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Abstract

Motivation: When learning to subtype complex disease based on next-generation sequencing data, the
amount of available data is often limited. Recent works have tried to leverage data from other domains
to design better predictors in the target domain of interest with varying degrees of success. But they
are either limited to the cases requiring the outcome label correspondence across domains or cannot
leverage the label information at all. Moreover, the existing methods cannot usually benefit from other
information available a priori such as gene interaction networks.
Results: In this paper, we develop a generative optimal Bayesian supervised domain adaptation (OBSDA)
model that can integrate RNA sequencing (RNA-Seq) data from different domains along with their labels
for improving prediction accuracy in the target domain. Our model can be applied in cases where
different domains share the same labels or have different ones. OBSDA is based on a hierarchical
Bayesian negative binomial model with parameter factorization, for which the optimal predictor can be
derived by marginalization of likelihood over the posterior of the parameters. We first provide an efficient
Gibbs sampler for parameter inference in OBSDA. Then, we leverage the gene-gene network prior
information and construct an informed and flexible variational family to infer the posterior distributions of
model parameters. Comprehensive experiments on real-world RNA-Seq data demonstrate the superior
performance of OBSDA, in terms of accuracy in identifying cancer subtypes by utilizing data from different
domains. Moreover, we show that by taking advantage of the prior network information we can further
improve the performance.
Availability: The source code for implementations of OBSDA and SI-OBSDA are available at the following
link.
https://github.com/SHBLK/BSDA
Contact: s.boluki@tamu.edu or xqian@ece.tamu.edu or edward@ece.tamu.edu

1 Introduction
When designing predictive models for a target task, traditionally only
the data from the target domain are used for training with the commonly
adopted assumption that the training and testing data have the same
feature-label distributions. However, in many cases, especially with
next-generation sequencing (NGS) technologies, the number of training
samples that can be collected in the target domain is limited compared

with the dimensionality of the features (the number of genes). Collecting
appropriate data from complex diseases is a costly procedure, if not
prohibitive, considering the clinical, biological, and technical challenges
involved in the process. These limitations can prohibit collecting enough
samples from the disease/condition of interest to design a reproducible
predictor. Given the prevalent data heterogeneity in complex diseases like
cancer (Alizadeh et al., 2015), usually more samples are needed than
what can be collected to achieve reliable predictors. It is believed that
different diseases share some underlying biological processes and modules
(Garcia-Vaquero et al., 2018; Gustafsson et al., 2014; Menche et al., 2015;
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Levine, 2013), indicating that data from one disease can be informative
for other diseases. Hence, it is desirable to learn useful information from
available data from other conditions and/or technologies to help derive
more accurate predictions in the target domain. Moreover, other than the
data at hand, additional knowledge is usually available a priori (before
observing data) that can be beneficial for the target task (Wei and Pan, 2012;
Boluki et al., 2017). Examples of this include interaction networks, which
might have been compiled from several studies and databases (Menche
et al., 2015; Stark et al., 2010; Aranda et al., 2010) containing potentially
useful information for the target task. Our goal is to develop a new optimal
Bayesian supervised domain adaptation (OBSDA) framework capable of
leveraging data and label information from other domains in addition to
prior network knowledge to design more accurate and reliable predictors
in a target domain of interest.

Transfer learning and domain adaptation methods (Pan and Yang, 2009;
Patel et al., 2015) aim to leverage data from other domains for achieving
better results for the task in the target domain. Common approaches
generally include adapting the predictor in the source domain to the target
domain and/or the distribution of the data across domains (Weiss et al.,
2016). Some methods, including Dai et al. (2007); Borgwardt et al. (2006)
reweight the source and target samples. Other representative methods,
such as Pan et al. (2010); Gong et al. (2013), first project the target and
all or a subset of source data to a common subspace, which minimizes a
discrepancy metric between the marginal distributions of features in the
domains, and then train a discriminator in that space. The application of
these methods are often limited to cases where source and target data are
from the same classes. On the other hand, multi-task learning methods
(Jacob et al., 2009; Kang et al., 2011; Passos et al., 2012) aim to improve
prediction power overall in all domains/tasks, with some requiring at least
several tasks/domains for reasonable performance. The majority of deep
learning-based domain adaptation methods (Yosinski et al., 2014; Long
et al., 2015; Liu and Tuzel, 2016), which usually share parameters and/or
lower-level representations across domains and have found their major
successes in computer vision tasks, need much larger training sets in all
the domains than what is practical in typical clinical studies.

