Protein Interaction; Sce: Saccharomyces cerevisiae; Dme:
Drosophila melanogaster; Cel: Caenorhabditis elegans; Hsa: Homo sapiens;
MMRC: The maximummatching ratio for conserved complexes; MNE: The
mean normalized entropy; GO: Gene Ontology; NB: NetworkBLAST; NBM:
NetworkBLAST-M

About this supplement
This article has been published as part of BMC Genomics Volume 21 Supplement
10, 2020: Selected articles from the 18th Asia Pacific Bioinformatics Conference
(APBC 2020): genomics. The full contents of the supplement are available online
at https://bmcgenomics.biomedcentral.com/articles/supplements/volume-
21-supplement-10.

Authors’ contributions
Conceived the method: YW, HJ, XQ, BJY. Developed the algorithm and
performed the simulations: YW, HJ. Analyzed the results and wrote the paper:
WY, HJ, XQ, BJY. All authors read and approved the final manuscript.

Funding
This work was supported by the National Science Foundation (NSF) Grants
1447235, 1553281, and 1812641, as well as the United States Department of
Agriculture National Institute of Food and Agriculture competitive grant
USDA-NIFASCRI-2017-51181-26834 through the National Center of Excellence
for Melon at the Vegetable and Fruit Improvement Center of Texas A&M
University. This work was also supported by the National Research Foundation
of Korea (NRF) grant funded by the Korea government (MSIT)
(NRF-2019R1G1A1004803). Publication costs are funded by NSF Grant 1812641.

Availability of data andmaterials
The MATLAB code and all used data are available at http://www.ece.tamu.
edu/~xqian/ClusterM/.

Ethics approval and consent to participate
Not applicable.

Consent for publication
All the authors approve the publication of the presented work.

Competing interests
The authors declare that they have no competing interests.

Author details
1School of Informatics, Computing and Engineering, Indiana University,
Bloomington 47405, IN, USA. 2Department of Mechatronics Engineering,
Incheon National University, Incheon 22012, South Korea. 3Department of
Electrical and Computer Engineering, Texas A&M University, College Station
77843, TX, USA. 4TEES-AgriLife Center for Bioinformatics and Genomic Systems
Engineering (CBGSE), Texas A&M University, College Station 77843, TX, USA.
5Computational Science Initiative, Brookhaven National Lab, Upton 11973, NY,
USA.

Published: 18 November 2020

References
1. Ito T, Chiba T, Ozawa R, Yoshida M, Hattori M, Sakaki Y. A

comprehensive two-hybrid analysis to explore the yeast protein
interactome. Proc Natl Acad Sci USA. 2001;98(8):4569–74.

2. WH D, M M, AC G. Affinity-purification coupled to mass spectrometry:
basic principles and strategies. Proteomics. 2012;12(10):1576–90.

3. Salwinski L, Miller C, Smith A, Pettit F, JU JB, Eisenberg D. The Database
of Interacting Proteins: 2004 update. Nucleic Acids Res. 2004;32:449–51.

4. Kerrien S, Aranda B, Breuza L, et al. The intact molecular interaction
database in 2012. Nucleic Acids Res. 2012;40(D1):841–6.

5. Stark C, Breitkreutz B, Reguly T, Boucher L, Breitkreutz A, Tyers M.
BioGRID: A general repository for interaction datasets. Nucleic Acids Res.
2006;34:535–9.

6. Nepusz T, Yu H, Paccanaro A. Detecting overlapping protein complexes
in protein-protein interaction networks. Nat Methods. 2012;9(5):471-472.

7. Liao C, Lu K, Baym M, Singh R, Berger B. IsoRankN: Spectral methods for
global alignment of multiple protein networks. Bioinformatics. 2009;25:
253–8.

8. Aladag AE, Erten C. Spinal: scalable protein interaction network
alignment. Bioinformatics. 2013;29(7):917–24.

9. Hasan MM, Kahveci T. Indexing a protein-protein interaction network
expedites network alignment. BMC Bioinformatics. 2015;16:326.

10. Singh R, Xu J, Berger B. Global alignment of multiple protein interaction
networks with application to functional orthology detection. Proc Natl
Acad Sci USA. 2008;105(35):12763–8.

11. Clark C, Kalita J. A multiobjective memetic algorithm for ppi network
alignment. Bioinformatics. 2015;31(12):1988–98.

12. Jeong H, Yoon B-J. Accurate multiple network alignment through
context-sensitive random walk. BMC Syst Biol. 2015;9 Suppl 1:7.

13. Sharan R, Suthram S, Kelley RM, et al. Conserved patterns of protein
interaction in multiple species. Proc Natl Acac Sci USA. 2005;102:1974–9.

14. Koyuturk M, Grama A, Szpankowski W. Pairwise Local Alignment of
Protein Interaction Networks Guided by Models of Evolution. In: RECOMB
2005. Berlin, Heidelberg: Springer; 2005. p. 48–65.

15. Kalaev M, Bafna V, Sharan R. Fast and accurate alignment of multiple
protein networks. J Comput Biol. 2009;16(8):989–99.

16. Yoon B-J, Qian X, Sahraeian SME. Comparative analysis of biological
networks: hidden markov model and markov chain-based approach. IEEE
Signal Proc Mag. 2012;29(1):22–34.

