
Object Allocation Pattern as an Indicator for Maliciousness - An
Exploratory Analysis

Adamu Hussaini
ahussa7@students.towson.edu

Towson University
Towson, Maryland, USA

Bassam Zahran
bzahran@towson.edu
Towson University

Towson, Maryland, USA

Aisha Ali-Gombe
aaligombe@towson.edu

Towson University
Towson, Maryland, USA

Abstract
Traditionally, Android malware is analyzed using static or dynamic
analysis. Although static techniques are often fast; however, they
cannot be applied to classify obfuscated samples or malware with a
dynamic payload. In comparison, the dynamic approach can exam-
ine obfuscated variants but often incurs significant runtime over-
head when collecting every important malware behavioral data.
This paper conducts an exploratory analysis of memory forensics
as an alternative technique for extracting feature vectors for an An-
droid malware classifier. We utilized the reconstructed per-process
object allocation network to identify distinguishable patterns in
malware and benign application. Our evaluation results indicate
the network structural features in the malware category are unique
compared to the benign dataset, and thus features extracted from
the remnant of in-memory allocated objects can be utilized for
robust Android malware classification algorithm.
ACM Reference Format:
Adamu Hussaini, Bassam Zahran, and Aisha Ali-Gombe. 2021. Object Allo-
cation Pattern as an Indicator for Maliciousness - An Exploratory Analysis.
In Proceedings of the Eleventh ACM Conference on Data and Application
Security and Privacy (CODASPY ’21), April 26–28, 2021, Virtual Event, USA.
ACM, New York, NY, USA, 3 pages. https://doi.org/10.1145/3422337.3450322

Keywords: Memory; Forensics; Android; Exploratory analysis

1 Introduction
Android-based devices such as mobile phones, smartwatches, cars,
glasses, and TVs have continued to dominate the market in the
last decade. Simultaneously, the number of Android applications
in the official Google play store alone is estimated to be more than
2.8 million[1] as of April 2020. On the contrary, the amount of
malware generated is more than twice the proportional number
of Android apps produced. According to the G DATA report[2],
there are 4.18 million malicious apps released in 2019 alone. Tra-
ditionally, Android apps are examined for malicious functionality
using static or dynamic approaches. In static analysis, extracted fea-
tures from the known malware code/package are compared against
new samples using signatures, heuristics, and other machine learn-
ing techniques. Although static analysis is often fast, it is limited
to examining known variants and unobfuscated samples. On the

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CODASPY ’21, April 26–28, 2021, Virtual Event, USA
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8143-7/21/04.
https://doi.org/10.1145/3422337.3450322

other hand, dynamic analysis involves executing target malware
in a contained environment and monitoring its behavior during
execution. Most Android-based dynamic analysis systems are de-
signed by placing hooks in a target application and/or the execution
environment to collect runtime data. Gathering every important
runtime behavioral data often incurs significant overhead; thus,
tools designed for this type of analysis make a tradeoff between
robustness and efficiency. This paper examines the feasibility of
applying memory forensics as an alternative approach to malware
analysis. We perform an exploratory data analysis that utilizes the
reconstructed Android process memory object allocation graph to
discover distinguishable statistical patterns in malware and benign
applications. Our evaluations of 14 memory images grouped into
malware and benign samples using univariate, multivariate, and
network analysis indicates that the memory allocation pattern in
Android malware has distinctive statistical features relative to the
benign samples.

2 Forensics Analysis
Memory forensics is a post-execution analysis technique that ex-
plores and recovers digital content allocated by process or the
Kernel during runtime. The emergence of memory analysis frame-
works and tools such as Volatility Framework[5], ReKall[6] and
research work such as OAGen[4] has widened the scope of digi-
tal forensics beyond digital crime investigations to the analysis of
sophisticated malware. This research explores a per-process mem-
ory analysis as an alternative technique to fingerprint Android
applications for malware analysis. When an application executes
at runtime, it creates a process. This process allocates multiple
data structures and code in regions of memory. Collectively the
allocated contents determine the functionality of the running pro-
cess. The memory image for a process is a snapshot of a running
process’s behavior at a point in time. Each snapshot has distin-
guishable characteristics that differentiate it from other snapshots
of different processes. Thus in this paper, we explore whether a
reconstructed memory allocation graph of a process can be a useful
and distinguishable pattern in malware classification and detection.
We employ Droidscraper[3] and OAGen[4] as memory recovery
tools to reconstruct 14 memory images and then utilize various
exploratory data analysis techniques as a conceptual methodology
to understand various aspects of the graphs’ structures.

