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Abstract

This work is motivated by the following question in data-driven study of dynamical
systems: given a dynamical system that is observed via time series of persistence
diagrams that encode topological features of snapshots of solutions, what conclusions
can be drawn about solutions of the original dynamical system? We address this
challenge in the context of an N dimensional system of ordinary differential equation
defined in R" . To each point in R" (e.g. an initial condition) we associate a persistence
diagram. The main result of this paper is that under this association the preimage of
every persistence diagram is contractible. As an application we provide conditions
under which multiple time series of persistence diagrams can be used to conclude the
existence of a fixed point of the differential equation that generates the time series.

Keywords Topological data analysis - Persistent homology - Dynamical systems -
Fixed point theorem

Mathematics Subject Classification 37C25 - 55N31 - 06B35 - 55-08 - 06F30

1 Introduction

Topological data analysis (TDA), especially in the form of persistent homology, is
rapidly developing into a widely used tool for the analysis of high dimensional data
associated with nonlinear structures (Edelsbrunner and Harer 2010; Zomorodian and
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Carlsson 2005; Oudot 2015). That topological tools can play a role in this subject
should not be unexpected, given the central role of nonlinear functional analysis in the
study of geometry, analysis, and differential equations, for example. What is perhaps
surprising is that, to the best of our knowledge, there have been no systematic attempts
to rigorously analyze the dynamics of differential equations using persistent homology.

Persistent homology is often used as a means of data reduction. A typical example
takes the form of a complicated scalar function defined over a fixed domain, where the
geometry of the sub-(super)-level sets is encoded via homology. Of particular interest
to us are settings in which the scalar function arises as a solution to a partial differential
equation (PDE); we are interested in tracking the evolution of the function, but exper-
imental data only provides information on the level of digital images of the process.
Furthermore, capturing the dynamics of a PDE often requires a long time series of
rather large digital images. Thus, rather than storing the full images, one can hope to
work with a time series of persistence diagrams. Our aim is to draw conclusions about
the dynamics of the original PDE from the time series of the persistence diagrams.
This is an extremely ambitious goal and far beyond our capabilities at the moment.
A much simpler question is the following: if there is an attracting region in the space
of persistence diagrams, under what conditions can we conclude that there is a fixed
point for the PDE?

This paper represents a first step towards answering the simpler question. The-
orem 4.3 shows that given an ordinary differential equation (ODE) with a global
compact attractor A C RY and a neighborhood in the space of persistence diagrams
that is mapped into itself under the dynamics, then there exists a fixed point for the
ODE. In applications one could consider the ODE as arising from a finite difference
approximation of the PDE.

The challenge is that to obtain results one must understand the topology of datap,
the space of data having a fixed persistence diagram P, a topic for which there are
only limited results. That the structure of datap is complicated follows directly from
the fact that persistent homology can provide tremendous data reduction, but in a
highly nonlinear fashion. With this in mind, the primary goal of this paper is to show
that for a reasonable class of problems the space datap is a finite set of contractible,
simplicial sets. The importance of this result is that it opens the possibility of applying
standard algebraic topological tools, e.g., Lefschetz fixed point theorem, Conley index,
to dynamics that is observed through the lens of persistent homology.

To state our goal precisely requires the introduction of notation. Throughout this
paper Sy denotes the 1-dimensional simplicial complex composed out of N vertices
[[(1@G=1,...,N)and N — ledges [i,i + 1] (i = 1,..., N — 1). It is a simplicial
decomposition of closed bounded interval in R.

We study filtrations of Sy defined as follows.

Definition 1.1 Letz = (z1, ..., zny) € RV. Define f: RN x Sy — R by

f@o) =19 o
max {zj,zj11} ifo =[j,j+1]

Forr e R,wesetSy(z,r) :={0c € Sy : f(z,0) <r}.
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Definition 1.2 Given z = (z1,...,2N) € RV we can reorder the coordinates of z
such that

2jp ST = = Ty
The sublevel-set filtration of Sy at z,' which we write as S,’i] (z), is given by
Sn(z,2j,) S SN(Z,2j,) € - S SN(Z Zjy)-

Because Ssz (z) is a finite filtration of simplicial complexes, completely determined
by z, we can use classical results from (Edelsbrunner and Harer 2010; Zomorodian
and Carlsson 2005) to compute the persistence diagram of SIF\, (z). We treat this as a
map

Dgm: RV — Per,

where Per denotes the space of all persistence diagrams. Thus the space datap of all
z € RY having persistence diagram P is just Dgm~'(P). We remark that there are a
variety of topologies that can be put on Per such that Dgm becomes a continuous map
(Chazal et al. 2016; Cohen-Steiner et al. 2007).

