
Received March 19, 2021, accepted April 5, 2021, date of publication April 12, 2021, date of current version April 21, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3072613

Optimal Transport With Relaxed
Marginal Constraints
JIA LI , (Fellow, IEEE), AND LIN LIN
Department of Statistics, The Pennsylvania State University, University Park, PA 16802, USA

Corresponding author: Jia Li (jiali@psu.edu)

This work was supported by the National Science Foundation under Grant DMS-2013905.

ABSTRACT Optimal transport (OT) is a principled approach for matching, having achieved success in
diverse applications such as tracking and cluster alignment. It is also the core computation problem for
solving the Wasserstein metric between probabilistic distributions, which has been increasingly used in
machine learning. Despite its popularity, the marginal constraints of OT impose fundamental limitations.
For some matching or pattern extraction problems, the framework of OT is not suitable, and post-processing
of the OT solution is often unsatisfactory. In this paper, we extend OT by a new optimization formulation
calledOptimal Transport with RelaxedMarginal Constraints (OT-RMC). Specifically, we relax the marginal
constraints by introducing a penalty on the deviation from the constraints. Connections with the standard OT
are revealed both theoretically and experimentally.We demonstrate howOT-RMC can easily adapt to various
tasks by three highly different applications in image analysis and single-cell data analysis. Quantitative
comparisons have been made with OT and another commonly used matching scheme to show the remarkable
advantages of OT-RMC.

INDEX TERMS Optimal transport, linear programming, pattern extraction, fixed targetmatching, single-cell
data analysis, cluster alignment.

I. INTRODUCTION
Optimal transport (OT) has been successfully applied in
diverse areas including machine learning, computer vision,
and bioinformatics. A theoretical treatment of the topic is
referred to the seminal book of [1]. From the perspective
of probability measures, OT solves the Wasserstein metric
between two probability distributions. A historical account on
the Wasserstein metric is provided in [1], [2]. Consider two
probability measures P1, P2 on the d-dimensional Euclidean
space Rd . For random vectors X ,Y ∈ Rd , suppose X ∼ P1
and Y ∼ P2. Let5(P1,P2) be the collection of joint distribu-
tions for X and Y onRd

×Rd such that the marginal distribu-
tion ofX is fixed atP1 and that of Y atP2. These requirements
of 5(P1,P2) are called the marginal constraints. The
p-Wasserstein distance Wp(·, ·) between P1 and P2, p ≥ 1,
is a true metric defined by

Wp
p (P1,P2)= inf

γ∈5(P1,P2)

∫
Rd×Rd

‖x− y‖pdγ (x, y). (1)
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5(·, ·) is often called the coupling set. The distribution
γ ∗ ∈ 5(P1,P2) achieving the infimum in the above equation
is called optimal coupling. Here, ‖ · ‖ is a norm on Rd . When
the distributions are finite and discrete, Wasserstein distance
is solved by linear programming. In this case, it will also
become clear that OT fits well with our intuition of optimal
matching. Detailed discussion is presented in Section II. Not
surprisingly, in many applications, OT is used as an optimal
matching scheme.

One enormously famous case of OT’s usage is the Earth
Mover’s Distance in computer vision for comparing his-
tograms or in general discrete distributions [3]. Recently,
OT has been applied to track cells [4] or identify cell
developmental trajectories [5]. Via the link with Wasserstein
distance, OT has sparked much interest from the machine
learning community in recent years. One active area focuses
on solving the barycenter for a collection of distributions
under the Wasserstein distance. Although the barycenter is
a counterpart of average in the Euclidean space, the com-
putational hurdle of solving the Wasserstein barycenter is
high, attracting devoted work from applied mathematics
[6]–[12], computer science, and signal processing [13]–[15].
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It has been found that the Wasserstein barycenter is valuable
for geometric interpolation in computer graphics [16], [17]
and for synthesizing images in meteorology forecasting [18].
As a strong competitor of the Kullback-Leibler distance,
OT has been used to define new distance between Gaussian
mixture models or hiddenMarkovmodels [19]–[21].Wasser-
stein distance has also been used for robust supervised learn-
ing [22]–[24]. In the case of unsupervised learning, OT
readily applies to the issue of aligning clustering results
(the consistent cluster labeling issue), which then forms the
basis for ensemble clustering and uncertainty analysis for
clustering [25], [26].

One profound limitation of OT in some applications is
rooted in the marginal constraints in the optimization prob-
lem. For example, when OT is used to match (aka align)
clusters in different clustering results and subsequently to
consolidate clusters in those results, the marginal constraints
imply that the proportions of the true clusters are fixed across
the results. In another word, it is implicitly assumed that
the variation observed in the results arises from the ran-
domness in the data or other nuance factors. However, as is
known in single-cell data analysis (details in Section IV),
this assumption does not necessarily hold. The proportions
of clusters can vary substantially across samples for biomed-
ical reasons, and new clusters may exist in some samples
but not others. We will also see from another two exam-
ples in image data analysis when OT is used to match
points in two sets. If the sets are interfered with by noise,
the marginal constraints render OT defenseless against such
issues.