Some of the recent transfer learning and domain adaptation works on
gene expression data include Normand et al. (2018); Dhruba et al. (2018);
Hajiramezanali et al. (2018); Karbalayghareh et al. (2019). In Normand
et al. (2018) the authors developed a method to predict differentially
expressed genes in a condition for humans based on gene expression data
collected from disease studies on mice. Dhruba et al. (2018) proposed
two methods respectively—mapping of features to a common subspace
and mapping target domains to the source space—to better predict drug
sensitivity based on gene expression data from additional databases.
Both Hajiramezanali et al. (2018) and Karbalayghareh et al. (2019)
proposed methods for utilizing gene expression data from other domains
to build more reliable cancer subtype predictors in the target domain. In
Hajiramezanali et al. (2018), a hierarchical Bayesian model was developed
to map the samples from different domains to a shared latent space with
the classifier trained on the lower dimensional representations to predict
cancer subtypes. One shortcoming of the method is that label information
is not used in the latent representation learning stage. Karbalayghareh et al.
(2019) proposed a Bayesian method with joint priors on the parameters
from source and target domains and derived the predictor by marginalizing
over source parameters. Despite being a principled approach, it models
only the relationship between data from the same classes across domains,
with the limitation of not fully benefiting from the available data. More
critically, neither of these methods can use additional interaction network
knowledge as prior biological knowledge in their framework.

We propose a new Bayesian framework for supervised domain
adaptation for NGS count data, with generative models utilizing both
data and label information from multiple domains to learn shared genes

embedding and domain and label-dependent latent parameters. Through a
hierarchical Bayesian structure and a factorization setup of parameters
with a subset of global random variables, useful information from all
the domains and labels can be leveraged for cancer subtype prediction
in the target domain. The domains can include data from the same labels
as or different labels than the target domain. We use negative binomial
likelihoods to model RNA-Seq count data considering potential sample
heterogeneity to obviate the need for ad-hoc preprocessing steps. The
predictor in our method is based on the concept of optimal Bayesian
operator design (Dalton and Dougherty, 2020), where the predictor is
derived point-wise by comparing the posterior expectation of the class-
conditional likelihoods for a given sample. Moreover, our framework can
take advantage of the available prior knowledge in terms of gene-gene
interaction networks to derive more accurate and generalizable predictors
in the target domain.

In the following sections, we first introduce our basic OBSDA
model and derive an efficient Gibbs sampler by exploiting novel data
augmentation techniques for the negative binomial distribution (Zhou and
Carin, 2015). Then, we propose an extension of OBSDA with flexible
semi-implicit variational inference (Yin and Zhou, 2018)—SI-OBSDA—
that employs explicit distributions mixed with implicit neural network
generators. We then show how we can incorporate prior interaction
network knowledge in SI-OBSDA for informed inference. Finally, we
verify the benefits of our OBSDA and SI-OBSDA by providing results for
comparing our methods with single-domain and multi-domain baselines
on predicting cancer subtypes with The Cancer Genome Atlas (TCGA)
RNA-Seq data.

2 Materials and Methods

2.1 OBSDA

The negative binomial (NB) distribution is a popular choice to model
overdispersion in RNA-Seq count data due to technical and biological
variations (Robinson et al., 2010; Dadaneh et al., 2018). Let x ∼
NB(r, p), which is a NB distribution with the probability mass function
(PMF) Γ(x+r)

x!Γ(r)
(p)x(1− p)r with the count data x ∈ {0, 1, 2, · · · } and

Γ(·) being the gamma function. Denoting the observed count for gene j
in sample i of domain d with label l by xld,j,i, and the collection of all
genes for that sample by xld,i, we model the counts from multiple domains
(sources) by a factorization of the parameters as

xld,i ∼ NB(Φθld, p
l
d,i). (1)

Here, Φ ∈ R+
J×K , with rows φTj ∈ R+

1×K for j = {1, · · · , J}, is the
matrix quantifying the association between the genes and latent factors.
This association is gene dependent, but for each domain and label the
relevancy of the factors is different. The relevancy of the factors to each
domain and label is quantified by θld. We model each element of θld
with a Gamma distribution, θld,k ∼ Gamma(ud,k,

1
vl

), where vl is label
dependent and ud,k is domain dependent. In other words, the domain and
label dependencies are decomposed into the two sets of parameters to help
identifiability and share signals across domains and labels. The Gamma
distribution encourages sparsity in the model, where each class in each
domain can select a few of latent factors as relevant. We place the Gamma
prior on the label-dependent parameters vl. To enable domain-dependent
latent representations, we assumeud,k ∼ Gamma(bk,

1
qd

), where bk and

qd represent the global latent factor and domain-specific parameters. pld,i
accounts for the potential sample heterogeneity in a class of a domain.

Note that unlike factor analysis models (Rai and Daumé, 2009; Zhou,
2018; Hajiramezanali et al., 2018) where the observations are factorized,
here a latent variable of the model is factorized, and is learned jointly with
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other latent variables in the model using the data from multiple domains.
Moreover, we leverage the label information in a supervised setting in
contrast with standard factor analysis.

