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Mathematically, dissolution processes are modeled by a Stefan problem, which describes

g?{:r)(;;(tjist;n how the motion of a phase-separating interface depends on local concentration gradients,
Melting coupled to a fluid flow. Simulating these problems is challenging, requiring the evolution
Shape dynamics of a free interface whose motion depends on the normal derivatives of an external field in
Fluid-structure interaction an ever-changing domain. Moreover, density differences created in the fluid domain induce
Immersed boundary self-generated convecting flows that further complicate the numerical study of dissolution
Stefan problem processes. In this contribution, we present a numerical method for the simulation of

the Stefan problem coupled to a fluid flow. The scheme uses the Immersed Boundary
Smooth Extension method to solve the bulk advection-diffusion and fluid equations in
the complex, evolving geometry, coupled to a 6-L scheme that provides stable evolution
of the boundary. We demonstrate 3rd-order temporal and pointwise spatial convergence
of the scheme for the classical Stefan problem, and 2nd-order temporal and pointwise
spatial convergence when coupled to flow. Examples of dissolution of solids that result in
high-Rayleigh number convection are numerically studied, and qualitatively reproduce the
complex morphologies observed in recent experiments.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

Mass exchange between material phases, as in melting, solidification, and dissolution, drives the evolution of the phase
separating interface. When the driving dynamics are generated by diffusion or heat transfer, such interface-evolution prob-
lems are categorized as Stefan problems [1-3]. In the cases of solidification and melting, heat flux at the interface drives
the boundary motion [3-5]; in the case of dissolution, molecular diffusion converts the solid into solute [3,6-9]. The rate
at which melting or dissolution occurs depends on the distribution of heat or concentration in the fluid phase, and this
distribution is typically governed by an advection-diffusion equation.

These processes cannot be fully described by the classical Stefan problem alone: diffusion of heat/solute induces den-
sity changes in the fluid, causing buoyancy driven flows that reorganize the temperature/concentration fields [10,11]. These
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rearrangements induce Rayleigh-Taylor [12] and Rayleigh-Bénard convection [13] and hence enhance the interfacial melt-
ing/dissolving rate [5,7,9], further complicating the interfacial dynamics. These complex dynamics have been shown to
generate fascinating pattern formations such as the scalloping of icebergs [14], the roughening of dissolving surfaces [7-9],
and the sharpening of dissolving pinnacles [15].

A significant body of literature exists for the numerical solution of Stefan problems, including schemes based on the level-
set method [16-21], phase field method [5,19], and others [19,22]. In this paper, we seek to construct a scheme for solving
the Stefan problem with convection in a high Reynolds number fluid. While difficulties are numerous, the two primary ones
stem from the fact that (1) it has been observed that these problems typically generate flows and interfacial boundaries with
fine length-scales; (2) the boundary evolution depends on gradients of computed quantities at the boundary [7-9]. The first
difficulty demands a high resolution scheme that can accommodate a moving boundary, and thus a natural choice is to
use an embedded boundary method. These schemes embed the complex and evolving boundary in a larger, geometrically
simple domain, enabling the use of many of the fast and robust methods for solving partial differential equations (PDE)
that have been developed for regular domains. Unfortunately, most embedded boundary schemes, such as the Immersed
Boundary Method [23], fail to accurately capture the gradient of unknowns at the boundary. For the Immersed Boundary
Method as applied to the diffusion equation, for example, normal derivatives of the concentration field are inconsistent at
the boundary [24]. The use of such a method would thus yield inaccurate dynamics of the phase interface.

To construct an accurate, fast, and stable solver, we leverage the recent development of the Immersed Boundary Smooth
Extension (IBSE) method [24-26], an embedded boundary scheme that accurately captures derivative information at the
boundary. The bulk advection-diffusion equations for heat/solute transport and the Navier-Stokes equations are solved using
the IBSE method in the evolving fluid region. The interfacial boundary dynamics is solved using the 6-L method [27-29]
and the Gibbs-Thomson effect is added to stabilize its long-time evolution. The solver is accurate (at least second-order
pointwise in space), efficient and stable - allowing for high resolution of flow and boundary features, as well as long-time
simulation of complex phenomena. We validate the solver through comparisons to analytic solutions and refinement studies,
demonstrate that it reproduces classical instabilities, and use it to analyze the formation of complex surface morphologies
and fluid flows for a dissolving solid.

This paper is organized as follows. In Section 2 we define the Stefan problem for melting and dissolution, and discuss
its coupling to an external fluid. In Section 3, we describe the IBSE-Stefan solver; including a review of the IBSE method in-
troduced in [24,25], as well as the 6-L method, introduced in [27-29]. In Section 4, we describe the numerical method and
discuss important details of the specific implementation. In Section 5, we compare the numerical solution of a Stefan prob-
lem without convection to an analytic solution and show that the solver captures the Mullins-Sekerka instability, resolving
complex dynamics of the solid interface. In Section 6, we show several examples of dissolution coupled with Navier-Stokes
flows. Sweeping across a range of Reynolds and Péclet numbers, we explore which control parameters are most predictive
of pattern formation on the interface and identify that the Rayleigh number governs the regimes of shape dynamics. In
Section 7, we discuss the scope and limitations of our numerical method, and demonstrate that our study qualitatively
reproduces phenomena seen in recent experiments [7,8].

2. Stefan problem coupled with natural convection
2.1. Stefan problem

The classical Stefan problem models the diffusion of heat between two phases of a substance that are separated by a
phase interface I', along with the evolution of that interface. Physically, one phase corresponds to a solid domain Qqj;4 as
shown in Fig. 1 that solidifies from or melts into its liquid phase, depending on the direction of heat flux. In the liquid
phase Qjiquia, the heat transfer is modeled by the heat equation

oT
== V- (KVT) in Qijiguid- W

Here T(x, t) is the temperature field and K is the thermal diffusivity of the liquid phase. The solid phase is typically assumed
to have infinite thermal conductivity so that

T=Tn inQuoia. (2)

where T, is the melting point of the solid. This condition provides a boundary condition for Eq. (1): T = Ty, on T’ C Qq0jig.

When the liquid temperature is greater than T, the solid melts into the liquid and the boundary recedes. If the liquid
temperature is lower than Ty,, which means the liquid is in an undercooled state, solidification occurs at the boundary and
the solid grows. This motion is a consequence of Fourier's law of heat transfer, which specifies that the rate of material
transfer is proportional to the heat flux f= —Kpc, VT, with p and c, the liquid density and specific heat, respectively.
Combining Fourier's law with the conservation of mass leads to a normal boundary velocity Vy(s) = —(Kcp/D3T /on at the
interface, where [ is the latent heat of the liquid.

In the following, we assume that the solid and liquid are defined in the periodic domain T2 = [0, 27r] x [0, 277] and the
solid domain 454 is simply connected, as shown in Fig. 1(a). The moving interface I'(t) between the solid and liquid phases
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Q liquid

Fig. 1. Schematic for the periodic computational domain T2 = [0, 27] x [0, 27r]. The solid phase is shown in gray and the liquid phase is shown in white.
(a) For the classical Stefan problem without the presence of flow, the solid domain Qji¢ and liquid domain Qjiguiq are separated by the evolving interface
I'(t). (b) For the Stefan problem with flow, the gravity g induces convection. Rigid walls €,,q; are added to bound the liquid domain from above and below.

is assumed to be smooth, and parameterized by the arclength parameter s € [0, L), where L(t) gives the circumference of T.
Rescaling time as t' =t/K, temperature as ¢ = (T — Tyy)/AT (wWhere AT = mag((|T — Tml)), and dropping the ' notation on
t=

t gives the dimensionless equations

ac .
Frim Ac in Qiiguids (3a)
c=cp onI(t), (3b)
ac
V= ﬂETn onI'(b), (30)
c(x,0)=co in Qyiguiq- (3d)

It may appear that there is one too many boundary conditions for c. Note however that one serves to fix ¢, while the
other defines the evolution of the time-dependent interface I'. Only one parameter - the Stefan number g = —cpAT/I
- controls the dynamics of the dimensionless system. For the solidification problem (cg € [—1,0],¢,n = 0 on I'), it has
been observed that the Stefan problem posed in Eq. (3) undergoes a Mullins-Sekerka instability, caused by rapid growth
of the interface in high-curvature regions. These phenomena will be further demonstrated with numerical examples in
Section 5.

