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The dissolution of solids has created spectacular geomorphologies ranging from centimeter-
scale cave scallops to the kilometer-scale “stone forests” of China and Madagascar. 
Mathematically, dissolution processes are modeled by a Stefan problem, which describes 
how the motion of a phase-separating interface depends on local concentration gradients, 
coupled to a fluid flow. Simulating these problems is challenging, requiring the evolution 
of a free interface whose motion depends on the normal derivatives of an external field in 
an ever-changing domain. Moreover, density differences created in the fluid domain induce 
self-generated convecting flows that further complicate the numerical study of dissolution 
processes. In this contribution, we present a numerical method for the simulation of 
the Stefan problem coupled to a fluid flow. The scheme uses the Immersed Boundary 
Smooth Extension method to solve the bulk advection-diffusion and fluid equations in 
the complex, evolving geometry, coupled to a θ-L scheme that provides stable evolution 
of the boundary. We demonstrate 3rd-order temporal and pointwise spatial convergence 
of the scheme for the classical Stefan problem, and 2nd-order temporal and pointwise 
spatial convergence when coupled to flow. Examples of dissolution of solids that result in 
high-Rayleigh number convection are numerically studied, and qualitatively reproduce the 
complex morphologies observed in recent experiments.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

Mass exchange between material phases, as in melting, solidification, and dissolution, drives the evolution of the phase 
separating interface. When the driving dynamics are generated by diffusion or heat transfer, such interface-evolution prob-
lems are categorized as Stefan problems [1–3]. In the cases of solidification and melting, heat flux at the interface drives 
the boundary motion [3–5]; in the case of dissolution, molecular diffusion converts the solid into solute [3,6–9]. The rate 
at which melting or dissolution occurs depends on the distribution of heat or concentration in the fluid phase, and this 
distribution is typically governed by an advection-diffusion equation.

These processes cannot be fully described by the classical Stefan problem alone: diffusion of heat/solute induces den-
sity changes in the fluid, causing buoyancy driven flows that reorganize the temperature/concentration fields [10,11]. These 
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rearrangements induce Rayleigh-Taylor [12] and Rayleigh-Bénard convection [13] and hence enhance the interfacial melt-
ing/dissolving rate [5,7,9], further complicating the interfacial dynamics. These complex dynamics have been shown to 
generate fascinating pattern formations such as the scalloping of icebergs [14], the roughening of dissolving surfaces [7–9], 
and the sharpening of dissolving pinnacles [15].

A significant body of literature exists for the numerical solution of Stefan problems, including schemes based on the level-
set method [16–21], phase field method [5,19], and others [19,22]. In this paper, we seek to construct a scheme for solving 
the Stefan problem with convection in a high Reynolds number fluid. While difficulties are numerous, the two primary ones 
stem from the fact that (1) it has been observed that these problems typically generate flows and interfacial boundaries with 
fine length-scales; (2) the boundary evolution depends on gradients of computed quantities at the boundary [7–9]. The first 
difficulty demands a high resolution scheme that can accommodate a moving boundary, and thus a natural choice is to 
use an embedded boundary method. These schemes embed the complex and evolving boundary in a larger, geometrically 
simple domain, enabling the use of many of the fast and robust methods for solving partial differential equations (PDE) 
that have been developed for regular domains. Unfortunately, most embedded boundary schemes, such as the Immersed 
Boundary Method [23], fail to accurately capture the gradient of unknowns at the boundary. For the Immersed Boundary 
Method as applied to the diffusion equation, for example, normal derivatives of the concentration field are inconsistent at 
the boundary [24]. The use of such a method would thus yield inaccurate dynamics of the phase interface.

To construct an accurate, fast, and stable solver, we leverage the recent development of the Immersed Boundary Smooth 
Extension (IBSE) method [24–26], an embedded boundary scheme that accurately captures derivative information at the 
boundary. The bulk advection-diffusion equations for heat/solute transport and the Navier-Stokes equations are solved using 
the IBSE method in the evolving fluid region. The interfacial boundary dynamics is solved using the θ -L method [27–29]
and the Gibbs-Thomson effect is added to stabilize its long-time evolution. The solver is accurate (at least second-order 
pointwise in space), efficient and stable – allowing for high resolution of flow and boundary features, as well as long-time 
simulation of complex phenomena. We validate the solver through comparisons to analytic solutions and refinement studies, 
demonstrate that it reproduces classical instabilities, and use it to analyze the formation of complex surface morphologies 
and fluid flows for a dissolving solid.

This paper is organized as follows. In Section 2 we define the Stefan problem for melting and dissolution, and discuss 
its coupling to an external fluid. In Section 3, we describe the IBSE-Stefan solver; including a review of the IBSE method in-
troduced in [24,25], as well as the θ -L method, introduced in [27–29]. In Section 4, we describe the numerical method and 
discuss important details of the specific implementation. In Section 5, we compare the numerical solution of a Stefan prob-
lem without convection to an analytic solution and show that the solver captures the Mullins-Sekerka instability, resolving 
complex dynamics of the solid interface. In Section 6, we show several examples of dissolution coupled with Navier-Stokes 
flows. Sweeping across a range of Reynolds and Péclet numbers, we explore which control parameters are most predictive 
of pattern formation on the interface and identify that the Rayleigh number governs the regimes of shape dynamics. In 
Section 7, we discuss the scope and limitations of our numerical method, and demonstrate that our study qualitatively 
reproduces phenomena seen in recent experiments [7,8].

2. Stefan problem coupled with natural convection

2.1. Stefan problem

The classical Stefan problem models the diffusion of heat between two phases of a substance that are separated by a 
phase interface �, along with the evolution of that interface. Physically, one phase corresponds to a solid domain �solid as 
shown in Fig. 1 that solidifies from or melts into its liquid phase, depending on the direction of heat flux. In the liquid 
phase �liquid , the heat transfer is modeled by the heat equation

∂T

∂t
= ∇ · (K∇T ) in �liquid. (1)

Here T (x, t) is the temperature field and K is the thermal diffusivity of the liquid phase. The solid phase is typically assumed 
to have infinite thermal conductivity so that

T = Tm in �̄solid, (2)

where Tm is the melting point of the solid. This condition provides a boundary condition for Eq. (1): T = Tm on � ⊂ �̄solid .
When the liquid temperature is greater than Tm the solid melts into the liquid and the boundary recedes. If the liquid 

temperature is lower than Tm , which means the liquid is in an undercooled state, solidification occurs at the boundary and 
the solid grows. This motion is a consequence of Fourier’s law of heat transfer, which specifies that the rate of material 
transfer is proportional to the heat flux f = −Kρcp∇T , with ρ and cp the liquid density and specific heat, respectively. 
Combining Fourier’s law with the conservation of mass leads to a normal boundary velocity Vn(s) = −(K cp/l)∂T /∂n at the 
interface, where l is the latent heat of the liquid.

In the following, we assume that the solid and liquid are defined in the periodic domain T 2 = [0, 2π ] × [0, 2π ] and the 
solid domain �solid is simply connected, as shown in Fig. 1(a). The moving interface �(t) between the solid and liquid phases 
2
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Fig. 1. Schematic for the periodic computational domain T 2 = [0, 2π ] × [0, 2π ]. The solid phase is shown in gray and the liquid phase is shown in white. 
(a) For the classical Stefan problem without the presence of flow, the solid domain �solid and liquid domain �liquid are separated by the evolving interface 
�(t). (b) For the Stefan problem with flow, the gravity g induces convection. Rigid walls �wall are added to bound the liquid domain from above and below.

is assumed to be smooth, and parameterized by the arclength parameter s ∈ [0, L), where L(t) gives the circumference of �. 
Rescaling time as t′ = t/K , temperature as c = (T − Tm)/�T (where �T = max

t=0
(|T − Tm|)), and dropping the ′ notation on 

t gives the dimensionless equations

∂c

∂t
= �c in �liquid, (3a)

c = cm on �(t), (3b)

Vn = β
∂c

∂n
on �(t), (3c)

c(x,0) = c0 in �liquid. (3d)

It may appear that there is one too many boundary conditions for c. Note however that one serves to fix c, while the 
other defines the evolution of the time-dependent interface �. Only one parameter – the Stefan number β = −cp�T /l
– controls the dynamics of the dimensionless system. For the solidification problem (c0 ∈ [−1, 0], cm = 0 on �), it has 
been observed that the Stefan problem posed in Eq. (3) undergoes a Mullins-Sekerka instability, caused by rapid growth 
of the interface in high-curvature regions. These phenomena will be further demonstrated with numerical examples in 
Section 5.

It is worth noting that Eq. (3) also models the dissolution process, where the temperature field is replaced with the 
concentration field c ∈ [0, 1]. The parameter space in melting, solidification and dissolution is listed below.