As a factorization model, xld,j,i ∼ NB(φTj θ
l
d, p

l
d,i) can

be augmented as xld,j,i =
∑K
k=1 xld,j,i,k , where xld,j,i,k ∼

NB(φj,kθ
l
d,k, p

l
d,i), and the expected expression of gene j in sample

i of domain d with class label l can be expressed as

E[xld,j,i] =
( K∑
k=1

φj,kθ
l
d

) pld,i

1− pld,i
. (2)

The expectation can be interpreted as the true abundance of a gene adjusted
by potential data heterogeneity in a class of a domain, removing the need
for ad-hoc normalization steps. More specifically, the true abundance is
comprised of the contributions of all latent factors, where each contribution
is encoded as the product of the association between a gene and a factor
and the relevancy of that factor for the domain and class.

The factors can be seen as underlying biological processes or functional
modules relating to or causing genotypic or phenotypic changes. K is the
number of such factors considered in the model and is a hyperparameter.
From the modeling perspective, the random variables corresponding
to the association between the genes and the underlying biological
processes (factors) are assumed to be the same across domains and labels.
In other words, the contribution of each underlying biological process to
the expression of a gene depends on both the gene and process relationship,
which is encoded by a global variable and shared across domains and labels,
and the relevancy of the process to the specific label/class in the domain,
which is domain and label dependent and learned from data.

It is worth noting that the OBSDA model can be seen as sharing
knowledge across the different labels in the same domain as well as
across domains for more robust estimations. Moreover, it can integrate
data from domains containing different labels, i.e. where a one-to-one
correspondence between labels across domains does not exist. These
properties will especially be helpful when the number of samples is low
in the target domain.

We complete the model by placing conjugate priors for the rest of the
parameters as follows:

xld,j,i ∼ NB(φTj θ
l
d, p

l
d,i)

θld,k ∼ Gamma(ud,k,
1

vl
), ud,k ∼ Gamma(bk,

1

qd
)

vl ∼ Gamma(e0,
1

f0
), bk ∼ Gamma(

γ0

K
,

1

c0
)

qd ∼ Gamma(w0,
1

u0
), (φ1,k, · · · , φJ,k) ∼ Dir(η, · · · , η)

pld,i ∼ Beta(g0, h0), c0 ∼ Gamma(a0,
1

d0
)

γ0 ∼ Gamma(α0,
1

β0
),

(3)

where we have exploited the beta-negative binomial, gamma-gamma,
and gamma-Poisson conjugacy relationships. Efficient closed-form Gibbs
updates are detailed in the Supplementary for OBSDA inference by
adopting novel data augmentation techniques suitable to our model.

2.2 SI-OBSDA

We now extend OBSDA to SI-OBSDA, with the goal of incorporating
gene-gene network information available a priori to have an informed
inference mechanism. In OBSDA, to be able to derive closed-form updates,
we are restricted to certain prior assumptions to take advantage of the

Fig. 1. Schematic diagram of semi-implicit variational inference in SI-OBSDA

appropriate data augmentation and conjugacy relationships. In SI-OBSDA,
we want to impose prior constraints stemming from domain knowledge
in the inference procedure. Hence, instead of resorting to Gibbs sampling
for model inference, in SI-OBSDA we exploit semi-implicit variational
inference (SIVI) (Yin and Zhou, 2018) as the base inference method, which
is able to construct flexible variational families to approximate the actual
posterior. We first describe the base inference mechanism in SI-OBSDA
and then integrate the prior network knowledge.

Denoting the latent variables or parameters of interest as z and the
observed data as x in a general Bayesian model, variational inference
maximizes the evidence lower bound (ELBO), defined as

L = Ez∼q(z|x)

[
p(x|z)

]
− KL

(
q(z|x)||p(z)

)
,

where q(z|x) is the variational posterior selected from a tractable family
of distributions and KL denotes the Kullback-Leibler divergence. To
simplify the optimization of the ELBO, a commonly adopted choice of
variational distributions is the family of factorized distributions. This
is referred to as mean-field variational inference (MFVI) (Jordan et al.,
1999). However, MFVI can suffer from various shortcomings, including
inability to capture multimodality in the posterior and underestimation of
the posterior variance (Blei et al., 2017).

Here in SI-OBSDA, z denotes the collection of previously described
model parameters in OBSDA, including the association between
genes and factors {φj}Jj=1, factors’ relevancy to domains and

labels {θld}Dd=1,l∈Ld
, sample variability {pld,i}

D, Nl
d

d=1,l∈Ld,i=1, label

parameters {νl}l∈∪D
d=1

Ld
, local factor popularity parameters for each

domain {ud,k}D,Kd=1,k=1, global factor {bk}Kk=1 and domain parameters
{qd}Dd=1, and hyperparameters c0 and γ0. We have used Ld, D, and N l

d

to denote the set of labels in domain d, the number of domains, and the
number samples in domain d with label l, respectively.