Since Sy is one-dimensional and contractible, we are only concerned with the
persistent homology Hy, i.e., the persistence diagrams associated with connected com-
ponents. Therefore for the rest of the paper we restrict our study to consist of the family
Per of persistence diagrams of level zero.

Here is the main result of this paper.

Theorem 1.3 For every persistence diagram P, the space datap C RY is composed
of a finite number of mutually disjoint components. Each component is contractible,
and is homeomorphic to a finite union of convex, potentially unbounded polytopes.

The proof of Theorem 1.3 is not particularly difficult, but it is technical. We first
describe the connected components of datap; see Lemma 2.4. In Sect. 2.2, we intro-
duce the poset Str of cellular strings, which are be used to decompose each component
as a finite union of convex polytopes in Sect. 2.3. In Sect. 3, we show that the realization
of Str is contractible.

To emphasize that Theorem 1.3 is not a trivial result, we use Fig. 1 to demonstrate
that datap is not a convex subet of RY. In particular, consider the vectors v =
(v1,...,v4) and w = (wy, ..., wa) on the left of Fig. 1. It is left to the reader to
check that Dgm(v) = Dgm(w) and that this persistence diagram is given by the pair
of black dots (see right of Fig. 1). Note that the vectors in R*, indicated (on the left) in
blue stars and red squares, lie on a straight line from v to w. However, the persistence
diagrams indicated (on the right) in blue and red clearly differ from Dgm(v). Thus,
the red and blue vectors do not lie in datapgm(v)-

In Sect. 4 we apply Theorem 1.3 to prove the existence of fixed points with given
persistence diagrams for a dissipative ordinary differential equation.

1 Analogous results can be obtain for superlevel set filtrations (see Sect. 5).
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Fig. 1 Non-convexity of the preimage datap under the persistence map Dgm. In the left figure the two
vectors, v = (vy,...,v4) and w = (wy, ..., wy), lie in the preimage of the persistence diagram P,
composed out of two black points visible on the right figure. Applying Dgm to convex linear combinations
of v and w results in a path in the persistence plane illustrated on the right (the convex path is marked in
grey, and two sample vectors on the path are marked using red squares and blue stars) (color figure online)

2 Invariants for a fixed persistence diagram

Fix a persistence diagram P. To describe the structure of the space datap, we intro-
duce two levels of invariants: the critical value sequences, representing the connected
components of datap, and (for each of these), a partially ordered set Str indexing a
polytope decomposition of the component.

2.1 Components

Fix a persistence diagram P. To describe the (finitely many) connected components
of datap, it is useful to introduce notation that records the order in which the relevant
local maxima and minima occur.

We say that z = (z1, ..., zy) € R is a typical point if its coordinates are distinct.
If z is a typical point and 1 < n < N, we say that z, is a local minimum (of z) if
Zn—1 > Zn < Zn+1, and a local maximum if 7,1 < 2, > Zu41; it is a local extremum
if it is a local minimum or maximum. We say that z; and zy are boundary extrema,
z1 is a local minimum (resp., maximum) if z; < z (resp., z1 > 22).

Definition 2.1 The critical value sequence of a typical point z = (71, ..., zn) is
ov(2) = (2, -+ 2ng ) € RE,
where the z,,, are the local extrema of z, excluding boundary extrema that are local

maxima, and ny <np < --- < ng.

Example2.2 Let z = (1.5,-0.9,1.1,2.1,1.4) € RS. The local minimum is zp and
the local maximum is z4. The boundary extrema are z; and z5. Since z; is also a local
maximum we do not include it in the critical value sequence. Thus & = cv(z) =
(-0.9,2.1,1.4).
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The following notion emphasizes the structure of the critical value sequences.

