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Abstract

We introduce a fast convolution-based method (FCBM) for solving linear and a certain class of nonlinear peridynamic (PD)
ransient diffusion problems in 1D, 2D, and 3D. The method exploits the convolutional structure of the PD diffusion operator
o compute it efficiently by using the fast Fourier transform (FFT). A new “embedded constraint” (EC) strategy allows using
he Fourier transform on irregular domains and imposing arbitrary nonlocal boundary conditions. The complexity of the new

ethod is O(N log 2N ), compared with O(N 2) for the conventional peridynamic meshfree or finite element solvers of the
same problem. We find quadratic convergence rates in terms of spatial discretization to the exact nonlocal solutions in 1D and
2D problems. Numerical tests show substantial efficiency gains when using the FCBM-EC method compared to the meshfree
discretization method for problems with a larger number of nodes inside the nonlocal region. Further speedup is achieved with
Matlab’s intrinsic FFT functions for computations on GPUs or multiple CPUs. An example in 3D with over 1 billion degrees
of freedom over tens of thousands of time-steps, is solved by the new method on a single CPU in a matter of days. The same
problem would have required over a century to complete with the commonly used meshfree discretization.
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1. Introduction

Nonlocal diffusion-type equations are frequently used to describe various phenomena such as swarm of organ-
sms [1], flocking of birds [2–4], pedestrian traffic [5], delayed reaction–diffusion in biology [6], etc. Peridynamic
PD) diffusion equation is one of such nonlocal formulations that was used for modeling diffusion in domains with
volving discontinuities, for example heat diffusion in a cracking domain [7] or mass-transfer in corrosion damage
ropagation [8–11]. Peridynamic models replace spatial derivatives in local formulations with integral operators.
his allows more general formulations with no smoothness restrictions on the unknown functions, making it easy to
olve problems with spontaneous emergence and evolution of discontinuities [12,13]. However, numerical solutions
o such nonlocal formulations are relatively expensive due to the computation of volume integrals (area integrals in
D) required at each node [14,15].

The meshfree method based on one-point Gaussian quadrature [16] is perhaps the most widely used numerical
ethod for discretizing PD equations due to its benefits in modeling damage and fracture [17]. Continuous

nd discontinuous Galerkin finite element methods (FEM) [18–21] are other approaches used for discretizing
D equations. Continuous FEM models for PD formulations are rarely used in simulating fracture, while the
iscontinuous Galerkin-based discretizations of PD models have shown some difficulties in correctly predicting
ynamic brittle fracture [22]. For a certain size of the nonlocal interaction region (the “horizon” size), the
omputational complexity of the meshfree and FEM approaches is O

(
N 2

)
with N being the total number of nodes

mployed to discretize the domain.
Reducing the computational cost for PD models can be achieved with Fourier-based methods. The PD operator

n the PD diffusion equation can be expressed in terms of convolution integrals. Fourier methods transform the
onvolution integral operator into a multiplication in the Fourier space, at a cost of O(N log 2N ), with the bulk of
he computations spent on computing the Fourier transform and its inverse via fast Fourier transform (FFT) [23,24].
owever, Fourier methods are normally only applicable to periodic domains, limiting their use. This type of method
as been used to solve the nonlocal Allen–Cahn equation [25], fractional-in-space reaction diffusion [26], and PD
iffusion and wave equations with linear operators [27–31], over periodic domains. A certain class of PD models
iscretized with the FEM or the meshfree method, are amenable to fast solutions using the Fourier-based approach
ntroduced in [32,33].

To apply Fourier methods to non-periodic domains and arbitrary boundary conditions, we recently introduced
fast convolution-based method (FCBM) for 1D linear peridynamic diffusion problems in [34], using a volume

enalization (VP) technique previously used in the context of PDEs in, e.g., [35]. We obtained significant efficiency
ains with the FCBM-VP compared with meshfree discretization for PD diffusion in 1D, motivating the present
tudy on formulating such approaches in higher dimensions and for nonlinear problems.

In this paper we replace the volume penalization technique used in [34] with a better scheme we call Embedded
onstraint (EC), and extend the formulation to diffusion problems in two and three-dimensions, and also to nonlinear
D diffusion equations. We explain the advantages of the new EC versus the VP approach for a 1D case, then we
erify the new method with a nonlinear 2D example. We also use the FCBM-EC to compute a 3D diffusion example
n a bounded domain with an insulated penny-shaped cutout subjected to Neumann and Dirichlet BCs. We determine
omputational efficiency gains of the newly introduced method relative to the meshfree discretization in 3D.

. Peridynamic transient diffusion

The theory of peridynamics was originally developed for mechanics and fracture [36], and has been exten-
ively applied modeling fracture and failure [37–40]. This nonlocal theory has been extended to diffusion-type
roblems [41,42] and several other fields [43,44].

In peridynamics, a spatial point, denoted by its position vector x ∈ R3, interacts with other points within its
nite size neighborhood, usually a disk in 2D (sphere in 3D) centered at x. The neighborhood is called the horizon
egion of x denoted by Hx , and its radius is called horizon size (or simply, the horizon) denoted by δ. Points located
nside Hx are denoted by x′ and are referred to as the family of x [12,13]. Fig. 1 schematically shows a peridynamic
ody with a generic point x, its family and its horizon.

′
Objects that carry the pairwise nonlocal interactions between x and x are called bonds.
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Fig. 1. A peridynamic body with a generic point x and its horizon Hx .

2.1. The peridynamic diffusion equation

Consider the general nonlinear anisotropic inhomogeneous case of the classical diffusion equation:

∂u (x, t)
∂t

= ∇ · [C (x, t) · ∇u (x, t)] + r (x, t) , (1)

where u (x, t) is the function describing the diffusing quantity (e.g. concentration in mass transport, temperature
in heat transfer, etc.) at point x and time t , r is a source term, ∇ is the gradient operator, (·) denotes inner (dot)
product, and C is the second-order diffusivity tensor that may depend on position and time. Nonlinearity in Eq. (1)
arises if C depends on u (e.g. concentration-dependent diffusivity, or temperature-dependent conductivity). If C is
independent of u the equation is linear. In this case, for an isotropic and homogeneous diffusion defined by ν as
the scalar diffusivity constant, Eq. (1) becomes:

∂u (x, t)
∂t

= ν∇
2u (x, t) + r (x, t) , (2)

where ∇
2 denotes the classical Laplacian operator.

A nonlocal version of Eq. (1) is the general PD diffusion equation [41,42]:

∂u (x, t)
∂t

= Lγ u(x, t) + r (x, t) , (3)

here the classical diffusion operator ∇ · (C · ∇) in Eq. (1) is replaced with the PD diffusion operator Lγ :

Lγ u (x, t) =

∫
Hx

γ (x, x′, t)[u
(
x′, t

)
− u(x, t)]dx′ (4)

n Eq. (4), the kernel γ is assumed to be nonnegative and symmetric in the first two variables: γ
(
x, x′, t

)
=

(x′, x, t). It defines the nonlocal interaction between x and x′ [41,42]. PD diffusion is nonlinear if γ depends on
(x, t) and/or u

(
x′, t

)
.