It is worth noting that Eq. (3) also models the dissolution process, where the temperature field is replaced with the
concentration field c € [0, 1]. The parameter space in melting, solidification and dissolution is listed below.

Process B range of co Cm
melting —CcpAT/I [-1,0] 0
solidification —CpAT/I [0,1] 0
dissolution £/ Ps [0,1] 1

The parameter ps in the case of dissolution is the solid density. The Stefan number g is positive for dissolution pro-
cesses as lower liquid concentration cg leads to dissolution hence V, < 0; however 8 < 0 for the melting and solidification
processes since lower liquid temperature leads to solidification and V, > 0. In the following sections we will neglect to
distinguish between the heat and the mass transfer problems, instead referring to them simply as Stefan problems.

2.2. The Stefan problem with natural convection

In the liquid phase, temperature or solute concentration differences lead to changes in the specific volume of fluid
parcels, and hence the fluid density. These changes in density lead to the buoyancy driven convection that typically accom-
panies melting and solidification processes. Using the Boussinesq approximation [11,30], we treat the fluid as incompressible
and subject to a buoyancy force B o« —cy that is proportional to the concentration difference. The concentration field c(x, t)
diffuses and is advected by the flow field u(x, t). The complete model in dimensionless form is given by

% +u-Vc= lAc in Qjigui (4a)

at Pe quid;
a—u+u-Vu:lAu—Vp—c9 in Qjiqui (4b)

ot Re quid»
V.u=0 inQjguid, (4c)

B oc

n= E % on F, (4d)
u=0,c=1 onT, (4e)
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u(x, 0) = up(x), c(x,0) = co(X)  in QLyjguig- (4f)

In the experiments of dissolution that motivated this numerical study [7], dissolution occurred in a tank, with solid
boundaries at the bottom (and an air-liquid interface at the top). To approximate these conditions, we place adiabatic
walls I'ygy at the top and bottom of the domain so that the liquid is bounded from above and below but periodic in the
horizontal direction; see Fig. 1(b). At these walls, fluid motion ceases and the walls are impermeable to the solute, i.e.
we impose that u =0 and d,c =0 on I',,q. The behavior of this system is controlled by the Reynolds number (Re) of
the fluid and the Péclet number (Pe) of the advection diffusion equation, and the parameter 8 that governs the rapidity
of boundary evolution. Because time is rescaled by the typical flow speed, the diffusivity is now 1/Pe instead of 1 in
Eq. (3), and the Stefan number in this problem is B/Pe instead of 8. These parameters are typically related to the Grashof
number Gr and Prandtl (or Schmidt) number Pr (or Sc) as Re = +/Gr, Pe = /GrPr (or +/GrSc) [31]. In heat transfer problems,
Gr=aygLl®AT/v? and Pr=v/K, with ay, g and v the thermal expansion coefficient, acceleration due to gravity and
kinematic viscosity respectively. In mass transfer problems, Gr = 8y gL3/v? and Sc = v/D, with By, g, D and v the relative
density difference between the solid and the fluid, acceleration due to gravity, molecular diffusivity and kinematic viscosity
respectively. As we will show later in Section 6, an important control parameter of dissolution under natural convection is
the Rayleigh number Ra = GrSc = RePe = By gL3/vD, which governs the regimes of dissolution shape dynamics.

For the familiar case of ice melting into water [4] at room temperature, Gr is in the range of 108 - 107, Pr is around 1
and B is around 0.1, leading to a Reynolds number Re ~ 103, a Péclet number Pe ~ 10° and a Rayleigh number Ra ~ 10°. For
candy dissolving into water [7], Gr is in the range of 108, Sc is around 103, and g is around 1, leading to a Reynolds number
Re ~ 10%, a Péclet number Pe ~ 107 and a Rayleigh number Ra ~ 10'!. The following table summarizes the definition and
typical ranges of the parameters for these cases.

Process Gr Pr or Sc Re Pe Ra

melting or solidification aygL3 AT /v? Pr=v/K VGr /Grpr GrPr
typical range [4] 108 — 107 1-10 103 —10* 10% — 104 106 — 108
dissolution of sugar into water By gL /v? Sc=v/D VGr GrSc GrSc
typical range [7] 108 — 1010 103 —10* 10% —10° 107 —10° 10" — 104

We remark that the u =0 boundary condition given in Eq. (4e) is not exactly a no-slip condition because the interface
is moving. However, in all simulations in this paper and most dissolution processes in nature, the Stefan number 8/Pe « 1.
Since typical fluid velocities u are O(1), we assume that the boundary is in a quasi-steady state, and u =0 is a good
approximation of the no-slip condition.

2.3. Gibbs-Thomson effect

During melting, solidification, and dissolution processes, surface effects such as surface tension and molecular kinetics
modify the dynamics of the interface. The classical Gibbs-Thomson effect [32,29] is an idealized way to summarize these
surface effects: an additional term that dissipates high curvature regions is added to the normal boundary velocity,

ad 2
Vn=£—c—e K*——n onT, (5)
Pe on L

where «* is the planar curvature and L is the total arclength of I'. The Gibbs-Thomson effect causes faster dissolution
to occur in regions where the local curvature «* is higher than a mean curvature 2w /L [32,29]. With no phase-change
driven boundary velocity [that is, the first term on the right-hand side in Eq. (5)], the Gibbs-Thomson effect simply drives
the boundary to a steady form: a circular arc with curvature «* = 27 /L everywhere. Physically, the Gibbs-Thomson effect
comes from the balance between the energy of fusion - which represents the energy exchange during phase change - and
the surface energy that is a function of the curvature «* [32]. When the local curvature is high enough, the surface energy
overcomes the energy of fusion and drives interfacial motion. Numerically, the Gibbs-Thomson effect defines a minimal
spatial scale at which Mullins-Sekerka instabilities occur.

3. Numerical methods

Solving Eq. (4) presents two central difficulties: (1) solving the Navier-Stokes (NS) equations in the evolving domain
Qiiquid» and (2) solution of the advection-diffusion equation for ¢ in that same domain. Because the boundary evolution
is itself driven by gradients of c, the quantity dc/dn must be captured accurately at the boundary. We first discuss the
Navier-Stokes equations. In 2D, the NS equations can be reformulated using the stream function v and the vorticity w, as

w 1 ac

™ +u-Vo = EAa) ~ in Qiguid, (6a)
AYy =—w, u=V1Y¥ in Qiguids (6b)
Y=vyp=0 atl'Uly, (6¢)
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where V| = (dy, —dx). The driving term —dc/dx arises due to the Boussinesq approximation of the buoyancy forces, which
appears as the term —cy in Eq. (4b). In this formulation, solution of the pressure field is no longer required, which typically
poses difficulties due to the lack of boundary conditions. Nevertheless, the equations do not decouple: Equation (6a) lacks a
boundary condition on w, while there are two boundary conditions imposed on the stream function.

To efficiently discretize the full nonlinear system, we will treat the non-linear terms explicitly, and the linear terms
implicitly. A full description of the timestepping scheme we use is given in Section 4; here we give a simplified description in
order to introduce the various subproblems that must be solved. Representing the boundary I" with its Cartesian coordinates
X = (x,y) €T, the simplest implicit-explicit time discretization is to combine the forward and backward Euler schemes:

At
(]I _ P_eA> A =t — Atu"- V) in Qiiguid, (7a)
Ar ac\ A
<]1 — R_eA> oA =t — At |:ut Vo' + (&> in Qiquid, (7D)
AYIFDE = HAE YA g AL Qe (70)
XFA =Xt 4 AtVyn  onT, (7d)

with boundary conditions on ¥!*2! and c!*2! as given in Eqgs. (4) and (6). One can first evolve c, so that c!*2! is known
and can be used explicitly in the RHS of the vorticity equation. For more general, timestepping schemes, the temporal
discretization takes the form:

(I = oA = fe(c' ') in Qiiguig, (8a)

(I — 0 M)A = f,(u, ', A in Qiguid, (8b)
AYTA = — A in Qiguig, (8¢)

XA = fy(XE XA V) onT. (8d)

Here o¢, 04, fc, and f, depend on the choice of time discretization. There are thus two essential components required for
evolving this system: (1) a scheme for evolving the interface I [Eq. (8d)], which will be introduced in Section 3.1, and (2)
Modified-Helmholtz solvers for both the concentration evolution Eq. (8a) and the coupled Navier-Stokes system [Egs. (8b)
and (8c)]. The methodology for solving these PDE will be introduced in Sections 3.2 and 3.3, as well as some technical
considerations that arise when solving the fully coupled system.