Definition 2.3 A 010 critical value sequence of (odd) length K is a vector cv =
(z1,...,zx) € REK with the property that

ny < Zny > Zng <0 < Zng_y > Zng-

A 101 critical value sequence is defined similarly, with the inequalities reversed.

Since we are using sublevel set filtrations to compute the persistence diagram we
focus on 010 critical value sequences.

Lemma 2.4 below shows that the local extrema of z are determined up to order
by its persistence diagram, and hence that there are only finitely many critical value
sequences for any fixed persistence diagram.

Recall that a persistence diagram is a finite collection of persistence points
{ pi = ( pf’, pf’ )}, where pf.’ and pl‘.i denote birth and death values, respectively. Since
Sy is connected, the persistence diagram of a typical point z has a unique persistence
point p; = (pf’, pld) such that pf’ = min,—, n 2, and pfl = oo; without loss of
generality, we may relabel p; as p;.

Lemma 2.4 Let z € RN be a typical point with persistence diagram
[P =l piy Im =1, m}.

Then, z has K = 2M — 1 local extrema; the local minima of z are precisely { pa }n}:l: !

L . . M
and the interior local maxima of z are precisely { p% }m=2’

We leave the proof of Lemma 2.4 to the reader, remarking that it still holds when
z € RY is not a typical point, except that the persistence diagram may be a multiset
(there may be multiple copies of a single persistence point).

Given a point z with persistence diagram P, let C(z) denote the component of
datap containing z.

The following lemma shows that datap is the disjoint union of the finitely many
disjoint components C(z), indexed by the critical value sequences. The proof follows
from the observation that the order of the local extrema cannot be changed while
preserving the persistence diagram.

Lemma 2.5 If z and 7' are typical points in RN then C(z) = C(Z') if and only if
cv(z) = cv(2).
Moreover, C(z) is the closure of the set of typical points in C(z).

This proves the first assertion in Theorem 1.3.

Remark 2.6 The components C(z) group vectors into equivalence classes that can
be characterized using the notion of chiral merge tree as defined in Curry (2018).
Corollary 5.5 of Curry (2018) shows that the number of chiral merge trees realizing
diagram P is equal to 2V ! ]_[1;122 wp (1), where B is the barcode realization of P, i.e.
set of intervals I; = [b;, d|] having the birth and death values of the j-th persistence
point as its endpoints, and g (/) is the number of intervals in B that contain /;.
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2.2 Cellular strings

In this section, we define the poset Str(N, M) of cellular strings associated to M
points arising from a vector in RY. Thus we fix N and M, where N > 2M — 1.

Consider a string of symbols s = s - - - s of length N, where each symbol s, is
either 0, 1, or X (we refer to 0 and 1 as bits). Any such string can be represented as
s =y - - - yg where each block y; is a substring made up of a single symbol (that is,
yjis0---0,1---1,0r X ---X), and consecutive blocks have different symbols. We
refer to s = y1 - - - y; as the canonical representation of s.

Definition 2.7 Fix M < N. A 010 cellular string” is a symbol string s of length N
such that, for the canonical representation s = yj - - - y;:

(i) the symbols that make up y; and y;; are different;
(i1) y1 and y; consist of the symbols O or X;
(iii) if y; consists of the symbol X, then the symbol of y;_; is different from the
symbol of y;1;
(iv) there are exactly M values of j for which y; consists of the symbol 0.

The set Str(N, M) of cellular strings is a poset, where s’ < s if the string s is obtained
from s’ by replacing some of the bits 0 and 1 in s’ by X.

The dimension of a cellular string s, dim(s), is the number of symbols X in s. It
follows from (iv) that M of the blocks y; have the form 0---0, and M — 1 have the
form 1---1. Thus, K = 2M — 1 of the blocks are bitstrings. If these bitstrings are
Yijis--+» Vjg then the symbol for y;, is 0 if k is odd and 1 if k is even. Since each
block has at least one symbol, it follows that any cellular string has dimension at most
L=N-K.