Process β range of c0 cm

melting −cp�T /l [−1,0] 0
solidification −cp�T /l [0,1] 0
dissolution ρ/ρs [0,1] 1

The parameter ρs in the case of dissolution is the solid density. The Stefan number β is positive for dissolution pro-
cesses as lower liquid concentration c0 leads to dissolution hence Vn < 0; however β < 0 for the melting and solidification 
processes since lower liquid temperature leads to solidification and Vn > 0. In the following sections we will neglect to 
distinguish between the heat and the mass transfer problems, instead referring to them simply as Stefan problems.

2.2. The Stefan problem with natural convection

In the liquid phase, temperature or solute concentration differences lead to changes in the specific volume of fluid 
parcels, and hence the fluid density. These changes in density lead to the buoyancy driven convection that typically accom-
panies melting and solidification processes. Using the Boussinesq approximation [11,30], we treat the fluid as incompressible 
and subject to a buoyancy force B ∝ −cŷ that is proportional to the concentration difference. The concentration field c(x, t)
diffuses and is advected by the flow field u(x, t). The complete model in dimensionless form is given by

∂c

∂t
+ u · ∇c = 1

Pe
�c in �liquid, (4a)

∂u

∂t
+ u · ∇u = 1

Re
�u − ∇p − cŷ in �liquid, (4b)

∇ · u = 0 in �liquid, (4c)

Vn = β

Pe

∂c

∂n
on �, (4d)

u = 0, c = 1 on �, (4e)
3
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u(x,0) = u0(x), c(x,0) = c0(x) in �liquid. (4f)

In the experiments of dissolution that motivated this numerical study [7], dissolution occurred in a tank, with solid 
boundaries at the bottom (and an air-liquid interface at the top). To approximate these conditions, we place adiabatic 
walls �wall at the top and bottom of the domain so that the liquid is bounded from above and below but periodic in the 
horizontal direction; see Fig. 1(b). At these walls, fluid motion ceases and the walls are impermeable to the solute, i.e. 
we impose that u = 0 and ∂nc = 0 on �wall . The behavior of this system is controlled by the Reynolds number (Re) of 
the fluid and the Péclet number (Pe) of the advection diffusion equation, and the parameter β that governs the rapidity 
of boundary evolution. Because time is rescaled by the typical flow speed, the diffusivity is now 1/Pe instead of 1 in 
Eq. (3), and the Stefan number in this problem is β/Pe instead of β . These parameters are typically related to the Grashof 
number Gr and Prandtl (or Schmidt) number Pr (or Sc) as Re = √

Gr, Pe = √
GrPr (or 

√
GrSc) [31]. In heat transfer problems, 

Gr = αV gL3�T /ν2 and Pr = ν/K , with αV , g and ν the thermal expansion coefficient, acceleration due to gravity and 
kinematic viscosity respectively. In mass transfer problems, Gr = βV gL3/ν2 and Sc = ν/D , with βV , g , D and ν the relative 
density difference between the solid and the fluid, acceleration due to gravity, molecular diffusivity and kinematic viscosity 
respectively. As we will show later in Section 6, an important control parameter of dissolution under natural convection is 
the Rayleigh number Ra = GrSc = RePe = βV gL3/νD , which governs the regimes of dissolution shape dynamics.

For the familiar case of ice melting into water [4] at room temperature, Gr is in the range of 106 - 107, Pr is around 1 
and β is around 0.1, leading to a Reynolds number Re ∼ 103, a Péclet number Pe ∼ 103 and a Rayleigh number Ra ∼ 106. For 
candy dissolving into water [7], Gr is in the range of 108, Sc is around 103, and β is around 1, leading to a Reynolds number 
Re ∼ 104, a Péclet number Pe ∼ 107 and a Rayleigh number Ra ∼ 1011. The following table summarizes the definition and 
typical ranges of the parameters for these cases.

Process Gr Pr or Sc Re Pe Ra

melting or solidification αV gL3�T /ν2 Pr = ν/K
√

Gr
√

GrPr GrPr
typical range [4] 106 − 107 1 − 10 103 − 104 103 − 104 106 − 108

dissolution of sugar into water βV gL3/ν2 Sc = ν/D
√

Gr
√

GrSc GrSc
typical range [7] 108 − 1010 103 − 104 104 − 105 107 − 109 1011 − 1014

We remark that the u = 0 boundary condition given in Eq. (4e) is not exactly a no-slip condition because the interface 
is moving. However, in all simulations in this paper and most dissolution processes in nature, the Stefan number β/Pe 
 1. 
Since typical fluid velocities u are O(1), we assume that the boundary is in a quasi-steady state, and u = 0 is a good 
approximation of the no-slip condition.

2.3. Gibbs-Thomson effect

During melting, solidification, and dissolution processes, surface effects such as surface tension and molecular kinetics 
modify the dynamics of the interface. The classical Gibbs-Thomson effect [32,29] is an idealized way to summarize these 
surface effects: an additional term that dissipates high curvature regions is added to the normal boundary velocity,

Vn = β

Pe

∂c

∂n
− ε

(
κ∗ − 2π

L

)
on �, (5)

where κ∗ is the planar curvature and L is the total arclength of �. The Gibbs-Thomson effect causes faster dissolution 
to occur in regions where the local curvature κ∗ is higher than a mean curvature 2π/L [32,29]. With no phase-change 
driven boundary velocity [that is, the first term on the right-hand side in Eq. (5)], the Gibbs-Thomson effect simply drives 
the boundary to a steady form: a circular arc with curvature κ∗ = 2π/L everywhere. Physically, the Gibbs-Thomson effect 
comes from the balance between the energy of fusion – which represents the energy exchange during phase change – and 
the surface energy that is a function of the curvature κ∗ [32]. When the local curvature is high enough, the surface energy 
overcomes the energy of fusion and drives interfacial motion. Numerically, the Gibbs-Thomson effect defines a minimal 
spatial scale at which Mullins-Sekerka instabilities occur.

3. Numerical methods

Solving Eq. (4) presents two central difficulties: (1) solving the Navier-Stokes (NS) equations in the evolving domain 
�liquid, and (2) solution of the advection-diffusion equation for c in that same domain. Because the boundary evolution 
is itself driven by gradients of c, the quantity ∂c/∂n must be captured accurately at the boundary. We first discuss the 
Navier-Stokes equations. In 2D, the NS equations can be reformulated using the stream function ψ and the vorticity ω, as

∂ω

∂t
+ u · ∇ω = 1

Re
�ω − ∂c

∂x
in �liquid, (6a)

�ψ = −ω, u = ∇⊥ψ in �liquid, (6b)

ψ = ψn = 0 at � ∪ �w , (6c)
4
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where ∇⊥ = (∂y, −∂x). The driving term −∂c/∂x arises due to the Boussinesq approximation of the buoyancy forces, which 
appears as the term −cŷ in Eq. (4b). In this formulation, solution of the pressure field is no longer required, which typically 
poses difficulties due to the lack of boundary conditions. Nevertheless, the equations do not decouple: Equation (6a) lacks a 
boundary condition on ω, while there are two boundary conditions imposed on the stream function.

To efficiently discretize the full nonlinear system, we will treat the non-linear terms explicitly, and the linear terms 
implicitly. A full description of the timestepping scheme we use is given in Section 4; here we give a simplified description in 
order to introduce the various subproblems that must be solved. Representing the boundary � with its Cartesian coordinates 
X = (x, y) ∈ �, the simplest implicit-explicit time discretization is to combine the forward and backward Euler schemes:(

I − �t

Pe
�

)
ct+�t = ct − �t(ut · ∇ct) in �liquid, (7a)

(
I − �t

Re
�

)
ωt+�t = ωt − �t

[
ut · ∇ωt +

(
∂c

∂x

)t+�t
]

in �liquid, (7b)

�ψ t+�t = −ωt+�t,ut+�t = ∇⊥ψ t+�t in �liquid, (7c)

Xt+�t = Xt + �tVnn on �, (7d)

with boundary conditions on ψ t+�t and ct+�t as given in Eqs. (4) and (6). One can first evolve c, so that ct+�t is known 
and can be used explicitly in the RHS of the vorticity equation. For more general, timestepping schemes, the temporal 
discretization takes the form:

(I − σc�)ct+�t = fc(ct ,ut) in �liquid, (8a)

(I − σω�)ωt+�t = fω(ut,ωt, ct+�t) in �liquid, (8b)

�ψ t+�t = −ωt+�t in �liquid, (8c)

Xt+�t = f X (Xt,Xt+�t, Vn) on �. (8d)

Here σc, σω, fc , and fω depend on the choice of time discretization. There are thus two essential components required for 
evolving this system: (1) a scheme for evolving the interface � [Eq. (8d)], which will be introduced in Section 3.1, and (2) 
Modified-Helmholtz solvers for both the concentration evolution Eq. (8a) and the coupled Navier-Stokes system [Eqs. (8b)
and (8c)]. The methodology for solving these PDE will be introduced in Sections 3.2 and 3.3, as well as some technical 
considerations that arise when solving the fully coupled system.