To have more expressive variational families while maintaining
computational tractability, in SI-OBSDA we employ SIVI and construct
a model with an explicit joint distribution p(x,z) and a semi-implicit
approximate posterior qω(z) (Figure 1). In other words, the idea is to
define the variational family in a hierarchical manner as z ∼ q(z|ψ),
where the conditional variational distribution is explicit butψ ∼ qω(ψ) is
implicit and required to be reparameterizable. More specifically, samples
from qω can be generated by transforming random noise via a neural
network to be more expressive for modeling x. It is clear that the marginal
inferred posteriors are not independent as in the standard variational
inference, and posterior dependence can be captured.

In SI-OBSDA, we place reparameterizable (location-scale) variational
distributions on the parameters. For the parameters in R+ and (0, 1),
we use log-normal (log N) and logistic-normal (logit N) distributions,
respectively. For {φj}Jj=1, in SI-OBSDA we assume logistic-normal
prior and variational distributions. This resolves the optimization issue in
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the simplex while potentially increasing model flexibility. The joint log-
likelihood of SI-OBSDA can be found in the Supplementary. We place
the following reparameterizable variational distributions in our model
inference for SI-OBSDA:

q(z|ψ, ξ) =
∏
d,l,k

log N(θld,k; µ̂θl
d,k
, σ̂2
θl
d,k

)
∏
j

logit N(φj ; µ̂φj
, Σ̂φj

)

∏
l

log N(νl; µ̂νl , σ̂
2
νl

)
∏
d,k

log N(ud,k; µ̂ud,k , σ̂
2
ud,k

)

∏
d

log N(qd; µ̂qd , σ̂
2
qd

)
∏
k

log N(bk; µ̂bk , σ̂
2
bk

)

∏
d,l,i

logit N(pld,i; µ̂pl
d,i
, σ̂2
pl
d,i

)

log N(c0; µ̂c0 , σ̂
2
c0

) log N(γ0; µ̂γ0 , σ̂
2
γ0

).

(4)

For inference, we optimize an asymptotically exact surrogate evidence
lower bound (ELBO) (Yin and Zhou, 2018):

LM̃ = Eq(z|ψ)qω(ψ)E
ψ(1),··· ,ψ(M̃)∼qω(ψ)[

log
p(x, zi)

1
M̃+1

[
q(zi|ψi) +

∑M̃
m=1 q(zi|ψ

(m))
] ], (5)

where we have limM̃→∞LM̃ = ELBO. In practice, ψ(m) =

Tω(ε(m)), where ε(m) ∼ q(ε), with q(ε) being the source of
randomness and Tω a deep neural network (Figure 1). The variational
distribution can have additional variational parameters ξ, not mixed
with another distribution, i.e. we have q(z|ψ, ξ). Denoting the
reparameterization of q(z|ψ, ξ) as z = f(ε, ξ,ψ), ε ∼ p(ε), where
p(ε) is the source of randomness, z can be sampled byzi = f(εi, ξ,ψi),
εi ∼ p(ε). The parameters of the mixing distribution and the variational
parameters can be optimized by gradient ascent:

ξ = ξ + ρt∇ξLM̃
({
ψ(m)

}
,
{
ψi
}
,
{
zi
})
,

ω = ω + υt∇ωLM̃
({
ψ(m)

}
,
{
ψi
}
,
{
zi
})
.

(6)

In SI-OBSDA, we consider the collection of {µ̂θl
d,k
}D, K
d=1,l∈Ld,k=1,

{µ̂φj
}Jj=1, {µ̂νl}l∈∪D

d=1
Ld

, {µ̂bk}
K
k=1, {µ̂ud,k}

D,K
d=1,k=1, {µ̂qd}Dd=1,

µ̂c0 , and µ̂γ0 to be the parameters governed by the mixing

distribution of ψ, and {µ̂pl
d,i
}D, Nl

d
d=1,l∈Ld,i=1, {σ̂pl

d,i
}D, Nl

d
d=1,l∈Ld,i=1,

{σ̂θl
d,k
}D, K
d=1,l∈Ld,k=1, {Σ̂φj

}Jj=1, {σ̂νl}l∈∪D
d=1

Ld
, {σ̂bk}

K
k=1,

{σ̂ud,k}
D,K
d=1,k=1, {σ̂qd}Dd=1, σ̂c0 , and σ̂γ0 as the variational parameters

(ξ). For numerical stability we further reparameterize the variational
parameters by log-transform and Cholesky factorization. Implementation
details of SI-OBSDA is included in the Supplementary.

In SI-OBSDA, similar to the SIVI inference mechanism in Yin
and Zhou (2018), we employ a neural network as Tω for the mixing
distribution. Since neural networks have high modeling capacity, qω(ψ)

can be highly flexible, and the dependencies between the elements of ψ
can be well captured. Moreover, from the implementation perspective,
neural networks can easily leverage automatic differentiation to optimize
the surrogate ELBO in (5), which is computationally desirable.

2.3 Incorporating prior network knowledge in SI-OBSDA

In addition to the expression data, there exists a priori interactome
knowledge such as gene-gene interaction network that contains genome-
scale connectivity information (Menche et al., 2015). These can be derived

based on either regulatory, metabolic, signaling interactions, or protein
binding.