In this paper, we propose a novel principled approach to
address the limitations posed by the marginal constraints.
We extend the optimization problem of OT to the so-called
Optimal Transport with Relaxed Marginal Constraints (OT-
RMC). OT-RMC overcomes the aforementioned limitations
and in the meanwhile ensures that the solution does not
degenerate into a trivial scheme. In a nutshell, we introduce
the gap variables such that deviation from the marginal con-
straints is allowed whereas the gap variables are subject to
penalty and/or bounds. OT-RMC allows different schemes
to control the gap variables, thus easily adaptable to various
applications. We explore the application of OT-RMC to three
quite different problems in Section IV.
The rest of the paper is organized as follows. We present

notations and the basic OT problem in Section II. The new
framework of OT-RMC and its theoretical connection to the
standard OT are presented in Section III. In Section IV,
we describe three example applications and provide experi-
mental results. Finally, we conclude in Section V.

II. PRELIMINARIES
In this section, we introduce the notations and the formu-
lation of OT between two finite discrete distributions. Sup-
pose the lth distribution, denoted by Pl , l = 1, 2, has
support Xl = {x(l)i , i = 1, . . . , nl}, x(l)i ∈ Rd . The
probability on x(l)i is q(l)i , i = 1, . . . , nl ,

∑nl
i=1 q

(l)
i = 1.

Let ql = (q(l)1 , q
(l)
2 , . . . , q

(l)
nl )

t , l = 1, 2.We sometimes write a
distribution as a list of support points and their corresponding
probabilities, Pl : {(x(l)1 , q

(l)
1 ), (x(l)2 , q

(l)
2 ), . . . , (x(l)nl , q

(l)
nl )}.

Define a cost function between two points x(1)i and x(2)j by

c(x(1)i , x
(2)
j ), written in short as ci,j. To solve thep-Wasserstein

distance, c(·, ·) is the p-th power of a norm on Rd . Common
choices include the L2 norm, its square, or the L1 norm.
Consider a joint distribution on the Cartesian product set
X1 × X2 with probability wi,j on (x(1)i , x

(2)
j ). Let c = (ci,j)

and w = (wi,j) be the matrices of size n1 × n2 containing
elements ci,j and wi,j respectively. We call c the cost matrix,
and w the matching weight matrix. Denote the inner product
by 〈·, ·〉. Formatrices, the inner product is applied to their vec-
torized versions. Hence 〈c,w〉 =

∑
i,j ci,jwi,j. In the sequel,

relational signs, e.g., >, =, between matrices (or vectors) or
between a matrix and a constant, apply in an element-wise
manner. For example w ≥ 0 means every element wi,j ≥ 0.
Denote by 1n a vector of dimension n with every element
being 1.

The OT problem is stated as follows.

R(c,q1,q2) = min
w
〈c,w〉

s.t. w ≥ 0

w · 1n2 = q1
wt
· 1n1 = q2. (2)

The last two equality constraints are the marginal constraints.
The first ensures that the row-wise sum of w is determined
by the marginal distribution P1, while the second ensures
that the column-wise sum is determined by P2. According
to (2), we can view OT as an optimal matching scheme in
which the matching weights are provided by wi,j and the goal
is to minimize the weighted sum of the cost for matching
any pair x(1)i and x(2)j . The total weight assigned to any x(1)i
(or x(2)j ) reflects its overall influence on R and is fixed at its
probability, as guaranteed by the marginal constraints. If the
cost is defined by c(x(1)i , x

(2)
j ) = ‖x(1)i − x(2)j ‖

p, where ‖ · ‖ is
a norm on Rd , then the Wasserstein distance between P1 and
P2, as defined by Eq. (1), is given by

Wp(P1,P2) = R(c,q1,q2)1/p . (3)

III. OPTIMAL TRANSPORT WITH RELAXED
MARGINAL CONSTRAINTS
In some applications, the marginal constraints in problem (2)
are too rigid or even conflict with the nature of the problem.
For example, in unsupervised clustering, cluster labels are
named arbitrarily only as symbols to distinguish groups.
Since clusters generated in multiple results usually do not
correspond to each other sharply, OT is used to match clusters
in different results [25]. It is sometimes improper to assume
that the clustering results are random realizations of one
underlying ‘‘truth’’. For instance, in single-cell data analysis,
clusters can be formed from measurements of the same set
of subjects at different time spots. The intrinsic groups of
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subjects are expected to evolve over time, and the proportion
of each cluster can be an important source of change. It is
thus unreasonable to enforce the marginal constraints. On the
other hand, as the characteristics of clusters (e.g., mean fea-
ture vectors) are not fixed across datasets, it is difficult to
discern to what extent the change in the overall clustering
result comes from the cluster proportions and to what extent
from the cluster characteristics. The need to overcome the
restriction of the marginal constraints will becomemore vivid
when we address applications in Section IV.