3.1. 6-L method for boundary evolution

For a variety of boundary evolution problems, including the Stefan problem studied here, as well as problems with an
interfacial surface tension, discretization and evolution of the boundary in Cartesian coordinates can lead to stability issues
due to the fact that only the normal motion of the boundary T is fixed by the physics. Discretized boundary markers moved
only according to the normal velocity typically clump or spread. To alleviate the issues that arise with a direct discretization
of the boundary position, we instead use the 0-L method to discretize the boundary by the arclength s and tangent angle
6(s, t). This method is well-developed and has been used extensively for the study of 2D free-boundary problems in fluid
dynamics [27-29,33,34]. We provide a brief overview of the method here.

Consider a domain as depicted in Fig. 1(a) where the boundary T' has total arclength L. Given an arclength parameter
s, we define a rescaled arclength o =s/L, with « € [0, 1], where o =0 corresponds to the top point. The boundary I" can
be parameterized by the tangent angle 6(«,t), the total arclength L, and the position of the top point, with the Cartesian
coordinate recovered by solving 9, X = (34X, 9, ¥) = (L cosO, Lsin6) and X(0) = (xg, Yo) as the top point of the solid body.
Evolution of the boundary X = (x(«), y()) is given by

oX

i Van+ Vs, (9)
where n and s are unit vectors along the normal and tangential direction at a given point on I'. As the normal velocity V,
governs the shape evolution, the actual shape dynamics of I" are independent of the tangential velocity V. We are thus free
to add an arbitrary tangential velocity without altering the effective physics. One choice that preserves the equal-arclength
distribution and keeps « and t as independent variables [29] is

o 1
90 96
V= / Va(o)do!' — o / — Va(ade!'. (10)
oo’ oo
0 0



J.M. Huang, M.J. Shelley and D.B. Stein Journal of Computational Physics 432 (2021) 110162

With V,, and V; specified, Eq. (9) can be written as
1

di _ /aev (a)do (11a)
dt da " ’

0
a0 1 /dV, 20
o (v, ). 11b
at L<8a + saa> (11b)

In addition to evolving 6(«, t) and L(t), the motion of an anchor point is required to recover the absolute location of the
boundary T. In this paper, we use the top point (xg, yo) as this moving anchor. These satisfy the equation

dX()

s Va(0)cosé(t, 0), (12a)
dé/_to = V,(0)sinf(t,0). (12b)

When the interface I" is a smooth, closed curve, Eq. (11) can be solved accurately using a Fourier spectral method. When
including the Gibbs-Thomson effect [Eq. (5)] in the boundary evolution, the 6 equation is instead

0 1/ 9% 90 € 9%0

Thus the Gibbs-Thomson effect smooths the boundary by dissipating regions with high curvature.

Pe dnda ' da

3.2. IBSE¥ for solving Poisson and modified-Helmholtz equations

In this section we provide a basic outline of the Immersed Boundary Smooth Extension (IBSE) method, focusing on the
details most relevant to the numerical scheme for the Stefan and dissolution problems studied in this paper. A careful
analysis of the method is presented in [24,25]. The essential idea of this method is to find a smooth extension of the
unknown solution from the physical domain to the entirety of a computationally simple domain, such that the first several
derivatives of the unknown solution and its extension match across the physical boundary. To simplify the presentation, we
first consider the inhomogeneous Poisson problem:

Au=f in Q, (14a)
u=g onT. (14b)

One way to compute an inhomogeneous solution is to compute an extension of f from 2 to a larger domain C containing
2, which we assume has a simple geometry. Perhaps the simplest choice of C, and the one used throughout this paper, is
the periodic rectangle C = T2 =1[0,27] x [0, 2], or a rescaled version of that domain. For this choice of C the Poisson
operator may be rapidly inverted via the fast-Fourier transform. The physical domain of the equations is €2, the exterior
of that domain is E, and C = Q U E. Given a general extension f¢ e CX(C), u satisfies Eq. (14), up to a homogeneous
correction, to O(h**1) where h = 27 /N is the spatial resolution. There is significant freedom in choosing f¢. One such
choice is to define f¢ = Au®, where u® is an extension to the solution u of the PDE. In this case, u satisfies the PDE without
any homogeneous correction, although the extension f¢ must be determined implicitly, as the solution u, and hence its
extension u®, is not known a priori. We describe some of the essential elements for computing u in this manner below.

Let Q € C be compact and simply connected, with smooth boundary I' = 9. To facilitate generating the smooth exten-
sion u® of the solution u, as well as to impose boundary conditions on I', we will need to be able to communicate singular
and hyper-singular force distributions known on T to the grid; and to interpolate values and derivatives of functions known
on the grid to the discrete boundary nodes of I'. Communication of singular forces is done through the spread operators
S as

3s(x — X(@))

o dX(a), (15)

SpHE =1 [ Fie
r
while approximations of a function and its derivatives at I" are computed via the interpolation operators S’(*j):

—X@) .

. 318
(S{HE) @) = (=1 / E(x) (xanj (16)
C

As is suggested by the notation, the spread and interpolation operators for the jth derivatives are adjoint to each other,
and for j =0 these operators reduce to the classical Immersed Boundary (IB) spread and interpolation operators [23]. The

6
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interpolation operator S?‘j) maps the jth normal derivative of a function & from the domain C to the boundary I', while the
spread operator S(j, maps the hyper-singular forces from the boundary I" back to the domain C. To simplify the notation
for the rest of this study, we define the composite operators Ty, Ty, and R} as

k
Tk:ZS(j)’ (17a)
=0
;
T::(S?O) Sty S?k)) ’ (170)
T
R?::(STD Siklo) : (17¢)

The operator T} interpolates a function and its first k normal derivatives to the boundary; R} provides an interpolation of
the first k normal derivatives to the boundary, excluding the function value itself; the operator Tj spreads a set of singular
forces (8-like) and hyper-singular forces (like the first k normal derivatives of the §-function) from the boundary to the
domain.

To solve Eq. (14), a function 7 is found that smoothly extends the unknown solution u from  to C such that 5 e Ck(C)
and the first k derivatives of u match the first k derivatives of n at the boundary: aju/ajn = ajr)/afn for j=1,...,konT.
There are many such extensions. We choose to compute 7 by solving a high-order PDE of the form H¥n =0 in C, where H*
is a differential operator with sufficient order to allow us to impose that the derivatives of n at the boundary match those
of u. One such choice of H¥ is the polyharmonic operator Ak+1; this choice has a nullspace and is poorly conditioned; the
specific operator H* that we use will be defined in Section 4.2. The function 7 then serves to define a force in all of C,
given by f¢ = yqf + xeAn. Inversion of the periodic Laplace operator with this force provides a solution u,, smooth in
C, that satisfies the boundary conditions and converges rapidly. The full formulation, which we will refer to as the IBSE-k
system, is given by:

Aue — xeAn=xaf inC, (18a)
Hn + TF=0 inE, (18b)
Rin = Rjue, (18c)

Sioylle = & (18d)

In [24], the IBSE-k formulation given in Eq. (18) has been verified to produce C¥(C) solutions that converge at a rate of
0 (Ax*t1) for k=1,2,3; and may be used for solving the Helmholtz and Modified-Helmholtz equations, by replacing A
with (k% + A) and (k* — A), respectively. In [25], the IBSE method was extended to solve the Stokes and Navier-Stokes
equations. In the following sections, we will discuss how to modify these methods to provide a solver for the Stefan and
dissolution problems.