In SI-OBSDA we impose constraints stemming from the prior
knowledge in the gene-factor associations to construct informed latent
representations and inference. More specifically, since the factors can
be interpreted as functional modules or underlying biological processes,
intuitively, the genes that are connected in the prior knowledge network
should have closer associations to the underlying factors. Hence, we
impose proximity constraints on the variables quantifying the association
between genes and factors for genes that are connected in the prior
knowledge network. Specifically, we add a regularization term coming
from prior belief to the objective of the SI-OBSDA:

LSI-OBSDA = LM̃ + Eq(z|ψ,ξ)Lpr,

where Lpr =

J∑
j=1

∑
j̃∈Cj ,j̃<j

λj,j̃ ||φj − φj̃ ||.
(7)

In the equation above, Cj denotes the set of genes that are connected to
gene j in the prior network knowledge.

The proposed additive constraints when optimizing for inference fit in
the MKDIP prior-construction framework of Boluki et al. (2017), with the
expectation taken over the variational distribution. More specifically, we
can consider slackness for the prior constraints which are linearly added
to the objective, i.e. the regularization term acts as a relaxation of the
constraints coming from prior knowledge with λj,j̃ encoding the degree
of belief in the specific prior interaction edge. In other words, the higher
the confidence in an edge is in prior knowledge, the larger λj,j̃ will be set.

Another way to interpret the regularization term is through assuming
(conditional) prior distributions that impose these constraints in effect.
Moreover, although different in nature, it is worth noting that our work
has connections with recent works including Dadaneh et al. (2020), where
additional label information is imposed through proximity constraints in
the latent space and has been shown to be beneficial even on large data.

2.4 Classification with OBSDA and SI-OBSDA

In the previous sections, we have introduced the models and inference
procedures for OBSDA and SI-OBSDA. Here, we describe how
classification for subtyping is done based on the inferred Bayesian models.
The classification operator in OBSDA and SI-OBSDA is based on the
optimal Bayesian classification (OBC) framework (Dalton and Dougherty,
2020, 2013; Karbalayghareh et al., 2018). In OBC, the design of the
classifier is based on the posterior marginalization of the class-conditional
feature distributions, called effective class-conditional distributions. This
is in contrast to plug-in classifier design where the estimates of the
parameters are used to calculate the class-conditional distributions to form
the classifier, which may not result in the optimal expected error relative to
the posterior distributions, especially when the posteriors are multi-modal.
More specifically, denoting the collection of all model parameters and the
posteriors after observing data as Θ and π∗, respectively, OBC classifier
(fobc) satisfies

Eπ∗ [δ(fobc,Θ)] ≤ Eπ∗ [δ(f,Θ)], ∀f ∈ F, (8)

where f andF denote a classifier and all classifiers possessing measurable
decision regions, respectively; and δ(·, ·) is the error for fixed parameter
values and a classification rule.

In OBSDA and SI-OBSDA, we can derive the optimal Bayesian
classifier in the target domain (OBTD) based on the samples of the
parameters of the target domain generated in the inference chain of
OBSDA or from the variational posteriors in SI-OBSDA. Note that this is
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equivalent to marginalizing the joint posterior over the source domain(s)
as in Karbalayghareh et al. (2018).

Denoting the class prior probabilities in the target domain (d = t, and
without loss of generality assuming the labels are from 1 to Lt) as ct =

(c1t , · · · , c
Lt
t ), and given the parameters of the model, the probability of

sample xt,i belonging to class l is equal to

p(l|xt,i) =
cltp(xt,i|Φ,θlt, plt,i)∑Lt

l̃=1
cl̃tp(xt,i|Φ,θl̃t, pl̃t,i)

, (9)

where p(xt,i|Φ,θlt, plt,i) =
∏J
j=1 NB(xt,j,i|φTj θlt, plt,i). Hence, the

optimal Bayesian classifier in the target domain (OBTD) is:

fOBTD(xt,i) = arg max
l∈{1,··· ,Lt}

Eπ∗
[
cltp(xt,i|Φ,θlt, plt,i)

]
. (10)

Assuming that the class prior probabilities in the target domain are
independent of the other model parameters a priori and have a Dirichlet
prior (c1t , · · · , c

Lt
t ) ∼ Dir(η1

t , · · · , η
Lt
t ), we have

fOBTD(xt,i) = arg max
l∈{1,··· ,Lt}

Eπ∗
[
clt
]
Eπ∗

[
p(xt,i|Φ,θlt, plt,i)

]
,

(11)
where

Eπ∗
[
clt
]

=
|xlt|+ ηlt∑Lt

l̃=1
|xl̃t|+ ηl̃t

. (12)

|xlt| denotes the number of training samples in the target domain t with
label l.