For isotropic homogeneous diffusion with constant diffusivity, the peridynamic diffusion equation becomes [41,
2,45]:

∂u (x, t)
∂t

= νLµu (x, t) + r (x, t) , (5)

where Lµ is the PD Laplacian operator, a nonlocal version of the Laplacian in Eq. (2). The PD Laplacian can be
expressed as:

Lµu (x, t) =

∫
Hx

µ(x′
− x)[u

(
x′, t

)
− u(x, t)]dx′, (6)

where the kernel function µ is nonnegative and symmetric, i.e. µ x = µ(−x).
( )

3
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In order to take advantage of the speedup provided by Fourier-based methods for solving PD diffusion problems,
e need to express the PD operator in terms of convolutions. For example, the PD Laplacian given in Eq. (6) can
e decomposed into a convolution integral term and a linear term:

Lµu (x, t) =

∫
Hx

µ(x − x′)u
(
x′, t

)
dx′

−

(∫
Hx

µ
(
x′

− x
)

dx′

)
u (x, t) , (7)

Since µ(x − x′) is zero outside of Hx :

Lµu (x, t) = [µ ∗ u] (x, t) − βu (x, t) (8)

where (∗) denotes the convolution operator:

[µ ∗ u] (x, t) =

∫
R 3

µ
(
x − x′

)
u

(
x′, t

)
dx′, (9)

and:

β =

∫
H0

µ (x) dx. (10)

Note that besides this linear case, one can perform a similar decomposition for certain classes of nonlinear problems
for which such convolutional expressions exist. For example, for kernels of the form:

γ (x, x′, t) = σ
(
x, x′, u, u′, t

)
ω(x′

− x, t) (11)

with ω
(
x′

− x, t
)

= ω(x − x′, t), σ
(
x, x′, u, u′, t

)
= σ

(
x′, x, u′, u, t

)
, and σ being a linear combination of

functions (or products of such functions) that depend on (x, u, t) or
(
x′, u′, t

)
. The decomposition into convolutions

for a specific example of such PD nonlinear diffusion operators is given below.
Let the kernel γ in Eq. (4) be defined as:

γ (x, x′, t) =

[
f (x, u, t) h

(
x′, u′, t

)
+ f

(
x′, u′, t

)
h (x, u, t)

2

]
ω(x′

− x, t) (12)

here u′ denotes u
(
x′, t

)
for notation simplicity. Similarly, by denoting f ′ and h′ for f

(
x′, u′, t

)
and h

(
x′, u′, t

)
espectively, the nonlinear diffusion PD operator becomes:

Lγ u (x, t) =

∫
Hx

{[
f (x, u, t) h

(
x′, u′, t

)
+ f

(
x′, u′, t

)
h (x, u, t)

2

]
ω(x′

− x, t)

}
[u

(
x′, t

)
(13)

− u(x, t)]dx′
=

1
2

∫
Hx

(
f h′

+ f ′h
)
ω

(
x − x′, t

) (
u′

− u
)

dx′

=
1
2

∫
Hx

(
f h′u′

− f h′u + f ′hu′
− f ′hu

)
ω

(
x − x′, t

)
dx′

=
1
2

[∫
Hx

f h′u′ω
(
x − x′, t

)
dx′

−

∫
Hx

f h′uω
(
x − x′, t

)
dx′

+

∫
Hx

f ′hu′ω
(
x − x′, t

)
dx′

−

∫
Hx

f ′huω
(
x − x′, t

)
dx′

]
=

1
2

[
f
∫

Hx

h′u′ω
(
x − x′, t

)
dx′

− f u
∫

Hx

h′ω
(
x − x′, t

)
dx′

+ h
∫

Hx

f ′u′ω
(
x − x′, t

)
dx′

− hu
∫

Hx

f ′ω
(
x − x′, t

)
dx′

]
=

1
2

{ f [ω ∗ (hu)] − f u (ω ∗ h) + h [ω ∗ ( f u)] − hu (ω ∗ f )}

Note that Eq. (8), the linear case, is recovered from Eq. (13) when f = h = 1, and ω = µ.
The proposed method is general and can be applied to any integral operator with a convolutional structure. For

xample, in a separate work [46], we have obtained results that show how to apply the method for PD elasticity

odels (with small and large rotations) and for dynamic brittle fracture problems.
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In Section 3 we use the convolution form given in Eq. (8) for the linear case to construct the fast convolution-
ased method for peridynamic models of diffusion, and then we repeat those steps for the nonlinear case given in
q. (13).

. The fast convolution-based method for 3D peridynamic transient diffusion

In this section we discuss the FCBM for linear (general) and nonlinear (particular case in Eq. (13)) PD diffusion
n 3D periodic domains.

Consider the isotropic homogeneous PD diffusion given by Eq. (5). In order to apply Fourier-based methods,
e need to assume periodicity of the 3D domain in the Cartesian directions. Let u(x, t) be a complex-valued scalar

function defined over the periodic domainT = [0, L1] × [0, L2] × [0, L3], with 0 being “identified” with L1, L2,
nd L3 in all three directions to create the domain periodicity (in Section 4 we will show how to extend this to
rbitrary domains). Then u(x, t) can be expressed with the infinite Fourier series in space [47,48]:

u (x, t) =

+∞∑
k3=−∞

+∞∑
k2=−∞

+∞∑
k1=−∞

û (k, t) e2πζ
(

k1x1
L1

+
k2x2
L2

+
k3x3
L3

)
(14)

here k = {k1, k2, k3} is the integer vector of Fourier modes, ζ =
√

−1, and:

û (k, t) =
1

L3L2L1

∫ L3

0

∫ L2

0

∫ L1

0
u (x, t) e−2πζ

(
k1x1
L1

+
k2x2
L2

+
k3x3
L3

)
dx1dx2dx3 (15)

are the Fourier coefficients of u for different values of k. Eq. (15) is also called the Fourier transform of u while
Eq. (14) is the inverse Fourier transform of û. A similar Fourier series representation is possible for the kernel
function µ (see Eq. (6)) if it is assumed to be a periodic complex-valued scalar function defined over T:

µ (x) =

+∞∑
k3=−∞

+∞∑
k2=−∞

+∞∑
k1=−∞

µ̂ (k) e2πζ
(

k1x1
L1

+
k2x2
L2

+
k3x3
L3

)
(16)

µ̂ (k) =
1

L3L2L1

∫ L3

0

∫ L2

0

∫ L1

0
µ (x) e−2πζ

(
k1x1
L1

+
k2x2
L2

+
k3x3
L3

)
dx1dx2dx3 (17)

In this case, the PD Laplacian operator of u becomes:

Lµu (x, t) = [µ ∗T u] (x, t) − βu (x, t) (18)

here (∗T) denotes the 3D circular (also called cyclic or periodic) convolution on T [49]:

[µ ∗T u] (x, t) =

∫
T

µ
(
x − x′

)
u

(
x′, t

)
dx′ (19)

n the Fourier space, the circular convolution is transformed into multiplication of the convoluted functions [49]:

FFF {[µ ∗T u] (x, t)} = L3L2L1FFF (µ)FFF (u) = L3L2L1µ̂ (k) û (k, t) , (20)

here FFF denotes the Fourier transform operation.
To arrive at the solution using our Fourier-based method, we need to use the Discrete Fourier Transform

DFT) [47]. To this aim, we first approximate u and µ with their truncated (finite) Fourier series. Let N1, N2,
nd N3 be three integer numbers up to which the Fourier series are truncated in the three directions:

uN (x, t) =

+N3/2∑
k3=−N3/2

+N2/2∑
k2=−N2/2

+N1/2∑
k1=−N1/2

û (k, t) e2πζ
(

k1x1
L1

+
k2x2
L2

+
k3x3
L3

)
(21)

µN (x) =

+N3/2∑
k3=−N3/2

+N2/2∑
k2=−N2/2

+N1/2∑
k1=−N1/2

µ̂ (k) e2πζ
(

k1x1
L1

+
k2x2
L2

+
k3x3
L3

)
(22)

e then select a uniform discretization of the spatial domain, with the same number of nodes as the Fourier modes
n the truncations above [47] in each direction:

xi jl = (i∆x1, j∆x2, l∆x3), where ∆x1 =
L1

N1
;∆x2 =

L2

N2
;∆x3 =

L3

N3
(23)
and = {0, . . . , N1 − 1} ; j = {0, . . . , N2 − 1} ; l = {0, . . . , N3 − 1} .