3.3. Navier-Stokes equations coupled with concentration field

In order to solve the coupled dissolution problem with the IBSE method, we let the physical domain be Q = Qjiguiq and
the extension domain be E = Qgqji4, and define the modified Helmholtz operators:

Ly ={-0pxA), (19a)
Lo =T —0cA). (19b)

Roughly speaking, these operators will be used to define solvers similar to the solver described in Section 3.2. Specifically,
for the concentration Eq. (8a), we solve

Lec— xeLene = xafe inC, (20a)
H*ne + TFe =0 inE, (20b)
Ri(nc—c)=0 atTUTy, (20¢)
Soc=8 atTl, (20d)

Stye=0 atI'y,. (20e)

Next, we solve the Navier-Stokes equations, Eqs. (8b) and (8c), with the known concentration field c, by solving Eq. (20).
In [25], the authors used a velocity-pressure formulation for solving fluid problems. Importantly, they noted that the best
stability and error was achieved when the regularity of extensions matched those expected from derivative counting the

7



J.M. Huang, M.J. Shelley and D.B. Stein Journal of Computational Physics 432 (2021) 110162

PDEs: that is, if u is extended to be C¥(C), then p should only be extended to be in C¥~1(C). We find similar phenomena in
the streamfunction-vorticity formulation, and hence to find a velocity u = (u, v) in C¥(C), we choose to extend w € C¥~1(C)
and ¢ € Ck1(C). Accordingly, the appropriate formulation is

Low = xeLoNo = X2 fo inC, (21a)
AY — XAy +©=0 inc, (21b)
H* e + Ty_1Fp =0 inE, (21¢)
H Ny + Ty Fy =0 inE, (21d)

R} _{(No—w)=0 atC Uy, (21e)
Ry, (ny — %) =0 atT'UTy,, (21f)
Sioy¥ =0 atTuT,, (21g)
Sty¥ =0 atTuT,,. (21h)

The unknowns are (w, ¥, o, Ny, Fw, Fy). In the next section, we discuss details of the numerics.
4. Numerical implementation
4.1. Numerical scheme for the 6 — L method

On the boundary T, the rescaled arclength o € [0, 1) is discretized using equispaced points, and Fourier spectral (or
pseudo-spectral) methods are used. The explicit equations in Eqgs. (11) and (12) are integrated with a fourth-order Adam-
Bashforth method. At time t = mAt, Eq. (13) can be split into the non-stiff explicit part E™ = (1/L™)[(B/Pe)(d?c/dnda)™ +
VI(90/3c)™] and stiff implicit part 7™ = [€/(L™)21(8%6/3a®)™. For this equation, we use the fourth-order implicit-explicit
(IMEX) Backward Differentiation formula and the fourth-order Adam-Bashforth formula:

At
L = 2 (ssvT — 59V 437y 2 9VT‘3) , (22)

25 4 1
SO 40" 430" — 2™ 4 0" = At [I’"“+48m 8’”*1+48'"*2—8m*3]. (23)

Here L™ = (L™, xJ', yg) and V' _< fl 0 mAt, o) Va(mAt, @)da, Va(mAt, 0) cos 0(mAt, 0), Va(mAt, 0) sin(mAt, O))

At timestep m + 1, the evaluation of 7™*! would require L™*!, so the explicit integration of xJ ', X7 and L™*! is
performed first. #™+1 is then found via the Fourier method.

4.2. Discretization of spread, interpolation and extension operators

In this section, we define the discrete spread, interpolation and extension operators introduced in Section 3.2; we will
not explicitly distinguish the discretized operators through different notation. Let § denote a regularized §-function, defined
by Cartesian products of regularized one-dimensional §-functions. We define normal derivatives of § to be

31§ 81§

— =N ~-~n'.7, 24
ani T T A, 0 (24)

where repeated indices i; are summed according to the Einstein summation convention. Using the standard spectral dis-
cretization of the integral in Eq. (16), and replacing the § function with its regularized equivalent, we define the discretized
spread operator to be:

o 315 (x — X;
SHhH® =Y F@ I)L As, (25)

i=1
Xi = X(o;) is the ith coordinate of the boundary and As = L/npq, (note that for arbitrary parametrizations, As depends on

VX2 +YZ; however, since we use an arclength parametrization, this is constant). The number of nodes in the quadrature
is chosen so that As =~ 2Ax. Choosing As smaller yields better accuracy while choosing it larger yields better numerical
stability. The number of boundary points is npgy, ~ L/(2AX). Note that during the process of melting or dissolving, the
number of boundary points npg, must thus be updated as the total arclength L changes.

8
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The interpolation operator is then defined through the adjoint property (u, S(j)F>C = (S*

(U F>r' and is explicitly given
by

N N o~
318 (xij — X
(St (@) =Dy (% — %) AXAy. (26)

Lo g

i=1 j=1
Here the vector x;j — Xy = (2mwi/N — Xy 1, 27 j/N — Xy 2) points from the boundary point Xy € I" to the domain point x;; € C;
the gridspacing Ax= Ay =2m/N.

The accuracy of these operators is analyzed in [24], and depends on the choice of the underlying regularized §-function.
We use the C3 function with a support width of 16Ax defined in [24]; with this choice the interpolation operator provides
fourth-order accurate approximations for the Oth to 3rd normal derivatives of smooth functions.

Finally, we must choose the extension operator(s) H* used in Egs. (20) and (21). This should be a high-order differential
operator, so that a sufficient number of boundary conditions can be imposed. An obvious choice is the poly-harmonic
operator of the appropriate order, but this is both poorly conditioned and has a null-space. Adding a scalar ® remedies the
nullspace, and its size may be used to control the condition number of the system that must be solved, at the expense of
adding an artificial length-scale to the problem that must be resolved by the discretization:

The choice of ® depends on the smoothness k and the largest wave-number m present in the discrete Fourier transform
on the discrete domain Cg. The condition number of H¥ is

. m2k+1) 08)
K= ,
®

while the intrinsic lengthscale introduced is ©~1/2¢+1) We choose © as

1 2(k+1)
e = , (29)
NAx

as in [25]. Here N is a parameter that controls how many points are used to resolve the intrinsic lengthscale introduced by
H¥; for all simulations in this paper N = 10 is used.

4.3. Smoothed characteristic functions xg and 3¢ for stiff modified-Helmholtz problems

When solving the diffusion equation with a small diffusion coefficient and/or small timestep, time-discretization yields
a modified Helmholtz problem with a very small Helmholtz parameter. In fact, this parameter is typically artificially small,
in that it introduces a length-scale that is below any relevant to the physical problem. However, if this length-scale is not
resolved, the standard IBSE solver may yield low-quality solutions, especially during brief transient phases (i.e. for small
times t around the startup of a dissolution problem, when ¢ jumps discontinuously from 1 to 0 across the interface, and
diffusion has yet to have enough time to regularize the solution). Stability, although not accuracy, may be recovered in these
circumstances by using smoothed, rather than sharp, characteristic functions o and xg. The family of functions we adopt
here are the Wendland functions [35]:

s(1 =92 —r)"1ds for0O<r<1,

1 fl
G m(r) =\ Tm2m-1Jr
0 forr > 1.

(30)

Here m is an integer controlling the smoothness of Wendland function, and [ = |[m +d/2] + 1 with d =2 as the spatial
dimension in our study. It can be shown that Eq. (30) produces a C2™(R*) function. We also define the integral of Wendland
function as ®(r) = j:oo d1m(Is)ds/ ffooo d1.m(s)ds, so () =0 whenr < —1 and &(r) =1 when r > 1.

Throughout our study, we choose m =2 and | =4 so all functions involved are at least C#, and define the smoothed
characteristic functions xg and xq as

Xa®) =0t (x)/d), (31)
REX) =1— FaX). (32)

Here r*(x) is the signed distance between x and the boundary T, such that r¥(x) > 0 when x € Q and r*(x) < 0 when
x € E. ds is a smoothing length-scale that is chosen to be 4Ax. In general, ds; should be small enough that the boundary
layer structure can be sufficiently resolved.
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4.4. Inversion of the IBSE-k system using Schur complements

For the pure Stefan problem, Eq. (20) can be written in block form as

Lo —XeLc| O c Xafe
o H T (]
k Nec _ (33)
* *
Ry —R} 0 F, 0
S* 0 0 g

(V)

As shown in [24,25], the size of this system can be reduced to knpqy x knpgy by computing the Schur complement (SC)

N -1
R¥ —R*\ (L —XeLc 0
SC=| ok k ) 34

Equation (33) may then be reduced to

R*L—l"
SC-Fe=|_, "¢ Kefe ) (35)
S(o)Lc xXefc—g

During each time step, the m-th column of SC can be prepared by applying the RHS of Eq. (34) to a vector a such that
aj = 8jm. Although this computation is relatively expensive and must be done knpqy times, it is embarrassingly parallel,

significantly reducing the preparation cost of SC on a multicore system. Equation (35) can then be inverted to solve for F..
Once F. is known, we may find 7. and c:

Ne = (HY 1Ty Fe., (36a)
c= L (Rafe+ ReLeno). (36b)

It is worth noting that SC depends only on the boundary geometry, which is slowly changing in the Stefan problem.
As the preparation of the SC is expensive, we seek to reuse it, effectively amortizing its formation cost over a num-
ber of timesteps. In the simulation, SC™ is prepared at a time step m and decomposed into LU components such that
LMy = sc™  Since the boundary I' changes slowly, M = (L™ U )~ serves as a good preconditioner for solving the
linear system Eq. (35) for some number of timesteps. Once the SC fails to serve as an effective preconditioner, it is recom-
puted. Reformation of the SC is triggered by two criteria: (i) it takes too many iterations for GMRES to converge (more
than 10 iterations in all examples in this manuscript); (ii) the boundary size npgy is changed (since npgy ~ L/2Ax and the
arclength L is changing). We call recomputation of Schur complement a “SC renewal”. In Section 6.5, we show how often
SC renewal happens for a particular simulation.

