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Theory of noninteracting fermions and bosons in the canonical ensemble
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We present a self-contained theory for the exact calculation of particle number counting statistics of nonin-
teracting indistinguishable particles in the canonical ensemble. This general framework introduces the concept
of auxiliary partition functions, and represents a unification of previous distinct approaches with many known
results appearing as direct consequences of the developed mathematical structure. In addition, we introduce
a general decomposition of the correlations between occupation numbers in terms of the occupation numbers
of individual energy levels, that is valid for both nondegenerate and degenerate spectra. To demonstrate the
applicability of the theory in the presence of degeneracy, we compute energy-level correlations up to fourth
order in a bosonic ring in the presence of a magnetic field.
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I. INTRODUCTION

In quantum statistical physics, the analysis of a fixed
number N of indistinguishable particles is difficult, even
in the noninteracting limit. In such a canonical ensemble,
the constraint on the total number of particles gives rise to
correlations between the occupation probability and the corre-
sponding occupation numbers of the available energy levels.
As a result, the canonical treatment of noninteracting fermions
and bosons is in general avoided, and it is often completely
absent in introductory texts addressing quantum statistical
physics [1–3]. The standard approach is to relax the fixed
N constraint and instead describe the system using the grand
canonical ensemble. While in most cases this approximation
can be trusted in the large-N limit, it can explicitly fail in
the low-temperature regime [4,5]. The situation is even worse
if the low-temperature system under study is mesoscopic,
containing a relatively small number of particles.

Recent advances in ultracold atom experiments [6–15] are
making such conditions the rule rather than the exception,
where the interactions between particles are often ignored,
especially in the fermionic case [16]. Thus an accurate sta-
tistical representation of these systems should be canonical,
enforcing the existence of fixed N . In a different context,
particle number conservation can reduce the amount of quan-
tum information (entanglement) that can be extracted from a
quantum state [17–25] and thus the fixed N constraint requires
a canonical treatment. This is reflected in the calculation of
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the symmetry resolved entanglement which has recently been
studied in a variety of physical systems [26–37]. In more
general settings, the presence of conservation laws could de-
mand a canonical treatment, as in the case of nuclear statistical
models [38–56].

Given its pedagogical and now practical importance, as
well as the long history of the problem of noninteracting
quantum particles, the last 50 years has provided a host of
results, varying from general recursive relations that govern
the canonical partition functions and the corresponding oc-
cupation numbers [5,57–67], to approximate [4,68–72] and
exact results for some special cases [73–81]. More recently,
for the case of nondegenerate energy spectra, the exact de-
composition of higher-order occupation number correlations
in terms of the occupation numbers of individual bosonic and
fermionic energy levels has been reported [63,64].

In this paper, we present a unified framework for the calcu-
lation of physical observables in the canonical ensemble for N
fermions or bosons that is applicable to general noninteracting
Hamiltonians that may contain degenerate energy levels. We
present an analysis of the mathematical structure of bosonic
and fermionic canonical partition functions in the noninter-
acting limit that leads to a set of recursion relations for
exactly calculating the energy-level occupation probabilities
and average occupation numbers. Using argument from linear
algebra, we show how higher-order correlations between the
occupation numbers can be factorized, allowing them to be
obtained from the knowledge of the occupation numbers of
the corresponding energy levels, a canonical generalization
of Wick’s theorem [82]. The key observation yielding sim-
plification of calculations in the canonical ensemble is that
occupation probabilities and occupation numbers can be ex-
pressed via auxiliary partition functions (APFs)—canonical
fermionic or bosonic partition functions that correspond to a
set of energy levels that are obtained from the full spectrum
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of the targeted system by making a subset of the energy levels
degenerate (increasing its degeneracy if it is already degener-
ate) or alternatively by excluding it from the spectrum. Results
obtained via auxiliary partition functions are validated by
demonstrating that a number of previously reported formulas
can be naturally recovered in a straightforward fashion within
this framework.

In a noninteracting system, observables such as the aver-
age energy and magnetization can be obtained solely from
the knowledge of average occupation numbers; however, the
calculation of the corresponding statistical fluctuations in such
quantities, i.e., specific heat and magnetic susceptibility, re-
quires knowledge of the fluctuations in occupation numbers
and (in the canonical ensemble) correlations between them.
Therefore, the factorization of correlations between occupa-
tion numbers in terms of the average occupation numbers
of individual energy levels provides a simplified approach to
calculate quantities such as specific heat and magnetic sus-
ceptibility of a given system. Here, we highlight a method to
compute such correlations by considering a degenerate system
of a finite periodic chain of noninteracting bosons that is
influenced by an external uniform magnetic field.

The auxiliary partition function approach presented here
provides a set of tools that can be used to analyze experi-
mental data in low-density atomic gases where the number
of particles is fixed. The application of the physically rele-
vant canonical ensemble can eliminate errors introduced via
the grand canonical approximation (especially in the inferred
temperature) and lead to a more accurate interpretation of
experimental results, including an improved diagnosis of the
role of weak interaction effects. It is hoped that the relative
simplicity of the mathematical approach presented in this pa-
per may encourage the inclusion of the interesting topic of the
canonical treatment of Fermi and Bose gases in college-level
textbooks.

In Sec. II we present the general formalism of the theory,
where we introduce APFs and write occupation probability
distributions, occupation numbers, and their correlations in
terms of the APFs. In the same section, we also show how
some of the previously known results can be recovered in a
straightforward fashion. In Sec. III, considering fermionic and
bosonic systems, we derive the decomposition of higher-order
occupation number correlations into individual energy-level
occupation numbers for nondegenerate and degenerate energy
spectra, alike. To illustrate the applicability of the theory, in
Sec. IV, we consider a bosonic ring in the presence of a
magnetic field. We conclude in Sec. V.

II. NONINTERACTING INDISTINGUISHABLE
PARTICLES IN THE CANONICAL ENSEMBLE

As the thermodynamic properties of a system of noninter-
acting particles are governed by the single-particle spectrum
and the underlying particle statistics, we begin by consid-
ering the general one-particle spectrum εi, with i ∈ S =
{1, 2, , . . . ,M}. For an unbounded spectrum M → ∞. In the
canonical ensemble defined by fixing the total particle number
N , the canonical partition function ZN ≡ ZN (S ) for N indis-

tinguishable particles is defined by

ZN =
∑
n|N

X (n|N ), (1)

where

X (n|N ) =
∏
i∈S

e−βεini (2)

are the Boltzmann factors at inverse temperature β = 1/kBT
and the components {ni} of the vector n|N = (n1, . . . , nM )|N
are the occupation numbers for the corresponding energy lev-
els satisfying

∑
i∈S ni = N . The summation in Eq. (1) runs

over all the possible occupation vectors n|N which, in addition
to conserving the total number of particles N , obeys occupa-
tion limits for each of the energy levels εi: ni � nmax

i , thus
N � Nmax = ∑

i n
max
i .

Consider the spectrum defined by S as the union of disjoint
subsets (subspectra) S (1) and S (2) = S \ S(1), i.e., S = S (1) ∪
S (2). Under this decomposition the Boltzmann factors in S can
be factorized as X (n|N ) = X (n(1)|k )X (n(2)|N−k ), where n(1)|k
and n(2)|N−k represent occupation vectors of k = ∑

i∈S (1) n
(1)
i

and N − k particles in S (1) and S (2), respectively. Summing
X (n|N ) over all possible n(1)|k and n(2)|N−k gives∑

n(1)|k

∑
n(2)|N−k

X (n|N ) = Zk
(
S (1)

)
ZN−k

(
S (2)

)
, (3)

where we have introduced the auxiliary partition functions
(APFs)

Zk
(
S (1)

) =
∑
n(1)|k

X
(
n(1)|k

)
, (4)

ZN−k
(
S (2)

) =
∑

n(2)|N−k

X
(
n(2)|N−k

)
. (5)

For Eqs. (4) and (5) to satisfy the restrictions imposed by the
per-energy-level maximum occupancies {nmax

i } and the fixed
N , k must satisfy max(0,N − Nmax

2 ) � k � min(N,Nmax
1 ),

where Nmax
1 and Nmax

2 are the maximum numbers of parti-
cles allowed in S (1) and S (2), respectively. Additionally, any
vector n|N under these constraints can be decomposed into
two allowed vectors n(1)|k and n(2)|N−k and vice versa. Thus
the sum in Eq. (1) can be similarly decomposed as

∑
n|N ≡∑kmax

k=kmin

∑
n(1)|k

∑
n(2)|N−k

where kmin = max(0,N − N (2)
max) and

kmax = min(N,N (1)
max), yielding the full partition function

ZN ≡
kmax∑

k=kmin

Zk
(
S (1)