Given the training data, OBSDA generates samples from the posteriors
of the parameters via the Gibbs chain. Similarly, in SI-OBSDA when the
optimization of the training loss is stopped, samples from the posterior can
be generated by pushing random noise samples through the trained neural
network and in turn using the outputs as parameters for sampling from the
variational posteriors. We collect these samples (or save the neural network
in SI-OBSDA) in the training procedure and use them at test time. When
a new unlabeled test data i comes in, we only need to generate posterior
samples for plt,i corresponding to the collected posterior samples for θlt
by (12) in the Supplementary to predict the label for the data point by (10).

2.5 A note on experimental setup for performance
evaluation

In the next section, we describe in details the different datasets, experiment
setups, and baselines we have used for comparison analysis. We would
like to emphasize that in each Monte Carlo run, the training and test sets
are completely independent and do not share any samples/patients. The
methods that need hyperparameter tuning only use the training set for
doing so.

3 Results

3.1 Data

We evaluate the performance of our OBSDA and SI-OBSDA for subtyping
lung cancer using several RNA-Seq datasets from The Cancer Genome
Atlas (TCGA) (Hutter and Zenklusen, 2018). In our experiments, we
consider RNA-Seq data from two subtypes of non-small cell lung
cancer (NSCLC), lung adenocarcinoma (LUAD) and lung squamous cell
carcinoma (LUSC) as the target domain. According to the American
Cancer Society statistics, lung cancer is the second most commonly
diagnosed cancer and the leading cause of cancer death in both men and
women in the United States. About 84% of lung cancers are NSCLC and
LUAD and LUSC combined account for about 70% of lung cancers.

We examine the target lung cancer subtyping accuracy by ours and
other competing methods, focusing on evaluating their performances when
using additional RNA-Seq data from three different source domains that
either share the same class labels with or have different ones from the
target domain. Specifically, we take RNA-SeqV2 dataset, which is from the
second analysis pipeline, for LUAD and LUSC as the first source domain,
RNA-Seq data from Head and Neck Squamous Cell Carcinoma (HNSC)
as the second source domain, and data from the two most common types
of kidney cancers, kidney renal clear cell carcinoma (KIRC) and kidney
renal papillary cell carcinoma (KIRP) as the third source domain. Clearly,
the degree to which the source domain may help lung cancer subtyping
vary for these three different source domains. One is from the data with
the same subtypes but different NGS pipelines, while the other two are
from studies concerning different cancer types with one and two classes
in each domain.

For SI-OBSDA we use the gene-gene network containing only physical
interactions (the human interactome) archived in Menche et al. (2015) as
the network prior knowledge. The network, which features 13460 proteins
interconnected by 141296 interactions, does not include interactions
extracted from gene expression data, and has been compiled by combining
experimental support from several databases including protein-protein
and regulatory interactions, signaling interactions, metabolic pathway
interactions, and kinase-substrate interactions. In the experiments, we
consider equal weights for the edges in SI-OBSDA, and set them to either
1 or 0.25 based on the accuracy of the inferred model on the training
data. For SI-OBSDA, in all the experiments we take ε to have the same
cardinality of ψ, and Tω(ε) as a neural network with three hidden layers
(more implementation details available in the Supplementary).

In the following experiments, we first pick the common genes within
the target and source datasets and the prior network knowledge, resulting
in 11839 genes. We then remove the genes that have total read counts of
less than 40 across the LUAD and LUSC samples in the target domain.
Finally, we perform differential expression analysis with DESeq2 (Love
et al., 2014) and select 500 out of the top 2500 genes with the highest log-
fold change (with gaps of 5) in each experimental run for all the methods
for fair comparison.

3.2 Baselines

As the baselines for comparing lung cancer subtyping accuracy, we apply
SVM (with both Gaussian and linear kernels), regularized linear SVM,
and regularized logistic regression on the data from the target domain.
We also use a neural network (NN) classifier as an additional baseline.
The architecture of the network is kept the same as the neural network
utilized in the inference mechanism of SI-OBSDA (explained in detail in
the Supplementary) to have a fair comparison for evaluating the proposed
models. The only architectural difference is that the NN classifier takes the
expression data as input and outputs the logit (log-odds). In the first setup
with the source domain having the same labels as the target domain, we
train these baselines once only using the training data in the target domain,
and once using the collection of source and target training data. We tune the
hyperparameters of each baseline classifier in each run given the training
data with Bayesian optimization (Shahriari et al., 2015; Frazier, 2018) and
the cross-validation loss as the objective function.