3.1. θ -L method for boundary evolution

For a variety of boundary evolution problems, including the Stefan problem studied here, as well as problems with an 
interfacial surface tension, discretization and evolution of the boundary in Cartesian coordinates can lead to stability issues 
due to the fact that only the normal motion of the boundary � is fixed by the physics. Discretized boundary markers moved 
only according to the normal velocity typically clump or spread. To alleviate the issues that arise with a direct discretization 
of the boundary position, we instead use the θ -L method to discretize the boundary by the arclength s and tangent angle 
θ(s, t). This method is well-developed and has been used extensively for the study of 2D free-boundary problems in fluid 
dynamics [27–29,33,34]. We provide a brief overview of the method here.

Consider a domain as depicted in Fig. 1(a) where the boundary � has total arclength L. Given an arclength parameter 
s, we define a rescaled arclength α = s/L, with α ∈ [0, 1], where α = 0 corresponds to the top point. The boundary � can 
be parameterized by the tangent angle θ(α, t), the total arclength L, and the position of the top point, with the Cartesian 
coordinate recovered by solving ∂αX = (∂αx, ∂α y) = (L cos θ, L sin θ) and X(0) = (x0, y0) as the top point of the solid body. 
Evolution of the boundary X = (x(α), y(α)) is given by

∂X

∂t
= Vnn + V ss, (9)

where n and s are unit vectors along the normal and tangential direction at a given point on �. As the normal velocity Vn

governs the shape evolution, the actual shape dynamics of � are independent of the tangential velocity V s . We are thus free 
to add an arbitrary tangential velocity without altering the effective physics. One choice that preserves the equal-arclength 
distribution and keeps α and t as independent variables [29] is

V s =
α∫

∂θ

∂α′ Vn(α
′)dα′ − α

1∫
∂θ

∂α
Vn(α

′)dα′. (10)
0 0

5
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With Vn and V s specified, Eq. (9) can be written as

dL

dt
= −

1∫
0

∂θ

∂α
Vn(α)dα, (11a)

∂θ

∂t
= 1

L

(
∂Vn

∂α
+ V s

∂θ

∂α

)
. (11b)

In addition to evolving θ(α, t) and L(t), the motion of an anchor point is required to recover the absolute location of the 
boundary �. In this paper, we use the top point (x0, y0) as this moving anchor. These satisfy the equation

dx0

dt
= Vn(0) cos θ(t,0), (12a)

dy0

dt
= Vn(0) sin θ(t,0). (12b)

When the interface � is a smooth, closed curve, Eq. (11) can be solved accurately using a Fourier spectral method. When 
including the Gibbs-Thomson effect [Eq. (5)] in the boundary evolution, the θ equation is instead

∂θ

∂t
= 1

L

(
β

Pe

∂2c

∂n∂α
+ V s

∂θ

∂α

)
+ ε

L2

∂2θ

∂α2
. (13)

Thus the Gibbs-Thomson effect smooths the boundary by dissipating regions with high curvature.

3.2. IBSE k for solving Poisson and modified-Helmholtz equations

In this section we provide a basic outline of the Immersed Boundary Smooth Extension (IBSE) method, focusing on the 
details most relevant to the numerical scheme for the Stefan and dissolution problems studied in this paper. A careful 
analysis of the method is presented in [24,25]. The essential idea of this method is to find a smooth extension of the 
unknown solution from the physical domain to the entirety of a computationally simple domain, such that the first several 
derivatives of the unknown solution and its extension match across the physical boundary. To simplify the presentation, we 
first consider the inhomogeneous Poisson problem:

�u = f in �, (14a)

u = g on �. (14b)

One way to compute an inhomogeneous solution is to compute an extension of f from � to a larger domain C containing 
�, which we assume has a simple geometry. Perhaps the simplest choice of C , and the one used throughout this paper, is 
the periodic rectangle C = T 2 = [0, 2π ] × [0, 2π ], or a rescaled version of that domain. For this choice of C the Poisson 
operator may be rapidly inverted via the fast-Fourier transform. The physical domain of the equations is �, the exterior 
of that domain is E , and C = � ∪ E . Given a general extension f e ∈ Ck(C), u satisfies Eq. (14), up to a homogeneous 
correction, to O(hk+1) where h = 2π/N is the spatial resolution. There is significant freedom in choosing f e . One such 
choice is to define f e = �ue , where ue is an extension to the solution u of the PDE. In this case, u satisfies the PDE without
any homogeneous correction, although the extension f e must be determined implicitly, as the solution u, and hence its 
extension ue , is not known a priori. We describe some of the essential elements for computing u in this manner below.

Let � ∈ C be compact and simply connected, with smooth boundary � = ∂�. To facilitate generating the smooth exten-
sion ue of the solution u, as well as to impose boundary conditions on �, we will need to be able to communicate singular 
and hyper-singular force distributions known on � to the grid; and to interpolate values and derivatives of functions known 
on the grid to the discrete boundary nodes of �. Communication of singular forces is done through the spread operators 
S( j) as

(S( j) F )(x) = (−1) j
∫
�

F j(α)
∂ jδ(x − X(α))

∂n j
dX(α), (15)

while approximations of a function and its derivatives at � are computed via the interpolation operators S∗
( j):

(S∗
( j)ξ )(α) = (−1) j

∫
C

ξ(x)
∂ jδ(x − X(α))

∂n j
dx (16)

As is suggested by the notation, the spread and interpolation operators for the jth derivatives are adjoint to each other, 
and for j = 0 these operators reduce to the classical Immersed Boundary (IB) spread and interpolation operators [23]. The 
6
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interpolation operator S∗
( j) maps the jth normal derivative of a function ξ from the domain C to the boundary �, while the 

spread operator S( j) maps the hyper-singular forces from the boundary � back to the domain C . To simplify the notation 
for the rest of this study, we define the composite operators Tk, T ∗

k , and R∗
k as

Tk =
k∑

j=0

S( j), (17a)

T ∗
k =

(
S∗

(0)
S∗

(1)
· · · S∗

(k)

)ᵀ
, (17b)

R∗
k =

(
S∗

(1) · · · S∗
(k)

)ᵀ
. (17c)

The operator T ∗
k interpolates a function and its first k normal derivatives to the boundary; R∗

k provides an interpolation of 
the first k normal derivatives to the boundary, excluding the function value itself; the operator Tk spreads a set of singular 
forces (δ-like) and hyper-singular forces (like the first k normal derivatives of the δ-function) from the boundary to the 
domain.

To solve Eq. (14), a function η is found that smoothly extends the unknown solution u from � to C such that η ∈ Ck(C)

and the first k derivatives of u match the first k derivatives of η at the boundary: ∂ ju/∂ jn = ∂ jη/∂ jn for j = 1, . . . , k on �. 
There are many such extensions. We choose to compute η by solving a high-order PDE of the form Hkη = 0 in C , where Hk

is a differential operator with sufficient order to allow us to impose that the derivatives of η at the boundary match those 
of u. One such choice of Hk is the polyharmonic operator �k+1; this choice has a nullspace and is poorly conditioned; the 
specific operator Hk that we use will be defined in Section 4.2. The function η then serves to define a force in all of C , 
given by f e = χ� f + χE�η. Inversion of the periodic Laplace operator with this force provides a solution ue , smooth in 
C , that satisfies the boundary conditions and converges rapidly. The full formulation, which we will refer to as the IBSE-k
system, is given by:

�ue − χE�η = χ� f in C, (18a)

Hkη + Tk F = 0 in E, (18b)

R∗
kη = R∗

k ue, (18c)

S∗
(0)ue = g. (18d)

In [24], the IBSE-k formulation given in Eq. (18) has been verified to produce Ck(C) solutions that converge at a rate of 
O (�xk+1) for k = 1, 2, 3; and may be used for solving the Helmholtz and Modified-Helmholtz equations, by replacing �
with (k2 + �) and (k2 − �), respectively. In [25], the IBSE method was extended to solve the Stokes and Navier-Stokes 
equations. In the following sections, we will discuss how to modify these methods to provide a solver for the Stefan and 
dissolution problems.