)
ZN−k

(
S (2)

)
. (6)

Employing the convention that ZN (S ) = 0 whenever N is
negative, or when it exceeds the maximum number of particles
set by S, the limits in the above summation can be simplified
to

∑N
k=0. The above notation can be made more explicit by

specifying the subset of levels that are not included in the
partition function

Z\S (1)

N ≡ ZN
(
S \ S (1)

)
, (7)
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and thus, for S (1) = { j1, j2, . . . , j�} containing � levels,
Eq. (6) is equivalent to

ZN ≡
N∑

k=0

Zk ({ j1, j2, . . . , j�})Z\{ j1, j2,..., j�}
N−k . (8)

To obtain a physical interpretation of Eq. (8), recall that in
the canonical ensemble the likelihood of theN-particle system
being in a microstate defined by the occupation vector n|N
is given by the ratio X (n|N )/ZN . Accordingly, for the subset
of energy levels with indices { j1, j2, . . . , j�}, the joint proba-
bility distribution of the corresponding occupation numbers
Pn j1 ,n j2 ,...,n j�

can be obtained by performing the summation∑
n(2)|N−k

, where k = ∑�
r=1 n jr , yielding

Pn j1 ,n j2 ,...,n j�
= e−β

∑�
r=1 ε jr n jr

ZN
Z\{ j1, j2,..., j�}
N−k . (9)

It follows that the probability Pk ({ j1, j2, . . . , j�}) of finding k
particles in { j1, j2, . . . , j�} and, of course, N − k particles in
S \ { j1, j2, . . . , j�} can be obtained by applying the summa-
tion

∑
n(1)|k :

Pk ({ j1, j2, . . . , j�}) = Zk ({ j1, j2, . . . , j�})Z\{ j1, j2,..., j�}
N−k

ZN
, (10)

where the normalization of Pk ({ j1, j2, . . . , j�}) is guaranteed
by Eq. (8). Note: The considered spectra S and its subsets
could include degenerate levels, despite the distinct indices
used to label the energy levels.

So far the analysis of the partition functions has been
completely general and we have not specified what type of
particles are being described. Now, let us be more specific
and consider a system that solely consists of either fermions
or bosons.

A. Inverted analogy between fermionic and bosonic statistics

Having developed an intuition for the general structure
of the canonical partition function under a bipartition into
subspectra, we now observe how this can provide insights into
the relationship between fermionic (nmax

i = 1) and bosonic
(nmax

i → ∞) statistics of N noninteracting particles. To dis-
tinguish the two cases we introduce a new subscript on the
partition function (F for fermions and B for bosons).

If the set S (1) represents a single energy level with an index
j1 = j then using our convention we have

ZF,k ({ j}) =
{
e−βε j k 0 � k � 1

0 otherwise
(11)

for fermions and

ZB,k ({ j}) =
{
e−βε j k k � 0

0 otherwise
(12)

for bosons. Substituting into Eq. (8) we immediately find

ZF,N = Z\{ j}
F,N + e−βε j Z\{ j}

F,N−1, (13)

ZB,N =
N∑

k=0

e−βε j kZ\{ j}
B,N−k . (14)

The relations in Eqs. (13) and (14) formally describe the
procedure for generating the canonical partition function of
the N-particle system after introducing an energy level ε j to
the preexisting spectrum S \ { j}.

Examining the structure of Eq. (13) suggests a simple
matrix form: Z = AZ\{ j}, where Z = (ZF,0,ZF,1, . . . ), Z\{ j} =
(Z\{ j}

F,0 ,Z\{ j}
F,1 , . . . ), and the matrix An,m = δn,m + e−βε jδn,m+1 is

bidiagonal and can be inverted such that

Z\{ j}
F,N =

N∑
k=0

(−1)ke−βε j kZF,N−k . (15)

Comparing this expression with Eq. (14), we observe an iden-
tical structure apart from exchanging the factor e−βε j with
(−e−βε j ). Thus we can obtain the inversion of Eq. (14) by
replacing e−βε j with (−e−βε j ) in Eq. (13), i.e.,

Z\{ j}
B,N = ZB,N − e−βε j ZB,N−1. (16)

The relations Eqs. (15) and (16) exemplify the elimination
of an energy level as they represent the inverse of Eqs. (13)
and (14), respectively.

If we absorb the negative signs in Eqs. (15) by shifting the
energy ε j by±iπ/β, we can write Z\{ j}

F,N = ∑N
k=0 e

−βε′
j kZF,N−k ,

where ε′
j = ε j ± iπ/β. As the general bipartition into sub-

spectra introduced in Eq. (6) holds for energy levels with
mixed statistics, and does not require real entries for the εi, we
can build the bosonic partition functions Z ′

B,N ({ j1, j2, . . . , j�})
using the shifted energies {ε′

j1 , ε
′
j2 , . . . , ε

′
j�} and then combine

them with the ZF,N to generate a mixed form:

Z\{ j1, j2,..., j�}
F,N =

N∑
k=0

Z ′
B,k ({ j1, j2, . . . , j�})ZF,N−k . (17)

This expression can also be validated using Eqs. (14) and (15)
with a proof included in Appendix A. The effect of shifting
the single-particle spectrum by a constant ω on the canon-
ical partition function ZN is captured by a rescaling factor
e−βωN and the resulting N-particle partition function of the
shifted spectrum is e−βωNZN . Using Z ′

B,k ({ j1, j2, . . . , j�}) =
e±iπkZB,k ({ j1, j2, . . . , j�}) then yields

Z\{ j1, j2,..., j�}
F,N =

N∑
k=0

(−1)kZB,k ({ j1, j2, . . . , j�})ZF,N−k . (18)

Starting from Eq. (16) and following the same argument, we
obtain an equivalent expression for bosons:

Z\{ j1, j2,..., j�}
B,N =

N∑
k=0

(−1)kZF,k ({ j1, j2, . . . , j�})ZB,N−k . (19)

The last two equations can be seen as a generalization of
Eqs. (15) and (16). However, they also recover the symmetry
between fermionic and bosonic statistics. To this end, we
show how to obtain the partition function of a given spectrum
using the APFs of two complementary subsets of the spec-
trum through Eq. (8). Also, Eqs. (18) and (19) show that this
relation can be inverted, i.e., we can calculate the APFs of a
subset of energy level using the APFs of its complement with
the opposite statistics and the partition functions of the full
spectrum.
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B. Energy-level occupations and correlations

For fermions, the Pauli exclusion principle restricts the
number of particles occupying an energy level ε j to nj = 0
or 1. Equivalently, npj = n j for any p > 0, simplifying the cal-
culation of energy-level occupation numbers and the correla-
tions between them, including higher moments. More specif-
ically, the average 〈np1j1 n

p2
j2

. . . np�

j�
〉F,N = 〈nj1n j2 . . . n j�〉F,N ,

where pi > 0, i ∈ {1, . . . , �}, and in general

〈n j1n j2 . . . n j�〉F,N =
∑

n({ j1, j2,..., j�})
n j1n j2 . . . n j�PF,n j1 ,n j2 ,...,n j�

(20)

using the probability

PF,n j1 ,n j2 ,...,n j�
= e−β

∑�
r=1 ε jr n jr

ZF,N
Z\{ j1, j2,..., j�}
F,N−∑�

r=1 n jr
, (21)

defined in Eq. (9). The only term that survives in Eq. (20) has
n j1 = n j2 = · · · = n j� = 1, giving〈

n j1n j2 . . . n j�

〉
F,N

= e−β
∑�

r=1 ε jr

ZF,N
Z\{ j1, j2,..., j�}
F,N−� . (22)

Following the same procedure, Eq. (20) can be generalized
to describe both correlations and anticorrelations between
energy levels:〈

�∏
r=1

[n jrγ jr + (1 − n jr )(1 − γ jr )]

〉
F,N

= 1

ZF,N
e−β

∑�
r=1 ε jr γ jr Z\{ j1, j2,..., j�}

F,N−∑�
r=1 γ jr

, (23)

where γ jr = 1, 0. For the latter with γ jr = 0, the occupation
numbers in Eq. (20) have been replaced with their comple-
ments, 1 − n jr . Thus, we find that fermionic level occupations
and correlations can be directly written in terms of APFs
without resorting to the usual definition 〈nj1n j2 . . . n j�〉F,N =
1

ZF,N

∂�ZF,N

∂ (−βε j1 )...∂ (−βε j� )
which yields equivalent results.