5
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Thus, the discrete Fourier transforms (DFT) for u and µ are:

ũ (k, t) =

N3−1∑
l=0

N2−1∑
j=0

N1−1∑
i=0

uN (
xi jl , t

)
e−2πζ

(
k1i
N1

+
k2 j
N2

+
k3l
N3

)
(24)

µ̃ (k) =

N3−1∑
l=0

N2−1∑
j=0

N1−1∑
i=0

µN (
xi jl

)
e−2πζ

(
k1i
N1

+
k2 j
N2

+
k3l
N3

)
, (25)

and the inverse discrete Fourier transforms (iDFT) for ũ and µ̃ are:

uN (
xi jl , t

)
=

1
N3 N2 N1

N3
2 −1∑

k3=−
N3
2

N2
2 −1∑

k2=−
N2
2

N1
2 −1∑

k1=−
N1
2

ũ (k, t) e2πζ
(

k1i
N1

+
k2 j
N2

+
k3l
N3

)
(26)

µN (
xi jl

)
=

1
N3 N2 N1

+N3/2∑
k3=−N3/2

+N2/2∑
k2=−N2/2

+N1/2∑
k1=−N1/2

µ̃ (k) e2πζ
(

k1i
N1

+
k2 j
N2

+
k3l
N3

)
(27)

he PD Laplacian of uN on the discretized domain can be expressed via one-point Gaussian quadrature:

LµuN (
xi jl , t

)
=

N3−1∑
m=0

N2−1∑
q=0

N1−1∑
p=0

µN (
xi jl − x pqm

) [
uN (

x pqm, t
)
− uN (

xi jl , t
)]
∆x1∆x2∆x3 (28)

=

N3−1∑
m=0

N2−1∑
q=0

N1−1∑
p=0

µN (
xi jl − x pqm

)
uN (

x pqm, t
)
∆x1∆x2∆x3

−

⎧⎨⎩
N3−1∑
m=0

N2−1∑
q=0

N1−1∑
p=0

µN (
xi jl − x pqm

)
∆x1∆x2∆x3

⎫⎬⎭ uN (
xi jl , t

)
=

[
µN

∗TuN ] (
xi jl , t

)
− βN uN (

xi jl , t
)

ith these definitions for the truncated Fourier series representations and DFT operations, one can write [50]:[
µN

∗T uN
] (

xi jl , t
)

=

iDFT
{

DFT
{[

µN
∗T uN

] (
xi jl , t

)}}
= iDFT

⎧⎨⎩∆x1∆x2∆x3DFT

⎡⎣N3−1∑
m=0

N2−1∑
q=0

N1−1∑
p=0

µN (
xi jl − x pqm

)
uN (

x pqm , t
)⎤⎦⎫⎬⎭ =

iDFT
[
∆x1∆x2∆x3µ̃ (k) ũ (k, t)

]
(29)

sing the Fast Fourier Transform (FFT) algorithms [23,24], the cost for the DFT operation and its inverse is
O(N log 2N ), where N = N1 N2 N3 is the total number of nodes. To simplify notation, let uN

(
xi jl , t

)
= uN

i jl,t
nd µN

(
xi jl

)
= µN

i jl . The linear nonlocal operator in discrete form is:

LµuN
⏐⏐
i jl,t = FFT−1 [

∆x1∆x2∆x3FFT
(
µN

i jl

)
FFT

(
uN

i jl,t

)]
− βN uN

i jl,t , (30)

here FFT and FFT−1refer to the FFT and inverse FFT operations, and:

βN
=

N3−1∑
l=0

N2−1∑
j=0

N1−1∑
i=0

µN (
xi jl

)
∆x1∆x2∆x3, (31)

or singular kernels (limx→0 µ (x) = ∞, e.g. the kernel in Section 5.3), µN
∗T uN and βN become singular which

ake LµuN
⏐⏐
i jl,t in Eq. (28) to seem undefined, but in fact it is defined. The canceling pairs of terms lead to canceling

ingularities in µN
∗T uN and βN , and lead to a value of zero for LµuN

⏐⏐
i jl,t at the singularity point (i jl = pqm in

q. (28)). In the actual implementation, to overcome numerical issues we set µN
(
xi jl

)⏐⏐
xi jl=0 = 0.

For integrable kernels, β can be calculated analytically at the continuum level formulation in Eq. (18). When

sing the discretized formulation, however, the β integral should also be computed using the same discretization as

6
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the convolution term µN
∗T uN . Otherwise, discretization inconsistency between µN

∗T uN and βN can undermine
the accuracy of the computed LµuN .

Let ri jl,t denote r
(
xi jl , t

)
, then the spatially-discretized PD diffusion equation with the FCBM then reads:

duN
i jl,t

dt
= νFFT−1 [

∆x3∆x2∆x1FFT
(
µN

i jl

)
FFT

(
uN

i jl,t

)]
− νβN uN

i jl,t + ri jl,t (32)

Using, for example, the forward Euler method in time for approximating the solution of the ordinary differential
equation (ODE) in Eq. (32), yields:

uN
i jl,t+∆t = uN

i jl,t + ∆t
{
νFFT−1 [

∆x3∆x2∆x1µ̃k1k2k3FFT
(
uN

i jl,t

)]
− νβN uN

i jl,t + ri jl,t
}

(33)

Note that µ̃k1k2k3 = FFT
(
µN

i jl

)
is precomputed only once, before the time integration loop, since it does not depend

on time in our case.
The steps shown above for the isotropic homogeneous linear PD diffusion given in Eq. (5) can be easily extended

to nonlinear cases in which the nonlinear PD operator is decomposable into convolutional terms. For example, in
the case of the nonlinear diffusion with the time dependent properties given by Eqs. (4) and (13), the FCBM leads
to the following discretization:

uN
i jl,t+∆t = uN

i jl,t

+ ∆t
{

1
2
∆x3∆x2∆x1

{
f N
i jl,t FFT−1 [

FFT
(
ωN

i jl,t

)
FFT

(
hN

i jl,t u
N
i jl,t

)]
− f N

i jl,t u
N
i jl,t FFT−1 [

FFT
(
ωN

i jl,t

)
FFT

(
hN

i jl,t

)]
+ hN

i jl,t FFT−1 [
FFT

(
ωN

i jl,t

)
FFT

(
f N
i jl,t u

N
i jl,t

)]
− hN

i jl,t u
N
i jl,t FFT−1 [

FFT
(
ωN

i jl,t

)
FFT

(
f N
i jl,t

)]}
+ ri jl,t

}
(34)

The only difference between the linear and nonlinear cases is the discretized diffusion operator, because the nonlinear
case requires more FFT and FFT−1 calculations (in the example above the nonlinear case would cost four times
more than the linear case). Notably, the complexity for the nonlinear case remains O(N log 2N ).

4. The FCBM for 3D peridynamic diffusion on arbitrary domains

In this section, we first discuss volume constraints (nonlocal boundary conditions) in peridynamic problems.
Then we introduce a new approach to apply the FCBM to problems in non-periodic domains with arbitrary volume
constraints.

4.1. Boundary conditions in peridynamics

Boundary conditions in PD nonlocal approach are in the form of volume constraints, defined over a δ thick
volume layer on the domain exterior. Fig. 2 schematically shows a PD domain Ω and its nonlocal boundary layer
Γ . More details on PD volume constraints are discussed in [51].

According to nonlocal vector calculus [51], volume-constrained peridynamic problems are defined analogous
to boundary value problems with PDEs in the local theory. Volume constrained peridynamic transient diffusion
problem can be generally expressed as [42]:⎧⎪⎪⎨⎪⎪⎩

∂u (x, t)
∂t

= Lγ u (x, t) + r (x, t) x ∈ Ω , t > 0

u (x, 0) = u0 (initial condition) x ∈ Ω

G (u (x, t)) = 0 (volume constraints) x ∈ Γ , t ≥ 0

(35)

where G is a function that prescribes the constraints of u on Γ . In Section 5.2 we present the solution for a problem
with such volume constraints.

In most engineering problems, measurements are taken at the surfaces of a body, not through a layer near the
surface. The natural representation of such measurements is via local boundary conditions. Methods for imposing
7
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w

Fig. 2. A peridynamic domain Ω and its nonlocal boundary layer or constrained volume Γ and their interface ∂Ω .

local boundary conditions on peridynamic bodies have been studied in [52–55]. One such method is the fictitious
layer/nodes method (e.g. [52,54]) where certain volume constraint is considered on Γ , leading to desired boundary
conditions on ∂Ω (see Fig. 2). This method is exact in 1D and reasonably accurate in 2D and 3D (except at regions
with high gradients, corners and sharp curvatures, see [54]). In Sections 5.1 and 5.3, we use this method to enforce
local BCs in two PD problems, by determining the corresponding volume constraint values on the nonlocal boundary
layer Γ . Details for imposing Dirichlet and Neumann BCs to peridynamic models are provided in Appendix A.

4.2. Enforcing boundary conditions with a new “embedded constraint” approach

In this section, we introduce a new way to extend the FCBM described in Section 3, to bounded domains with
arbitrary volume constraints (boundary conditions).