We write Str”) (N, M) for the sub-poset of all cellular strings whose first r — 1
symbols are X. Note that Str(N, M) = Str'D(N, M) and Str': V(N M) =
{X---X010---10}.

Proposition 2.8 An element of Str(N, M) is maximal if and only if it is an L-
dimensional cellular string, where L = (N — K).

Proof Lets = y;...y; € Str(N, M). By definition, dim(s) < L. Conversely, sup-
pose that the symbol X appears in s has less than L times. Then some bitstring y; has
length > 2. Let s’ be the cellular string obtained by replacing the first symbol of y;
by X. Then s < s/, so s is not maximal. O

Since both N and M are fixed in our analysis, we simplify the notation and write
Str for Str(N, M). Figure 2 illustrates the poset Str when M =2, K =3 and N = 5;
the right column is Str®.

Lemma 2.9 Every string s’ is the greatest lower bound of the set of L-dimensional
strings s with s’ < s.

It follows that Str has the least upper bound property: if two strings have a lower
bound, they have a greatest lower bound.

2 A 101 cellular string is defined similarly, interchanging 0 and 1.
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Fig.2 The string poset Strfor M = 2and N = 5. Two-dimensional, one-dimensional, and zero-dimensional
strings are surrounded by rectangles, ellipses, and nothing, respectively. The arrows indicate the partial order.
The rightmost column is the sub-poset Str®

Proof We proceed by downward induction on the dimension d of s’, the case d = L
being clear. Consider the canonical representation, s’ = y; - - - ;. If d < L, then some
bitstring y; has length > 2. Consider the strings s; = y1 -+ yj—1XyY¥j+1---ys and
s2=y1---¥Yj—1¥Xyj41---ys where y is a bitstring consisting of the same symbol
as y; but of length one less than y;. Since this is the form of any cellular string s
satisfying s < s and dim s = dim s’ + 1, the result follows. ]

Let s be an L-dimensional cellular string. Successively replacing an X adjacent to
a bit (0 or 1) by that bit yields a chain of strings s = s; > sp—1 > -+ > 51 > s¢. [t
follows that every maximal chain in the poset has length L.

Example 2.10 Consider a string s(n) = 010X - - - X 1o, with a block of n consecutive
X’s (where o1 and o7 are fixed substrings). Let Str/s(n) denote the sub-poset of Str
consisting of all strings s’ < s(n) which begin in 010 and end in 10;. Then Str/s(n)
is isomorphic to the poset I, of integer intervals [i, j] with 1 <i < j <n + 1. (The
string corresponding to [7, j] is

610---0X---X1---10y;

it has i 0’s and the first 1 is in the (j + 1)*' spot.)

If s is a cellular string with k blocks of successive X’s (of lengths ny, ..., ng),
the sub-poset Str/s of strings s’ < s in Str is isomorphic to the product of posets
Str/s(ny), ..., Str/s(ny), i.e., to the poset

Ly x oo X Iy,
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2.3 The polytopes

We now turn to identifying the polytopes of Theorem 1.3. Fix a 010 critical value
sequence ¢V = (2n, ..., Zng) as in Definition 2.3. To each d-dimensional cellular
string s we assign a d-dimensional polytope T (s) in RY; T'(s) will be a product of
simplices.

Lets = y1y» - - - y;s be the canonical representation of a string s, as in Definition 2.7.
Let n; denote the length of the substring y;,so N = ) "n;.

o If y;iseitherO---Oor1---1,and y; is the k' block from the left involving O or
1, we set

T(yj) ={z)™ = @k o os 20)-

If 1 isablock X - - - X, then

Ty ={(x1,....x) eRY 100> x1 =+ =Xy = 21}

If yyisablock X - -- X, then

Ty ={@1, ..., %) €RY 1z <x <

A

A
=
=
IA
&3

If yjisablock X --- X (for1 < j < J), and y;_; is the k" block from the left
involving O or 1, then

T(yj) = {(xl, ---’an) S an} where

Zk S X1 =0 Sy < Zk41 ifkis odd;

=
>

Tk = X1 == X > Tkt if k is even.