3.3. Navier-Stokes equations coupled with concentration field

In order to solve the coupled dissolution problem with the IBSE method, we let the physical domain be � = �liquid and 
the extension domain be E = �solid , and define the modified Helmholtz operators:

Lω = (I − σω�), (19a)

Lc = (I − σc�). (19b)

Roughly speaking, these operators will be used to define solvers similar to the solver described in Section 3.2. Specifically, 
for the concentration Eq. (8a), we solve

Lcc − χELcηc = χ� fc in C, (20a)

Hkηc + Tk Fc = 0 in E, (20b)

R∗
k(ηc − c) = 0 at � ∪ �w , (20c)

S∗
(0)c = g at �, (20d)

S∗
(1)c = 0 at �w . (20e)

Next, we solve the Navier-Stokes equations, Eqs. (8b) and (8c), with the known concentration field c, by solving Eq. (20). 
In [25], the authors used a velocity-pressure formulation for solving fluid problems. Importantly, they noted that the best 
stability and error was achieved when the regularity of extensions matched those expected from derivative counting the 
7



J.M. Huang, M.J. Shelley and D.B. Stein Journal of Computational Physics 432 (2021) 110162
PDEs: that is, if u is extended to be Ck(C), then p should only be extended to be in Ck−1(C). We find similar phenomena in 
the streamfunction-vorticity formulation, and hence to find a velocity u = (u, v) in Ck(C), we choose to extend ω ∈ Ck−1(C)

and ψ ∈ Ck+1(C). Accordingly, the appropriate formulation is

Lωω − χELωηω = χ� fω in C, (21a)

�ψ − χE�ηψ + ω = 0 in C, (21b)

Hk−1ηω + Tk−1 Fω = 0 in E, (21c)

Hk+1ηψ + Tk+1 Fψ = 0 in E, (21d)

R∗
k−1(ηω − ω) = 0 at � ∪ �w , (21e)

R∗
k+1(ηψ − ψ) = 0 at � ∪ �w , (21f)

S∗
(0)ψ = 0 at � ∪ �w , (21g)

S∗
(1)ψ = 0 at � ∪ �w . (21h)

The unknowns are (ω, ψ, ηω, ηψ, Fω, Fψ). In the next section, we discuss details of the numerics.

4. Numerical implementation

4.1. Numerical scheme for the θ − L method

On the boundary �, the rescaled arclength α ∈ [0, 1) is discretized using equispaced points, and Fourier spectral (or 
pseudo-spectral) methods are used. The explicit equations in Eqs. (11) and (12) are integrated with a fourth-order Adam-
Bashforth method. At time t = m�t , Eq. (13) can be split into the non-stiff explicit part Em = (1/Lm)[(β/Pe)(∂2c/∂n∂α)m +
V m

s (∂θ/∂α)m] and stiff implicit part Im = [ε/(Lm)2](∂2θ/∂α2)m . For this equation, we use the fourth-order implicit-explicit 
(IMEX) Backward Differentiation formula and the fourth-order Adam-Bashforth formula:

Lm+1 = Lm + �t

24

(
55Vm

L − 59Vm−1
L + 37Vm−2

L − 9Vm−3
L

)
, (22)

25

12
θm+1 − 4θm + 3θm−1 − 4

3
θm−2 + 1

4
θm−3 = �t

[
Im+1 + 4Em − 6Em−1 + 4Em−2 − Em−3

]
. (23)

Here Lm = (Lm, xm
0 , ym

0 ) and Vm
L =

(
− ∫ 1

0
∂θ
∂α (m�t,α)Vn(m�t,α)dα, Vn(m�t,0) cos θ(m�t,0), Vn(m�t,0) sin θ(m�t,0)

)
. 

At timestep m + 1, the evaluation of Im+1 would require Lm+1, so the explicit integration of xm+1
0 , xm+1

0 and Lm+1 is 
performed first. θm+1 is then found via the Fourier method.

4.2. Discretization of spread, interpolation and extension operators

In this section, we define the discrete spread, interpolation and extension operators introduced in Section 3.2; we will 
not explicitly distinguish the discretized operators through different notation. Let δ̃ denote a regularized δ-function, defined 
by Cartesian products of regularized one-dimensional δ-functions. We define normal derivatives of δ̃ to be

∂ j δ̃

∂n j
= ni1 · · ·ni j

∂ j δ̃

∂xi1 · · · ∂xi j

, (24)

where repeated indices i j are summed according to the Einstein summation convention. Using the standard spectral dis-
cretization of the integral in Eq. (16), and replacing the δ function with its regularized equivalent, we define the discretized 
spread operator to be:

(S( j) F )(x) =
nbdy∑
i=1

F (αi)
∂ j δ̃(x − Xi)

∂n j
�s, (25)

Xi = X(αi) is the ith coordinate of the boundary and �s = L/nbdy (note that for arbitrary parametrizations, �s depends on √
X2

s + Y 2
s ; however, since we use an arclength parametrization, this is constant). The number of nodes in the quadrature 

is chosen so that �s ≈ 2�x. Choosing �s smaller yields better accuracy while choosing it larger yields better numerical 
stability. The number of boundary points is nbdy ≈ L/(2�x). Note that during the process of melting or dissolving, the 
number of boundary points nbdy must thus be updated as the total arclength L changes.
8
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The interpolation operator is then defined through the adjoint property 
〈
u, S( j) F

〉
C =

〈
S∗

( j)u, F
〉
�

, and is explicitly given 
by

(S∗
(m)u)(αk) =

N∑
i=1

N∑
j=1

uij
∂ j δ̃(xij − Xk)

∂nm
�x�y. (26)

Here the vector xij − Xk = (2π i/N − Xk,1, 2π j/N − Xk,2) points from the boundary point Xk ∈ � to the domain point xij ∈ C ; 
the gridspacing �x = �y = 2π/N .

The accuracy of these operators is analyzed in [24], and depends on the choice of the underlying regularized δ-function. 
We use the C3 function with a support width of 16�x defined in [24]; with this choice the interpolation operator provides 
fourth-order accurate approximations for the 0th to 3rd normal derivatives of smooth functions.

Finally, we must choose the extension operator(s) Hk used in Eqs. (20) and (21). This should be a high-order differential 
operator, so that a sufficient number of boundary conditions can be imposed. An obvious choice is the poly-harmonic 
operator of the appropriate order, but this is both poorly conditioned and has a null-space. Adding a scalar � remedies the 
nullspace, and its size may be used to control the condition number of the system that must be solved, at the expense of 
adding an artificial length-scale to the problem that must be resolved by the discretization:

Hk = �k+1 + (−1)k+1�(k,m). (27)

The choice of � depends on the smoothness k and the largest wave-number m present in the discrete Fourier transform 
on the discrete domain C E . The condition number of Hk is

κ = 1 + m2(k+1)

�
, (28)

while the intrinsic lengthscale introduced is �−1/2(k+1) . We choose � as

�∗ =
(

1

N�x

)2(k+1)

, (29)

as in [25]. Here N is a parameter that controls how many points are used to resolve the intrinsic lengthscale introduced by 
Hk; for all simulations in this paper N = 10 is used.

4.3. Smoothed characteristic functions χ̂E and χ̂� for stiff modified-Helmholtz problems

When solving the diffusion equation with a small diffusion coefficient and/or small timestep, time-discretization yields 
a modified Helmholtz problem with a very small Helmholtz parameter. In fact, this parameter is typically artificially small, 
in that it introduces a length-scale that is below any relevant to the physical problem. However, if this length-scale is not 
resolved, the standard IBSE solver may yield low-quality solutions, especially during brief transient phases (i.e. for small 
times t around the startup of a dissolution problem, when c jumps discontinuously from 1 to 0 across the interface, and 
diffusion has yet to have enough time to regularize the solution). Stability, although not accuracy, may be recovered in these 
circumstances by using smoothed, rather than sharp, characteristic functions χ̂� and χ̂E . The family of functions we adopt 
here are the Wendland functions [35]:

φl,m(r) =
{

1
�(m)2m−1

∫ 1
r s(1 − s)l(s2 − r2)m−1ds for 0 ≤ r ≤ 1,

0 for r > 1.
(30)

Here m is an integer controlling the smoothness of Wendland function, and l = �m + d/2� + 1 with d = 2 as the spatial 
dimension in our study. It can be shown that Eq. (30) produces a C2m(R+) function. We also define the integral of Wendland 
function as �(r) = ∫ r

−∞ φl,m(|s|)ds/ 
∫ ∞
−∞ φl,m(|s|)ds, so �(r) = 0 when r < −1 and �(r) = 1 when r > 1.