3 Study Design
We run 14 applications comprising 7 benign apps and 7malware in a
Samsung S8 AVD created in a Genymotion emulation environment.
The AVD was configured with one Gmail account, a couple of SMS
and contacts, and an activated location coordinates. The test apps
were manually executed for about 15 minutes each, with all the

Poster Session CODASPY '21, April 26–28, 2021, Virtual Event, USA

313

https://doi.org/10.1145/3422337.3450322
https://doi.org/10.1145/3422337.3450322

requested permissions approved. Each target app’s process image
is then extracted using memfetch[7]. As shown in the workflow in
Figure 1, we employed DroidScraper - a tool for recovering valuable
runtime data structures for Android applications by enumerating
and reconstructing allocated objects from a process memory im-
age. DroidScraper is used to retrieve each process’s heap allocation
from the memory image. Furthermore, the OAGen tool is utilized
to reconstruct the entire allocation into an object allocation graph.
OAGen is a post-execution and semantic analysis algorithm that
utilizes points-to analysis to generate an object allocation graph
from a process memory image. OAGen reconstructs each object
allocation graph as an undirected graph with nodes representing
allocated objects and edges representing the relationship between
the objects in memory. The overarching objective of this study

Figure 1: The Study Workflow

is to investigate whether the memory allocations graph’s statisti-
cal features can indicate maliciousness in Android apps. We apply
univariate, multivariate and network analysis to explore unique
patterns in the memory images obtained from malware and benign
samples. For each recovered network, the number of nodes and
edges in the graph were carefully recorded. The nodes represent
allocated objects, and edges represent the relationship between the
objects in memory as shown in Table1. Other distinctive statistical
features for the graph, such as community detection, network di-
ameter etc were obtained by analysing the structure of the object
allocation network.

Table 1: The Object Allocation Graph (OAG) generated from
the sample apps evaluated in this study. The number of
nodes represents the total allocated objects, and the num-
ber of edges showed the relations between the objects in the
graph.

Applications Number of Nodes Number of Edges
Chromium 33081 59425
Evolve_sms 46516 86621
Messaging 102855 137042
Signal 270246 199087
Whatsapp 272841 341715
Keeper 281865 331865
Facebook 364598 285355
Tencent 23316 41393
Yandex 23532 39607
Monkey 25314 44756
Yxxinglin 26178 50362
Easyhin 40541 56087
Peaksel 40573 68112
Husor 42325 63944

Figure 2: Univariate Analysis illustrating the difference in
the number of nodes (objects allocated) in malware and be-
nign applications

3.1 Univariate Analysis
Univariate analysis is one of the simplest forms of statistical analy-
sis that involves only one variable. It can be either Inferential or
descriptive. It helps us explore patterns in a dataset by looking at
the range of values and the values’ central tendency. In this eval-
uation, we plot a line chart to show the difference between the
number of nodes in malware and benign applications. As shown in
Figure 2, benign applications have more nodes, which corresponds
to larger objects allocations than the malware samples. Thus, to
solve a classification problem using this variable, a specific number
of nodes can be set as a threshold to indicate whether an Android
app is likely to be malware or benign.

3.2 Multivariate Analysis
One of the significant limitations of Univariate analysis is that it
cannot be applied to solve correlation problems, and hence may not
be comprehensive and appropriate for malware classification. Thus,
in this evaluation, we explore multivariate analysis to find the rela-
tionship between nodes and edges in the object allocation graph.
This type of analysis involves observing multiple variables at a
particular time. Multivariate analysis is applied in scenarios where
more than one quantity is required for analysis, and the relation-
ship between the observed quantities and their overall structural
features is crucial. As mentioned above, the nodes in the object
allocation graph represent the number of objects, while the edges
represent the nodes’ relations. This evaluation plots a scattered dia-
gram for the number of nodes and edges in malware versus benign
applications. We computed the R-squared value to examined the
goodness of fit for the relationship. Figure 3, showed a linear rela-
tionship between a number of nodes and edges for both malware
and benign applications. In addition, the R-squared value for the
malware is estimated at around 0.85 and 0.79 for the benign apps,
thus indicating that the relationship between the two variables is
strong.