We define 7'(s) € R¥ to be the concatenation:

J
T(s)=Twnyv) =[] T
j=1

Let P be a persistence diagram and z € dgm ™~ (P). The component C(z) of datap
is the union of the T(s), where s € Str and T'(s) is defined using the critical value
sequence cv(z). This is clear from Definition 2.1.

Since the critical value sequence is always assumed to be fixed, we will suppress it
in the notation.

Example 2.11 Consider the case K = 3 and N = 5. If s = 01XXO0, then
Wi,y a) =(0,1,XX,0). So, (n1,ny,n3,n4) = (1, 1,2, 1) and hence

T(01XX0) = {z1} x {z2} x {(x1,x2) : 22 = x1 > x2 > z3} X {z3}
= A% x AD x A% x AL,
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If s = X01XO0, then (y1,..., ¥4, ¥5) = (x,0,1,x,0). So, (ny, na, n3, ng4,ns) =
(1,1,1,1,1) and hence

T(X01X0) = [z1,00) x {z1} x {z2} X [23, 22] x {z3} = [0, 00)
x A% x AQ x Al x A°

Similarly, 7(X0100) = [z1, 00) x {z1} % {z2} x {23} x {23} = [0, 00) x A x A0 x
A% x A9,
Observe that X0100 < X01X0 and 7(X0100) C T(X01X0).

Let Poly denote the poset of polytopes in RY under inclusion. By definition, T
maps strings in Str to polytopes in Poly.

Lemma 2.12 T : Str— Poly is an injective poset morphism, and preserves greatest
lower bounds.

Proof Suppose that s’ < s and 1 4+ dims’ = dims. If s = y; - - - y; is the canonical
form, then some y; has the form a - - - a (where a is 0 or 1), and s has the form

slz‘}/l‘};]X‘yJ or 52=J/1"'X)7j)/J,

where y; = a - - - a has one fewer bit that y;. It is clear from the definition of 7" that
T (s1) # T (s3), and T (s') is the intersection of T (s1) and T (s7), as desired. m]

2.4 Geometric realization of posets

Let C be a poset (partially ordered set). For any ¢ € C, we write C/c for the sub-poset
{c’ 10 < c}; C is the union of the C/c. If ¢ and ¢, have a greatest lower bound ¢,
then (C/c1) N (C/c2) = C/c1z.

By definition, the geometric realization BC of any poset C is a simplicial complex
whose k-dimensional simplices are indexed by the chains ¢y < ¢; < - - - ¢x of length
k in C. It is the union of the realizations B(C/c) of the sub-posets C/c; if c1 and ¢,
have a greatest lower bound cj7, then B(C/c1) and B(C/cy) intersect in B(C/c12).
See Weibel (2013, IV.3.1) for more details.

Here are some basic facts; see Weibel (2013, IV.3) for a discussion. A poset
morphism f : C — C’ determines a continuous map BC — BC’, and a natural
transformation 5 : f = f’ between morphisms gives a homotopy By : BC — BC’
between f and f’. In addition, realization commutes with products: B(C; x Cp) =
(BC1) x (BC3). Applying these considerations to the poset Str, we see that its real-
ization BStr is the union of the polytopes B(Str/s), and if s17 is the greatest lower
bound of sy and s, then B(Str/s;) N B(Str/s2) is B(Str/s12).

Let s be a cellular string. We saw in Example 2.10 that the poset Str/s is isomorphic
to the product I,; x --- x I, of the posets I,,j of integer intervals in [1,7n; + 1],
corresponding to the blocks of n; succesive X’s in s. It is well known that B(/,) is
homeomorphic to the n-simplex A”. Thus

B(Str/s) = ]_[B(I,,j) A" X x AT,
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By construction, T'(s) = [ T (y;) also has this form. Hence we have a natural home-
omorphism

Bstr/s) =[] BStr/smp) =[] BU.) =[[Tp) =T ().
Theorem 2.13 BStr is homeomorphic to C(z).

Proof By construction, C(z) = | T (s),and BStr = [ B(Str/s). It suffices to observe
that for each s1, ..., s, the restriction of the BStr/s; = T (s;) induces a homeomor-
phism between the intersection of the B(Str/s;) and the intersection 7 (s;). This holds
because the two sides are identified with B(Str/s’) and T (s”), where s’ is the greatest
lower bound of the s;. O

3 Contractibility

We now define a poset morphism F; : Str — Str, and modify it to define poset
morphisms Fy: Str® — Str® for ¢ > 1.