A. OT-RMC FORMULATION
We extend the OT framework in Eq. (2) by introducing two
marginal gap vectors gl = (g(l)1 , g

(l)
2 .., g

(l)
nl )

t , l = 1, 2. Let
g = (g1, g2) be the column-wise concatenated vector of g1
and g2. Let L(g) be a loss function that penalizes non-zero gap
vectors, for example, the p-th power of the Lp norm, L(g) =
‖g‖pp. Let λ be a hyperparameter. Let gup ∈ Rn1+n2 , gup ≥ 0,
be an upper bound vector. For brevity of notation, denote the
first n1 dimensions of gup by gup,1, and the rest n2 dimensions
by gup,2. That is, gup = (gup,1, gup,2) (column-wise concate-
nation). The bounds in gup are pre-given for the optimization
problem below.

The problem of OT-RMC is stated as follows.

R(c,q1,q2) = min
w,g
〈c,w〉 + λL(g)

s.t. w ≥ 0

1
t
n1 · w · 1n2 = 1

g ≤ gup
q1 − g1 ≤ w · 1n2 ≤ q1 + g1
q2 − g2 ≤ wt

· 1n1 ≤ q2 + g2. (4)

The first two constraints ensure that w specifies a valid joint
distribution on X1 × X2. In OT, the marginal constraints
on w imply the unit sum requirement (thus omitted). We
call the last two inequality constraints the relaxed marginal
constraints.

Problem (4) is called the canonical form of OT-RMC. It
is interesting to point out three variations from the canonical
form. The usage of a particular formulation depends strongly
on the application in consideration. In this paper, we focus on
the usage of the canonical form.

1) Regularized OT-RMC: We can extend the objective
function in Eq. (4) to include a regularization function
G on w:

R(c,q1,q2) = min
w,g
〈c,w〉 + λL(g)+ ηG(w) .

The design of G(w) depends on the application. For
example, if the support points correspond to pixels in
an image, it might be desirable to enforce smoothness
in the induced distributions throughG(w). Specifically,
we may favor similar values for the induced proba-
bilities on neighboring pixels in the image plane. The
increase in the complexity or memory load of the reg-
ularized OT-RMC depends on G(w).

2) Non-homogeneously penalized OT-RMC: Suppose the
loss L(g) is additive in the elements of g (true for the
p-th power of the Lp norm). Let L̃ be a loss function
defined on one variable. An additive L(g) can bewritten
as L(g) =

∑n1
i=1 L̃(g

(1)
i ) +

∑n2
j=1 L̃(g

(2)
j ). We can then

penalize the gap variables by different λ’s. Consider
hyperparameter vector Eλ = (λ1, . . . , λn1+n2 )

t . Let
EL(g) = (L̃(g(1)1 ), . . . , L̃(g(1)n1 ), L̃(g

(2)
1 ), . . . , L̃(g(2)n2 ))

t .
The objective function of (4) becomes

R(c,q1,q2) = min
w,g
〈c,w〉 + 〈Eλ, EL(g)〉 .

Non-homogeneously penalized OT-RMC does not
cause particular computational difficulty. If L̃ is the L1
norm (or square of L2 norm), the optimization is linear
programming (or convex quadratic programming).

3) Asymmetrically bounded OT-RMC: The upper bound
on the gap vector g in (4) ensures that the induced
distributions q̃1 and q̃2 (defined below) are bounded
symmetrically around q1 and q2. If the desired bounds
are not symmetric, we can directly impose constraints
on q̃1 and q̃2. Note that q̃1 = w·1n2 , q̃2 = wt

·1n1 , g =
(g1, g2), where g1 =

∣∣q̃1 − q1
∣∣ and g2 =

∣∣q̃2 − q2
∣∣.