Throughout our study, we choose m = 2 and l = 4 so all functions involved are at least C4, and define the smoothed 
characteristic functions χ̂E and χ̂� as

χ̂�(x) = �(r+(x)/ds), (31)

χ̂E(x) = 1 − χ̂�(x). (32)

Here r+(x) is the signed distance between x and the boundary �, such that r+(x) > 0 when x ∈ � and r+(x) < 0 when 
x ∈ E . ds is a smoothing length-scale that is chosen to be 4�x. In general, ds should be small enough that the boundary 
layer structure can be sufficiently resolved.
9
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4.4. Inversion of the IBSE-k system using Schur complements

For the pure Stefan problem, Eq. (20) can be written in block form as⎛
⎜⎜⎜⎜⎜⎜⎝

Lc −χ̂ELc 0

0 Hk Tk

R∗
k −R∗

k 0

S∗
(0) 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

c

ηc

Fc

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

χ̂� fc

0

0

g

⎞
⎟⎟⎟⎟⎟⎟⎠

. (33)

As shown in [24,25], the size of this system can be reduced to knbdy × knbdy by computing the Schur complement (SC)

SC =
(

R∗
k −R∗

k
S∗

(0) 0

)(
Lc −χ̂ELc

0 Hk

)−1 (
0

Tk

)
. (34)

Equation (33) may then be reduced to

SC · Fc =
(

R∗
kL

−1
c χ̂� fc

S∗
(0)L

−1
c χ̂� fc − g

)
. (35)

During each time step, the m-th column of SC can be prepared by applying the RHS of Eq. (34) to a vector a such that 
a j = δ jm . Although this computation is relatively expensive and must be done knbdy times, it is embarrassingly parallel, 
significantly reducing the preparation cost of SC on a multicore system. Equation (35) can then be inverted to solve for Fc . 
Once Fc is known, we may find ηc and c:

ηc = (Hk)−1Tk Fc, (36a)

c =L−1
c (χ̂� fc + χ̂ELcηc). (36b)

It is worth noting that SC depends only on the boundary geometry, which is slowly changing in the Stefan problem. 
As the preparation of the SC is expensive, we seek to reuse it, effectively amortizing its formation cost over a num-
ber of timesteps. In the simulation, SC(m) is prepared at a time step m and decomposed into LU components such that 
L(m)U (m) = SC(m) . Since the boundary � changes slowly, M = (L(m)U (m))−1 serves as a good preconditioner for solving the 
linear system Eq. (35) for some number of timesteps. Once the SC fails to serve as an effective preconditioner, it is recom-
puted. Reformation of the SC is triggered by two criteria: (i) it takes too many iterations for GMRES to converge (more 
than 10 iterations in all examples in this manuscript); (ii) the boundary size nbdy is changed (since nbdy ≈ L/2�x and the 
arclength L is changing). We call recomputation of Schur complement a “SC renewal”. In Section 6.5, we show how often 
SC renewal happens for a particular simulation.

Next, the Schur complement for Eq. (21) is formed in the similar way. The discrete equation is

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Lω 0 −χ̂ELω 0 0 0

I � 0 −χ̂E� 0 0

0 0 Hk−1 0 Tk−1 0

0 0 0 Hk+1 0 Tk+1

R∗
k−1 0 −R∗

k−1 0 0 0

0 R∗
k+1 0 −R∗

k+1 0 0

0 T ∗
1 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ω

ψ

ηω

ηψ

Fω

Fψ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

χ̂� fω

0

0

0

0

0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (37)

To distinguish from SC, we define the Grand Schur complement (GSC) for this system,

GSC =
⎛
⎜⎝

R∗
k−1 0 −R∗

k−1 0

0 R∗
k+1 0 −R∗

k+1

0 T ∗
1 0 0

⎞
⎟⎠

⎛
⎜⎜⎜⎝
Lω 0 −χ̂ELω 0

I � 0 −χ̂E�

0 0 Hk−1 0

0 0 0 Hk+1

⎞
⎟⎟⎟⎠

−1 ⎛
⎜⎜⎜⎝

0 0

0 0

Tk−1 0

0 T

⎞
⎟⎟⎟⎠ . (38)
k+1

10
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Equation (37) becomes

(
GSC

)(
Fω

Fψ

)
=

⎛
⎜⎝

R∗
k−1 0

0 R∗
k+1

0 T ∗
1

⎞
⎟⎠

(
Lω 0

I �

)−1 (
χ̂� fω

0

)
. (39)

Once Eq. (39) has been solved for (Fω, Fψ), the remaining unknowns (ω, ψ, ηω, ηψ) can be determined in a manner 
analogous to Eq. (36). The GSC is a 2knbdy + 1 square system, where the additional equation is added due to the null space 
of the Laplace operator (see Appendix B of [24]).

4.5. Outline of the numerical solver

Here we sketch a brief outline to solve the Stefan problem and its related flow problem with IBSE. At each time step,

1. The shape of the moving boundary is determined by solving Eqs. (12) and (22). 4th order Adam-Bashforth and IMEX 
schemes are used for time integration, and the spatial equation is solved using a Fourier spectral method.

2. Operators such as T , T ∗, R, R∗, S, S∗ are prepared according to Eqs. (17), (25) and (26).
3. If the simulation is running for the first time, or one of the two SC (GSC) refreshing conditions is met, the Schur 

complement will be prepared according to the procedure introduced in Section 4.4.
4. The concentration field c is solved first through Eq. (33) - Eq. (36). The value of ∂xc is then evaluated with Fourier 

differentiation, the value of ∂nc at the boundary is calculated by applying S∗
(1) to c and the boundary velocity Vn is 

computed according to Eq. (5).
5. The vorticity ω and the stream function ψ equations are solved through Eq. (37) - Eq. (39). The flow velocity field 

u = ∇⊥ψ is then calculated and serves as the advection term u · ∇c in fc for the next time step.

For a pure Stefan problem without flow, only step 1-4 are involved.

5. Results: Stefan problems

In this section, we use the method described in Sections 3 and 4 to solve Stefan problems with the form:

∂c

∂t
= �c in �liquid, (40a)

Vn = β
∂c

∂n
on �, (40b)

c = 0 on �, (40c)

c(x,0) = −1 in �liquid. (40d)

Physically, these equations describe the growth of a solid body into its over-cooled liquid surrounding as discussed in Sec-
tion 2.1. We first examine the convergence of the numerical scheme with an analytic solution, demonstrating the expected 
order of convergence for the temperature and boundary position (up to third-order, in L∞, depending on the regularity of 
extensions). We then examine an unstable problem, and show that the method qualitatively produces the typical growth 
patterns driven by the Mullins-Sekerka (MS) instability.

5.1. Convergence of the Stefan solver

An exact solution for a circle growing in infinite space (known as the “Frank disk”) [20] stays circular during the freezing 
process (although small perturbations, if present, will drive the Mullins-Sekerka instability, as in Section 5.2). The radius of 
the Frank disk, as a function of time, is R(t) = S0

√
t , where S0 is a parameter determined by β and c∞ . The associated 

temperature field is:

c =
{

0 for s ≤ S0,

c∞
(

1 − F (s)
F (R0)

)
for s > S0,

(41)

where s = |x|/√t , F (s) = E1(s2/4), and E1(z) = 2 
∫ ∞

z e−t/t dt . To analyze the validity and accuracy of our solver, we let 
β = −0.4, S0 = 1.2, and begin simulations starting at t = 0.1 with an initial radius R(0.1) = 0.38. In these simulations, as in 
all simulations throughout this manuscript, we use a Fourier pseudo-spectral method as the basis for the IBSE solver. Our 
system thus has naturally periodic boundary conditions, while the analytical form for the Frank disk solution is valid only 
in infinite space. The numerical solution to the periodic problem, as computed by the IBSE-2 method, together with the 
analytical Frank disk solution, is shown in Fig. 2(a). Despite the differing boundary conditions, the periodic solution and the 
11



J.M. Huang, M.J. Shelley and D.B. Stein Journal of Computational Physics 432 (2021) 110162
Fig. 2. Frank disk solution of the Stefan problem and a convergence test of the numerical solver. (a) The liquid-solid interface given by the numerical solution 
to the periodic problem (IBSE-2, solid line) and the exact solution to the free-space problem (dashed line). The circular initial shape remains circular until 
periodicity limits the growth of the interface. (b) The total arclength of the interface L grows as the square root of time. The numerical solution (IBSE-2, 
solid line) matches well with the free-space analytic solution (dashed line), especially at short times. Inset: Relative error of L at early times. Data from 
IBSE-3 simulation with N = 1000. (c)-(e) L∞ error of the numerical solutions. For IBSE-1, 2 and 3, the concentration field c, total arclength L and boundary 
velocity Vn converge to the exact solution at 1st, 2nd, and 3rd order, respectively. (For interpretation of the colors in the figure(s), the reader is referred to 
the web version of this article.)

analytic solutions agree well over short to medium times. As the interface diameter approaches the width of the periodic 
interval, periodicity pushes the interface shape away from the analytic circular solution. The arc-length of the liquid-solid 
interface is shown in Fig. 2(b), with the absolute difference between analytic and computed solutions shown in the inset 
for short times, where the interface is far from the periodic boundary. At these small times, this concordance is on a 
similar scale to the error we expect from our solver. In order to test the accuracy of our solver, we thus solve for only a 
short amount of time: to t = 0.11 (for times larger than t � 0.11, periodic effects, although still small, become comparable 
with the errors achieved by the IBSE-3 method). In Fig. 2(c)-(e), we show a convergence study for the arclength L of the 
boundary, the concentration field c(x, t) and the boundary velocity Vn , as computed using the IBSE-1, 2, and 3 methods 
with �t = 0.1/N and N/10 timesteps. Startup values for the BDF-based IMEX timestepping scheme are computed from the 
analytic solution. All errors are measured against the analytic solution in L∞ , and a convergence rate of O(hk) is observed for 
all variables examined. Although these errors are a mixture of discretization and periodicity-related errors, the periodicity-
related error must be dominated by our discretization error over these times, or we would have seen stagnating errors, 
rather than a k-th order convergence rate. The IBSE-k method achieves an O(hk+1) convergence rate for Dirichlet problems 
with defined boundaries [24]. In this problem the interface location is moving with the normal velocity Vn . Computing this 
velocity requires estimating ∂c/∂n, which is only accurate to O(hk). This error is propagated through the boundary location 
to all other variables.