When considering a single level (� = 1), the occupation
probability of the jth fermionic level immediately follows:

〈n j〉F,N = e−βε j Z\{ j}
F,N−1

ZF,N
, (24)

with the associated probability

PF,n j = e−βε j n j

ZF,N
Z\{ j}
F,N−n j

. (25)

For bosons, the occupation numbers 〈nj〉B,N can be
calculated from the corresponding occupation probability dis-
tribution Pn j which is obtained from Eq. (9):

PB,n j = e−βε j n j

ZB,N
Z\{ j}
B,N−n j

, (26)

and for the �-point correlations

PB,n j1 ,n j2 ,...,n j�
= e−β

∑�
r=1 ε jr n jr

ZB,N
Z\{ j1, j2,..., j�}
B,N−∑�

r=1 n jr
. (27)

However, unlike the fermionic case, such an approach requires
performing the unrestricted summation

∑
n({ j1, j2,..., j�}).

An alternative method which avoids this difficulty can
be developed by exploiting the inverted analogy between
fermionic and bosonic statistics introduced in Sec. II A. In the
fermionic case, the occupation number of an energy level ε j is
proportional to the APF Z\{ j}

F,N−1 [Eq. (24)] which corresponds
to the actual spectrum of the system missing the energy level
ε j . This suggests a route forward for bosons via the analogous
inversion of doubly including the energy level ε j instead of
removing it, i.e., we construct an APF where this level is
twofold degenerate. We denote the corresponding N-boson
APF by Z∪{ j}

B,N and distinguish the two levels using the dressed
indices j (0) and j (1) such that the resulting combined spectrum
has level indices {1, . . . j − 1, j (0), j (1), j + 1, . . . ,M} where
ε j = ε j (0) = ε j (1) .

Returning to the general definition of the canonical parti-
tion function in Eq. (1), we can write Z∪{ j}

B,N = ∑
n′|N X (n′|N ),

where the occupation vectors n′|N have one extra component:
nj in n|N is replaced by nj (0) and nj (1) . The modified Boltzmann
factors are

X (n′|N ) = e−βε j [n j(0)+n j(1) ]
∏

i 
= j (0), j (1)

e−βεini (28)

and thus their value is dependent only on the total occupancy
of the jth level, n j (0) + nj (1) . As a result, X (n|N ) = X (n′|N )
for any occupation vectors n|N and n′|N with all i 
= j com-
ponents equal as well as [n|N ] j = n j = n j (0) + n j (1) . For fixed
n|N , the number of vectors n′|N that satisfies the previous
conditions is equal to n j + 1, or the number of ways in which
nj bosons can occupy two energy levels. The APF can then
be written in terms of the original occupation vector n|N by
inserting a frequency factor to account for the extra level j:

Z∪{ j}
B,N =

∑
n|N

(n j + 1)X (n|N )

= ZB,N 〈nj + 1〉B,N (29)

and thus we can write

〈nj〉B,N = Z∪{ j}
B,N /ZB,N − 1. (30)

Applying Eq. (16) gives Z∪{ j}
B,N = ZB,N + e−βε j Z∪{ j}

B,N−1, which
can be substituted into Eq. (30) to arrive at

〈nj〉B,N = e−βε j Z∪{ j}
B,N−1

ZB,N
, (31)

which is in the same form as Eq. (24) for fermions.
To generalize this expression to �-level correlations with

� > 1 we examine the numerator of Eq. (31), recalling that
we have added an extra copy of energy level j to the partition
function for N − 1 particles such that it now appears mj +
1 = 2 times in the associated spectrum where, in general, mj

is the number of the added copies of energy level j:

e−βε j Z∪{ j}
B,N−1 = e−βε j

∑
n′|N−1

X (n′|N−1)

=
∑
n|N−1

(
ñ j + (mj + 1) − 1

(mj + 1) − 1

)
e−βε j X (n|N−1)

=
∑

n|N,n j�1

n jX (n|N ). (32)
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Here we obtain the second line using the same trick as in
Eq. (29) to convert X (n′|N−1) into X (n|N−1) by accounting
for the degeneracy where [n|N−1] j = ñ j � 0 is the total num-
ber of particles occupying the level j as it appears in the
Boltzmann factor X (n|N−1) = e−βε j ñ j

∏
i 
= j e

−βεini . The com-

plicated looking binomial coefficient
(ñ j+(mj+1)−1

(mj+1)−1

) = (( ñ j

m j+1 ))
is the multiset coefficient that counts the number of ways ñ j

bosons can be distributed amongst the mj + 1 levels with en-
ergy ε j . Finally, the last line is obtained by using the fact that
e−βε j X (n|N−1) = X (n|N ) where [n|N ] j = n j = ñ j + 1 � 1.

Equation (32) can be immediately extended to the case
where we add copies of not one but � levels { j1, . . . , j�}:

e−β
∑�

r=1 ε jr Z∪{ j1,..., j�}
B,N−� =

∑
n|N

(
�∏

r=1

n jr

)
X (n|N ) (33)

where the conditions njr � 1 in the occupancy vector can
be neglected as any n jr = 0 terms do not contribute to the
sum due to the multiplicative string. Finally, we can write the
desired result:

〈n j1n j2 . . . n j�〉B,N = e−β
∑�

r=1 ε jr

ZB,N
Z∪{ j1, j2,..., j�}
B,N−� . (34)

An immediate extension of Eq. (34) will turn out to be useful,
which introduces an APF with higher-order degeneracy. We
considermjr extra copies of the rth level ε jr with r ∈ {1, . . . �}
and find〈

�∏
r=1

(
njr − qjr + mjr

mjr

)〉
B,N

= 1

ZB,N
e−β

∑�
r=1 ε jr q jr Z

∪{ j(1)1 ,..., j
(m j1

)

1 ,... j (1)
�

,..., j
(m j�

)

�
}

B,N−∑�
r=1 q jr

(35)

where the qjr � mjr allow for the added freedom of choice of
how many particles are associated with each of the degenerate
levels and allow us to write the left-hand side in terms of the
desired occupations nj = [n|N ] j . Note: To simplify notation
we only include a superscript on the levels in the bosonic
APF and only if we are adding more than one extra copy per
original level.

Equations (23) and (35) are the major results of this sec-
tion, and demonstrate that for both fermions and bosons
�-level correlations can be written in terms of APFs for N − �

particles with � energy levels removed (added) for fermions
(bosons).

C. Recovering known results via the APF theory

In this section, we illustrate the utility of our auxiliary
expressions in simplifying the derivation of known recursion
relations that govern the canonical partition functions and
occupation numbers for fermions and bosons.

Beginning with fermionic statistics, if we use the definition
of 〈n j〉F,N in Eq. (24) to substitute for Z\{ j}

F,N and Z\{ j}
F,N−1 in

Eq. (13), we obtain the well-known recursion relation for
occupation numbers [57,59]:

〈n j〉F,N+1 = ZF,N

ZF,N+1
e−βε j (1 − 〈nj〉F,N ). (36)

〈n j〉F,N can be written explicitly in terms of the partition func-
tions by substituting for Z\{ j}

F,N−1 in Eq. (24) using Eq. (15) as

〈nj〉F,N = 1

ZF,N

N∑
k=1

(−1)k−1e−βε j kZF,N−k, (37)

and using the canonical condition
∑

i〈ni〉F,N = N we find the
original 1993 result of Borrmann and Franke [58]:

ZF,N = 1

N

N∑
k=1

(−1)k−1CkZF,N−k, (38)

where Ck = ∑
j e

−βε j k .
Bosonic statistics can be treated in analogy to the fermionic

case. Assigning the roles played by Eqs. (24), (13), and (15)
to Eqs. (31), (16), and (14) [83], respectively, we obtain the
known bosonic equivalents [57–59]:

〈n j〉B,N+1 = ZB,N
ZB,N+1

e−βε j (1 + 〈nj〉B,N ), (39)

〈nj〉B,N = 1

ZB,N

N∑
k=1

e−βε j kZB,N−k, (40)

ZB,N = 1

N

N∑
k=1

CkZB,N−k . (41)

Due to the Pauli exclusion principle for fermionic statistics,
the occupation number 〈n j〉F,N of an energy level j gives us
direct access to the occupation probability distribution PF,n j

of the level. Despite the absence of any such simplification in
the bosonic case, the occupation probability distribution PB,n j

of a single energy level can be related to the corresponding
partition functions as

PB,n j = e−βε j n j
ZB,N−n j

ZB,N
− e−βε j (n j+1) ZB,N−n j−1

ZB,N
, (42)

which is obtained by using Eq. (26) to substitute for Z\{ j}
B,N−n j

in Eq. (16), after replacing N with N − nj [61]. In summary,
within the unified framework of APFs, it is straightfor-
ward to obtain most of the well-known general relations
in the fermionic and bosonic canonical ensemble that were
previously derived using a host of different methods. This
highlights the utility of this approach as a unifying framework
when studying N indistinguishable noninteracting particles.