As mentioned earlier, while domain periodicity is a requirement for Fourier methods, modifications have been
introduced for local theories to solve problems with non-periodic boundary conditions (e.g. see [35,56–59]). In [34],
we introduced a volume penalization technique to solve problems with non-periodic volume constraints in 1D
peridynamic diffusion using a Fourier-based method. Here, we introduce a simpler, more general, and more efficient
approach to impose non-periodic boundary conditions in the solution of PD Fourier-based models.

Consider the following nonlocal transient diffusion volume-constrained problem defined over an arbitrary domain
Ω and its nonlocal boundary layer Γ :⎧⎪⎪⎨⎪⎪⎩

∂u (x, t)
∂t

= Lγ u (x, t) + r (x, t) x ∈ Ω , t > 0

u (x, 0) = u0 x ∈ Ω

u (x, t) = g (x, t) x ∈ Γ , t ≥ 0

(36)

We emphasize that the nonlocal formulation in Eq. (36) can “represent” both classical (local) Dirichlet and Neumann
BCs. Indeed, one can specify a certain profile for g (x, t) over Γ , such that the solution of Eq. (36) effectively
matches a given classical Dirichlet or Neumann BC on ∂Ω . Formulas for how to specify g for Dirichlet or Neumann
BCs are provided in Appendix A.

To make the FCBM work for this problem, we first place Ω ∪ Γ inside a periodic box (T) (see Fig. 3 for the
2D case). T\(Ω ∪ Γ ) is denoted by Λ and is referred to as the gap region.

We then replace the volume-constrained problem in Eq. (36) with the following periodic problem:⎧⎨⎩
∂u (x, t)

∂t
= χ (x, t)

[
Lγ u (x, t) + r (x, t)

]
+ [1 − χ (x, t)]

∂w (x, t)
∂t

x ∈ T, t > 0

u (x, 0) = u0 x ∈ T
(37)

here χ denotes the mask function

χ (x) =

{
1 x ∈ Ω

(38)

0 x ∈ T\Ω = Γ ∪ Λ

8
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Fig. 3. Extension of the bounded-domain Ω and its nonlocal boundary layer Γ by periodicity.

nd

w (x, t) =

⎧⎪⎨⎪⎩
0 x ∈ Ω

g (x, t) x ∈ Γ

z (x, t) x ∈ Λ

(39)

here g (x, t) is the volume constraint in Eq. (36), and z (x, t) is a function defining gap values. These gap values
an be defined arbitrarily, for instance taken as zero. The reason is that, unlike the volume constraint function g,
he domain of definition of the gap function z is a horizon size (δ) away from Ω . Therefore, there is no “direct
nteraction” between the values of the z (over Λ) and u (over Ω ), see Fig. 3. An arbitrary selection for the z
unction values may mean a jump discontinuity at the Γ–Λ interface for the unknown function u (over T). We have
umerically studied to see whether this lack of smoothness leads to associated errors (Gibbs-type phenomenon).
e have not yet noticed any undesired oscillations. We have tested this for the elastic problem as well (see [46])

nd no Gibbs-type phenomenon was observed there either. It is possible that the reason behind these observations
s the smoothing effect introduced by convolution operations, noted previously in the literature (see [60–62]). One
an, of course, employ smooth extensions to T using a technique similar to those available in the literature for local
odels (see [47,57]).
Now that the original volume-constrained problem is replaced with a periodic problem. We apply the Fourier

ollocation method described in Section 3 to spatially discretize the periodic problem. Let the domain T be
iscretized according to Eq. (23); then problem (37) becomes the following initial value problem for a system
f ODEs:⎧⎨⎩

duN
i jl,t

dt
= χi jl

(
Lγ u

⏐⏐
i jl,t + ri jl,t

)
+

(
1 − χi jl

) dwi jl,t

dt
x ∈ T, t > 0

ui jl,t=0 = u0,i jl x ∈ T
(40)

here

χi jl =

{
1 xi jl ∈ Ω

(41)

0 xi jl ∈ Γ ∪ Λ

9
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and

wi jl,t =

⎧⎪⎨⎪⎩
0 xi jl ∈ Ω

gi jl,t xi jl ∈ Γ

zi jl,t xi jl ∈ Λ

(42)

Lγ u
⏐⏐
i jl,t is the discrete peridynamic Laplacian operator calculated via Fourier transform according to Section 3. The

articular formula for Lγ u
⏐⏐
i jl,t depends on the kernel inside the operator (see Eqs. (30) and (34) as two examples).

According to Eq. (41), one re-writes the system of ODE in Eq. (40):

duN
i jl,t

dt
=

⎧⎨⎩Lγ u
⏐⏐
i jl,t + ri jl,t xi jl ∈ Ω

dwi jl,t

dt
xi jl ∈ Γ ∪ Λ

(43)

o solve (43) in time, we use an ODE solver (here we select the forward Euler method). Knowing u = w on T\Ω ,
ne can write:

uN
i jl,t+∆t =

{
uN

i jl,t + ∆t
(

Lγ u
⏐⏐
i jl,t + ri jl,t

)
xi jl ∈ Ω

wi jl,t+∆t xi jl ∈ Γ ∪ Λ
(44)

e use Eq. (41) to re-write Eq. (44):

uN
i jl,t+∆t = χi jl

[
uN

i jl,t + ∆t
(

Lγ u
⏐⏐
i jl,t + ri jl,t

)]
+

(
1 − χi jl

)
wi jl,t+∆t (45)

We call this way of imposing volume constraints the “embedded constraint” method, since the constraints are
mbedded into the governing integro-differential equation.

According to the stability analysis for FCBM-VP in [34], one can easily show that the stability condition in the
bsence of a penalization term for linear diffusion results in:

∆t ≤
1
νβ

(46)

This condition implies that stability does not depend on the spatial discretization resolution, but depends on the
horizon size and the kernel function. This condition is similar to the CFL condition in the meshfree method [52].
In the volume penalization method introduced in [34] (see Appendix B for a brief review), higher accuracy requires
a potentially larger penalization parameter which may shrink the maximum allowed time step, and consequently
increase the computational cost. One advantage of the new embedded constraint method compared with the volume
penalization is that the maximum time step size does not depend on a penalization parameter.

Another major advantage of EC over VP is that EC can be applied directly to other PD equations, e.g. PD
equations of motion, while the penalization method in [34] cannot without modifications. The specifics of the VP
method depend on whether one solves PDEs with first-order or second-order partial derivatives in time (see [34]).

5. Examples and discussion

In this section, we first numerically evaluate the accuracy and convergence of the newly introduced FCBM-EC
for a 1D peridynamic linear diffusion example with non-periodic boundary conditions and compare its performance
versus the penalization method in [34]. Then, we solve a 2D volume-constrained peridynamic nonlinear diffusion
problem and perform spatial and temporal convergence studies to the exact nonlocal solution (obtained via the
method of manufactured solutions). Finally, we show a 3D diffusion problem with non-periodic local boundary
conditions using the FCM-EC and discuss the computational efficiency of the method relative to the meshfree
discretization and FEM-based Abaqus solutions.