5.2. Mullins-Sekerka instability

The Mullins-Sekerka (MS) instability is frequently observed when solidification occurs in an over-cooled fluid [18]. The 
solid stays at the melting temperature (c = 0, here), and the temperature gradient determines the rate of liquid solidification. 
Regions of the interface with higher curvature result in locally higher temperature gradients, enhancing the local solidifica-
tion, further increasing the local curvature. Thus once the local curvature begins to deviate from the mean curvature, the 
MS instability leads to growth of those deviations.

In this section, we demonstrate that our solver is able to qualitatively capture the dynamics driven by the MS instability. 
We start with a perturbed geometry that has L = π and θ = 0.5π(1 − 4α) + 0.6 sin (24πα), as shown in Fig. 3(a). For this 
computation, the Stefan number is β = −0.2 and we use the IBSE-2 method with N = 300 and �t = 5 × 10−4. In order 
to prevent the formation of singular features on the boundary, regularization via the Gibbs-Thomson effect is required, and 
we set ε = 0.002. Fig. 3(a)-(b) shows the development of the MS instability, and the shape profiles of this process are 
shown in Fig. 3(c). An associated movie is included in supplemental movie S1. The flat part of the boundary grows slowly 
while the high curvature part grows rapidly, and the resulting growing front further bifurcates into extrusions, which can 
be seen in Fig. 3(c) on the branches at in the NE (Northeast), SE, SW and NW directions. The arclength of the interface is 
shown in Fig. 3(d). Eventually, the growth of the solid is limited by the periodic computational domain and the saturation 
12
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Fig. 3. The development of Mullins-Sekerka instability. (a) The initial shape is a circle perturbed with sinusoidal waves. The solution in the physical domain 
(liquid) and the exterior domain (solid) are both shown. (b) High curvature regions of the interface tend to grow faster, and form finger-like instabilities. 
(c) Contour plot of the interface. It is clear that the extruding high curvature region grows faster. (d) The arclength L first grows and then saturates. The 
saturation is due to the temperature reaching equilibrium in the liquid, which is c = 0 in the physical domain. Movie of the full simulation can be found in 
supplemental material S1.

of temperature in the liquid [Fig. 3(b)]. The solidification stops as the liquid reaches an equilibrium temperature of c = 0
everywhere.

6. Results: Stefan problems coupled with Navier-Stokes flow (dissolution)

We now turn our attention to the case of a Stefan problem coupled to an incompressible flow. When the Reynolds 
number is high, the BDF-based IMEX scheme used to timestep pure Stefan problems severely limits the timestep. We 
instead use a 2nd-order method based on an Adam-Bashforth Backward-Differentiation (ABBD) scheme. Spatially, we set 
k = 2 in Eqs. (20) and (21), so c ∈ C2, ω ∈ C1, u ∈ C2 and ψ ∈ C3. At time t , the set of equations

(I − σc�)ct = f t
c in �liquid, (42a)

(I − σω�)ωt = f t
ω in �liquid, (42b)

�ψ t = −ωt in �liquid, (42c)

ψ = ψn = 0, c = 1 on �, (42d)

ψ = ψn = 0,
∂c

∂n
= 0 on �w (42e)

is solved, where

σc = 2�t

3Pe
, σω = 2�t

3Re
(43a)

f t
c = −2�t

3

[
2(u · ∇c)t−�t − (u · ∇c)t−2�t

]
+ 1

3

(
4ct−�t − ct−2�t

)
, (43b)

f t
ω = −2�t

3

[
(
∂c

∂x
)t + 2(u · ∇ω)t−�t − (u · ∇ω)t−2�t

]
+ 1

3

(
4ωt−�t − ωt−2�t

)
. (43c)

The concentration Eq. (42a) is solved first, so that the value of ∂c/∂x at time t is known in Eq. (43c). Anti-aliasing for the 
non-linear terms is done by smoothly rolling off high-frequency modes, using the method introduced in [36].

6.1. Convergence of the dissolution solver

We first ensure that our solver achieves the desired order of accuracy through a refinement study. We let Re = 3.16, 
Pe = 3.16, β = 0.1, and ε = 0.1. The aspect ratio of the domain is taken to be 4/3 (width / height, controlled by adjusting 
the wall size). We run simulations at grid-sizes of N = 32, 64, . . . 512 with the timestep �t = 0.01/N . Each simulation 
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Fig. 4. Refinement study of the Stefan solver coupled to an incompressible viscous flow. The spatial discretization and timestep are refined simultaneously 
so that �x/�t remains constant. The bulk fields c (concentration), ω (vorticity), and ψ (streamfunction), as well as the surface quantities θ (tangent angle), 
L (total arclength), Vn (boundary velocity), and τ (shear stress) all show second-order convergence in the L∞ norm (over �liquid for bulk fields and � for 
surface quantities).

Fig. 5. Stefan problem with natural convection. The color-map shows the concentration field c, overlaid by contours of the streamfunction ψ . The interface 
is highlighted in red. A boundary layer forms around the dissolving body, and flow separates at the bottom stagnation point. In this simulation, Re = 316, 
Pe = 316 and Ra = 105. A corresponding movie can be found in supplemental material S2.

runs for N steps in time so tend = 0.01 for all simulations. Fig. 4 shows, for both bulk and surface fields, the difference, 
measured in L∞ , between the solution with a grid size N and N/2; achieving the expected second-order convergence. 
Moreover, our method accurately captures the surface shear stress τ = Re−1∂2ψ/∂n2, enabling us to study near surface flow 
phenomena such as the boundary layer separation in Section 6.5. As with the pure Stefan problem examined in Section 5.1, 
total accuracy is limited by the estimation of the boundary velocity Vn , which is only second-order since it depends on 
∂c/∂n and c ∈ C2(C).

6.2. Dissolution problem in the laminar boundary layer regime

We initialize a problem with a circular solid domain immersed in fluid that initially has no solute concentration. When 
the Reynolds and Péclet numbers are moderate, the system displays an up-down symmetry breaking, as shown in Figs. 5
and 6. In Section 6.3, we show how the shape dynamics changes across a range of parameters, and argue that pattern 
formation is driven primarily by increasing the Rayleigh number Ra = PeRe. For the simulation in Figs. 5 and 6, we have set 
Re = 316, Pe = 316, Ra = 105 and the Stefan number to β/Pe = 0.003, while the Gibbs-Thompson effect is set to be low at 
ε = 5 × 10−4. The grid size in this simulation is N = 300, and the timestep is �t = 0.004.

Fig. 5 shows the concentration field c and the contour lines of the streamfunction ψ . Fluid with higher solute con-
centration has a higher density than the ambient fluid, and the buoyancy difference results in a gravity driven downward 
flow. A movie of the simulated dissolution process can be found in the supplement material S2. At the Reynolds and Péclet 
14



J.M. Huang, M.J. Shelley and D.B. Stein Journal of Computational Physics 432 (2021) 110162
Fig. 6. Shape dynamics of the Stefan problem with natural convection shown in Fig. 5. (a) The position of the interface as a function of time (early times 
blue, later times red). At later times, the geometry is asymmetric, and appears egg-shaped. (b) The area of the dissolving body decreases in time with a 
power law A/A0 = (1 − t/t f )

8/5. The numerical value of area (blue circles) matches the predicted power law (dashed line), except for the beginning where 
the boundary layer is not fully established.

number of 316, a gravity driven flow forms within the boundary layer near the solid, and separates from the body only 
at the bottom stagnation point. Two vortices are clearly seen below the dissolving body, due to the combination of the 
downward flow and the splitting flow at the bottom wall. In the later stages of the simulation, a circulation pattern of four 
vortices can be seen across the computational domain, as shown in Fig. 5(d). Overall, the flow is in a laminar regime, and 
the competition between the viscosity/diffusion and the gravity driven flow leads to the formation of the boundary layer 
surrounding the dissolving solid.