Definition 3.1 Let s be an L-dimensional cellular string. We define Fj(s) to be the
string obtained from s by transposing the first (i.e., leftmost) X with the bitimmediately
preceding it. If X is the initial symbol, we set Fi(s) = s.

If s is a lower-dimensional cellular string, we define Fj(s) as follows. If s has
an initial X with no 00 or 11 preceding it, we do as before: transpose X with the
bit immediately preceding it, or do nothing if X is the initial symbol. If s begins
with a block of n + 1 zeroes, say s = 00- - - 0o, we replace the initial 0 by X, so
Fi(s) = X0---00,. Otherwise, the string must have the form s’ = ojabbo,, where
a, b are bits, a # b, o1 is an (alternating) bitstring not ending in a, and o7 is the
remainder of the string. We set

Fi(s") = ojaabos.

The definition of Fy: Str®® — Str® mimics that of F. Specifically, if s = o,
where 8 = X --- X is a block of length £ — 1 then Fy(s) = BF1(0).

Example 3.2 In Fig. 2, the map F] sends strings surrounded by rectangles (resp.,
ellipses) from one column to strings surrounded by rectangles (resp., ellipses) in the
second column to the right, while leaving the last column fixed. Thus F;(01100) =
00100 and F;(00100) = X0100.

Since Str® is the rightmost column, the map F> acts on this column, mapping
strings surrounded by rectangles (resp., ellipses) to those two rows down. Thus
F2(XX010) = XX010, F2(X0010) = X X010, and F>2(XX010) = X X010.

Lemma 3.3 F; :Str— Str is a poset morphism, and is the identity on the sub-poset

str?),
Furthermore, FIK (Str) = Str®.
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Proof We proceed by downward induction on d = dim(s) to show that if s’ < s then
Fi(s") < Fi(s).If s’ contains an x with no 00 or 11 preceeding it, the same is true for
s and the inequality is evident.

Next, suppose that s’ = ojabb - --bo,, where oja is an alternating bitstring. If
s = o1abb - - - bo; for some 07 < o then

F(s') = oiaab---boy < F(s)=o1aab---boj.

For s1 = o1aXb--- and s = ojab---bXo>, we also have F(s’) < F(s1) and
F(s") < F(s2). Otherwise, either s; < s or sp < s; in these cases, Fj(s1) < Fi(s) or
Fi(s2) < F|(s), by induction, and hence F(s") < F(s).

Finally, if s’ = 00 - - - Oc then eithers; = X0---00 < sorelses, =00---0Xo <
s. By induction, Fi(s;) < Fi(s) or Fi(s2) < Fi(s), so it suffices to observe that
Fi(s") < Fi(s1), F1(52). a

Remark 3.4 The proof of Lemma 3.3 also shows that each F; is a poset morphism.

We can filter the poset Str by sub-posets Fil;, where Fily = str, Filg = Strand
Fil; is the full poset on the set of strings s with FI’ (s) C Str'®.In Fig. 2, for example,
Fily (resp., Fily) is the rightmost 3 columns (resp., 5 columns). Since F; maps Fil;
to Fil;_, the geometric realization of B F| restricts to a continuous map from B Fil;
to BFil;_1. We will prove:

Proposition 3.5 The inclusions BFil;_1 C BFil; are homotopy equivalences. Hence
BStr®) C BStr is a homotopy equivalence.

Proof For i > 0, we define poset morphisms F1; : Fil; — Fil;_1 C Fil; to be the
identity on Fil;_; and F; otherwise. The geometric realization of Fj ; is a continuous
map BFil; — BFil;_; € BFil; which is the identity on B Fil;_1.

We will prove that, on geometric realization, B F ; is homotopic to the identity on
BFil;.