D. General expressions for probabilities and correlations

De facto, the APFs can also be used to generalize previous
results, and in a form that is highly symmetric with respect
to particle statistics. To accentuate this, let us introduce the
notation

ζ =
{+1 ⇔ B ⇔ bosons
−1 ⇔ F ⇔ fermions . (43)

Then, the recursive relations for energy-level correlations can
be obtained using Eqs. (13) and (16) for fermions and bosons,
respectively. The number of initial values of correlations
needed is equal to the number of the involved points; e.g., for
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the two-level correlations we find

〈nin j〉ζ,N+2 = Zζ,N

Zζ,N+2
e−β(εi+ε j )(1 − 〈nin j〉ζ,N )

+ ζ
Zζ,N+1

Zζ,N+2
(e−βεi + e−βε j )〈nin j〉ζ,N+1. (44)

Further, for the set of levels S� = { j1, . . . , j�}, Eqs. (21)
and (27), define the joint probability distributions of the oc-
cupation numbers in terms of the APFs Z\S�

F,k and Z\S�

B,k , which
can be reexpressed using Eqs. (18) and (19) as

Pζ,n j1 ,...,n j�
= e−βEtot

Zζ,N

N−ntot∑
k=0

(−1)kZ−ζ,k (S�)Zζ,N−ntot−k (45)

where Etot = ∑�
r=1 ε jr n jr and ntot = ∑�

r=1 n jr . To avoid con-
fusion we note again the convention in use that Z−ζ,k (S�) = 0
whenever k exceeds the maximum number of particles set by
S� for fixed particle statistics.

Now, as the level occupation correlations of fermions and
bosons are represented by the APFs Z\S�

F,k and Z∪S�

B,k in Eqs. (22)
and (34), we can write

〈n j1 . . . n j�〉ζ,N = e−β
∑�

r=1 ε jr

Zζ,N

N−�∑
k=0

ζ kZB,k (S�)Zζ,N−�−k (46)

where we note that the k-particle bosonic partition function
for the levels S� appears in both fermionic and bosonic corre-
lations.

Alternatively, the APFs Z\S�

F,k , Z\S�

B,k , and Z∪S�

B,k can be com-
puted recursively using Eqs. (38) and (41). This has the
potential to simplify the calculation of the related full joint
probability distribution, as it only requires calculating the
corresponding APF with a number of particles in the range
k = 0, . . . ,N .

1. Simplification for degenerate levels

The expressions derived in the previous section have a
very simple form when the involved levels are degenerate,
i.e., if we consider correlations between the set of levels
{ j (0), . . . , j (�−1)}, where ε j (s) = ε j for s ∈ {0, . . . , � − 1}. The
canonical partition function of N bosons in � degenerate en-
ergy levels is

ZB,N
({

j (0), . . . , j (�−1)
}) = (N+�−1

�−1

)
e−βε jN , (47)

and thus such correlations for fermions and bosons can be
computed directly from Eq. (46) as

〈
n j (0) . . . n j (�−1)

〉
ζ,N = 1

Zζ,N

N∑
k=�

ζ k−�
(k−1
�−1

)
e−βε j kZζ,N−k (48)

where we have shifted the summation. The numerical com-
plexity of calculating Eq. (48) differs from that of Eq. (37)
or Eq. (40) by the number of multiplications and additions
needed to calculate the extra factor

(k−1
�−1

)
, which can be viewed

as a polynomial in k of degree � − 1. Thus calculating Eq. (48)
requires an additional ≈ (N − �)(� − 1) multiplications, and
a similar number of additions which still scales linearly with
N for a moderate value of �.

2. Expectation values of higher moments of degenerate levels

Let us now focus on the case of bosons and revisit Eq. (35)
considering a single energy level ε j :〈(n j−q+mj

mj

)〉
B,N= 1

ZB,N
e−qβε j Z∪{ j(1),..., j(m j )}

B,N−q . (49)

Similarly, using Eq. (6), we can write the APF Z∪{ j(1),..., j(m j )}
B,N−q

in terms of the system partition function and the bosonic APF
ZB,N−q({ j (1), . . . , j (mj )}) of mj degenerate levels. As a result,
we obtain〈(n j−q+mj

mj

)〉
B,N = 1

ZB,N

N∑
k=q

(k+mj−q−1
mj−1

)
e−βε j kZB,N−k, (50)

where q � mj . Note that if we set both mj = � and q = � then
comparing with Eq. (48) we see that〈(

n j (s)

�

)〉
B,N

= 〈nj (0) . . . n j (�−1)〉B,N , (51)

for s ∈ {0, . . . , � − 1}. This demonstrates that the correlations
between degenerate levels can be expressed in terms of mo-
ments of the occupation number of any of the degenerate
levels. This also helps to simplify the calculation of such
moments; for example, we can write〈

n2j
〉
B,N = 〈(n j

2

)〉B,N + 〈(n j+1
2

)〉B,N ,

which can be simplified using Eq. (50) as

〈
n2j

〉
B,N = 1

ZB,N

N∑
k=1

(2k − 1)e−βε j kZB,N−k . (52)

In the same fashion, we can write〈
n3j

〉
B,N = 〈(n j

3

)〉B,N + 4〈(n j+1
3

)〉B,N + 〈(n j+2
3

)〉B,N
and thus〈

n3j
〉
B,N = 1

ZB,N

N∑
k=1

(3k2 − 3k + 1)e−βε j kZB,N−k . (53)

III. DECOMPOSITION OF LEVEL CORRELATIONS INTO
OCCUPATION NUMBERS

In the previous section, we illustrated that the joint
probability distributions of the occupation numbers and cor-
responding level correlations can be represented by auxiliary
partition functions. The APF is distinguished from the actual
partition function of the N-particle system through either the
inclusion or exclusion of a set of levels from/to the complete
spectrum under study. The resulting complexity of performing
an actual calculation thus depends on the size of the modified
set as demonstrated by, e.g., Eq. (46).

It is known that the resulting complexity can be reduced
by relating higher-order correlations between nondegenerate
levels to the related level occupation numbers [63,64], rep-
resenting an approach similar to Wick’s theorem which only
holds in the grand canonical ensemble. In this section, we di-
rectly obtain many known results using the APF method and,
more importantly, generalize them to deal with degenerate
energy levels.
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Before we introduce the general and systematic approach
to this problem, let us return to Eqs. (23) and (35) and consider
two specific examples of increasing difficulty.

A. Examples

1. Two-level correlations

Consider the expectation value of two bosonic energy lev-
els j1 and j2 where ε j1 
= ε j2 : 〈nj1n j2〉B,N . Employing Eq. (35)
with mj1 = mj2 = 1, q j1 = 0, and q j2 = 1, we find〈

(nj1 + 1)n j2

〉
B,N

= e−βε j2

ZB,N
Z∪{ j1, j2}
B,N−1 , (54)

and upon exchanging the values of q j1 and qj2 we have〈
n j1

(
n j2 + 1

)〉
B,N = e−βε j1

ZB,N
Z∪{ j1, j2}
B,N−1 . (55)

Next, eliminating the APF from the two equations yields our
final result:〈

n j1n j2

〉
B,N = −

eβε j1
〈
n j1

〉
B,N

− eβε j2
〈
n j2

〉
B,N

eβε j1 − eβε j2
. (56)

Similarly, if the levels are fermionic, we use Eq. (23) with
(γ j1 , γ j2 ) = (0, 1) and (1, 0) to find

〈
nj1n j2

〉
F,N =

eβε j1
〈
n j1

〉
F,N − eβε j2

〈
n j2

〉
F,N

eβε j1 − eβε j2
. (57)

These known results [63,64] are thus obtainable within the
APF approach with a few lines of algebra by generating a set
of independent equations. We now extend this idea to three
energy levels.

2. Three-level correlations

The previous example for bosons is modified by adding a
third level j3 with mj3 = 1 and ε j3 that is different than both
ε j1 and ε j2 . Setting (q j1 , q j2 , q j3 ) = (1, 0, 1) and (1, 1, 0) in
Eq. (35) gives the two equations〈

nj1 (n j2 + 1)nj3

〉
B,N

= e−β(ε j1+ε j3 )

ZB,N
Z∪{ j1, j2, j3}
B,N−2 , (58)

〈
nj1n j2 (n j3 + 1)

〉
B,N

= e−β(ε j1+ε j2 )

ZB,N
Z∪{ j1, j2, j3}
B,N−2 , (59)

respectively. Solving for 〈nj1n j2n j3〉B,N leads to〈
nj1n j2n j3

〉
B,N = −

eβε j2
〈
n j1n j2

〉
B,N − eβε j3

〈
n j1n j3

〉
B,N

eβε j2 − eβε j3
, (60)

which can be further broken down into single-level occupation
numbers by application of Eq. (56).