Then the problem is stated as

R(c,q1,q2) = min
w,g
〈c,w〉 + λL(g)

s.t. w ≥ 0 , and 1tn1 · w · 1n2 = 1

glow,1 ≤ q̃1 ≤ gup,1
glow,2 ≤ q̃2 ≤ gup,2. (5)

B. CONNECTIONS WITH OT
Suppose w∗, g∗ achieve the minimum in (4). Let the two new
marginal probability vectors induced by w∗ be q̃1 = w∗ ·
1n2 and q̃2 = w∗t · 1n1 . Denote the corresponding marginal
distributions by P̃l , l = 1, 2. We can then define a total cost
of matching or a distance between the two distributions by

D(P1,P2) = Wp(P̃1, P̃2) , (6)

where Wp is defined by (3) for discrete distributions. The
above definition is equivalent to

D(P1,P2)p = 〈c,w∗〉 . (7)

We formally state the equivalence of Eq. (6) and Eq. (7) by
Theorem 1 below. We first prove the following lemma.
Lemma 1: Assume L(g) is an increasing function in every

variable in g. Suppose the optimal solution of (4) is (w∗, g∗).
Let g̃∗ = (g̃∗1, g̃

∗

2), where g̃∗1 =
∣∣w∗ · 1n2 − q1

∣∣ and g̃∗2 =∣∣w∗t · 1n1 − q2
∣∣. Then (w∗, g̃∗) is also an optimal solution

of (4). If L(g) is strictly increasing in every variable in g, then
g∗ = g̃∗.

Proof: By the last two inequality constraints in (4),

g∗1 ≥
∣∣w∗ · 1n2 − q1

∣∣ = g̃∗1
g∗2 ≥

∣∣w∗t · 1n1 − q2
∣∣ = g̃∗2
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Since L(·) is increasing in every variable, L(g∗) ≥ L(g̃∗).
Thus

〈c,w∗〉 + λL(g∗) ≥ 〈c,w∗〉 + λL(g̃∗) .

Since g̃∗ ≤ g∗ ≤ gup, and by construction, (w∗, g̃∗) satisfies
the last two inequalities in (4), we conclude that (w∗, g̃∗) is an
optimal solution of (4) and L(g∗) = L(g̃∗) must hold. If L(·)
is strictly increasing in every variable, L(g∗) = L(g̃∗) and
g̃∗ ≤ g∗ imply g∗ = g̃∗. �
Theorem 1: Assume L(g) is an increasing function in every

variable in g. Let the optimal solution of problem (4) be
(w∗, g∗). Then w∗ is an optimal solution of problem (2) when
the two distributions in (2) are the induced distribution q̃1
and q̃2 by w∗.

Proof: Consider the standard OT problem (2) with
marginal constraints: w · 1n1 = q̃1, wt

· 1n2 = q̃2. By the
definitions of q̃1 and q̃2, w∗ is a feasible solution of (2).
Suppose w∗ is not an optimal solution of (2) and w† is an
optimal solution of (2). Then

〈c,w∗〉 > 〈c,w†
〉 (8)

Because w† and w∗ are feasible solutions of (2),

w∗ · 1n2 = w†
· 1n2 = q̃1

w∗t · 1n1 = w†t
· 1n1 = q̃2

Hence, (w†, g∗) satisfies the constraints of (4), and thus is a
feasible solution of (4). By (8), (w†, g∗) achieves a smaller
value of the objective function of (4) than (w∗, g∗). This
conflicts the assumption that (w∗, g∗) is an optimal solution
of (4). Hence we conclude that w∗ is an optimal solution of
problem (2) with marginal distributions q̃1 and q̃2. �
Based on Theorem 1, we can interpret OT-RMC as an

approach to solve the two induced distributions P̃1 and P̃2
followed by solving a standard OT using the induced dis-
tributions (as replacement for the original P1 and P2). This
viewpoint helps us decide whether an induced distribution is
practically acceptable, which in turn informs us how to set
gup in (4).

C. PRACTICAL ISSUES
The purpose of the loss L(g) is to penalize large deviation
from the marginal constraints. Common choices for L(g) can
be the p-th power of the Lp norm: ‖g‖pp, p ≥ 1. When p = 1,
OT-RMC is a linear programming. At p = 2, OT-RMC is
convex quadratic programming. We experimented with both
L1 and L2 norm, and found that the difference in results is
insignificant. With L1 norm, the solution tends to be more
sparse, which we adopt in the paper.

The relaxed marginal constraints in (4) imply that g ≥ 0.
The upper bound gup can be set to +∞ if we do not want to
bound g from above. A trivial upper bound naturally satisfied
by g is 1 since w is a joint probability mass function. The
purpose of setting a non-trivial upper bound on g is to ensure
that no point in X1 or X2 is assigned with too big or too
small a probability according to the induced distributions.