We define a poset morphism & : Fil; — Fil; as follows. If s € Fil;_; then
h(s) = s;if s ¢ Fil;_1, define h(s) to be the greatest lower bound of s and Fj(s).
Thus Bh is a continuous map from BFil; to itself. For s € Fil;, the inequalities
s > h(s) < Fj i(s) yield natural transformations id; <=h = Fj.and hence homotopies
between the maps id; (the identity map on B Fil;), Bh and BF ;. O

Corollary 3.6 Each BStr“*tD < BStr® is a homotopy equivalence. In particular,
the inclusion of the point BStr'“*D in BStr is a homotopy equivalence, i.e., BStr is
contractible.

Remark 3.7 We can describe the map 7'(s) — T (Fi(s)) induced by F;. For example,
suppose that s = o1y;_1y;02, where o1 = y| ---y;_1 is an alternating bitstring of
length > 2 and y; is a block X --- X. Then T(y;—1) = {zj—1} and T(y;) C R
is defined by inequalities, either z;_; < x1--- orz;_1 > x1---, depending on the
parity of j. The map Fi sends T'(y;j—1) x T (y;) to the subset

T(X) x {zj—1} x T(y¥",
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where 7'(X) is defined by z;_» < x; < z;—; and T(y’) is defined by the equations
Zj—1 < Xp--- Orzj_p > x1---.In effect, the map sends x; to z;_1.

4 Existence of fixed points for flows

As an application of Theorem 1.3, we establish the existence of a fixed point solution
of a ordinary differential equation whose trajectories are being observed in the space
of persistence diagrams. To be more precise consider a differential equation z = f(z),
z € RV, with the property that it possesses a compact global attractor A (Raugel
2002). Given an initial condition z(0) = z € RY, we write z(r) = ¢(t, 2), t € [0, 00)
for the solution in forward time. The important consequence of the existence of a
compact global attractor is that there exists R > 0 such that for any initial condition
Z there exists z; > 0 such that ||¢(z,7)|| < R for all + > ;. We say that R is a
bound for A. Observing the persistence diagrams along a trajectory results in a curve
Dgm(¢(t, 7)) € Per. In what follows we do not assume that we have knowledge of
the nonlinearity of f, or of the actual trajectories ¢ (¢, z); we are only given the curves
Dgm(¢(t, 7)) of persistence diagrams.

Even if the persistence diagram is constant, we cannot conclude that the underlying
differential equation has a fixed point. As an example, consider a differential equation
in R3 with a periodic solution in which the first coordinate z; = 0 is constant, and
(z2, z3) oscillates with the property that 1 < z» < z3. The associated curve in Per
consists of the constant persistence diagram P = {(0, co)}.

However, Theorem 4.3 provides a scenario under which the observation of suf-
ficiently many trajectories suggests the existence of a fixed point for the unknown
ordinary differential equation that generates the dynamics. More general theorems are
possible and, as will be discussed in a later paper, these techniques can be lifted to the
setting of partial differential equations defined on bounded intervals. The purpose of
this example is to emphasize the importance of Theorem 1.3 from the perspective of
data analysis. Thus, we focus on a much more modest result. We will show that if a
particular type of neighborhood in Per is positively invariant under the dynamics, i.e.
if Dgm(z) is in the neighborhood implies that Dgm(¢(z, z)) is in the neighborhood
for all # > 0, then there exists a fixed point for the differential equation that generates
the dynamics. To state and obtain such a result requires the introduction of additional
notation.

Definition 4.1 We shall say that a persistence diagram

P=[pm=(pfn,pffl):m=1,...,M]

is sparse if each persistence point is unique, i.e. p,, # p, for all m # n.

\

Given a sparse persistence diagram we can choose i > 0 such that || p;, — pn |l o
4y forall m # n and |pd, — pb | > 4u for all m.

Example 4.2 A sparse persistence diagram Q is shown in Fig. 3. We can choose u =
0.25. A possible critical value sequence associated to Q is cv(z) = (3,4.5,1,3.5,2).
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Fig.3 A sparse persistence
diagram Q with persistence

points
{(1, 00), (2,3.5), (3,4.5)}. The E

boxes indicate the set N for

=025 E

T T T T

R

We use u to define subsets of RV and Per. We begin by constructing a subset of
RV using the set of cellular strings Str(N, M). Choose a point Z with persistence
diagram P. This gives rise to a fixed critical value sequence cv(Z) and the associated
component C(Z) C RN of datap is given by

cao= |J 1.

seStr(N,M)

By Theorem 1.3, C(Z) is a contractible union of polytopes.