5.1. Performance of the FCBM with embedded constraint (EC) in 1D

To evaluate the performance of the FCBM-EC in terms of accuracy and convergence, we test the method for

solving a PD problem for which we have the analytical solution (based on the method of manufactured solutions,

10
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see e.g. [63]). Consider the following 1D PD linear diffusion problem on the bounded domain Ω =
[
−

L
2 , L

2

]
:

∂u (x, t)
∂t

= ν

∫
Hx

µ(x ′
− x)[u

(
x ′

)
− u(x)]dx ′

+ r (x, t) (47)

here:

µ (x) =

⎧⎨⎩
12
δ3

(
1 −

|x |

δ

)
; |x | ≤ δ

0; |x | > δ

(48)

nd

r (x, t) = ν

{
6L2

δ4π2

[
cos

(
2πδ

L

)
− 1

]
+

12
δ2 − 1

}
e−νt sin

(
2πx

L

)
, (49)

ith the initial condition:

u (x, 0) =
2x
L

+ sin
(

2πx
L

)
, (50)

nd subjected to Dirichlet boundary conditions:

u
(

−
L
2

, t
)

= −1 (51)

u
(

L
2

, t
)

= 1 (52)

This problem was used in [34] to verify the FCBM with volume penalization. The exact analytical solution to the
above problem is:

u (x, t) =
2x
L

+ e−νt sin
(

2πx
L

)
(53)

n order to apply the FCBM we first extend the bounded domain Ω = [− L
2 , L

2 ] by a length δ on both ends to
create the boundary volumes (Γ ). In the extended domain T =

[
−

L
2 − δ, L

2 + δ
)
, volume constraints should be

specified on Γ1 =
[
−

L
2 − δ, − L

2

)
and Γ2 =

( L
2 , L

2 + δ
]
, as the left and right boundary layers. In this example,

we consider T = Ω ∪ Γ to be periodic; therefore no gap region is included (Λ = ∅). There are two alternatives
or applying the local BC given in Eqs. (51) and (52): (1) use the exact volume constraints (because we employ
he exact, manufactured solution for the nonlocal problem), and (2) use a technique (e.g. Appendix A and [34])
or constructing volume constraints based on the given local BCs. In order to compare with the results in [34],
ere we use the second approach. This example will also demonstrate how one can apply local BCs to a general
eridynamic problem, even when the nonlocal analytical solution is not known.

Let L = 2, ν = 0.2, δ = 0.2, and the total diffusion time tmax = 15. Accordingly, T = [−1.2, 1.2) is the periodic
xtended domain with −1.2 identified with 1.2. Let N = 29 be the total number of nodes and ∆t = 1.67 × 10−2

s the maximum time step allowed by Eq. (46). Fig. 4 shows the numerical results from the FCBM-EC versus the
xact solution. The corresponding code is found in the Supplementary materials.

As observed, boundary conditions are correctly enforced using the introduced IC method.
We performed convergence tests on this example to study the influence of spatial and temporal resolutions on

he maximum relative error: max0<t<tmax

ui,t −uN
i,t


∞

∥ui,t=0∥∞

. In peridynamics the ratio m =
δ

∆x is usually referred to as “m
actor” [64] which is a measure for family node density. For convergence tests in terms of spatial discretization,
e refine the spatial discretization while keeping the horizon size fixed. This is called “m-convergence” [64]. We
aried N = 26 to 213 (m varied from 5.3 to 682.7 accordingly). Results are presented in Fig. 5a. We performed a
imilar convergence study using the previously introduced VP method (see Appendix B and [34]), and the results
re shown in Fig. 5b. The code for the FCBM-VP is found in the Supplementary materials.

By comparing results in Fig. 5a and Fig. 5b, we observe that the EC method is more accurate than the VP
pproach for the same time step size. Note that the temporal resolution in the VP method is tied to penalization
arameter (ε) magnitude. For each time step, we chose the smallest possible ε to test the optimum performance of
11
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Fig. 4. Comparison of the numerical solution obtain with the FCBM-EC and the exact solution for a 1D nonlocal diffusion problem with
two Dirichlet (non-periodic) boundary conditions.

Fig. 5. Studies in terms of spatial resolution for three time step sizes: a) FCBM-EC; b) FCBM-VP, with the penalization parameter resolved
for each time step size for optimality.

VP versus EC (see Appendix B). For both the FCBM-EC and FCBM-VP, the rate of convergence is O(∆x2) for
ufficiently small ∆t .

While rigorous error estimates and convergence analysis have not yet been carried out for this method, the
bserved quadratic rate of convergence is likely due to the quadratic rate of the Gaussian quadrature used in Eq. (28).

Although Fig. 5a already shows the error for three different time steps, we perform a separate temporal
onvergence test for FCBM-EC and show the results in Fig. 6. For this test the spatial resolution is fixed:

N = 213(m = 682.7).
We observe a linear rate of convergence, O (∆t), which is expected from the Forward Euler time integrator.
One can use methods with higher order accuracy (e.g. explicit 4th order Runge–Kutta) for temporal integration.

n that case, the stability restriction on time step size for explicit methods would be different from that shown in
q. (46).

To check the computational complexity for the two methods (the meshfree method using direct quadrature, and
he FCBM-EC using the FFT), we solved the 1D problem above, considering various spatial discretization size. We
an the meshfree method using N = 29 to 220 and the FCBM-EC with N = 216 to 228. The time step in all these
ests was chosen to be ∆t = 1.67 × 10−2. Simulations were conducted using a Dell-Precision T7810 workstation
C, Intel(R) Xeon(R) CPU E5-2687 W v3 @3.10 GHz logical processors, and 64 GB of installed memory. We
12
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Fig. 6. Convergence study for the FCBM-EC in terms of temporal resolution for a 1D example with non-periodic boundary conditions.

Fig. 7. Complexity of the meshfree method (direct quadrature) (a) versus the FCBM-EC (FFT-based) (b).

utilized only one CPU for these computations. Fig. 7 shows the computational run times for each method, relative
to the problem size.

As expected, the complexity of meshfree method with direct quadrature is O(N 2), while that of the FCBM-EC
s O(N log2 N ).

.2. A 2D nonlinear volume-constrained problem

In this part, we examine the new FCBM-EC for solving nonlinear and non-periodic PD diffusion problems
n 2D. We use again the method of manufactured solutions [63] to construct a 2D nonlinear volume-constrained
eridynamic transient diffusion problem. Consider the following function:

u x, t = e−0.2t (1 − x2)(1 − x2), x = {x , x } ∈ R2 and t ≥ 0 (54)
( ) 1 2 1 2

13
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Eq. (54) is the analytical solution to the following nonlinear problem:⎧⎪⎪⎨⎪⎪⎩
∂u (x, t)

∂t
= Lγ u (x, t) + r (x, t) x ∈ Ω = [−1, 1]2 , t > 0

u (x, 0) =
(
1 − x2

1

) (
1 − x2

2

)
x ∈ Ω = [−1, 1]2

u (x, t) = e−0.2t
(
1 − x2

1

) (
1 − x2

2

)
x ∈ Γ = [−1.2, 1.2]2

\ [−1, 1]2 , t ≥ 0

(55)

here

Lγ u (x, t) =

∫
Hx

γ
(
x′, x

) [
u

(
x′, t

)
− u (x, t)

]
dx′ (56)

ith

γ (x′, x) = u (x, t) u
(
x′, t

)
ω(x′

− x) (57)

nd

ω (x) = 0.2
(

1 −
∥x∥

δ

)
. (58)

his is a special case of Eq. (13) where f = h = u. If u is temperature for example, with this kernel, Eq. (55) is
nonlinear PD problem with temperature dependent diffusivity. In Eq. (55):

r (x, t) =
−0.2πe−0.6t

443520

(
1 − x2

1

) (
1 − x2

2

) [
189δ10

+ δ8 (
4620x2

1 + 4620x2
2 − 3080

)
(59)

+ δ6 (
7920x4

1 + 92400x2
1 x2

2 − 44880x2
1 + 7920x4

2 − 44880x2
2 + 23760

)
+ δ4 (

110880x4
1 x2

2 − 22176x4
1 + 110880x2

1 x4
2 − 443520x2

1 x2
2

+ 155232x2
1 − 22176x4

2 + 155232x2
2 − 44352

)
+ 44352e0.4t]

ssuming δ = 0.4, we consider Ω ∪ Γ = [−1.4, 1.4]2 to be the 2D periodic box T to solve the problem with
he FCBM-EC. Note that for this example Λ = ∅. We discretize the domain with uniform grid spacing in both
irections: N1 = N2 = 27 which results in an m factor of 36.6. The numerical solution with the FCBM-EC is
alculated from:

uN
i j,t+∆t = χi j

[
uN

i j,t + ∆t
(

Lγ u
⏐⏐
i j,t + ri jl,t

)]
+

(
1 − χi j

)
wi j,t+∆t (60)

here

Lγ u
⏐⏐
i j,t = 0.2∆x2∆x1

{
uN

i j,t FFT−1
[
FFT

(
ωN

i j,t

)
FFT

((
uN

i j,t

)2
)]

(61)

−
(
uN

i j,t

)2 FFT−1 [
FFT

(
ωN

i j,t

)
FFT

(
uN

i j,t

)]}
q. (61) is obtained when substituting f and h with u in Eq. (34). We computed Eq. (61) to solve this nonlinear

ransient problem up to t = 15 with ∆t = 0.01. Simulation results for three snapshots at t = 1, 5 and 15 are
hown in Fig. 8. The corresponding Matlab code is provided in the Supplementary materials. The relative error is
omputed from:

error
(
xi j , t

)
=

⏐⏐⏐uN
i j,t − uexact

i j,t

⏐⏐⏐ui j,0


∞

(62)

This example shows how the FCBM-EC is capable of solving nonlinear volume-constrained PD diffusion problems
in higher dimensions.