A slightly modified approach can be used if two of
the energy levels are degenerate, ε j2 = ε j3 
= ε j1 . As above,
we denote degenerate levels via superscript and we relabel
j2 = j (0)2 and j3 = j (1)2 . Then it is clear that 〈n j1

n j (0)2
〉B,N =

〈nj1
n j (1)2

〉B,N and Eq. (60) is not immediately applicable. How-
ever, this can be resolved by replacing one of the choices of
(q j1

, q j (0)2
, q j (1)2

), say (1, 1, 0), with (0, 1, 1), which gives

〈
nj1

n j (0)2
n j (1)2

〉
B,N = −

eβε j1〈nj1
n j (1)2

〉B,N− eβε j2 〈nj (0)2
n j (1)2

〉B,N
eβε j1 − eβε j2

.

(61)

We now turn to the general decomposition of �-level corre-
lations into functions of the occupation numbers of the energy
levels for both the nondegenerate and degenerate spectra.

B. Systematic approach

In the following we show that Eqs. (6), (18), and (19)
can be directly employed to systematically relate higher-order
correlations to level occupation numbers. We begin by con-
sidering the set of levels S� = { j1, j2, . . . , j�} and relate the
corresponding �-point correlations to the r-point correlations
for any nonempty subset of levels Sr = {i1, i2, . . . , ir} ⊂ S�.

Imposing fermionic level statistics on the spectrum
S, we can relate the correlations 〈n j1n j2 . . . n j�〉F,N to
〈ni1ni2 . . . nir 〉F,N by connecting their corresponding APFs, i.e.,
Z\S�

F,N−� and Z
\Sr
F,N−r . This can be achieved by building Z

\Sr
F,N−1 via

Eq. (6) to combine the APFs of S \ S� with that of S� \ Sr

through

Z\Sr
F,N−r =

�−r∑
k=0

Z\Sr

F,k (S�)Z
\S�

F,N−r−k . (62)

We note the upper limit in the previous summation is � −
r, where in general it should be kmax = min(� − r,N − r)
[Eq. (6)]. This is because the fermionic APF Z\Sr

F,k (S�) cannot
describe more than � − r particles, as this is the number of
levels that are in S� \ Sr . Further, for N < � the correlations
〈nj1n j2 . . . n j�〉N = 0 for general particle statistics. As a result,
we only consider �-point correlations with N � �. Moreover,
we can obtain Z\Sr

F,k (S�) by removing the contribution of the
levels Sr from the APF of S�, using Eq. (18), as

Z\Sr

F,k (S�) =
k∑

m=0

(−1)mZB,m(Sr )ZF,k−m(S�). (63)

If we isolate the last term in the summation in Eq. (62),
i.e., Z\Sr

F,�−r (S�)Z
\S�

F,N−�, while substituting for Z\Sr

F,k (S�), using
Eq. (63) in all other terms, we find

Z\Sr
F,N−r =

�−r−1∑
k=0

k∑
m=0

(−1)mZB,m(Sr )ZF,k−m(S�)Z
\S�

F,N−r−k

+ Z\Sr

F,�−r (S�)Z
\S�

F,N−�. (64)

After changing the order of the summations and shifting the
indices k → k − r + 1 and m → m − r, we obtain the un-
wieldy expression

Z\Sr
F,N−r = (−1)r−1

�−1∑
m=r

(−1)m+1ZB,m−r (Sr )

×
�−2∑

k=m−1

ZF,k−m+1(S�)Z
\S�

F,N−k−1 + Z\Sr

F,�−r (S�)Z
\S�

F,N−�.

(65)

Next, we substitute for Z\S�

F,N−� and Z\Sr
F,N−r , using Eq. (22)

and the fully occupied fermionic APF Z\Sr

F,�−r (S�) =
e−β

∑
jν∈S�\Sr ε jν . Multiplying the result by e−β

∑
iν∈Sr εiν /ZF,N
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yields

YF,0(S�) +
�−1∑
m=r

Am(Sr )YF,m(S�) = bF (Sr ) (66)

where

YF ,0(S�) = 〈n j1n j2 . . . n j�〉F ,N , (67)

YF ,1�m��−1(S�) = (−1)m+1

ZF ,N

�−2∑
k=m−1

ZF ,k−m+1(S�)Z
\S�

F ,N−k−1

(68)

are independent of Sr . Therefore, for each choice of the subset
Sr we can write the linear nonhomogeneous equation (66)
in the � variables YF ,m with coefficients A0 = 1, A0<m<r =
0, and Ar�m��−1(Sr ) = (−1)r−1e−β

∑
iν∈Sr

εiν ZB,m−r (Sr ). The
homogeneity of the linear equation is violated by the term
bF (Sr ) = 〈ni1ni2 . . . nir 〉F ,N .

With this formulation, we observe that for any of the 2� − 2
choices of Sr we can write a linear equation in the same �

variables YF ,m, where YF ,0 = 〈nj1n j2 . . . n j�〉F ,N is the �-point
correlation while the remaining � − 1 variables are auxiliary
and depend symmetrically on the levels in S�. Also, the r-
point correlation 〈ni1ni2 . . . nir 〉F ,N of the levels in Sr plays the
role of the nonhomogeneous term in the linear equation and
the coefficients Am of the equation can be determined by the
bosonic APFs of Sr . An analogous expression can be obtained
for bosonic statistics, with the same coefficients Am:

YB,0(S�) +
�−1∑
m=r

Am(Sr )YB,m(S�) = bB(Sr ), (69)

where, in this case, the variables are

YB,1�m��−1(S�) =
(−1)m+1

ZB,N

�−2∑
k=m−1

(−1)kZF ,k−m+1(S�)Z
∪S�

B,N−k−1, (70)

with YB,0(S�) = (−1)�−1〈nj1n j2 . . . n j�〉B,N and bB(Sr ) =
(−1)r−1〈ni1ni2 . . . nir 〉B,N (see Appendix B for a complete
derivation).

1. Nondegenerate levels

Consider the set S� specifying a set of distinct energy levels
and choose Sr=1 such that it contains only one of the � levels
in S�. We can use Eq. (66) or (69) to construct a set of � linear
equations each corresponding to one level js ∈ S� with energy
ε js . For fermions the equations are

〈n js〉F ,N =
�−1∑
m=0

e−mβε jsYF ,m(S�), (71)

where the coefficients Am were obtained from the single-
level bosonic APF ZB,m({ js}) = e−mβε js in Eq. (12). Therefore,
using the set of the � independent linear equations in �

variables defined by Eq. (71), we can solve for YF ,0(S�) =
〈nj1n j2 . . . n j�〉F ,N as

〈nj1 . . . n j�〉F ,N =

∣∣∣∣∣∣
〈n j1〉F ,N e−βε j1 . . . e−β(�−1)ε j1

...
...

. . .
...

〈nj�〉F ,N e−βε j� . . . e−β(�−1)ε j�

∣∣∣∣∣∣∣∣∣∣∣∣
1 e−βε j1 . . . e−β(�−1)ε j1

...
...

. . .
...

1 e−βε j� . . . e−β(�−1)ε j�

∣∣∣∣∣∣
.

(72)

This result was recently obtained by Giraud, Grabsch, and
Texier [64], using the properties of the Schur functions and it
can be simplified using Vandermonde determinants:

〈nj1n j2 . . . n j�〉F ,N =
�∑

s=1

(−1)s−1〈njs〉F ,Ne
−β

∑
ji 
= js

ε ji

× V \{ js}(e−βε j1 , . . . , e−βε j� )

V (e−βε j1 , . . . , e−βε j� )
, (73)

where

V (α1, . . . , α�) =
∣∣∣∣∣∣
1 α1 . . . α�−1

1
...

...
. . .

...

1 α� . . . α�−1
�

∣∣∣∣∣∣ =
∏
i< j

(α j − αi ). (74)

Thus the fermionic �-level correlation can be simplified as

〈n j1n j2 . . . n j�〉F ,N =
�∑

r=1

〈njr 〉F ,N∏
k 
=r

[
1 − eβ(ε jk −ε jr )

] . (75)

This expression was also recently derived using an elegant
second quantization scheme [63].

An equivalent procedure can be performed for bosons,
again using the set Sr=1 to yield � linearly independent equa-
tions:

〈n jr 〉B,N =
�−1∑
m=0

e−mβε jr YB,m(S�), (76)

such that 〈n j1n j2 . . . n j�〉B,N = (−1)�−1YB,0(S�) can also be ex-
pressed in terms of determinants leading to [64]

〈nj1n j2 . . . n j�〉B,N = (−1)�−1
�∑

r=1

〈njr 〉B,N∏
k 
=r

[
1 − eβ(ε jk −ε jr )

] .