For instance, we may require that the marginal probability
assigned to any point according to w cannot exceed twice the
original probability on the point given by q1 or q2. Then we
can set gup,1 = q1, gup,2 = q2. The upper bound gup also pro-
vides the convenience to impose asymmetric restrictions on
the gap vectors g1 and g2. For instance, if deviation from the
marginal constraint is allowed only for the first distribution,
but not the second, we can simply set gup,2 = 0.
The hyperparameter λ controls the tolerance allowed to

deviate from the marginal distributions q1 and q2. In the
extreme case of λ→ +∞, g→ 0, and OT-RMC is reduced
to OT. In the other extreme, when λ = 0, if trivial bounds
gup = +∞ are used, the solution is degenerated to the
following. Suppose ci∗,j∗ = mini,j ci,j, then wi,j = 1 if i = i∗

and j = j∗, 0 otherwise. We simply have R(c,q1,q2) = ci∗,j∗ .
As will be discussed in Section IV-A, OT-RMC can be used

to select relevant points from the support sets to address the
issue that Xl (the support of Pl), l = 1, 2, are corrupted
by noise. Depending on the task at hand, instead of using
the induced distributions by w∗ to compute the distance in
Eq. (6), it can be preferable to use the truncated conditional
distributions of P1 and P2. Denote the truncated conditional
distributions by P̆1 and P̆2. For instance, if the first n′1 < n1
points are selected from X1, then q̆(1)i = q(1)i /

∑n′1
i′=1 q

(1)
i′ ,

i = 1, . . . , n′1. We then use the following distance:

D(P1,P2) = Wp(P̆1, P̆2) . (9)

When OT-RMC is used to select points, based on which
distance between two sets is computed, it is feasible to exam-
ine a range of values for λ and select the best result based on
the given distance. This is intrinsically different from choos-
ing hyperparameters for a machine learning algorithm where
the tuning requires an extra validation set, and consequently,
the hyperparameters cannot be adjusted for every sample
during usage. In the case here, we can select different values
of λ for every pair of distributions since the distance between
them needs no validation from other data. The only cost of
this practice is the increase in computation. It is worthy to
point out that the extent of penalty L(g) on the deviation from
the marginal constraints is not controlled by λ in an absolute
sense. The severity of the penalty depends on the relative
value of the transport cost. If the transport cost is scaled,
to achieve the same amount of penalty, λ should be scaled
accordingly. As a result, we cannot recommend a range of λ
values independently from the particular problem. Roughly
speaking, smaller variation in transport costs would require
smaller λ. On the other hand, we have observed that for the
same problem, the range of λ needed to consider for different
distributions is stable and the results are often similar for a
wide range of λ.

IV. EXPERIMENTS
We illustrate the usage of OT-RMCwith three example appli-
cations. Although they all follow the general optimization
problem (4), the framework is flexible to address the specific
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FIGURE 1. Extract patterns from corrupted images. For each target pattern image, two source images and the corresponding extracted patterns by
OT-RMC are shown. (a) Target pattern; (b), (c): the first pair of source image and the extracted pattern; (d), (e): the second pair of source image and
the extracted pattern.

needs. We will see that for different applications, the amount
of relaxation on the marginal constraints of the two distribu-
tions can be different, which is realized by setting different
bounds on the gap variables.

A. PIXEL PATTERN EXTRACTION
We demonstrate in this experiment that OT-RMC can be used
to extract pixel patterns from images. Here, a pixel pattern,
referred to simply as pattern when the context is clear, means
a collection of pixels in an image plane. As shown in Figure 1,
pixel patterns are viewed as black-and-white images, where
a black pixel indicates inclusion in the pattern. Suppose the
black pixels in an image have coordinates xi = (xi,1, xi,2),
i = 1, . . . , n, where xi,1 is the vertical position and xi,2 is the
horizontal position of the ith pixel. The top left corner of an
image plane has coordinate (0, 0).We represent the pattern by
the distribution P = {(x1, q1), (x2, q2), . . . , (xn, qn)}, where
the probabilities are uniform qi = 1/n, i = 1, . . . , n.
We consider the problem of finding a given pattern from

an image. The given patterns, e.g., those in the left column
of Figure 1, are called the target, whereas, the images, e.g.,
those in the second and forth columns of the figure, are called
the source. The source images are also black-and-white and
can be represented by distributions over the pixel coordinates.
A source image is generally ‘‘noisy’’ in the sense that it con-
tains black pixels other than the pattern.Moreover, the pattern
itself may have been altered, e.g., partially missing or with

a somewhat different appearance. For example, in column
(d) of Figure 1, the embedded circle and star are in dash line,
and the drawing of the swan is more detailed.

We first discuss a toy example with results in Figure 1.
Then we present a more challenging experiment, in which the
target is the hand drawn swan image (the bottom left image
of Figure 1) but the source images are edge maps of real
photos. The edgemaps of photos are harder to handle because
there are many background noises and the edges of swans in a
picture, if successfully captured by edge detection, can differ
a lot from the target pattern.