We have also performed spatial and temporal convergence studies for this nonlinear 2D example. For spatial
convergence, we used a fixed ∆t = 10−5 (for 0 < t ≤ 5) and varied m-factor from 4.6 to 73.1 (N1 = N2 from
24 to 28). For temporal convergence, we used a fixed spatial resolution of N1 = N2 = 28 (m = 73.1) and varied

t from 0.1 to 10−5 (for 0 < t ≤ 5). The results for these tests are provided in Fig. 9. Here, the relative error is

omputed by: max0<t<5

ui j,t −uN
i j,t


∞

∥ui j,t=0∥∞

.
Similar to the 1D example (see Figs. 5a and 6) we observe that convergence rate is quadratic in terms of ∆x

and linear in terms of ∆t (due to the Forward Euler time integrator) for this 2D nonlinear example.
14
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Fig. 8. Solution of a 2D nonlinear volume-constrained peridynamic transient diffusion problem with the FCBM-EC. Left column shows the
olution at three times (t = 1, 5, and 15) while the right column shows the corresponding relative error distribution compared with the exact

nonlocal solution.
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Fig. 9. Convergence studies for FCBM-EC in terms of spatial (a) and temporal (b) resolutions for the nonlinear 2D volume-constrained
eridynamic transient diffusion problem.

After verification of the method, we aim to examine the efficiency of FCBM-EC for a 3D problem with complex
eometry and boundary conditions.

.3. Efficiency gains of the FCBM-EC for problems in 3D

In this part, we use the FCBM-EC and the meshfree (one-point Gaussian integration) spatial discretization to
olve a 3D PD transient diffusion example with non-periodic local BCs in a domain with a non-trivial geometry.
e compare the performance of the two approaches for discretization sizes ranging from 2 million (m-factor of

.8) to more than 1 billion nodes (m-factor of 46.5), in 3D. Note that in practical problems, there is rarely a reason
or using m-factor values larger than 5–10 [65–67]. However, when high accuracy is required, or for problems
here nonlocality is relatively large compared to the sample’s size, larger m-values (like the ones used here) may
e needed. The quadratic convergence rate for the spatial discretization discussed in Sections 5.1 and 5.2 motivates
sing such large m-values.

The example in this section is a 3D PD diffusion in a 2 × 2 × 2 cube with a cutout, having fixed (but different) u
alues imposed on the top and bottom surfaces (Dirichlet BCs), and zero flux conditions imposed on all four cube’s
ides (Neumann BCs). The cube has a horizontally aligned penny-shaped insulated cutout/obstacle at the center (see
ig. 10). The cutout acts as a diffusion barrier with zero flux BCs on all of its surfaces. The mathematical layout
or this problem is:

∂u (x, t)
∂t

= ν

∫
Hx

µ(x′
− x)[u

(
x′

)
− u(x)]dx′ (63)

on Ω = [−1, 1]3 with the kernel function [8,68]:

µ (x) =

{
9

2πδ3∥x∥2 ; ∥x∥ ≤ δ

0; ∥x∥ > δ,
(64)

subjected to the initial condition:

u (x, 0) = 0, (65)

and the local boundary conditions:

u x, t = 1, x = {x , x , 1} (a) (66)
( ) 1 2
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Fig. 10. Schematics of the cube with an insulated cut-out as the original domain (Ω ), and the extended domain (T = Ω ∪Γ ) with nonlocal
boundary layers for imposing boundary conditions in the FCBM-EC.

u (x, t) = 0, x = {x1, x2, −1} (b)
∇u (x, t) · n1 = 0, x = {1, x2, x3} and n1 = {1, 0, 0} (c)
∇u (x, t) · n2 = 0, x = {−1, x2, x3} and n2 = {−1, 0, 0} (d)
∇u (x, t) · n3 = 0, x = {x1, 1, x3} and n3 = {0, 1, 0} (e)
∇u (x, t) · n4 = 0, x = {x1, −1, x3} and n4 = {0, −1, 0} (f)

∇u (x, t) · n5 = 0, x = {x1, x2, 0.1} and
√

x2
1 + x2

2 ≤ 0.7, and n5 = {0, 0, 1} (g)

∇u (x, t) · n6 = 0, x = {x1, x2, −0.1} and
√

x2
1 + x2

2 ≤ 0.7, and n6 = {0, 0, −1} (h)

∇u (x, t) · n7 = 0,

√
x2

1 + x2
2 = 0.7 and − 0.1 ≤ x3 ≤ 0.1, and n7 =

{ x1

0.7
,

x2

0.7
, 0

}
(i)

elations (66)(a) and (b) are the top and bottom Dirichlet BCs, (c) to (f) are zero flux conditions on cube sides,
nd (g), (h), and (i) are the zero-flux BCs on the cutout surfaces (see Fig. 10). For this example, the cutout radius
s 0.7, and δ = 0.1. Similar to the 1D example in Section 5.1, in order to impose local BCs, we use the fictitious
omain and the formulas in Appendix A. For the external surfaces, we extend the cube by δ in all six directions and
efine volume constraints on these extensions. For the top and bottom (with conditions (66)(g) and (h)) surfaces of
he cutout, the extension ends up being the actual cutout volume, of thickness 2δ. Fig. 10 shows the original and
he domain extended by the constrained volume: Ω ∪ Γ .

Since the extended domain (Ω ∪Γ ) is already a cube, similar to the 1D example in Section 5.1, we consider the
eriodic box T to be Ω ∪ Γ without any gap (Λ = ∅).

Note that here, we do not enforce the BC (i) in the PD model, because, given the non-convex characteristics of
he geometry, that would overlap regions of fictitious nodes associated with BCs (g), (h), and (i). That would create
ifficulties in the Fourier space because different points in the domain would now be linked to values at the same
ctitious node. The reason for choosing a cutout of thickness 2δ was to avoid this complication for the domain
xtension corresponding to the top and bottom surfaces of the cutout. Note that this issue does not appear when
sing a different method to enforce the local boundary conditions (see [53–55]). Here, for simplicity we opted for
he fictitious nodes method. As we shall see, the error introduced by not enforcing condition (66)(i) is relatively
mall. We emphasize that this issue is only present when enforcing a local boundary condition in a PD formulation;
t does not exist for volume constraints (nonlocal boundary conditions).

For discretization we first use N1 = N2 = N3 = 27, resulting in m-factor of 5.8 and N = 221 as the total number
f nodes. Time step is ∆t = 5.5 × 10−5 to satisfy the stability condition in Eq. (46). The general algorithm for

CBM-EC for 3D diffusion is provided in Appendix C, and the Matlab code is found in the Supplementary materials.
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Fig. 11. Peridynamic diffusion simulation results using the FCBM-EC in a cube with an insulated cutout. Temperature/concentration
distribution is plotted for two perpendicular cross-sections through the cubic domain.

Fig. 11 shows the simulation results in three snapshots at t = 0.1, 0.3 and 1. Two perpendicular cross-sectional
iews of the 3D domain are plotted to make the insulated discontinuity (cutout) visible in the figure.

From the temperature/concentration distribution we observe that the BCs are enforced and the insulated cutout
cts as an obstacle to the diffusive transport process. We compare our FCBM-EC solution for the peridynamic
roblem with a Finite Element solution for the corresponding classical boundary value diffusion problem. For the
nite element analysis, we used Abaqus/Standard 6.14-2 (note: implicit solver, compared with our explicit solver)
ith over 107 DC3D4 type elements and more than 1.8×106 nodes, which is about the same number of degrees of

reedom used in the FCBM-EC simulation.
As observed from Fig. 12, the FCBM nonlocal solution is very close to the FE local solution with Abaqus.

lthough contour levels are set to be the same for two top legends, the contour colors are slightly different since
he corresponding colors from Abaqus graphics are slightly different from those in Tecplot used in plotting the
esults obtained with the FCBM-EC. The bottom row in Fig. 12, shows the absolute relative error distribution,

long with its mean value. Relative error here is computed as

⏐⏐⏐uFCBM
i j,t −uAbaqus

i j,t

⏐⏐⏐uAbaqus
i j,0


∞

on the displayed cross-sectional plane.