(77)

2. Degenerate levels

Up until this point we have considered �-point level corre-
lations in two opposite regimes.

(I) When all � levels are degenerate Eq. (48) provides a
direct route to the correlations through the determination of
all partition functions up to N particles.
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(II) When all � levels are distinct, an associated set of �

linear equations yields the correlations in terms of individual
level occupation numbers.

The independence of these linear equations, and thus the
existence of a unique solution, is violated in the presence of
degeneracy.

We now study the most general possible �-level correlation
function defined by the set S� which could include both degen-
erate and nondegenerate levels. Consider the subset of level
indices Smi = {i(0), . . . , i(mi−1)} ⊂ S� which contains mi > 1
degenerate levels (for mi = 1, we reproduce the nondegener-
ate analysis discussed above). As a result, the corresponding
mi equations, out of the total set of � linear equations defined
by Eqs. (71) and (76) for fermions and bosons, respectively,
are identical, as they are distinguished from each other only
via the energies of the involved levels and their occupation
numbers. Moreover, S� could contain multiple subsets of
degenerate energy levels, further complicating the problem.
Equations (75) and (77) cannot be applied in this case, as is ap-
parent from their vanishing denominators whenever ε jk = ε jr .

To resolve the complication introduced by degenerate sub-
sets, we generalize the procedure in Sec. III A 2 to treat the
case where a three-level correlation contained a subset of
two degenerate levels. More explicitly, we relate the �-point
correlations not only to the occupation numbers of the degen-
erate subsets, but to all of the mi distinct r-point correlations
between the degenerate levels with 2 � r � mi. This is useful
as we have already introduced Eq. (48), which simplifies

the calculation of the correlations between degenerate energy
levels for fermionic and bosonic statistics. In addition, it will
result in the generation of mi new independent equations that
could be used to calculate �-point correlations.

Accordingly, for any choice of Sr = {i(0), . . . , i(r−1)} ⊂
Smi ⊂ S�, the corresponding coefficients in the constructed
linear equations are A0 = 1, A0<m<r = 0 and

Ar�m��−1(Sr ) = (−1)r−1

(
m − 1

r − 1

)
e−mβεi , (78)

where εi is the energy of all degenerate levels in Smi and we
have substituted for ZB,m−r ({i(0), . . . , i(r)}) = (m−1

r−1

)
e−(m−r)βεi

a bosonic partition function of r degenerate levels.
The nonhomogeneities bζ (Sr ) =

(−ζ )r−1〈ni(1)ni(2) . . . ni(r−1)〉ζ ,N can be calculated using
Eq. (48), and thus the original set of mi identical equations
can now be replaced with the following mi independent
equations:

Yζ ,0(S�) +
�−1∑
m=r

(−1)r−1

(
m − 1

r − 1

)
e−mβεiYζ ,m(S�) = bζ (Sr ),

(79)
for fermions (ζ = −1) and bosons (ζ = +1).

To illustrate how this works in practice, consider the four-
point correlation of the levels { j1(0) , j1(1) , j1(2) , j2 }, labeling
distinct energies ε1 and ε2. The resulting new set of � equa-
tions can be solved for both fermions and bosons to give

〈nj1(0) n j1(1) n j1(2) n j2
〉ζ ,N = (−ζ )

∣∣∣∣∣∣∣∣
〈n j1(0) n j1(1) n j1(2) 〉ζ ,N 0 0 e−3βε j1

(−ζ )〈n j1(0) n j1(1) 〉ζ ,N 0 −e−2βε j1 −2e−3βε j1

〈nj1(0) 〉ζ ,N e−βε j1 e−2βε j1 e−3βε j1

〈nj2
〉ζ ,N e−βε j2 e−2βε j2 e−3βε j2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1 0 0 e−3βε j1

1 0 −e−2βε j1 −2e−3βε j1

1 e−βε j1 e−2βε j1 e−3βε j1

1 e−βε j2 e−2βε j2 e−3βε j2

∣∣∣∣∣∣∣∣
. (80)

IV. APPLICATIONS

To illustrate the applicability of our results for degenerate
noninteracting systems of particles with fixed number and
highlight the practical usage of Eq. (80) we consider a one-
dimensional tight-binding chain of N spinful bosons hopping
over L lattice sites. Code, scripts, and data used to produce all
figures for the bosonic chain results can be found online [84].
The bosonic chain is subject to a static external magnetic field
B applied along the z axis. Spin-S bosons are described by the
Hamiltonian

Ĥ = −t
∑
α,σ

(â†α+1,σ âα,σ + H.c.) − h
∑

α,σ,σ ′
â†α,σS

z
σ,σ ′ âα,σ ′ ,

(81)
where â†α,σ and âα,σ are creation and annihilation operators
for a boson at site α with σ ∈ {−S, . . . , 0, . . . , S} satisfying
[aα,σ , a†α′,σ ′] = δα,α′δσ,σ ′ and t measures the hopping ampli-
tude. Szσ,σ ′ = σδσ,σ ′ are the matrix elements of the diagonal z
projection of the spin-S representation of the spin operator Ŝ.

Here, h = gμBB, where g is the corresponding spin-S g factor
and μB is the Bohr magneton. We employ periodic boundary
conditions, such that âL+1,σ = â1,σ , and to avoid having an
unbalanced nondegenerate excited state we fix the parity of L
to be odd.

The tight-binding Hamiltonian in Eq. (81) can be diagonal-
ized:

Ĥ =
∑
j,σ

ε j,σn j,σ , (82)

where n̂ j,σ counts the number of bosons with energy

ε j,σ = −2t cos

(
2π j

L

)
− hσ, (83)

and j runs over the finite set S = {− L−1
2 , . . . , 0, . . . , L−1

2 }
when L is odd such that |S| = L. An examination of the
single-particle spectrum shows that each energy level, ex-
cept the ground state ε0,σ = −2t − hσ , is twofold degenerate,
where ε− j,σ = ε j,σ , a result of the right-left symmetry of the
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chain. Turning off the magnetic field and fixing S > 0 gives
rise to an extra degeneracy factor of (2S + 1) that affects all
levels.

For all numerical results presented in this section, we fix
L = 1001 and N = 1000 and measure the inverse temperature
β = 1

kBT
in units of 1/t , where T is the absolute temperature

and kB is the Boltzmann constant.

A. Spinless bosons (S = 0)

We begin with the study of spinless bosons, where the
model is insensitive to the applied magnetic field and we can
drop the subscript σ without loss of generality. Using the
single-particle spectrum defined in Eq. (83) with σ = 0 and
h = 0 in combination with Eq. (27), we calculate the joint
probability distribution PB,n0,n1 of the occupation numbers of
the ground state and the first excited state, where we choose
the level j = 1 out of the two degenerate levels j = ±1.
Note that we do not bother to use the superscript notation
to distinguish degenerate level indices (1 ≡ 1(0),−1 ≡ 1(1))
here as there are no ambiguities due to the sign of the index j.

The calculation proceeds by obtaining the APFs Z\{0,1}
B,k for

0 � k � N using the recursion relation Eq. (41), where the
factors Ck are calculated using the spectrum S \ {0, 1}. The
resulting distribution is

PB,n0,n1 = e−β(ε0n0+ε1n1 )

ZB,N
Z\{0,1}
B,N−n0−n1

, (84)

where ZB,N can be found by enforcing normalization.
We expect Eq. (84) to exhibit interesting features at low

temperature where the particles are mostly occupying the
ground state with some fluctuations amongst the low-lying
energy levels. To obtain an estimate of low in this context,
we choose a value of the inverse temperature β such that the
ground state has a macroscopic occupation corresponding to
50% of the particles. We compare the ratio of the Boltzmann
factors of having all particles in the ground state with that of
having N/2 particles in the first excited state and the rest in
the ground state. Setting the ratio of these factors e−β(ε0−ε1 )N/2

to ≈0.1 suggests β ∼ 100/t . The results are illustrated in
the left panel of Fig. 1, where the relative broadness of the
distribution can be attributed to the degeneracy of the first
exited level j = ±1.

If we now calculate the three-level joint probability distri-
bution PB,n0,n1,n−1 and consider the fixed slice with n−1 = 0,
as presented in the right panel of Fig. 1, we see that the
distribution becomes significantly sharper, as blocking the
level j = −1 makes the resulting non-normalized conditional
distribution more sensitive to the conservation of the total
number of particles.