Next, the Schur complement for Eq. (21) is formed in the similar way. The discrete equation is

Ly 0 —XELow 0 0 0 w Xofo
I A 0 —XEA 0 0 v 0
(] 0 gk 0 |, O No 0
0 0 0 HAT |0 Ty ng |=] 0 (37)
Ry, 0 —Ry_, 0 0 0 E, 0
0 Ry 0 - Z+1 0 0 Fy 0
0 T 0 0 0 0 0
To distinguish from SC, we define the Grand Schur complement (GSC) for this system,
" -1
Ly 0 —xpL 0 0 0
RE, 0 —R_, 0 “ Heco
< . . A 0 —XEA 0 0
GSC= 0 Rk+1 0 _Rk—H 0 0 Hk*] 0 Tr—1 0 (38)
0 Ty 0 0 .
0 0 Vahu 0 Tiy

10
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Equation (37) becomes

F R;_, 0 Lo 0 -1 4. f
<GSC )(F‘”>= 0 R, (Hw A) (X%’”) (39)
v «
0 T

Once Eq. (39) has been solved for (F, Fy ), the remaining unknowns (w, ¥, 1w, y) can be determined in a manner
analogous to Eq. (36). The GSC is a 2knpqy + 1 square system, where the additional equation is added due to the null space
of the Laplace operator (see Appendix B of [24]).

4.5. Outline of the numerical solver
Here we sketch a brief outline to solve the Stefan problem and its related flow problem with IBSE. At each time step,

1. The shape of the moving boundary is determined by solving Eqs. (12) and (22). 4th order Adam-Bashforth and IMEX
schemes are used for time integration, and the spatial equation is solved using a Fourier spectral method.

2. Operators such as T, T*, R, R*, S, S* are prepared according to Eqgs. (17), (25) and (26).

3. If the simulation is running for the first time, or one of the two SC (GSC) refreshing conditions is met, the Schur
complement will be prepared according to the procedure introduced in Section 4.4.

4. The concentration field c is solved first through Eq. (33) - Eq. (36). The value of dxc is then evaluated with Fourier
differentiation, the value of 9,c at the boundary is calculated by applying SE“U to ¢ and the boundary velocity V; is
computed according to Eq. (5).

5. The vorticity @ and the stream function v equations are solved through Eq. (37) - Eq. (39). The flow velocity field
u =V, ¢ is then calculated and serves as the advection term u- Vc in f. for the next time step.

For a pure Stefan problem without flow, only step 1-4 are involved.
5. Results: Stefan problems

In this section, we use the method described in Sections 3 and 4 to solve Stefan problems with the form:

d
a_C =Ac in Qliquid7 (403)
t
d
V=B £ onT, (40D)
c=0 onT, (40c)
c(X,0)=—1 in Qigyiq- (40d)

Physically, these equations describe the growth of a solid body into its over-cooled liquid surrounding as discussed in Sec-
tion 2.1. We first examine the convergence of the numerical scheme with an analytic solution, demonstrating the expected
order of convergence for the temperature and boundary position (up to third-order, in L°°, depending on the regularity of
extensions). We then examine an unstable problem, and show that the method qualitatively produces the typical growth
patterns driven by the Mullins-Sekerka (MS) instability.

5.1. Convergence of the Stefan solver

An exact solution for a circle growing in infinite space (known as the “Frank disk”) [20] stays circular during the freezing
process (although small perturbations, if present, will drive the Mullins-Sekerka instability, as in Section 5.2). The radius of
the Frank disk, as a function of time, is R(t) = So+/t, where Sg is a parameter determined by 8 and co. The associated
temperature field is:

0 fors < So,
€= coo<1— F(s)) fors > So, (41)

F(Ro)

where s = |x|/+/t, F(s) = E1(s2/4), and Eq(2) = 2fz°°e“/tdt. To analyze the validity and accuracy of our solver, we let
B =—-0.4, Sop =1.2, and begin simulations starting at t = 0.1 with an initial radius R(0.1) = 0.38. In these simulations, as in
all simulations throughout this manuscript, we use a Fourier pseudo-spectral method as the basis for the IBSE solver. Our
system thus has naturally periodic boundary conditions, while the analytical form for the Frank disk solution is valid only
in infinite space. The numerical solution to the periodic problem, as computed by the IBSE-2 method, together with the
analytical Frank disk solution, is shown in Fig. 2(a). Despite the differing boundary conditions, the periodic solution and the
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Fig. 2. Frank disk solution of the Stefan problem and a convergence test of the numerical solver. (a) The liquid-solid interface given by the numerical solution
to the periodic problem (IBSE-2, solid line) and the exact solution to the free-space problem (dashed line). The circular initial shape remains circular until
periodicity limits the growth of the interface. (b) The total arclength of the interface L grows as the square root of time. The numerical solution (IBSE-2,
solid line) matches well with the free-space analytic solution (dashed line), especially at short times. Inset: Relative error of L at early times. Data from
IBSE-3 simulation with N = 1000. (c)-(e) L error of the numerical solutions. For IBSE-1, 2 and 3, the concentration field c, total arclength L and boundary
velocity V,, converge to the exact solution at 1¢, 2nd, and 3rd order, respectively. (For interpretation of the colors in the figure(s), the reader is referred to
the web version of this article.)

analytic solutions agree well over short to medium times. As the interface diameter approaches the width of the periodic
interval, periodicity pushes the interface shape away from the analytic circular solution. The arc-length of the liquid-solid
interface is shown in Fig. 2(b), with the absolute difference between analytic and computed solutions shown in the inset
for short times, where the interface is far from the periodic boundary. At these small times, this concordance is on a
similar scale to the error we expect from our solver. In order to test the accuracy of our solver, we thus solve for only a
short amount of time: to t =0.11 (for times larger than t 2 0.11, periodic effects, although still small, become comparable
with the errors achieved by the IBSE-3 method). In Fig. 2(c)-(e), we show a convergence study for the arclength L of the
boundary, the concentration field c(x,t) and the boundary velocity V,, as computed using the IBSE-1, 2, and 3 methods
with At =0.1/N and N/10 timesteps. Startup values for the BDF-based IMEX timestepping scheme are computed from the
analytic solution. All errors are measured against the analytic solution in L°, and a convergence rate of O(h*) is observed for
all variables examined. Although these errors are a mixture of discretization and periodicity-related errors, the periodicity-
related error must be dominated by our discretization error over these times, or we would have seen stagnating errors,
rather than a k-th order convergence rate. The IBSE-k method achieves an O(h*+!) convergence rate for Dirichlet problems
with defined boundaries [24]. In this problem the interface location is moving with the normal velocity V,. Computing this
velocity requires estimating dc/dn, which is only accurate to O(h*). This error is propagated through the boundary location
to all other variables.

5.2. Mullins-Sekerka instability

The Mullins-Sekerka (MS) instability is frequently observed when solidification occurs in an over-cooled fluid [18]. The
solid stays at the melting temperature (c = 0, here), and the temperature gradient determines the rate of liquid solidification.
Regions of the interface with higher curvature result in locally higher temperature gradients, enhancing the local solidifica-
tion, further increasing the local curvature. Thus once the local curvature begins to deviate from the mean curvature, the
MS instability leads to growth of those deviations.