17. Ciriello G, Mina M, Guzzi PH, Cannataro M, Guerra C. Alignnemo: A local
network alignment method to integrate homology and topology. PLoS
ONE. 2012;7(6):38107.

18. Hirsh E, Sharan R. Identification of conserved protein complexes based on
a model of protein network evolution. Bioinformatics. 2007;23(2):170–6.

19. Berg J. Structure and evolution of protein interaction networks: a
statistical model for link dynamics and gene duplications. BMC Evol Biol.
2004;4(51):. https://doi.org/10.1186/1471-2148-4-51.

20. Zhang Z, Schwartz S, Wagner L, Miller W. A greedy algorithm for
aligning dna sequences. J Comput Biol. 2000;7(1-2):203–14.

21. Mina M, Guzzi PH. Alignmcl: Comparative analysis of protein interaction
networks through markov clustering. In: Bioinformatics and Biomedicine
Workshops (BIBMW), 2012 IEEE International Conference On. IEEE; 2012.
p. 174–81. https://doi.org/10.1109/BIBMW.2012.6470300.

http://www.ece.tamu.edu/~xqian/ClusterM/
https://bmcgenomics.biomedcentral.com/articles/supplements/volume-21-supplement-10
https://bmcgenomics.biomedcentral.com/articles/supplements/volume-21-supplement-10
http://www.ece.tamu.edu/~xqian/ClusterM/
http://www.ece.tamu.edu/~xqian/ClusterM/
https://doi.org/10.1186/1471-2148-4-51
https://doi.org/10.1109/BIBMW.2012.6470300


Wang et al. BMC Genomics 2020, 21(Suppl 10):615 Page 14 of 14

22. Sharan R, Suthram S, Kelley R, Kuhn T, McCuine S, Uetz P, Sittler T, Karp
R, Ideker T. Conserved patterns of protein interaction in multiple species.
Proc Natl Acad Sci USA. 2005;102(6):1974–9.

23. Kalaev M, Bafna V, Sharan R. Fast and accurate alignment of multiple
protein networks. In: Proc of the 10th Annu Int Conf Res Comput Mol Bio
(RECOMB 2008); 2008. https://doi.org/10.1007/978-3-540-78839-3_21.

24. Pu S, Wong J, Turner B, et al. Up-to-date catalogues of yeast protein
complexes. Nucleic Acids Res. 2009;37(3):825–31.

25. Ruepp A, Brauner B, Dunger-Kaltenbach I, et al. Corum: The
comprehensive resource of mammalian protein complexes. Nucleic
Acids Res. 2008;36:646–50.

26. Maslov S, Sneppen K. Specificity and stability in topology of protein
networks. Science. 2002;296:910–3.

27. Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D,
Huerta-Cepas J, Simonovic M, Roth A, Santos A, Tsafou KP, et al. String
v10: protein–protein interaction networks, integrated over the tree of life.
Nucleic Acids Res. 2014;43(D1):447–52.

28. Sahraeian SME, Yoon B-J. Smetana: Accurate and scalable algorithm for
probabilistic alignment of large-scale biological networks. PLoS ONE.
2013;8(7):67995.

29. Andersen R, Chung F, Lang K. Local Graph Partitioning Using PageRank
Vectors. In: 2006 47th Annual IEEE Symposium on Foundations of
Computer Science (FOCS’06); 2006. p. 475–86. https://doi.org/10.1109/
FOCS.2006.44.

30. Fan N, Pardalos P. Multi-way clustering and biclustering by the ratio cut
and normalized cut in graphs. J Comb Optim. 2010;23(2):224–51.

31. Wang Y, Qian X. Joint clustering of protein interaction networks through
markov random walk. BMC Syst Biol. 2014;8(suppl 1):9.

32. Corneil DG, Perl Y. Clustering and domination in perfect graphs. Discret
Appl Math. 1984;9(1):27–39.

33. Ashburner M, Ball C, Blake J, et al. Gene ontology: Tool for the unification
of biology. the gene ontology consortium. Nat Genet. 2000;25(1):25–9.

34. Shih Y-K, Parthasarathy S. Identifying functional modules in interaction
networks through overlapping markov clustering. Bioinformatics.
2012;28(18):1473–9.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

https://doi.org/10.1007/978-3-540-78839-3_21
https://doi.org/10.1109/FOCS.2006.44
https://doi.org/10.1109/FOCS.2006.44

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Results
	Identifying conserved complexes in yeast and human networks
	Robustness analysis
	Conserved protein complex identification for multiple networks
	High-level GO term consistency

	Discussion
	Conclusions
	Materials and methods
	The ClusterM algorithm
	Topological separability by conductance
	The algorithm
	Scalability and parallelism

	Datasets
	Construction of DIPPPIs and IntActPPIs
	The yeast-human reference conserved protein complexes
	High-level GO terms

	Metrics for conserved protein complex prediction for pairwise PPI networks
	Fraction of the matched reference conserved protein complexes 
	Accuracy score
	The maximum matching ratio for conserved protein complexes (MMRC)

	Metrics for GO term consistency and coverage
	Parameter selection for each method
	Implementation details

	Abbreviations
	About this supplement
	Authors' contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher's Note