The time-dependent profile of the interface between the solid and fluid domains is shown in Fig. 6(a). The initial trace 
is shown in blue, and the final trace in red; successive curves are equispaced in time. From the initial circular configuration, 
the up-down asymmetry develops into an egg-shaped geometry. Comparing the spacing between each interface, we see 
that the top of the solid domain dissolves fastest, as the fluid near the top separation point is the freshest (that is, has a 
low solute concentration). Flows around the interface appear to stay attached until the very bottom of the body, and the 
variation of c is mostly contained in a laminar boundary layer. This enables us to establish a boundary layer scaling. It is 
known that the concentration gradient within the boundary layer of natural convection has the scaling ∂c/∂n ∼ L−1/4 [31], 
where L(t) is a typical length-scale that we choose as the total arclength. So the boundary velocity Vn ∼ ∂c/∂n ∼ L−1/4, and 
the rate of area change can be estimated as

dA

dt
∼ LVn ∼ L3/4 ∼ A3/8. (44)

Integration yields

A

A0
=

(
1 − t

t f

)8/5

, (45)

where A0 = A(0) is the initial area while t f is the time at which the solid body vanishes. After fitting this parameter (t f ≈
72), the numerical value of the solid area fits the predicted scaling law, see Fig. 6(b). We note that the simulation deviates 
from the power-law prediction near the beginning; this is to be expected as the boundary layer is not fully established.

Within the laminar boundary layer regime, the interface remains smooth and rounded. As we shall see in the proceeding 
examples, the boundary layer becomes unstable when the Reynolds and Péclet numbers are increased, and the interface 
geometry becomes more complex.

6.3. Shape dynamics as Rayleigh number increases

To understand the parameters affecting shape dynamics, we run simulations across a range of Reynolds and Péclet 
numbers. For this parameter sweep, we hold the Stefan number β/Pe = 0.003 fixed so that changes in shape dynamics 
are driven solely by changes in Pe and Re. Sweeping through Pe and Re changes the Rayleigh number Ra = RePe. Fig. 7(a)-
(e) shows 5 simulations with their concentration and flow fields at t = 40 and their shape evolution in color contours, 
with parameters: (a) Re = 100, Pe = 275, Ra = 27500; (b) Re = 250, Pe = 275, Ra = 68750; (c) Re = 100, Pe = 1150, Ra =
115000; (d) Re = 250, Pe = 1150, Ra = 287500; (e) Re = 300, Pe = 1500, Ra = 450000. Movies corresponding to Fig. 7(a)-
(e) can be found in the supplemental movies S3-S7. Two observations can be made as the Rayleigh number increases: 
first, the boundary layer separates before reaching the bottom stagnation point; second, the length-scales present in the 
concentration, flow fields, and interface become finer.

As a measure of the scale over which patterns are formed, we examine the non-dimensional curvature κ = −∂θ/∂α. 
The actual planar curvature is κ∗ = κ/L(t), which diverges as L(t) → 0. In Fig. 7(f) we show maxα,t |κ(α, t)| for each set 
of parameters. In all simulations this curvature increases and peaks soon after the moment of boundary layer detachment, 
and decreases thereafter. The boundary layer detachment is associated with the formation of near-corner regions with high 
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Fig. 7. Dissolution at various Rayleigh numbers. (a)-(e) At t = 40, with the Stefan number fixed at β/Pe = 0.003, higher Rayleigh number results in finer 
structures in both the concentration field and the solid geometry. Adjacent contours of the interface shape are separated by �t = 30. (f) Phase diagram of 
the maximum curvature of the evolving interface as a function of Pe and Re. Lines of constant Rayleigh number are shown in white, and configurations 
corresponding to (a)-(e) are labeled in red dots. Movies of (a)-(e) can be found in supplemental material S3-S7.

Fig. 8. Comparing simulations with the same Rayleigh number but different Reynolds and Péclet numbers. (a)-(b) Shape dynamics of dissolution at a low 
Rayleigh number Ra = 6.785 × 104, parameters Re and Pe for (a) and (b) correspond to point (b) and (b’) on Fig. 7(f). The contours with same color are 
selected such that they have the same arclength L. (c)-(d) Shape dynamics of dissolution at a high Rayleigh number Ra = 2.875 × 105, parameters Re and 
Pe for (c) and (d) correspond to point (d) and (d’) on Fig. 7(f). The contours with the same color have the same arclength.

curvature, while the Gibbs-Thomson effect limits the growth of this curvature and diffuses the distribution of θ over time 
[29,37].

It is apparent that the curvature increases as Re and Pe increase, although neither parameter explains the growth on its 
own. In the phase diagram Fig. 7(f), we plot contours of constant Ra as white lines. As the maximum curvature is nearly 
constant on these contours, and increases with increasing Ra, it is apparent that Ra plays a central factor in determining the 
pattern morphology.

To further investigate the dependence between dissolving shape dynamics and Rayleigh number Ra, we compare sim-
ulations with the same Ra but different Re and Pe. In Fig. 7(f), two points (b) and (b’) have the same Rayleigh number 
Ra = 6.785 × 104; their dissolving shape dynamics are shown in Fig. 8(a)-(b). Although the two simulations have different 
Re and Pe, we see that the resulting dynamics show visual resemblance. This similarity is also seen for higher Ra, as shown 
in Fig. 8(c)-(d) which correspond to the points (d) and (d’) in Fig. 7(f). One possible explanation for the similarity in shape 
dynamics is that the density plume size is a function of the Rayleigh number [13], so similar Ra results in similar length 
scales presenting in the flow/concentration fields and the geometry.

6.4. Solver behavior as flow structure changes

SC/GSC renewals are significantly more time consuming than timesteps (although the exact ratio depends on many 
factors, including the discretization, machine core-count, and the number of GMRES iterations required). To assess the 
performance of our numerical solver, we show the number of GMRES iterations per timestep and the number of SC/GSC 
16
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Fig. 9. Number of GMRES iterations and renewals of the SC/GSC during a simulation. The Schur complement renews more frequently when the boundary 
moves rapidly, especially at the beginning of dissolution and at the moment boundary layer separates. Corresponding simulation is shown in Fig. 7(d) and 
supplemental movie S6.

Fig. 10. High Rayleigh number of Ra = 106 leads to flow separation and pattern formations. (a)-(e) Snapshots of the concentration field and solid geometry 
at various time. The bottom of dissolving solid shows more complex geometry compared to its top, where dense plumes carrying high concentration fluid 
detach and sink to the bottom. Movie can be found in supplemental material S8. (f) Maximum non-dimensional curvature max |κ | = maxα |∂θ/∂α| of the 
interface grows rapidly as the boundary layer separation occurs at t = 10, which signals complex geometry forms and the interface deviates from the 
circular profile. The bottom corners shown in (b) merge into a single spike at t = 30, resulting in the maximum curvature over time.

renewals for the simulation shown in Fig. 7(d). As shown in Fig. 9, the SC and GSC are, on average, renewed every 100 
timesteps, resulting in significant amortization of the renewal cost.

At the beginning of the simulation, the initial concentration field is 0 in the fluid and 1 at the boundary. The sharp 
gradient at the dissolving boundary drives rapid boundary motion and the SC renews at a fast pace. As the concentration 
builds up around the boundary, the renewals become less frequent. After a SC/GSC renewal, the number of GMRES iterations 
steadily increases as the boundary shape deviates more and more from the shape at last renewal. Rapid boundary motion 
also happens at the moment of boundary layer separation, where the built up concentration field around the boundary 
becomes gravitationally unstable and a downward jet forms as the concentration blob drips (supplemental movie S6). As 
the thickness of the boundary layer δ suddenly decreases, the resultant concentration gradient ∂c/∂n ∼ δ−1 increases and 
SC/GSC renews more rapidly due to the boundary motion.

6.5. Dissolution problem at higher Rayleigh number

In this section we discuss a simulation with the highest Rayleigh number we have achieved so far – Ra = 106 with 
Re = 316, Pe = 3160, ε = 5 × 10−4 and Stefan number β/Pe = 0.005. Fig. 10 shows simulation results using N = 300, with 
�t = 0.004. For this Rayleigh number, the flow is no longer laminar [see Fig. 10(b) and supplemental movie S8]. Detached 
density plumes with higher local concentration sink towards the bottom, showing a close resemblance to the thermal 
plumes of Rayleigh-Bénard convection [13,38] and the density plumes of the Rayleigh-Taylor instability [11]. Naturally, this 
change of flow regimes transforms the shape dynamics.
17
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Fig. 11. Evolution of the interface and dynamical quantities around the moment of boundary layer separation in Fig. 10. The time period of t = 8-12
corresponds to the shaded area in Fig. 10(f). (a) Snapshots of the concentration field around the flow separation at t = 10, the separation points are marked 
with arrows. High concentration plumes form due to the advection of detaching flows. (b) The shear stress τ = Re−1∂2ψ/∂n2 at the moving interface 
decreases rapidly near the flow separation (marked with dashed lines). (c) The magnitude of normal boundary velocity −Vn = −βPe−1∂c/∂n increases 
after flow separation. (d) The non-dimensional curvature κ = −∂αθ deviates from its initial profile of κ = 2π as Vn drives the boundary away from a circle.