In this section, we demonstrate that our solver is able to qualitatively capture the dynamics driven by the MS instability.
We start with a perturbed geometry that has L =7 and 6 = 0.5 (1 — 4) 4+ 0.6sin (24w ), as shown in Fig. 3(a). For this
computation, the Stefan number is g = —0.2 and we use the IBSE-2 method with N =300 and At =5 x 10~%. In order
to prevent the formation of singular features on the boundary, regularization via the Gibbs-Thomson effect is required, and
we set € = 0.002. Fig. 3(a)-(b) shows the development of the MS instability, and the shape profiles of this process are
shown in Fig. 3(c). An associated movie is included in supplemental movie S1. The flat part of the boundary grows slowly
while the high curvature part grows rapidly, and the resulting growing front further bifurcates into extrusions, which can
be seen in Fig. 3(c) on the branches at in the NE (Northeast), SE, SW and NW directions. The arclength of the interface is
shown in Fig. 3(d). Eventually, the growth of the solid is limited by the periodic computational domain and the saturation
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Fig. 3. The development of Mullins-Sekerka instability. (a) The initial shape is a circle perturbed with sinusoidal waves. The solution in the physical domain
(liquid) and the exterior domain (solid) are both shown. (b) High curvature regions of the interface tend to grow faster, and form finger-like instabilities.
(c) Contour plot of the interface. It is clear that the extruding high curvature region grows faster. (d) The arclength L first grows and then saturates. The
saturation is due to the temperature reaching equilibrium in the liquid, which is ¢ = 0 in the physical domain. Movie of the full simulation can be found in
supplemental material S1.

of temperature in the liquid [Fig. 3(b)]. The solidification stops as the liquid reaches an equilibrium temperature of ¢ =0
everywhere.

6. Results: Stefan problems coupled with Navier-Stokes flow (dissolution)

We now turn our attention to the case of a Stefan problem coupled to an incompressible flow. When the Reynolds
number is high, the BDF-based IMEX scheme used to timestep pure Stefan problems severely limits the timestep. We
instead use a 2nd-order method based on an Adam-Bashforth Backward-Differentiation (ABBD) scheme. Spatially, we set
k=2 in Egs. (20) and (21), so c€ C2, w € C!, u e C? and ¥ € C3. At time t, the set of equations

I —ocA)c = fE in Qiiguia, (42a)

(I - oMo' = f,  in Qiiguid, (42b)
AY' = -0 in Qiiguid, (42¢)
Yv=vYy,=0,c=1 onT, (42d)
1//:1#,,:0,2—2:0 onTly (42e)

is solved, where

o — 2At o = 2At (43a)
“73pe’ Y7 3Re
2At 1
fi= -5 [Z(u Vo)A (u- Vc)t_zm] + 3 (4ct_At - ct_zm) , (43b)
2At | oc 1
t— 220 (% o Vo)A — (u. V)24t 2 (400t _ gt—28tY) 4
fo : [(ax) +2(u-Vo) (u-Vo) + 3( W w ) (43c¢)

The concentration Eq. (42a) is solved first, so that the value of dc/dx at time t is known in Eq. (43c). Anti-aliasing for the
non-linear terms is done by smoothly rolling off high-frequency modes, using the method introduced in [36].

6.1. Convergence of the dissolution solver
We first ensure that our solver achieves the desired order of accuracy through a refinement study. We let Re = 3.16,
Pe =3.16, $ = 0.1, and € = 0.1. The aspect ratio of the domain is taken to be 4/3 (width |/ height, controlled by adjusting

the wall size). We run simulations at grid-sizes of N = 32,64,...512 with the timestep At = 0.01/N. Each simulation
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Fig. 4. Refinement study of the Stefan solver coupled to an incompressible viscous flow. The spatial discretization and timestep are refined simultaneously
so that Ax/At remains constant. The bulk fields ¢ (concentration), @ (vorticity), and ¢ (streamfunction), as well as the surface quantities 6 (tangent angle),
L (total arclength), V;; (boundary velocity), and t (shear stress) all show second-order convergence in the L> norm (over Qjiqua for bulk fields and T" for
surface quantities).

Fig. 5. Stefan problem with natural convection. The color-map shows the concentration field c, overlaid by contours of the streamfunction . The interface
is highlighted in red. A boundary layer forms around the dissolving body, and flow separates at the bottom stagnation point. In this simulation, Re = 316,
Pe =316 and Ra = 10°. A corresponding movie can be found in supplemental material S2.

runs for N steps in time so te;,q = 0.01 for all simulations. Fig. 4 shows, for both bulk and surface fields, the difference,
measured in L°, between the solution with a grid size N and N/2; achieving the expected second-order convergence.
Moreover, our method accurately captures the surface shear stress T = Re~182v/dn2, enabling us to study near surface flow
phenomena such as the boundary layer separation in Section 6.5. As with the pure Stefan problem examined in Section 5.1,
total accuracy is limited by the estimation of the boundary velocity V,, which is only second-order since it depends on
dc/dn and c € C%(C).

6.2. Dissolution problem in the laminar boundary layer regime

We initialize a problem with a circular solid domain immersed in fluid that initially has no solute concentration. When
the Reynolds and Péclet numbers are moderate, the system displays an up-down symmetry breaking, as shown in Figs. 5
and 6. In Section 6.3, we show how the shape dynamics changes across a range of parameters, and argue that pattern
formation is driven primarily by increasing the Rayleigh number Ra = PeRe. For the simulation in Figs. 5 and 6, we have set
Re =316, Pe =316, Ra =10 and the Stefan number to 8/Pe = 0.003, while the Gibbs-Thompson effect is set to be low at
€ =5 x 1074, The grid size in this simulation is N = 300, and the timestep is At = 0.004.

Fig. 5 shows the concentration field ¢ and the contour lines of the streamfunction . Fluid with higher solute con-
centration has a higher density than the ambient fluid, and the buoyancy difference results in a gravity driven downward
flow. A movie of the simulated dissolution process can be found in the supplement material S2. At the Reynolds and Péclet
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Fig. 6. Shape dynamics of the Stefan problem with natural convection shown in Fig. 5. (a) The position of the interface as a function of time (early times
blue, later times red). At later times, the geometry is asymmetric, and appears egg-shaped. (b) The area of the dissolving body decreases in time with a
power law A/Ap = (1— t/tf)s/s. The numerical value of area (blue circles) matches the predicted power law (dashed line), except for the beginning where
the boundary layer is not fully established.

number of 316, a gravity driven flow forms within the boundary layer near the solid, and separates from the body only
at the bottom stagnation point. Two vortices are clearly seen below the dissolving body, due to the combination of the
downward flow and the splitting flow at the bottom wall. In the later stages of the simulation, a circulation pattern of four
vortices can be seen across the computational domain, as shown in Fig. 5(d). Overall, the flow is in a laminar regime, and
the competition between the viscosity/diffusion and the gravity driven flow leads to the formation of the boundary layer
surrounding the dissolving solid.

The time-dependent profile of the interface between the solid and fluid domains is shown in Fig. 6(a). The initial trace
is shown in blue, and the final trace in red; successive curves are equispaced in time. From the initial circular configuration,
the up-down asymmetry develops into an egg-shaped geometry. Comparing the spacing between each interface, we see
that the top of the solid domain dissolves fastest, as the fluid near the top separation point is the freshest (that is, has a
low solute concentration). Flows around the interface appear to stay attached until the very bottom of the body, and the
variation of ¢ is mostly contained in a laminar boundary layer. This enables us to establish a boundary layer scaling. It is
known that the concentration gradient within the boundary layer of natural convection has the scaling dc/an ~ L=1/4 [31],
where L(t) is a typical length-scale that we choose as the total arclength. So the boundary velocity V, ~ dc/dn ~ L~1/4, and
the rate of area change can be estimated as

dA
—— ~ LV, ~ ~ .
LV ~ [3/4 ~ p3/8 (44)
dt
Integration yields
A £ \8/5
—=(1-=) (45)
Ao ty

where Ag = A(0) is the initial area while t; is the time at which the solid body vanishes. After fitting this parameter (t; ~
72), the numerical value of the solid area fits the predicted scaling law, see Fig. 6(b). We note that the simulation deviates
from the power-law prediction near the beginning; this is to be expected as the boundary layer is not fully established.