We apply OT-RMC to extract pixels in the source to best
match with the target. The cost function between two support
points is the square of the Euclidean distance. In this case,
the marginal constraints on the target distribution and the
source distribution are treated fully asymmetrically. Without
loss of generality, to discuss in the context of Eq. (4), let the
source be the first distribution and the target the second. The
induced distribution by the matching weight matrix w∗ for
the target is fixed at the given distribution, that is, the gap
variables for the marginal constraints of the target distribution
are set to zero. In problem (4), this is realized by setting
gup,2 = 0. On the other hand, no upper bound is set on
the gap variables corresponding to the source distribution,
that is, gup,1 = +∞. We call this problem the fixed target
matching problem, the properties of which are discussed in
Appendix A.
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Following the notations in Eq. (4), suppose the source con-
tains n1 black pixels and the target contains n2 pixels. After
solving OT-RMC, the induced distribution over the source
pixels is q̃1 = w ·1n2 . Due to the limited numerical precision,
although some elements of q̃1 can be nearly zero, we usually
do not obtain precise zero. We thus use a non-zero threshold
ε to select pixels. The threshold ε is chosen such that the total
probability over the chosen pixels according to q̃1 reaches a
set level, e.g., 95%, and the probability of each chosen pixel
is at least 20% of the probability assigned to a pixel in the
target. Let us call the image containing the selected pixels
the extracted pattern. In Figure 1, the extracted patterns for
the source images in the second and forth columns are shown
to the right of the source. In each row, the target image is
shown in the first column. As demonstrated by the figure,
the extracted patterns are crisp even when the embedded pat-
terns vary from the target considerably. The extracted pattern
is particularly interesting for the picture of a swan with waves
and grass (third row and column (d)). Details are retained,
e.g., the eye and the wing, although the swan in the target
pattern is simpler and also slightly rotated. The reason is that
OT-RMC penalizes deviation from the original distribution of
the source and thus tends to keep fidelity to the source.

Although the patterns in the target images seem to be at the
same positions as the embedded patterns in the source images,
this information is not used in the experiment. Neither OT nor
OT-RMC is translation invariant. In our experiments, a target
pattern is shifted at a given step size to different locations
to match with the source image. At any location, a patch (a
rectangle area) from the source image is used to match with
the target. The patch is larger than the bounding box of the
pattern but smaller than the whole image. We found that it is
unnecessary to use too large a patch because OT-RMC will
not select pixels that are sufficiently far from those in the
target pattern. Reducing the number of pixels in matching
can speed up computation substantially. Another approach to
reduce computation is to subsample the pixels in the target
and the source. At each location, we compute the distance
between the target and the patch based on the pixels selected
by OT-RMC using Eq (9), and we denote this distance by
DW when discussing the experiments. The extracted pattern
from the patch with the minimum DW is taken as the best
match identified in that image. The influence of translation
on the extraction of patterns is illustrated by Figure 11 in
Appendix B, where more detailed discussion is provided.

To examine the effect of pattern extraction in a more real
situation, we experimented with extracting the swan pattern
from 254 swan photos downloaded from Google’s image
site. For these real photos, the swans in the pictures can be
surrounded by a highly noisy background, be rotated, or have
very different sizes. The target swan pattern is still the image
in the third row and first column of Figure 1. As the target
swan image is of size 230× 230, the real photo images were
scaled such that the shorter of the two sides of an image
is 230. The color images were then converted to grayscale,
and Canny edge detection was applied to obtain edge maps.

Pixels identified as edge are the black pixels in our setting,
and the rest are the white background. Example images and
their edge maps are shown in Figure 2. We generated 3 swan
target patterns by scaling the support points (i.e., the coordi-
nates of black pixels) in the target distribution at three levels:
1.0, 0.85, 0.65. As the majority of the patches do not match
well with any of the target, for clarity of the study, we only
select at most one patch from each image across all the three
scale target patterns to conduct extensive experiments and
make comparisons with other approaches. Details about how
the patches are selected are presented in Appendix C. Among
the 254 images, 137 images have a patch selected. Our results
below are based on these 137 patches.

We compare OT-RMC with two other approaches: the
regular OT (with strict marginal constraints) and the so-called
nearest neighbor (NN) match. For NN match, each pixel in
the target is matched with the closest pixel in the source
(according to the Euclidean distance of their coordinates).
In our setup, as the marginal constraints on the target are strict
and there are no bound constraints on the source distribution,
NNmatch is equivalent to OT-RMC at λ = 0.0.We prove this
fact in Appendix A. In the discussion below, OT-RMCmeans
OT-RMCwith 0 < λ < +∞. If λ = +∞, OT-RMCbecomes
the regular OT. We compare OT-RMC with NN and OT to
demonstrate its effectiveness at selecting pixels to match with
the target. Note that for OT, no selection of pixels is per-
formed. To compare on a common ground, we use OT-RMC
and NN only to select pixels. Once the pixels are selected,
uniform probabilities are assigned to them to compute various
distances. To remove the effect of translation or rotation on
the distance, we compute the Translation-Rotation Adjusted
Wasserstein distance (TRA-Wasserstein), denoted by DTRA,
between the selected subset of pixels and the target pattern.
This is motivated by the observation that translation and
rotation (at least to a moderate extent) do not affect our
perception of a pixel pattern. We also compute a so-called
angle distance, denoted by DANG. Definitions of these two
distances are described in details in Appendix C.