We now turn to the calculation of the two-level connected
correlation function for our bosonic system:

C(ni, n j ) = 〈nin j〉B,N − 〈ni〉B,N 〈nj〉B,N . (85)

The first step is to obtain the system partition function ZB,k ,
recursively, using Eq. (41) starting from ZB,0 up to ZB,N .
The occupation numbers 〈nj〉B,N can then be easily calculated
using Eq. (40). All that remains is to calculate the two-point
correlations using Eq. (56) for the nondegenerate levels. For

0 200 400 600 800 1000

n1

0

200

400

600

800

1000

n
0

Pn0,n1

0 200 400 600 800 1000

n1

Pn0,n1,n−1=0

0 4×10−6 8×10−6 0 4×10−8 8×10−8

FIG. 1. The joint level probability distribution for N = 1000
spinless bosons on a chain of L = 1001 sites described by Eq. (82)
with σ = 0 and h = 0 at inverse temperature β = 100/t . Left panel:
PB,n0,n1 . Right panel: PB,n0,n1,n−1 projected into the plane n−1 = 0.

the correlations between degenerate levels (〈n− jn j〉B,N ), we
use Eq. (48), with ζ = +1.

The results for C(ni, n j ) for all levels i and j at inverse
temperature β = 1/t are shown as a heat map in the lower
panel of Fig. 2. Here, we chose temperature β = 1/t in order
to distribute the correlations amongst higher-energy levels.
The upper panel of Fig. 2 shows C(ni, n j ) as a function of
ni for fixed 0 � j � 500 corresponding to horizontal cuts
through the lower panel. The red open circles are correlations
C(n− j, n j ) for the degenerate levels obtained from Eq. (48)
demonstrating consistency with the rest of the graph. In the
positive quadrant of the correlation heat map, we use the val-
ues of 〈(n j

2

)〉B,N (marked with black circles) instead of 〈n2j〉B,N ,
where the former is also consistent with surrounding data, as
expected from Eq. (51), where 〈n− jn j〉B,N = 〈(n j

2

)〉B,N and the
symmetry C(ni, n j ) = C(n−i, n j ) due to the degeneracy.

B. Spin-1 bosons (S = 1)

To illustrate the utility of auxiliary partitions functions in
studying correlations in a highly degenerate spectrum, we
consider the case of spin-1 bosons. In the absence of a mag-
netic field (h = 0), each level picks up a degeneracy factor of
2S + 1 = 3, such that the ground state is threefold degenerate
and all of the excitation levels are sixfold degenerate.

Degeneracy effects are apparent in the two-level connected
correlations C(ni,σ , n j,σ ′ ) at β = 1/t , which we calculate for
various values of h as shown in Fig. 3. The top-left panel of
the figure presents C(ni,σ , n j,σ ′ ) for h = 0, where the choice
of σ and σ ′ matters only in the presence of a magnetic field.
A comparison with the heat map of Fig. 2 shows an overall
broadening and a reduction of one order of magnitude in the
maximum of C(ni,σ , n j,σ ′ ) for S = 1, as compared to the S = 0
case.

Removing the energy-spin degeneracy by applying a strong
magnetic field of h = 5t results in a splitting of the spectrum
into three bands, each with bandwidth 4t and separated from
each other via an energy band gap of t . In this case, we first
focus on correlations between the levels in the lower-energy
band (σ = 1, bottom-left panel of Fig. 3), and see a partial
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−10−1−10−3−10−5−10−7
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FIG. 2. Lower panel: Heat map depicting two-point connected
correlations C(ni, nj ) = 〈nin j〉B,N − 〈ni〉B,N 〈nj〉B,N in a system of
N = 1000 spinless bosons on a lattice of L = 1001 sites at β = 1/t .
Upper panel: Horizontal cuts from the upper half of C(ni, nj ) at
different values of the index j > 0. The circled data points are
calculated using Eq. (48), where the red-circled points are C(n− j, nj )
for the degenerate levels j and − j, while the black-circled points are
limi→ j C(ni, nj ) = 〈(n j2 )〉B,N − 〈nj〉2B,N .

recovery of the spinless bosons case (Fig. 2). Correlations
that involve higher-energy levels (σ = 0 and−1) are orders of
magnitude weaker, at the considered temperatures, as shown
in the right panels of Fig. 3.

Finally, we turn to correlations between a set of levels
that is partially degenerate, an interesting feature of spin-1
bosons. We consider the four-level (disconnected) correla-
tions 〈ni,1n j,1n j,0n j,−1〉B,N between the levels εi,1, ε j,1, ε j,0

and ε j,−1, where, in the absence of a magnetic field, the last
three levels are degenerate for any j. We employ the bosonic
version of Eq. (80) with ζ = 1 with results shown in Fig. 4.
According to Eq. (35), the results that we obtain, in this case,

−500
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0

250

500

j

h = 0.0 h = 5t, σ = 1, σ′ = 0

−500 0 500
i

−500

−250

0

250

500

j

h = 5t, σ = 1, σ′ = 1

−500 0 500
i

h = 5t, σ = 0, σ′ = −1
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−10−7

−10−1

−10−3
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−10−7

−10−5

−10−7

−10−9
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,n

j,
σ
′ )

−10−11
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−10−13 C(
n
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σ
,n
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σ
′ )

FIG. 3. Two-level connected correlation function C(ni,σ , nj,σ ′ )
at β = 1/t for N = 1000 spin-1 bosons on L = 1001 sites. Panels
correspond to different values of σ , σ ′, and the applied magnetic
field (h = gμBB) as indicated.

also represent 〈ni,σ
(n j,σ ′

3

)〉B,N , for any σ and σ ′ ∈ {1, 0,−1}.
For the fully degenerate case i = − j, we use Eq. (48). Once
more, Eq. (35) guarantees that 〈ni,1n−i,1n−i,0n−i,−1〉B,N =
〈(ni,σ4 )〉B,N . Therefore, we use 〈(ni,σ4 )〉B,N instead of 〈n4i,σ 〉B,N ,
for the diagonal elements of the four-level disconnected corre-
lations presented in the lower panel of Fig. 4. The consistency
of our calculations using different equations and methods
described herein is demonstrated in the upper panel in analogy
with Fig. 2.

V. DISCUSSION

In summary, we have presented a statistical theory of
noninteracting identical quantum particles in the canonical
ensemble, providing a unified framework that symmetrically
captures both fermionic and bosonic statistics. Table I in-
cludes a listing of our most important results for fermions
and bosons. We achieve this by (1) representing correlations
[Eqs. (23) and (35)] and joint probability distributions [(21)
and (27)] via auxiliary partition functions and (2) deriving
general relations between the canonical partition function of
a given spectrum and that of the auxiliary partition function
describing a spectral subset, as captured by Eqs. (8), (18),
and (19).

These key equations can be manipulated to simplify the
derivation of the known recursive relations for partition func-
tions in the canonical ensemble and lead immediately to
generalizations and, more importantly, provide useful formu-
las for calculating the correlations between degenerate energy
levels and for calculating higher moments of the occupation
number distribution. Also, Eqs. (23) and (35) can be used
to reduce the complexity order of the desired correlations,
or to relate them to the occupation numbers of the involved
levels and correlations between entirely degenerate levels [see
Eq. (48)]. Moreover, the ability to manipulate the way an
auxiliary partition function is built out of other ones allows us
to construct a systematic approach towards the decomposition
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FIG. 4. Lower panel: Four-level correlations 〈ni,1nj,1nj,0nj,−1〉B,N

at β = 1/t for N = 1000 spin-1 bosons on L = 1001 sites with
no magnetic field applied (h = 0). Upper panel: Horizontal cuts
from the upper half of the 〈ni,1nj,1nj,0nj,−1〉B,N heat map at dif-
ferent values of the index j > 0. The circled data points are
calculated using Eq. (48), where the red-circled points are the
fully degenerate case i = − j, while the black-circled points are
limi→ j〈ni,1nj,1nj,0nj,−1〉B,N = 〈(n j4 )〉B,N .

of many-energy-level correlations in terms of individual level
occupancies. This reflects the additional constraints between
energy levels due to fixedN even in the absence of interactions
that are not present in a grand canonical description. Thus, we
present an approach to working in the canonical ensemble that
includes a generalization of Wick’s theorem, where we obtain
previous results for nondegenerate levels [63,64] and extend
them to the case of a degenerate spectrum.

Interestingly, despite the substantial difference between
fermionic and bosonic statistics, the resulting formulas show
evident similarity. If we compare Eqs. (36), (37), and (38)

TABLE I. A summary of the main results presented in this paper
that can be utilized to determine energy-level occupation numbers,
correlations, and probabilities for N noninteracting fermions (F )
and bosons (B) with energy spectra εi with i ∈ S = {1, 2, . . . ,M}
in the canonical ensemble. Here nj is the occupation of the jth level,
γ jr = 0 and 1, and 0 � qjr � mjr ∈ Z. All computations rely on the
introduction of auxiliary partition functions that describe a modified
spectra or subset of levels connected to S through the removal of
levels or the addition of degeneracy.