Within the laminar boundary layer regime, the interface remains smooth and rounded. As we shall see in the proceeding
examples, the boundary layer becomes unstable when the Reynolds and Péclet numbers are increased, and the interface
geometry becomes more complex.

6.3. Shape dynamics as Rayleigh number increases

To understand the parameters affecting shape dynamics, we run simulations across a range of Reynolds and Péclet
numbers. For this parameter sweep, we hold the Stefan number B/Pe = 0.003 fixed so that changes in shape dynamics
are driven solely by changes in Pe and Re. Sweeping through Pe and Re changes the Rayleigh number Ra = RePe. Fig. 7(a)-
(e) shows 5 simulations with their concentration and flow fields at t =40 and their shape evolution in color contours,
with parameters: (a) Re = 100, Pe = 275, Ra = 27500; (b) Re = 250, Pe = 275, Ra = 68750; (c) Re = 100, Pe = 1150, Ra =
115000; (d) Re = 250, Pe = 1150, Ra = 287500; (e) Re = 300, Pe = 1500, Ra = 450000. Movies corresponding to Fig. 7(a)-
(e) can be found in the supplemental movies S3-S7. Two observations can be made as the Rayleigh number increases:
first, the boundary layer separates before reaching the bottom stagnation point; second, the length-scales present in the
concentration, flow fields, and interface become finer.

As a measure of the scale over which patterns are formed, we examine the non-dimensional curvature k = —d6/dc.
The actual planar curvature is k* =« /L(t), which diverges as L(t) — 0. In Fig. 7(f) we show max ( |k (a,t)| for each set
of parameters. In all simulations this curvature increases and peaks soon after the moment of boundary layer detachment,
and decreases thereafter. The boundary layer detachment is associated with the formation of near-corner regions with high
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Fig. 7. Dissolution at various Rayleigh numbers. (a)-(e) At t =40, with the Stefan number fixed at g/Pe = 0.003, higher Rayleigh number results in finer
structures in both the concentration field and the solid geometry. Adjacent contours of the interface shape are separated by At =30. (f) Phase diagram of
the maximum curvature of the evolving interface as a function of Pe and Re. Lines of constant Rayleigh number are shown in white, and configurations
corresponding to (a)-(e) are labeled in red dots. Movies of (a)-(e) can be found in supplemental material S3-S7.
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Fig. 8. Comparing simulations with the same Rayleigh number but different Reynolds and Péclet numbers. (a)-(b) Shape dynamics of dissolution at a low
Rayleigh number Ra = 6.785 x 10%, parameters Re and Pe for (a) and (b) correspond to point (b) and (b') on Fig. 7(f). The contours with same color are
selected such that they have the same arclength L. (c)-(d) Shape dynamics of dissolution at a high Rayleigh number Ra = 2.875 x 10°, parameters Re and
Pe for (c) and (d) correspond to point (d) and (d’) on Fig. 7(f). The contours with the same color have the same arclength.

curvature, while the Gibbs-Thomson effect limits the growth of this curvature and diffuses the distribution of & over time
[29,37].

It is apparent that the curvature increases as Re and Pe increase, although neither parameter explains the growth on its
own. In the phase diagram Fig. 7(f), we plot contours of constant Ra as white lines. As the maximum curvature is nearly
constant on these contours, and increases with increasing Ra, it is apparent that Ra plays a central factor in determining the
pattern morphology.

To further investigate the dependence between dissolving shape dynamics and Rayleigh number Ra, we compare sim-
ulations with the same Ra but different Re and Pe. In Fig. 7(f), two points (b) and (b’) have the same Rayleigh number
Ra = 6.785 x 10%; their dissolving shape dynamics are shown in Fig. 8(a)-(b). Although the two simulations have different
Re and Pe, we see that the resulting dynamics show visual resemblance. This similarity is also seen for higher Ra, as shown
in Fig. 8(c)-(d) which correspond to the points (d) and (d’) in Fig. 7(f). One possible explanation for the similarity in shape
dynamics is that the density plume size is a function of the Rayleigh number [13], so similar Ra results in similar length
scales presenting in the flow/concentration fields and the geometry.

6.4. Solver behavior as flow structure changes
SC/GSC renewals are significantly more time consuming than timesteps (although the exact ratio depends on many
factors, including the discretization, machine core-count, and the number of GMRES iterations required). To assess the

performance of our numerical solver, we show the number of GMRES iterations per timestep and the number of SC/GSC
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Fig. 9. Number of GMRES iterations and renewals of the SC/GSC during a simulation. The Schur complement renews more frequently when the boundary
moves rapidly, especially at the beginning of dissolution and at the moment boundary layer separates. Corresponding simulation is shown in Fig. 7(d) and
supplemental movie S6.
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Fig. 10. High Rayleigh number of Ra = 10° leads to flow separation and pattern formations. (a)-(e) Snapshots of the concentration field and solid geometry
at various time. The bottom of dissolving solid shows more complex geometry compared to its top, where dense plumes carrying high concentration fluid
detach and sink to the bottom. Movie can be found in supplemental material S8. (f) Maximum non-dimensional curvature max |k | = maxy |00/dc| of the
interface grows rapidly as the boundary layer separation occurs at t = 10, which signals complex geometry forms and the interface deviates from the
circular profile. The bottom corners shown in (b) merge into a single spike at t = 30, resulting in the maximum curvature over time.

renewals for the simulation shown in Fig. 7(d). As shown in Fig. 9, the SC and GSC are, on average, renewed every 100
timesteps, resulting in significant amortization of the renewal cost.

At the beginning of the simulation, the initial concentration field is 0 in the fluid and 1 at the boundary. The sharp
gradient at the dissolving boundary drives rapid boundary motion and the SC renews at a fast pace. As the concentration
builds up around the boundary, the renewals become less frequent. After a SC/GSC renewal, the number of GMRES iterations
steadily increases as the boundary shape deviates more and more from the shape at last renewal. Rapid boundary motion
also happens at the moment of boundary layer separation, where the built up concentration field around the boundary
becomes gravitationally unstable and a downward jet forms as the concentration blob drips (supplemental movie S6). As
the thickness of the boundary layer § suddenly decreases, the resultant concentration gradient dc/dn ~ 8§~! increases and
SC/GSC renews more rapidly due to the boundary motion.

6.5. Dissolution problem at higher Rayleigh number

In this section we discuss a simulation with the highest Rayleigh number we have achieved so far - Ra = 106 with
Re =316, Pe = 3160, € =5 x 10~ and Stefan number 8/Pe = 0.005. Fig. 10 shows simulation results using N = 300, with
At = 0.004. For this Rayleigh number, the flow is no longer laminar [see Fig. 10(b) and supplemental movie S8]. Detached
density plumes with higher local concentration sink towards the bottom, showing a close resemblance to the thermal
plumes of Rayleigh-Bénard convection [13,38] and the density plumes of the Rayleigh-Taylor instability [11]. Naturally, this
change of flow regimes transforms the shape dynamics.
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Fig. 11. Evolution of the interface and dynamical quantities around the moment of boundary layer separation in Fig. 10. The time period of t = 8-12
corresponds to the shaded area in Fig. 10(f). (a) Snapshots of the concentration field around the flow separation at t = 10, the separation points are marked
with arrows. High concentration plumes form due to the advection of detaching flows. (b) The shear stress T = Re™!d%y/dn? at the moving interface
decreases rapidly near the flow separation (marked with dashed lines). (c) The magnitude of normal boundary velocity —V, = —BPe~'dc/dn increases
after flow separation. (d) The non-dimensional curvature xk = —9,6 deviates from its initial profile of x =27 as V, drives the boundary away from a circle.

Starting from a circular interface as shown in Fig. 10(a), one distinct feature of the dissolution at high Ra is the formation
of near-corners and a rough bottom surface. Once formed, this roughness persists throughout the dissolution process as
shown in Fig. 10(b)-(e). The maximum non-dimensional curvature maxy |k (¢, t)| is plotted as a function of time in Fig. 10(f).
Initially, the interface stays very nearly circular with k ~ 2. However, the curvature suddenly increases at t &~ 10 when the
boundary layer starts to separate, and the surface roughens thereafter (see supplemental movie S8). The curvature peaks at
around t = 30 in Fig. 10(f), and an inspection of the supplemental movie S8 shows that the two bottom near-corners shown
in Fig. 10(b) merge into a single downward spike in Fig. 10(c)-(e) during that time. The curvature of this downward spike
is highest along the interface, and its value decreases in time due to the geometric dissipation from the Gibbs-Thomson
effect.