For OT-RMC, we experimented with λ = 0.05, 0.1, 1.0,
5.0, 10.0, 20.0. For each patch, we report the minimum
DTRA or DANG obtained by OT-RMC across the λ’s. In Fig-
ure 2(a)-(b), we compare OT-RMC, NN, OT in terms of
DTRA and DANG. For clarity of visualization, we sorted the
images according to DTRA (or DANG). As shown in the plots,
OT yields higher DTRA and DANG than OT-RMC across all
the images. In fact, the difference is remarkable. For the vast
majority of images, NN performs between OT and OT-RMC.
The histograms for the best λ values for eitherDTRA andDANG
are shown in Figure 2(c). When NN outperforms OT-RMC,
λ = 0 is the best. In Figure 2(d), we show the running time to
finish OT-RMCwith respect to the support sizes of the source
distributions. The target distribution has a fixed support size
of 223. A quadratic regression curve is fitted to the running
time in seconds. We can see that the variation in running time
(e.g., due to different λ’s) at any fixed support size of the
source distribution is small. In Figure 3, we show example
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FIGURE 2. Compare the performance of OT-RMC, OT, and NN in the pixel pattern extraction experiment. (a) DTRA for 137 source images.
(b) DANG for the source images. (c) Histograms for the best chosen λ to minimize DTRA and DANG respectively. (d) Running time in seconds.
The running time increases approximately in quadratic order with respect to the number of pixels in the source image. The black line is a
fitted second order polynomial.

FIGURE 3. Example images, their edge maps, and the extracted patterns in the pixel pattern extraction experiment.
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FIGURE 4. Results for the color scheme matching experiment. (a) The six color schemes in the study. (b) The cumulative distribution of D∗W
obtained by OT-RMC for each color scheme. (c) Comparison of the distances and coverage ratios obtained by OT-RMC, NN, and OT. For each
color scheme, the top plot shows the 1% lowest distances obtained by each method over the 4,238 paintings; the bottom plot shows the
coverage ratios obtained by OT-RMC and NN for the corresponding images in their respective 1% set.

source images, their edge maps, and the extracted patterns by
OT-RMC. For each image, only the best matched extracted
pattern is shown.

B. COLOR SCHEME MATCHING
We now demonstrate an application of OT-RMC for iden-
tifying color schemes used in paintings. A color scheme is
the co-existence of multiple colors that are positioned on the
color wheel in a particular way. A color wheel represents the
hue of a color by the angular position ranging from 0◦ to 360◦.
Examples include triad color schemes (three colors equally
apart in angles on the color wheel), analogous color schemes,
and complementary color schemes [27]. In this experiment,
we examine six color schemes shown in Figure 4(a), three
of which are triad schemes and the other three tetradic. For
a triad scheme, the three hues are 120◦ apart, e.g., red, blue,
and yellow. A tetradic scheme contains four color hues that
form a rectangle on the color wheel. Each hue is 60◦, 120◦,
and 180◦ apart from the other three hues.

Our dataset contains 4, 238 fine art paintings of over 30
artists, e.g., Michelangelo, Caravaggio, Vermeer, Van Gogh,
Gauguin, Cezanne, Konchalovsky, Matisse. To summarize
the colors used in an image, the 3D color vectors at each pixel
containing red, green, and blue color components, are clus-
tered by the modal clustering algorithm [28]. Then the repre-
sentative colors and the proportions of pixels in each cluster
form a color distribution for the image. On average, about 77
distinct colors are extracted for every painting. In this study,
the color distribution of a painting is treated as the source,
while the color distribution derived from every color scheme

is the target. The target distribution for a color scheme is
generated by assigning uniform probabilities to the colors
contained in the scheme. As mentioned previously, we exper-
imented with six color schemes shown in Figure 4(a). The
cost function between two support points is the Euclidean
distance. We did not use the square of the Euclidean distance
because it tends to exaggerate the difference when two color
vectors are not close.