Fermionic results

Level correlations, Eq. (23):〈
�∏

r=1

[njrγ jr + (1 − njr )(1 − γ jr )]

〉
F ,N

= 1

ZF ,N
e−β

∑�
r=1 ε jr γ jr Z\{ j1, j2,..., j�}

F ,N−∑�
r=1 γ jr

.

Joint probability distribution, Eq. (21):

PF ,n j1 ,n j2 ,...,n j�
= e−β

∑�
r=1 ε jr n jr

ZF ,N
Z\{ j1, j2,..., j�}
F ,N−∑�

r=1 n jr
.

Auxiliary partition function, Eq. (18):

Z\{ j1, j2,..., j�}
F ,N =

N∑
k=0

(−1)kZB,k ({ j1, j2, . . . , j�})ZF ,N−k .

Bosonic results

Level correlations, Eq. (35):〈
�∏

r=1

(
njr − qjr + mjr

mjr

)〉
B,N

= 1

ZB,N
e−β

∑�
r=1 ε jr q jr Z

∪{ j(1)1 ,..., j
(m j1

)

1 ,... j(1)
�

,..., j
(m j�

)

�
}

B,N−∑�
r=1 q jr

.

Joint probability distribution, Eq. (27):

PB,n j1 ,n j2 ,...,n j�
= e−β

∑�
r=1 ε jr n jr

ZB,N
Z\{ j1, j2,..., j�}
B,N−∑�

r=1 n jr
.

Auxiliary partition function, Eq. (19):

Z\{ j1, j2,..., j�}
B,N =

N∑
k=0

(−1)kZF ,k ({ j1, j2, . . . , j�})ZB,N−k .

with Eqs. (39), (40), and (41), respectively, we see that the
differences between the fermionic and the bosonic formulas
can be captured by simple ±1 factors. In view of the cur-
rent theory, such similarity is associated with the interplay
between fermionic and bosonic auxiliary partition functions.
The inverted symmetry between the two distinct statistics is
apparent via a comparison of Eqs. (13) and (14) with Eqs. (15)
and (16) reflective of the fact that adding a fermionic energy
level to the partition function is similar to excluding a bosonic
one and vice versa.

While the focus of this paper is on quantum canon-
ical statistics, it is worth mentioning that one can also
obtain the well-known formulas of the grand canonical par-
tition functions for both fermionic and bosonic statistics
from the theory of auxiliary partition functions. For a given
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chemical potential μ, applying the factor eβμN to Eq. (13),
followed by performing the summation

∑∞
N=0, we obtain

the simple recursive relation ZF = Z\{ j}
F (1 + eβ(μ−ε j ) ), where

ZF = ∑∞
N=0 e

βμNZF ,N is the grand canonical partition func-
tion and Z\{ j}

F is an auxiliary one. This leads immediately to
ZF = ∏

j (1 + eβ(μ−ε j ) ). Starting from Eq. (16), the bosonic
grand canonical partition function can be obtained in a similar
fashion.

The presented formulas for combining and resolving aux-
iliary partition functions allows for their construction via
different routes which we have utilized to obtain exact ex-
pressions for the decomposition of correlations in terms of
single-level occupation numbers. These different forms may
also have value in overcoming the known numerical insta-
bilities of the recursive formula for the fermionic partition
function due to the influence of alternating signs [63,85]. In
addition, the simplicity of the presented theory suggests a
possible generalization to cover different energy-level occu-
pation constraints beyond the fermionic and bosonic ones.
This includes classical Maxwell-Boltzmann statistics in the
canonical ensemble.

We envision that the results presented herein could have ap-
plications in the computation of entanglement entropy in the
presence of superselection rules, as well as in modeling cold
atom experiments. In the context of quantum information, the
spectrum of the reduced density matrix corresponding to a
mode bipartition of a state of conserved number N of itinerant
particles on a lattice can be associated with that of a fictional
entanglement Hamiltonian. For noninteracting particles, the
entanglement entropy can be obtained via the so-called corre-
lation matrix method [86–89] which requires the evaluation of
the canonical partition function of the resulting noninteracting
entanglement Hamiltonian. For trapped ultracold atoms at low
densities where N is fixed and interactions can be neglected,
the analysis of experimental results in the physically correct
canonical ensemble provides improved thermometry, espe-
cially for the case of fermions.

Finally, the ability to directly study level statistics in the
canonical ensemble for bosons and fermions may have peda-
gogical value in the teaching of statistical mechanics, where
the more physical concept of a fixed number of particles is
quickly jettisoned and replaced with a grand canonical reser-
voir for the sake of simplifying derivations.
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APPENDIX A: ADDITIONAL PROOF OF EQ. (17)

Here we provide another proof for Eq. (17) of the main
text via mathematical induction. First, we substitute for

ε j = ε′
j ∓ iπ/β in Eq. (15):

Z\{ j}
F ,N =

N∑
k=0

Z ′
B,k ({ j})ZF ,N−k, (A1)

where Z ′
B,k ({ j}) = e−βε′

j k is the single-level bosonic APF. This
validates Eq. (17) for the removal of a single level, i.e., for � =
1. Next, we use Eq. (15) to remove an additional energy level,
ε j�+1 , from Z\{ j1, j2,..., j�}

F ,N and substitute for ε j�+1 = ε′
j�+1

∓ iπ/β:

Z\S�+1
F ,N =

N∑
m=0

e−mβε′
j�+1Z\S�

F ,N−m , (A2)

where S� = { j1, j2, . . . , j�} and S�+1 = { j1, j2, . . . , j�+1}.
Now we assume that Eq. (17) holds for removing � levels and
use it to substitute for Z\S�

F ,N−m in the above equation. This gives

Z\S�+1
F ,N =

N∑
m=0

e−mβε′
j�+1

N−m∑
k=0

Z ′
B,k (S�)ZF ,N−m−k . (A3)

Performing the index change k → k − m and reordering the
summations yields

Z\S�+1
F ,N =

N∑
k=0

k∑
m=0

e−mβε′
j�+1Z ′

B,k−m(S�)ZF ,N−k . (A4)

From Eq. (14), the inner summation is simply Z ′
B,k (S�+1) and

thus Eq. (17) holds for removing � + 1 levels, i.e.,

Z\S�+1
F ,N =

N∑
k=0

Z ′
B,k (S�+1)ZF ,N−k . (A5)

This proves Eq. (17) in general.

APPENDIX B: DERIVATION OF EQ. (69)

Starting with the sets of levels Sr = {i1, i2, . . . , ir} ⊂ S� =
{ j1, j2, . . . , j�} and using Eq. (19) we have

Z∪Sr
B,N−r =

�−r∑
k=0

(−1)kZ\Sr

F ,k (S�)Z
∪S�

B,N−r−k . (B1)

Next, we substitute for Z\Sr

F ,k (S�), using Eq. (63), except for the

last term (−1)�−rZ\Sr

F ,�−r (S�)Z
∪S�

B,N−� which we separate from
the rest of the previous summation; thus we obtain

Z∪Sr
B,N−r =

�−r−1∑
k=0

k∑
m=0

(−1)m+kZB,m(Sr )ZF ,k−m(S�)Z
∪S�

B,N−r−k

+ (−1)�−rZ\Sr

F ,�−r (S�)Z
∪S�

B,N−�. (B2)

If we rearrange the summations and perform the index change
k → k − r + 1 and m → m − r, we get

Z∪Sr
B,N−r =

�−1∑
m=r

(−1)m+1ZB,m−r (Sr )

×
�−2∑

k=m−1

(−1)kZF ,k−m+1(S�)Z
∪S�

B,N−k−1

+ (−1)�−rZ\Sr

F ,�−r (S�)Z
∪S�

B,N−�. (B3)
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Now, using Eq. (34), we substitute for Z∪S�

B,N−� and Z∪Sr
B,N−r

as well as the APF Z\Sr

F ,�−r (S�) = e−β
∑

jν∈S�\Sr ε jν . After mul-

tiplying the resulting equation by (−1)r−1e−β
∑

iν∈Sr εiν

ZB,N
, we can

write

YB,0 +
�−1∑
m=r

AB,m(Sr )YB,m = bB(Sr ), (B4)

where

YB,1�m��−1 = (−1)m+1

ZB,N

�−2∑
k=m−1

(−1)kZF ,k−m+1(S�)Z
∪S�

B,N−k−1,

(B5)

YB,0 = (−1)�−1〈nj1n j2 . . . n j�〉B,N , A0 = 1, A0<m<r = 0, and
Ar�m��−1(Sr ) = (−1)r−1e−β

∑
iν∈Sr εiν ZB,m−r (Sr ). Also, the

term bB(Sr ) = (−1)r−1〈ni1ni2 . . . nir 〉B,N .
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