Starting from a circular interface as shown in Fig. 10(a), one distinct feature of the dissolution at high Ra is the formation 
of near-corners and a rough bottom surface. Once formed, this roughness persists throughout the dissolution process as 
shown in Fig. 10(b)-(e). The maximum non-dimensional curvature maxα |κ(α, t)| is plotted as a function of time in Fig. 10(f). 
Initially, the interface stays very nearly circular with κ ≈ 2π . However, the curvature suddenly increases at t ≈ 10 when the 
boundary layer starts to separate, and the surface roughens thereafter (see supplemental movie S8). The curvature peaks at 
around t = 30 in Fig. 10(f), and an inspection of the supplemental movie S8 shows that the two bottom near-corners shown 
in Fig. 10(b) merge into a single downward spike in Fig. 10(c)-(e) during that time. The curvature of this downward spike 
is highest along the interface, and its value decreases in time due to the geometric dissipation from the Gibbs-Thomson 
effect.

What initiates this formation of fine-scale structure? Fig. 11(a) shows several snapshots of the interface and the con-
centration field around the time of the first boundary layer separation. The boundary layer has thickened by t ≈ 8, and by 
t ≈ 10, the bottom boundary layer has detached, eventually forming two heavy plumes (by t ≈ 12) that sink towards the 
bottom. During the same period of time, near-corners start to develop at the location of flow separation; similar corner 
formation has been observed in the experiments on erosion [37] and dissolution [6]. One sign of a destabilizing boundary 
layer is the weakening of surface shear stress τ = Re−1∂2ψ/∂n2 [31]. Fig. 11(b) shows such a weakening between the loca-
tions of flow separation, marked with dashed lines, between t = 10 and t = 12. Indeed, τ decreases markedly in magnitude 
there and then. The dissolution rate increases significantly as the flow separates (see Fig. 11(c)), due to recirculating flows 
in the wake that introduce relatively fresh liquid, creating a higher local concentration gradient at the surface. Likewise, the 
curvature distribution in Fig. 11(d) deviates from its initial profile of κ = 2π , as the bottom of the dissolving solid forms 
new near-corners. By t ≈ 12 there are now two descending plumes on each side, one emanating from a newly formed 
near-corner, and the other from the initial boundary layer detachment point. As the bottom surface of the solid recedes 
upwards, at later times these plumes destabilize to transverse bending, and the flows become much more complex, as seen 
in Fig. 10.

Small numerical artifacts begin to appear in this simulation at t ≈ 12 (see Fig. 11(b)-(d)). In this simulation, the high 
Pe and Re produce fine length-scales and fast velocities, especially when boundary-layer separation occurs. To compute this 
solution in a reasonable timeframe, we are using a discretization that just resolves the spatial scales and timesteps that 
near the Courant-Friedrichs-Lewy condition. Increased temporal and spatial resolution will be required to attack problems 
with higher Re and Pe. We discuss some possibilities for how to achieve this in Section 7.

7. Discussion

In this paper we introduce and test an accurate, sharp-interface method for solving the Stefan problem coupled to a 
Navier-Stokes flow (the dissolution problem). These problems are numerically challenging, as the boundary motion depends 
on the normal derivative of field variables. The solver introduced here is based on the IBSE method, which allows accurate 
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Fig. 12. Two experiments of spherical solids of sugar dissolving in water. (a) When the sugar dissolves into fresh water, complex surface textures form at the 
bottom of the dissolving object [7]; parameter values are Re ≈ 104, Pe ≈ 107 and Ra ≈ 1011. (b) Adding sugar to the background fluid results in a moderate 
Rayleigh number (Ra ≈ 4 × 105), and surface textures with a larger length-scale are observed. In this experiment a prominent downward tip forms, located 
at the bottom of the dissolving solid. The shape of the dissolving solid is qualitatively similar to the shape observed in the numerical simulation shown in 
Fig. 10; the Rayleigh numbers are similar despite radically different Reynolds and Péclet numbers.

resolution of these normal derivatives [24]. In refinement studies the method achieves third-order accuracy for Stefan prob-
lems and second-order accuracy for the dissolution problem, measured in L∞ for all variables. In addition, we explicitly 
verify that the method provides convergent estimates for the normal-derivative of the concentration and the surface shear 
stress on the boundary. Having access to accurate estimates of these quantities allows for an analysis of the way flow struc-
tures affect the dissolution process, as in our discussion in Section 6.5. For the classical Stefan problem (without flow), we 
validate the solver against a known analytic solution and show that it is able to reproduce the well-known Mullins-Sekerka 
instability. For the dissolution problem, when boundary layer separation does not occur, the solver reproduces a predicted 
boundary layer scaling, and when boundary layer separation does occur, it qualitatively reproduces interface morphologies 
observed in experiments [7].

Some experimental observations of dissolution are found in Fig. 12, which shows an initially spherical solid made of sugar 
dissolving into a large body of liquid. Fig. 12(a) shows the dissolution of sugar into fresh water. The dissolved shapes have 
scalloped patterns on the bottom and a sharp edge separating the rough bottom from its smooth top, where the flow has a 
laminar boundary layer structure. In Fig. 7, we observed from our simulations that a higher Rayleigh number is associated 
with finer structures in the flow/concentration fields and higher curvatures in the surface morphology, so the formation of 
fine patterns in Fig. 12(a) is expected, although we were unable to compute numerical solutions in this parameter regime, 
where Re ∼ 104, Pe ∼ 107, and Ra ∼ 1011. Similar patterns have been observed experimentally in dissolution [7,8] and 
numerically in melting [5].

In the experiment shown in Fig. 12(b), sugar has been added to the initial fluid into which the solid dissolves, increasing 
the viscosity and decreasing the Reynolds number of the associated flow. Since the normal velocity Vn ∝ β/Pe and we know 
the Péclet number for the experiment shown in Fig. 12(a) [7], we can compare the timescales of dissolution between the 
two experiments shown in Fig. 12 to estimate the Péclet number associated with Fig. 12(b) to be Pe ≈ 1010. To estimate the 
Rayleigh number for this experiment, we use the Stokes-Einstein relation [39] to obtain νD = kB T /(6π Rρ) ≈ 10−16 m4/s2, 
where kB is the Boltzmann constant, T ≈ 300 K is the temperature, and R ≈ 1 nm is the radius of a sugar molecule. Using 
the shadowgraph technique,1 we observe that the density plumes move approximately 1 cm every minute so that the 
typical flow speed is U ≈ 10−4 m/s. With a typical length-scale of L ≈ 6 cm which is the initial diameter of the sphere, the 
Rayleigh number in Fig. 12(b) is Ra = RePe = (U L)2/(νD) ≈ 4 × 105 – a number that is very close to the Rayleigh number 
from the simulation shown in Fig. 10. In Fig. 8, we observed that simulations with the same Rayleigh number but different 
Reynolds and Péclet numbers had similar morphologies. Remarkably, the dissolved shapes in Fig. 10 and Fig. 12(b) show a 
qualitative resemblance even though the parameters in the experiment (Pe ≈ 1010 and Re = Ra/Pe ≈ 10−4) are drastically 
different from those used for the simulation (Pe = 3160 and Re = 316). The relationship between the interface morphology 
and the Rayleigh number suggests that the interaction between the flow field, concentration field, and the geometry is 
critical in driving these complex shape dynamics. The numerical method developed in this paper allows us to accurately 
compute important quantities that are hard to measure experimentally, including the surface shear stress and concentration 
gradients near to the boundary. This extra information is crucial in helping piece together a full understanding of the shape 
dynamics of this system.

In the experiments shown in Fig. 12(a) the Rayleigh number is about 1011, with a Schmidt number of 103; corresponding 
to a Reynolds number Re ∼ 104 and a Péclet number of Pe ∼ 107. Unfortunately, these parameter values lead to extremely 
thin boundary layers (in both u and c), requiring high resolution to accurately resolve. In fact, most small solute molecules 
yield a Schmidt number around Sc = ν/D = Pe/Re ∼ 103 in water due to their similar molecular diffusivity at D ∼ 10−9

m2/s [40], which leads to unavoidably fine scales in studying dissolution problems at moderate or high Re. At low Re, the 
Stokes-Einstein relation enforces Pe ∼ Re−1, which adds stiffness to the advection-diffusion equation and again leads to thin 
boundary layers. Numerically studying these problems in experimentally relevant parameter regimes will require the use of 
an adaptive solver to capture these fine near-boundary flow structures. The Immersed Boundary Method, on which the IBSE 
method is based, has been implemented in an adaptive framework in IBAMR,2 and extending the methods developed in 

1 https://en .wikipedia .org /wiki /Shadowgraph.
2 https://ibamr.github .io/.
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this paper within that framework presents one possible method for attacking such problems. Nevertheless, there are other 
interesting problems that are accessible to the solver as developed, which can, on a standard workstation, handle Reynolds 
and Péclet number numbers of Re ∼ 300 and Pe ∼ 3000, respectively. These are approximately the parameter values for ice 
melting into water [5]. This situation also demands special care, as water has a density anomaly near T = 4 ◦C; thus, the 
Boussinesq approximation used in this paper must be modified to correctly represent the known buoyancy-temperature 
dependence.
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