We note that there is a small discrepancy between the two solutions near the sides of the rectangular obstacle. This
is due to not enforcing the exact insulated condition on the short lateral sides of the cutout (see earlier discussion).
For the Abaqus solution, all BCs in Eq. (66) are enforced.

In order to demonstrate the remarkable efficiency of FCBM-EC, we solved the same example via the conventional
meshfree method with one-point Gaussian quadrature, and compared the computational times for these methods for
various spatial resolutions. Both methods are implemented in MATLAB R2014b. Simulations are performed on a
supercomputer machine in Holland Computing Center of the University of Nebraska-Lincoln, with Intel Xeon E5-
2670 2.60 GHz CPUs, up to 512 GB RAM per CPU and a Tesla V100 GPU with 32 GB memory. Matlab’s built-in
parallel FFT solvers use multithreading and GPU computations (see the 3D code in Supplementary materials). We
make use of this in our computational tests. Table 1 shows the computational time for the 3D example above using
the meshfree with Gaussian quadrature on a single CPU versus using the FCBM-EC on a single CPU, on 8 or
16 CPUs, and on a GPU, for four spatial discretizations. The time steps are identical for all simulations since the
stability condition is independent of the discretization size (it only depends on ν, µ and δ, which are the same for
all tests).

As observed the diffusion example with over 1 billion nodes is solved in a few days via the FCBM-EC, while
the same computation is intractable with the meshfree method using one-point Gaussian quadrature.

Note that the computational time for the meshfree method in the cases with m = 11.6, 23.3, and 46.5
(N = 224, 227, and 230) is estimated knowing that it scales as O

(
N 2

)
. Although the computational time for the

meshfree method in the case with m = 11.6 (N = 224) would be reasonable (several days), the available memory
owever, was not sufficient to perform this test. The FCBM-EC, in contrast, did not run out of memory even for 1
illion nodes. The reason is that peridynamic meshfree solvers store family nodes for each node at the beginning to
18
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N

Fig. 12. Comparison of the 3D FCBM-EC solution in a cross-section, against Abaqus solution for the corresponding 3D transient boundary
value diffusion problem.

Table 1
Computational time for solving the 3D example up to t = 1, using the FCBM-EC and the Gaussian quadrature
(GQ)-based meshfree method.

m-factor 5.8 11.6 23.3 46.5

Number of nodes 221
= 2,097,152 224

= 16,777,216 227
= 134,217,728 230

= 1,073,741,824

Meshfree with GQ (1 CPU) 4.6 h 12 days 2.1 yrs (!) 1.4 centuries (!)
FCBM-EC (1 CPU) 10.7 min 1.9 h 13.7 h 5.1 days
FCBM-EC (8 CPUs) 6 min 36.6 min 4.5 h 1.4 days
FCBM-EC (16 CPUs) 2.7 min 34.7 min 3.9 h 1.3 days
FCBM-EC (GPU) 29 min 38.3 min 2.1 h out of memory

increase efficiency when doing the Gaussian quadrature for the convolution integral. For the FCBM-EC, however,
there is no need to store family nodes: the convolution integrals are replaced by multiplication of the Fourier
coefficients, which do not require the family nodes for each node. Obviously, the meshfree method can also work
without storing nodal families, but the computational time increases substantially when one needs to re-compute
them at every time step.

The results in Table 1 show important efficiency gains between the FCBM-EC versus the meshfree discretization.
otice also the correlation of these gains with the m-factor value. The reason for the larger gains at higher m-values
19
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Fig. 13. Efficiency gains relative to the m-factor values for 3D FCBM-EC solution over the meshfree method (Eq. (67)); b) Speedup versus
roblem size (N ) for FCBM-EC parallel computing using Matlab’s parallel FFT solvers (from Eq. (68)).

s related to the same point mentioned above: the convolution integrals are replaced by multiplication of the Fourier
oefficients, which do not require the family nodes for each node. In other words, one can say that “a nonlocal
omputation in the physical space gets transformed into a local computation in Fourier space”.

Efficiency gains (computed using Eq. (67)) and speedup (using Eq. (68)) are plotted versus the problem size
degrees of freedom) and m-factor values in Fig. 13.

Efficiency gain =
computation time for FCBM

computation time for meshfree method with one CPU
(67)

Speedup =
computation time for FCBM with multiple CPUs or GPU

computation time for FCBM with one CPU
(68)

hese computational experiments (via Matlab’s parallel FFT functions) show that little is gained from using more
han 8 CPUs with multi-threading. They also show that GPU computations using Matlab’s intrinsic functions (see
he 3D code in Supplementary materials) is preferred over Matlab’s multi-threading for problems with higher spatial
esolution (here when the N > 224 ∼= 16.8 × 106) , as long as GPU computations are feasible from the memory
oint of view.

The FE and FCM-EC simulations shown in Fig. 12 were performed on the same machine using 16 CPUs,
nd both have a similar number of degrees of freedom (about 2 million DOFs). The Abaqus simulation took about
.5 h (implicit solver1) to complete while FCM-EC simulation took only 2.7 min. Please note that this comparison is
rovided here only as a guidance. A general-purpose software like the diffusion solver in Abaqus, is not necessarily
ptimized for the particular problem setup here. More importantly, we are using an explicit-type solver for the PD
esults, while Abaqus uses an implicit one. This is not necessarily a disadvantage for Abaqus, since we believe
hat an implicit solver implemented for our method (currently in the works) will lead to even faster performance.
urthermore, our own implementation for the FCBM-EC, likewise, is not necessarily an optimal one, as we are
sing Matlab’s libraries of functions. Our goal was to write a simple and readable implementation, not the most
fficient one (see Appendix C).

One could try comparing Abaqus solution and the FCBM-EC solutions in terms of computational cost for
eaching a certain precision. However, this is not easily done here because we are not comparing solutions of
he same problem, but of two distinct problems: one nonlocal, one local.

1 Note that there is no explicit solver in Abaqus for diffusion problems.
20
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6. Conclusions

In this study the Fast Convolution-based Method with Embedded Constraints (FCBM-EC) is introduced for
eridynamic (PD) linear and nonlinear diffusion problems. This Fourier-based method reduces the computational
omplexity from O(N 2) in the conventional discretizations of PD problems to O(N log 2N ). The embedded
onstraint method introduced here allows for imposing arbitrary nonlocal boundary conditions (volume constraints)
n peridynamic models on irregular domains while maintaining efficiency from using the Fast Fourier Transform
FFT). The arbitrary domain is extended to a periodic box and the volume constraints are “embedded” into the
ntegro-differential PD equation. We verified the new method for linear and some special types of nonlinear diffusion
roblems with nonperiodic boundary conditions against exact nonlocal solutions (obtained via the manufactured
olutions method). Numerical studies for 1D and 2D examples show that the FCBM-EC converges quadratically
ith respect to the number of nodes used in the spatial discretization.
A 3D example for transient peridynamic diffusion shows that a computation for a problem with a larger number

f nodes inside the horizon (an m-factor of about 46) and over 1 billion nodes (computed over 1.8×104 time
steps), which would be intractable via the commonly used meshfree discretization method for PD, is solved in
about a day with the FCBM-EC. The same 3D transient problem, but solved with 2 million nodes, requires 22 h
in Abaqus/Standard (implicit solver), but less than 3 min with the new method. The efficiency gains for using
FCBM-EC instead of the meshfree solver increase substantially with the number of nodes covered by the nonlocal
region. Our numerical tests show further speedup is achieved when using Matlab’s FFT functions on GPUs or
multiple CPUs.
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Appendix A. Imposing local Dirichlet and Neumann boundary conditions on peridynamic bodies using a
fictitious region method