To compare the performance of our method in terms of domain
adaptation and learning useful information from source domains for
designing a predictor in the target domain, there are two other methods that
can provide good comparisons that can be applied for domain adaptation
and transfer learning on NGS count data for comparisons. Optimal
Bayesian transfer learning (OBTL) (Karbalayghareh et al., 2018, 2019)
is a supervised transfer learning method that models the relationship
between the same classes across domains by assuming joint priors and
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marginalizing the joint posterior over the source domain parameters.
Unfortunately, this method is not scalable to more than 10 to 20 genes,
so we could not perform comparisons with it. BMDL (Hajiramezanali
et al., 2018) is a multi-domain learning method that projects the data from
different domains to a lower dimensional common embedding space, and
applies a classifier on the projected space. It has been shown that BMDL
outperforms other similar Bayesian latent models on the NGS classification
problem. Thus, we choose BMDL as the state-of-the-art baseline for our
experiments on domain adaption for RNA-Seq data.

3.3 Results and discussion

3.3.1 LUAD and LUSC data in source and target domains
In this setup, we compare the performance of different methods when
the source and target domains have data from the same cancer subtypes.
The target domain contains 162 and 240 samples from LUAD and LUSC,
respectively. In each run, we randomly pick 20 samples in total from the
target domain for training by stratified sampling, and use the rest of the
samples in the target domain for testing. The source domain contains 414
and 312 samples from LUAD and LUSC, respectively, where we perform
stratified sampling (considering the source proportions) for different
number of training samples from the source domain. We investigate the
performance of OBSDA, BMDL, regularized logistic regression (Reg
Log), regularized linear SVM (Reg SVM), kernel SVM (SVM), and neural
network classifier (NN) using three different numbers of source samples,
564, 112, and 11. This setup covers a wide range of source samples, from
a few training samples from source (nearly half of target training samples)
to around 5.5× and 28× the number of target samples in the training data.
Note that in this experiment, since the labels are the same across domains,
we train the single-domain baseline methods once utilizing the collection
of all the training data from both domains and once only the target domain’s
training data.

The results in Figure 2 show that OBSDA achieves the best
performance compared with the baselines by effectively borrowing
information from the source data. We can see that OBSDA’s error in
classifying subtypes in the target domain consistently decreases as the
number of source samples increases. On the contrary, BMDL seems to
suffer when the source samples drastically dominate the target samples in
the training data, which is undesirable for domain adaptation. We can also
observe this adverse effect of having a lot more source samples than target
samples in the training data on the NN classifier, where the results show
that the proposed methods outperform the NN classifier for all the numbers
of source samples. This confirms that neural networks are not specifically
fit to use on smaller datasets and indicates that explicitly modeling for
learning useful information from other domains for the target domain is
required when facing smaller (target) sample sizes.

Next, we test the performance of SI-OBSDA that incorporates
constraints on the latent space stemming from the prior knowledge within
a flexible variational inference in this experiment setup. As seen in Figure
2, similar to OBSDA, SI-OBSDA’s error also consistently decreases as
the number of source samples increases. The results in Table 1 show
around 1% to 3% improvement compared with OBSDA and 4% to 5%

difference from BMDL, demonstrating that SI-OBSDA can achieve the
best performance by incorporating prior knowledge as well as learning
useful information across domains.

It is worth noting that SI-OBSDA and OBSDA also show relatively
lower variance across the experimental runs, i.e. a more robust
performance, compared with the other methods.

3.3.2 LUAD and LUSC data only in the target domain
In this section, we examine the performance of different methods using
data from source domains that do not have labels in common with the data

Fig. 2. Average performance of different methods in identifying cancer subtypes of LUAD
vs LUSC using different number of source samples. (t) and (t & s) correspond to using only
target samples, and source and target samples in training, respectively.

from the target domain. We consider HNSC data as one source domain
and kidney cancer data (KIRC and KIRP) as another source domain. The
HNSC dataset contains 294 samples, and the kidney cancer dataset consists
of 537 KIRC and 14 KIRP samples. We have selected these datasets from
different cancer types as the source domain since the degree to which they
may help detecting the lung cancer subtypes may be different due to the
different disease mechanisms. Moreover, another difference is the number
of labels in each source domain with one domain only containing data with
one label (HNSC), and the other containing data with two labels (KIRC
and KIRP). Similar to the previous section, in each Monte Carlo run we
do stratified sampling for training data from the target domain, randomly
picking 20 training samples from the target domain. For the lower and
higher number of source samples (NS = 11 andNs = 112), two random
or all the 14 KIRP samples are selected for training, respectively, with the
rest of the source training samples coming from KIRC.

Table 1. Average errors (in % ± standard deviations) in identifying subtypes
of LUAD vs LUSC with the source domain containing samples from the same
subtypes.