3.3 Network Analysis
In addition to finding the relationship between nodes and edges, it
is also important to further examine additional structural features
and patterns exhibited by the object allocation network. Network
analysis is a statistical approach used to explore the organization,
structural features, and distinctive relationship between nodes in
a network. The techniques used in network analysis range from

Poster Session CODASPY '21, April 26–28, 2021, Virtual Event, USA

314

Figure 3: Multivariate Analysis illustrating the relationship
between the two variable - number of nodes and number of
edges in malware and benign applications

community structure detection, determining the longest and short-
est network paths, to exploring different centrality and clustering
metrics. In this study, we apply different network analysis metrics
to our evaluation dataset. The objective is to evaluate if the network
structure in malware has some distinctive characteristics in compar-
ison with the networks in the benign category. As shown in Table 2,
the results indicate that benign applications have larger, loosely con-
nected communities, while the malware has much smaller, tightly
neat communities. Furthermore, the network diameter, which rep-
resents the longest path in the network between two nodes, is
slightly higher in benign applications than in the malware category.
Other metrics did not show any significant difference. This result
showed that the size and structure of a community in an object
allocation network could be an important feature in classifying and
determining maliciousness in Android apps.

Table 2: Network Analysis Metrics for the Object Allocation
Graph in the Malware and Benign Samples

Metrics Benign Malware
Communities 71837 4471
Average Degree 2.35 3.24
Network Diameter 41 33.86
Weakly Connected Components 71511 4446
Avg. Clustering Coefficient 0.07 0.08
Eigenvector Centrality 1.15 0.32
Avg. Path Length 45.07 7.99

Figure 4: Community Detection in Object Allocation Graphs

4 Community Detection
A community structure within a network is a group of nodes and
edges densely connected. This information provides insight into
a network and, more profoundly, can be used to uncover interest-
ing properties shared by the members of any group within the
community. Community detection metric has become an increas-
ingly crucial technique for finding patterns and behaviors in many
research fields such as Mathematics, Economics, Biology, Neuro-
science Computer Science, etc. Community detection is especially
important in understanding how complex networks are organized
and function. Given the complexity and size of a process memory al-
location graph, community detection can be utilized to group nodes
into substructures with dense connections internally. As shown in
the object allocation graph in Figure4, each community represents
an object dependency substructure with different colors depicting
a separate community. The substructure represents objects that are
closely related and, in most cases, depend on other objects in the
community or are part of the fields of the objects in that commu-
nity. This object dependency substructure thus forms a distinctive,
cohesive functionality of the running process and, thereby, can be
utilized to identify distinguishable patterns in a network. As part
of the future work, we aim to apply a Graphical Neural Network
(GNN) algorithm for community detection as a technique for robust
malware classification.

5 Conclusion and Future Work
In this paper, we present an exploratory data analysis to determine
if the structural features in a process object allocation network
can be used to determine maliciousness in android apps. We con-
duct a post-morterm reconstruction of memory images from 14
applications into object allocation networks and then employ uni-
variate, multivariate, and network analysis on each graph. The
evaluation results indicate that object allocation networks in mal-
ware and benign applications have distinct network characteristics
and thus provide alternative features for malware classification. In
our proposed future work, we intend to apply GNN for community
detection on a much larger dataset for malware classification.

6 Acknowledgement
This work is supported by the National Science Foundation (NSF)
under Grant Number 1850054.

References
[1] Smartphone Market Share. Accessed: Apr. 30, 2020. [Online]. Available:

https://www.idc.com/promo/smartphone-market-share/os
[2] G. Data Software, “G DATAMobile Malware Report 2019: New high for malicious

Android apps”, [Online]. Available: https://www.gdata-software.com/news/g-
data-mobile-malware-report-2019-new-high-for-malicious-android-apps

[3] A. Ali-Gombe, S. Sudhakaran, A. Case, and G. G. Richard, “DroidScraper: a tool
for Android in-memory object recovery and reconstruction,” in Proceedings of
the International Symposium on Research in Attacks, Intrusions and Defenses,
pp. 547–559, Beijing, China, October 2019.

[4] A. Ali-Gombe, A. Tambaoan, A. Gurfolino, and G. G. Richard, “App-Agnostic
Post-Execution Semantic Analysis of Android In-Memory Forensics Artifacts,
“In Annual Computer Security Applications Conference (ACSAC), Austin, USA,
December 2020.

[5] Volatility Foundation. 2017. Volatility Command Reference.
https://github.com/volatilityfoundation/volatility/wiki/Command-Reference.
Available:accessed 21-March 2018].

[6] Google, 2016. Rekall. https://github.com/google/rekall.
[7] Michal Zalewski. 2003. Memfetch. https://github.com/citypw/lcamtuf-memfetch

[Online; accessed 17-March 2018].

Poster Session CODASPY '21, April 26–28, 2021, Virtual Event, USA

315

	Abstract
	1 Introduction
	2 Forensics Analysis
	3 Study Design
	3.1 Univariate Analysis
	3.2 Multivariate Analysis
	3.3 Network Analysis

	4 Community Detection
	5 Conclusion and Future Work
	6 Acknowledgement
	References