What initiates this formation of fine-scale structure? Fig. 11(a) shows several snapshots of the interface and the con-
centration field around the time of the first boundary layer separation. The boundary layer has thickened by t ~ 8, and by
t ~ 10, the bottom boundary layer has detached, eventually forming two heavy plumes (by t ~ 12) that sink towards the
bottom. During the same period of time, near-corners start to develop at the location of flow separation; similar corner
formation has been observed in the experiments on erosion [37] and dissolution [6]. One sign of a destabilizing boundary
layer is the weakening of surface shear stress T = Re~192y/9n? [31]. Fig. 11(b) shows such a weakening between the loca-
tions of flow separation, marked with dashed lines, between t =10 and ¢t = 12. Indeed, T decreases markedly in magnitude
there and then. The dissolution rate increases significantly as the flow separates (see Fig. 11(c)), due to recirculating flows
in the wake that introduce relatively fresh liquid, creating a higher local concentration gradient at the surface. Likewise, the
curvature distribution in Fig. 11(d) deviates from its initial profile of x = 27, as the bottom of the dissolving solid forms
new near-corners. By t &~ 12 there are now two descending plumes on each side, one emanating from a newly formed
near-corner, and the other from the initial boundary layer detachment point. As the bottom surface of the solid recedes
upwards, at later times these plumes destabilize to transverse bending, and the flows become much more complex, as seen
in Fig. 10.

Small numerical artifacts begin to appear in this simulation at t &~ 12 (see Fig. 11(b)-(d)). In this simulation, the high
Pe and Re produce fine length-scales and fast velocities, especially when boundary-layer separation occurs. To compute this
solution in a reasonable timeframe, we are using a discretization that just resolves the spatial scales and timesteps that
near the Courant-Friedrichs-Lewy condition. Increased temporal and spatial resolution will be required to attack problems
with higher Re and Pe. We discuss some possibilities for how to achieve this in Section 7.

7. Discussion
In this paper we introduce and test an accurate, sharp-interface method for solving the Stefan problem coupled to a
Navier-Stokes flow (the dissolution problem). These problems are numerically challenging, as the boundary motion depends

on the normal derivative of field variables. The solver introduced here is based on the IBSE method, which allows accurate
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(a) high Ra, 1 hour (b) moderate Ra, 1 month

Fig. 12. Two experiments of spherical solids of sugar dissolving in water. (a) When the sugar dissolves into fresh water, complex surface textures form at the
bottom of the dissolving object [7]; parameter values are Re ~ 10%, Pe ~ 107 and Ra~ 10'!. (b) Adding sugar to the background fluid results in a moderate
Rayleigh number (Ra~ 4 x 10°), and surface textures with a larger length-scale are observed. In this experiment a prominent downward tip forms, located
at the bottom of the dissolving solid. The shape of the dissolving solid is qualitatively similar to the shape observed in the numerical simulation shown in
Fig. 10; the Rayleigh numbers are similar despite radically different Reynolds and Péclet numbers.

resolution of these normal derivatives [24]. In refinement studies the method achieves third-order accuracy for Stefan prob-
lems and second-order accuracy for the dissolution problem, measured in L* for all variables. In addition, we explicitly
verify that the method provides convergent estimates for the normal-derivative of the concentration and the surface shear
stress on the boundary. Having access to accurate estimates of these quantities allows for an analysis of the way flow struc-
tures affect the dissolution process, as in our discussion in Section 6.5. For the classical Stefan problem (without flow), we
validate the solver against a known analytic solution and show that it is able to reproduce the well-known Mullins-Sekerka
instability. For the dissolution problem, when boundary layer separation does not occur, the solver reproduces a predicted
boundary layer scaling, and when boundary layer separation does occur, it qualitatively reproduces interface morphologies
observed in experiments [7].

Some experimental observations of dissolution are found in Fig. 12, which shows an initially spherical solid made of sugar
dissolving into a large body of liquid. Fig. 12(a) shows the dissolution of sugar into fresh water. The dissolved shapes have
scalloped patterns on the bottom and a sharp edge separating the rough bottom from its smooth top, where the flow has a
laminar boundary layer structure. In Fig. 7, we observed from our simulations that a higher Rayleigh number is associated
with finer structures in the flow/concentration fields and higher curvatures in the surface morphology, so the formation of
fine patterns in Fig. 12(a) is expected, although we were unable to compute numerical solutions in this parameter regime,
where Re ~ 104, Pe ~ 107, and Ra ~ 10'!. Similar patterns have been observed experimentally in dissolution [7,8] and
numerically in melting [5].

In the experiment shown in Fig. 12(b), sugar has been added to the initial fluid into which the solid dissolves, increasing
the viscosity and decreasing the Reynolds number of the associated flow. Since the normal velocity V; « 8/Pe and we know
the Péclet number for the experiment shown in Fig. 12(a) [7], we can compare the timescales of dissolution between the
two experiments shown in Fig. 12 to estimate the Péclet number associated with Fig. 12(b) to be Pe ~ 10'°. To estimate the
Rayleigh number for this experiment, we use the Stokes-Einstein relation [39] to obtain vD = kgT /(6w Rp) ~ 1016 m*/s2,
where kp is the Boltzmann constant, T ~ 300 K is the temperature, and R ~ 1 nm is the radius of a sugar molecule. Using
the shadowgraph technique,! we observe that the density plumes move approximately 1 cm every minute so that the
typical flow speed is U ~ 10~* m/s. With a typical length-scale of L ~ 6 cm which is the initial diameter of the sphere, the
Rayleigh number in Fig. 12(b) is Ra = RePe = (UL)?/(vD) &~ 4 x 10° - a number that is very close to the Rayleigh number
from the simulation shown in Fig. 10. In Fig. 8, we observed that simulations with the same Rayleigh number but different
Reynolds and Péclet numbers had similar morphologies. Remarkably, the dissolved shapes in Fig. 10 and Fig. 12(b) show a
qualitative resemblance even though the parameters in the experiment (Pe ~ 10'° and Re = Ra/Pe ~ 10~4) are drastically
different from those used for the simulation (Pe =3160 and Re = 316). The relationship between the interface morphology
and the Rayleigh number suggests that the interaction between the flow field, concentration field, and the geometry is
critical in driving these complex shape dynamics. The numerical method developed in this paper allows us to accurately
compute important quantities that are hard to measure experimentally, including the surface shear stress and concentration
gradients near to the boundary. This extra information is crucial in helping piece together a full understanding of the shape
dynamics of this system.

In the experiments shown in Fig. 12(a) the Rayleigh number is about 10!, with a Schmidt number of 103; corresponding
to a Reynolds number Re ~ 10* and a Péclet number of Pe ~ 107. Unfortunately, these parameter values lead to extremely
thin boundary layers (in both u and c), requiring high resolution to accurately resolve. In fact, most small solute molecules
yield a Schmidt number around Sc = v/D = Pe/Re ~ 10® in water due to their similar molecular diffusivity at D ~ 1072
m? /s [40], which leads to unavoidably fine scales in studying dissolution problems at moderate or high Re. At low Re, the
Stokes-Einstein relation enforces Pe ~ Re~!, which adds stiffness to the advection-diffusion equation and again leads to thin
boundary layers. Numerically studying these problems in experimentally relevant parameter regimes will require the use of
an adaptive solver to capture these fine near-boundary flow structures. The Immersed Boundary Method, on which the IBSE
method is based, has been implemented in an adaptive framework in IBAMR,? and extending the methods developed in

T https://en.wikipedia.org/wiki/Shadowgraph.
2 https://ibamr.github.io/.
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this paper within that framework presents one possible method for attacking such problems. Nevertheless, there are other
interesting problems that are accessible to the solver as developed, which can, on a standard workstation, handle Reynolds
and Péclet number numbers of Re ~ 300 and Pe ~ 3000, respectively. These are approximately the parameter values for ice
melting into water [5]. This situation also demands special care, as water has a density anomaly near T =4°C; thus, the
Boussinesq approximation used in this paper must be modified to correctly represent the known buoyancy-temperature
dependence.
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