Method Ns = 11 Ns = 112

SI-OBSDA 12.10± 0.81 10.92± 0.47

OBSDA 14.57± 0.64 11.91± 1.09

BMDL 17.42± 1.66 15.58± 1.19

Reg Log (t & s) 26.63± 2.92 19.60± 3.18

Reg SVM (t & s) 19.22± 5.64 17.92± 1.56

SVM (t & s) 17.07± 4.53 17.69± 1.23

NN (t & s) 18.39± 3.63 14.89± 1.33

Reg Log (t) 29.31± 4.41 29.31± 4.41

Reg SVM (t) 20.01± 2.57 20.01± 2.57

SVM (t) 21.97± 2.67 21.97± 2.67

NN (t) 18.91± 3.26 18.91± 3.26

The results in Table 2 demonstrate that both SI-OBSDA and OBSDA
outperform BMDL when the source domain contains data of different
cancers from the target domain by close to 5% to 7% under different
settings. We can attribute this to BMDL not leveraging label information in
the latent representation learning stage. Comparing the numbers in Tables
2 and 1, we see that all the methods that use data from both source and target
domains still perform better than the other baselines using only the target
domain data in training. Similar to the previous experiment, SI-OBSDA,
which leverages the prior network knowledge in addition to the expression
data within its flexible variational inference, achieves the best accuracy
in classifying subtypes in the target domain. It is interesting to note that
OBSDA and SI-OBSDA both benefit from more samples from the source
domain in training, even though they are from different cancer types. This
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verifies the benefit of our proposed approach in modeling that can borrow
useful information from other domains and labels for the prediction task
in the target domain. Also, the results in Tables 2 and 1 show that, as
expected, when the source contains data from the same labels as the target
domain, SI-OBSDA and OBSDA generally achieve better accuracy for the
same number of source samples used in training. Additionally, when the
data from the source are for different cancers from the target domain, the
decrease in prediction error in the target domain is slower when increasing
the number of source samples, compared with the case of source domain
containing data from the same disease.

Table 2. Average errors (in % ± standard deviations) in identifying subtypes
of LUAD vs LUSC with the source domain containing samples from different
labels.

Source sample size Ns = 11 Ns = 112

Source domain HNSC
SI-OBSDA 12.56± 0.87 11.85± 0.77

OBSDA 13.48± 0.95 13.02± 0.47

BMDL 17.32± 3.38 17.75± 3.13

Source domain KIRC,KIRP
SI-OBSDA 12.17± 0.88 12.23± 0.65

OBSDA 14.59± 1.70 14.20± 0.67

BMDL 19.81± 1.76 17.82± 2.33

3.3.3 Effect of incorporating prior knowledge
The results in the previous experiments showed that SI-OBSDA, which
takes advantage of flexible variational posteriors and the gene-gene
network prior knowledge, outperforms OBSDA and the baselines. Here,
we examine the effect of the incorporation of the constraints coming from
prior knowledge within the inference optimization on the performance of
SI-OBSDA. Table 3 shows the results of SI-OBSDA with and without using
prior knowledge for the different settings of source domain and number
of source samples. The results suggest that SI-OBSDA generally benefits
from the prior network knowledge by varying degrees for different setups.
Note that by comparing the numbers in Table 3 with the numbers in Tables
1 and 2, we see that without incorporating the prior constraints on the
latent space, SI-OBSDA attains errors that are still comparable or slightly
lower than OBSDA in most cases while being better than BMDL by 4%

to 7%.

4 Conclusions
In this paper, we propose a new Bayesian domain adaptation framework for
leveraging labeled data from other domains for next-generation sequencing
(NGS) count data, and develop OBSDA with an efficient Gibbs sampler.
Compared to existing methods for domain adaptation and transfer learning,
OBSDA has the following features: It uses label information across
domains for transfer learning compared with unsupervised models. It
models the relationship between different domains as well as different
classes in one domain, contrasting with existing supervised methods that
are restricted to the cases requiring domains having the same labels. It
can leverage data from domains containing no common labels with no
negative effect on the learning task for the target domain. In addition,
when analyzing NGS data, it does not need any ad-hoc normalization of
the counts due to its generative nature.

Moreover, we introduce SI-OBSDA, where flexible variational
distributions are formed by using neural networks as an implicit generator.
We propose incorporating prior knowledge in terms of gene-gene network
connectivity as constraints imposed on the latent embedding to construct
informed approximate posteriors to improve the performance.

Our experiments on the real-world RNA-Seq data show that by sharing
information across domains and labels, OBSDA achieves the best cancer
subtype identification performance compared with methods using only
target domain data and other methods that try to use all the domains’
data. Additionally, the results show that by incorporating the prior
knowledge, SI-OBSDA can further improve the subtype identification
accuracy. Incorporating more diverse prior knowledge in a principled way
for transfer learning and domain adaptation is a promising direction for
further exploration in our future work.

Table 3. Comparison of SI-OBSDA and SI-OBSDA without prior knowledge
(SI-OBSDA w/o Prior) in terms of average errors (in %) in identifying subtypes
of LUAD vs LUSC with different source domain settings.

Method SI-OBSDA SI-OBSDA w/o Prior

Lung source data
Ns = 11 12.10 13.09
Ns = 112 10.92 12.04

HNSC source data
Ns = 11 12.56 13.28
Ns = 112 11.85 12.83

Kidney source data
Ns = 11 12.17 12.90
Ns = 112 12.23 13.02
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