Let B, (C(2)) C RY be the set of points that lie within a distance 1 of C(Z) using
the sup-norm. The bound on the choice of  guarantees thatif s”, s” € Str(N, M) are of
maximal dimension and there does notexists € Str(N, M) suchthats < s’ ands < s”,
then B, (T (s")) and B, (T (s")) are disjoint. Therefore B, (C(2)) is contractible.

We now turn to the subset of Per. Foreachm =1, ..., M set

P, = {p = (pb,pd) e = pmlh < IJ«}
and
D:= {p=(ph,pd):ph€ [p?—M,R]andofpd_pb SH’}

for some R > sup{pfn} + w. See Fig. 3. Define Np C Per to be the set of persistence
diagrams generated by elements of R with the property that foreachm =1, ..., M
there exists a unique persistence point in P, and any other persistence points lie in D.

These constructions allow us to prove the following theorem concerning the exis-
tence of fixed points of the unknown, underlying dynamical system ¢.

Theorem 4.3 Consider a dynamical system generated by an ordinary differential equa-
tion that has a global compact attractor A with a bound R, and whose trajectories
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are represented by ¢(t, 7). Let P be a sparse persistence diagram and let Np C Per
be defined as above. Assume that if Dgm(z) € Np, then Dgm(p(t, z)) € Np for all
t>0.

Then, for each component of Dgm~'(Np) C RN there exists a vector % such that
Dgm(Z) € Np and ¢(t,z) = Z forallt € R, i.e. Z is a fixed point for the dynamical
system.

Proof We begin with the observation that if z € B, (C(Z)) and there exists #; > 0 such
that ¢ (11, z) ¢ B, (C(2)), then there exists 7 € (0, #1] such that Dgm(e(to., 2)) ¢ Np.
This follows from the stability theorem of persistent homology using the bottleneck
distance (Cohen-Steiner et al. 2007). This contradicts the hypothesis, therefore, that
B, (C(2)) is acontractible, positively invariant region under the dynamics. By McCord
and Mischaikow (1996, Proposition 3.1) the Conley index of the maximal invariant set
is that of a hyperbolic attracting fixed point. By McCord (1988, Corollary 5.8) (which
utilizes the well known Lefschetz fixed point theorem), the maximal invariant set in
B,.(C(2)) contains a fixed point. O

5 Conclusion and future work

Recall from Remark 2.6 that Curry (2018) provides a count of the contractible compo-
nents of the preimage of a persistence map. However, to the best of our knowledge, this
paper provides the first detailed analysis of the homotopy type of these of a compo-
nents. Although we have presented the results in the context of sublevel set filtrations,
the same arguments can be applied in the setting of superlevel set filtrations. The only
significant change is that one needs to use 101 cellular strings; see Definitions 2.3 and
2.7.

Theorem 4.3, and the use of persistence diagrams to obtain results about the dynam-
ics of an ODE, may appear somewhat artificial. However, consider a PDE, such as
a reaction diffusion equation, defined on an interval. A finite spatial sampling of the
solution at a time point gives rise to a vector. We can think of this vector as arising
from two different proceedures: (i) numerical, e.g. the values of an ODE derived from
a Galerkin approximation to the PDE, or (ii) experimental, e.g. a pixelated image of
the solution. Theorem 4.3 is applicable in both cases, and one expects that for fine
enough discretization or resolution that the results of Theorem 4.3 will be applicable to
the PDE. The example involving images brings us much closer to current treatments
of complex spatio-temporal dynamics (Kramar et al. 2016; Levanger et al. 2019).
Hence, the natural next step in our research is to obtain an analogous result about
existence of fixed points for one-dimensional PDEs whose trajectories are observed
in the persistence space.

Finally, the obvious open question as a result of this paper is: given a d-dimensional
simplicial complex S with a function f, similar in form to that of Definition 1.1, can
one determine the homology of components of the pre-image of a persistence diagram?
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