In order to impose local BC on some generic point xb on the boundary ∂Ω , we assign volume constraint values
|Γ on xΓ (x ∈ Γ ), based on the given local BC and the solution values u at x ∈ Ω on the interior side of the

boundary ∂Ω (see Fig. A.1)
To impose the local Dirichlet BC:

u (xb, t) = ub, (A.1)

on a generic xb ∈ ∂ΩD (boundary subjected to Dirichlet BC), we define the following volume constraint on xΓ :

u|Γ (xb + dn, t) = 2ub − u (xb − dn, t) ; for 0 < d ≤ δ (A.2)

where n is the unit outward normal vector on ∂Ω at xb (See Fig. A.1.).
To impose the local Neumann BC:

∇u (xb, t) · n = qb, (A.3)

on some xb ∈ ∂ΩN (boundary subjected to Neumann BC), we define the following volume constraints on xΓ :

u|Γ (xb + dn, t) = −2qbd + u (xb − dn, t) ; for 0 < d ≤ δ (A.4)

When implementing Eqs. (A.2) and (A.4) to find the constraint values on xi jl |Γ nodes after spatial discretization,
we should note that the corresponding interior point: x = x − dn (see Fig. A.1), may not locate exactly
b
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w
p
w

Fig. A.1. Fictitious-node method for imposing local BC on ∂Ω by assigning certain volume constraints depending on values across the
boundary, inside Ω .

on a node. Since ui jl values exist on nodes only in the discretized Ω , one can use an interpolation method to
approximateu (xb − dn, t) in Eqs. (A.2) and (A.3). For the 1D example in Section 5.1 we used linear interpolation
(see 1D codes in Supplementary materials), while for the 3D example in Section 5.3 we used the nearest nodal
value (see the 3D code in Supplementary materials) instead of interpolation which is faster but less accurate.

Here we only give the relationships for Dirichlet and Neumann types BCs. One can derive such volume con-
straints for enforcing other types of local BCs, for example Robin [42], radiation/Sommerfeld [69], absorbing [70],
etc.

It should be noted that the implementation of this scheme is not straightforward on domains with curved
boundaries or sharp corners, and may not exactly reproduce local BCs at such locations [54].

Appendix B. Fast convolution-based method with volume penalization (FCBM-VP)

FCBM-VP was introduced in [34] for 1D linear diffusion. Here we provide the extension of this formulation to
higher dimensions and nonlinear problems.

In order to solve a general volume constrained peridynamic diffusion problem as described by Eq. (35) with the
FCBM-VP, we first extend the domain Ω and the constrained volume Γ to a periodic boxT = Ω ∪ Γ ∪ Λ (see
Fig. 3). This step is identical to the FCBM-EC introduced in Section 4.2. We then replace the problem description
in Eq. (35) by the following periodic diffusion problem extended by a penalization term:⎧⎨⎩

∂u (x, t)
∂t

= Lγ u (x, t) + r (x, t) −
1 − χ (x, t)

ε
[u (x, t) − w (x, t)] x ∈ T, t > 0

u (x, 0) = u0 x ∈ T
(B.1)

here χ (x, t) and w (x, t) are defined in Eq. (38) and (39) respectively, and 0 < ε ≪ 1 is the penalization
arameter. The penalization term, which is zero on Ω but large on Γ ∪ Λ, forces u (x, t) to smoothly get close to
(x, t) on Γ ∪ Λ [34].
A 3D discretization as described by Eq. (21) to (27) leads to:⎧⎨⎩

duN
i jl,t

dt
= Lγ u

⏐⏐
i jl,t + ri jl,t −

1 − χi jl

ε

(
uN

i jl,t − wi jl,t
)

x ∈ T, t > 0

ui jl,t=0 = u0,i jl x ∈ T
(B.2)

where χi jl and wi jl,t are given in Eq. (41) and (42), and Lγ u
⏐⏐
i jl,t is efficiently computed with the FFT and inverse

FFT, for all linear and some nonlinear cases (see Sections 2 and 3). The system of ODEs in Eq. (B.2) is then solved
with an ODE solver. For example, with the Forward Euler method we have:

uN
i jl,t+∆t = uN

i jl,t + ∆t
[

Lγ u
⏐⏐
i jl,t + ri jl,t −

1 − χi jl (
uN

i jl,t − wi jl,t
)]

(B.3)

ε
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N
c

One important difference between the FCBM-VP and FCBM-EC, is the stability condition for the explicit time
integration. In FCBM-VP, stability is restricted by ε, whereas the FCBM-EC has not such restriction.

Appendix C. Algorithm for the FCBM-EC method for 3D problems

A Matlab implementation of the peridynamic FCBM-EC for 3D linear transient diffusion with local boundary
conditions, similar to the 3D example in Section 5.3 is as follows:

Given the problem and the inclusive periodic box T = Ω ∪ Γ ∪ Λ = L1 × L2 × L3:

• Inputs:

– Physical parameters: ν, δ, r (x, t), µ (x), β, L1, L2, L3, tmax
– Initial condition: u0 = u (x, t = 0)

– Boundary conditions: ub = u (·, t)|∂ΩD , qb = ∇u (·, t) · n|∂ΩN

– Number of nodes for each dimension: N1, N2, N3 (powers of 2 are preferred)
– Time step: ∆t

(
≤

1
νβ

)
• Initialization:

– Calculate grid spacing: ∆x1 =
L1
N1

, ∆x2 =
L2
N2

,∆x3 =
L3
N3

– Discretize the box T: xi jl =
{

xi , x j , xl
}

where
xi = x0

1 + (i − 1)∆x1 and i = 1, 2, . . . , N1
x j = x0

2 + ( j − 1)∆x2 and j = 1, 2, . . . , N2
xl = x0

3 + (l − 1)∆x3 and l = 1, 2, . . . , N3
– Discretize the kernel function µi jl = µ(xi jl)
– µi jl

⏐⏐
xi jl=0 = 0 (for singular kernels only)

– Shift the discretized periodic kernel function (if either x0
1 , x0

2 , x0
3 ̸= 0): µs

i jl = µ
(
xi − x0

1 , x j − x0
2 , xl

−x0
3

)
– Discretize the initial condition and the source term: u0

i jl = u0
(
xi jl , 0

)
; r0

i jl = r (xi jl , 0);

– Fast Fourier transform µs
i jl and u0

i jl : µ̃s
k1k2k3

= FFT
(
µs

i jl

)
and ũ0

k1k2k3 = FFT
(

u0
i jl

)
– Construct the discretized mask function: χi jl =

{
1 xi jl ∈ Ω

0 xi jl ∈ T\Ω = Γ ∪ Λ

– Construct the variable containing volume constraints and gap values (w):
Allocate wi jl = 0
Calculate and assign volume constraints on Γ based on given BC and Appendix A: wi jl

⏐⏐
Γ ,t=0

Calculate and assign values on the gap (if Λ ̸= ∅): wi jl
⏐⏐
Λ,t=0

– Initialize step counter: n = 0
– Initialize time: tn

= 0

• Solve the transient diffusion: while tn < tmax

– Update time: tn+1
= tn

+ ∆t
– Update solution: un+1

i jl = χi jl

(
un

i jl + ∆t
{
νFFT−1

[
∆x3∆x2∆x1µ̃k1k2k3FFT

(
un

i jl

)]
− νβN un

i jl + ri jl

})
+(

1 − χi jl
)
wn

i jl

– Update the source term: rn+1
i jl = ri jl

(
xi jl , tn+1

)
– Re-apply volume constraints and the gap values by updatingwn+1

i jl

– Fast Fourier transform un+1
i jl : ũn+1

k1k2k3 = FFT
(

yn+1
i jl

)
– Update step counter: n = n + 1

ote that the DFT formulation that governs Matlab FFT solvers is based on domains with zeros as the lower bound
oordinates, i.e. T = 0, L × 0, L × 0, L . As a result, in order to maintain consistency with FFT solvers,
[ 1) [ 2) [ 3)
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if the lower bound of the problem domain’s coordinates are non-zero, the kernel function needs to be shifted as
shown with µs

i jl in the algorithm above (see also [34]).
For nonlinear problems with kernels in the form of Eq. (11), µ (x) is replaced with ω(x) in the algorithm and

the evolution equation is modified according to the kernel specifics. For example, see Eq. (34).

Appendix D. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.cma.2020.113633.
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