Different from the pixel pattern extraction problem studied
in the previous subsection, we do not impose strict marginal
constraints on the target distribution in this problem. The
induced distribution of the target is allowed to differ from
the pre-set uniform distribution. However, the deviation is
bounded. Specifically, we allow the gap variables for the
marginal constraints of the target distribution to be non-zero,
but upper bound them to ensure that each color in a scheme is
guaranteed with a minimum value of probability. This setup
is motivated by the fact that when a set of colors are used
in a painting to achieve the visual effect of a color scheme,
it is unnecessary to cover the same amount of area by each
color. On the other hand, every color in the scheme needs to
account for an adequate amount of proportion in order not to
be ignored. In the extreme case, if a color has zero proportion,
the color scheme essentially no longer exists. In particular,
we set gup,2 = δ. For the triad schemes, we set δ = 2

3 ·
1
n2
. This

implies that in the given color scheme, each color is assigned
with a probability of at least 11%. For the tetradic schemes,
we set δ = 2

5 ·
1
n2
, ensuring that each color has probability

no less than 15%. The minimum probability per color is set
higher for the tetradic schemes than triad schemes because a
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FIGURE 5. Compare the performance of OT-RMC, OT, and NN for the color scheme matching experiment. (a) Difference in
distance between NN and OT-RMC, that is, DNN

W − D∗W . (b) Histograms for the coverage ratios obtained by OT-RMC at the λ that
yields D∗W . Every panel corresponds to one color scheme. (c) Difference in distance between OT and OT-RMC under the
condition that the coverage ratio obtained by OT-RMC at the chosen λ is at least 30%, that is, DOT

W − D̃∗W . (d) Histograms for the
coverage ratios obtained by OT-RMC at the λ that yields D̃∗W .

tetradic scheme may appear like a triad scheme unless all the
four colors are significant in proportion.

Again, we use OT-RMC and NN to choose colors from
a source image. After the colors have been selected from
a source, the source distribution is changed to the trun-
cated conditional distribution on the selected colors. We then
compute the Wasserstein distance, denoted by DW , between
the source distribution and the induced target distribution.
We also compare the methods based on coverage ratio, which
is defined as the total proportion of the selected colors. If the
coverage ratio is very low, e.g., 5%, even if the match with a
color scheme is nearly perfect, the painting cannot effectively
convey the impression of the color scheme. In another word,
for viewers to perceive a color scheme in a painting, the area
occupied by the color scheme must be large enough.

One by-product of OT-RMC is the induced target distribu-
tion, which is optimized to best capture the proportions of
the target colors that actually appear in the source image.
In contrast, NN or OT cannot dynamically determine the
target distribution. Hence the target distribution used for
OT or NN will remain as the original uniform distribution.

For OT-RMC we tested λ = 0, 5, 20, 35, 50, 52, 53, 55, 65.
We would like to remark that as the marginal constraints on
the target distribution are not strict in this problem, OT-RMC
at λ = 0 is not equivalent to NN because the induced target
distribution can be different from the original distribution.

To compare with NN, we compute the minimum DW dis-
tance obtained by OT-RMC across the λ’s, denoted by D∗W .
We also record the coverage ratio obtained at the optimal
λ chosen for each image. We then compute the difference
between DNNW , the DW distance obtained by NN, and D∗W by
OT-RMC:DNNW −D

∗
W . Figure 5(a) shows the sorted difference

in distance. A negative value indicates that NN achieves
smaller distance. The figure shows that for the vast majority
of the images, for every color scheme, OT-RMC achieves
lower distance. Moreover, the coverage ratio by NN is too
low to be practically useful. On average, colors selected by
NN only cover 2% to 5% of an image for any of the six color
schemes. Asmentioned previously, when the coverage ratio is
too small, a good match with a color scheme extracted from a
source image is not really meaningful. In light of this, NN has
failed to yield useful results for a very high percentage of
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FIGURE 6. Example paintings and their well-matched color schemes. The original image is shown on the left. The image on the right
shows the pixels selected by OT-RMC for a particular color scheme (shown below the image) in color while those not selected in
gray scale.

paintings. We show the histogram of the coverage ratio by
OT-RMC in Figure 5(b). As we can see, the percentage of
images with very low coverage ratios is not negligible if we
select λ based only on DW . Next, we select the best λ by
minimizing DW under the condition that the coverage ratio
is at least 30%. The corresponding distance at the chosen λ
is denoted by D̃∗W . We then compare D̃∗W with DOTW , the DW
distance obtained by OT. We find that, for any of the six

color schemes, the best λ values are among the three val-
ues [20, 35, 50] for 75% to 90% of the images. Figure 5(c)
shows the sorted difference in DW by OT and D̃∗W . Again,
regardless of the color scheme, for the vast majority of the
images, OT-RMC achieves lower distance. The histograms
of the coverage ratios obtained at the best λ that yields D̃∗W
are shown in Figure 5(d). Every plot corresponds to one
color scheme. By setup, the coverage ratio is at least 30%.
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FIGURE 7. Visualization of 1228R1 FCM data which contain 30,427 cells. Eight manually gated cell populations are color
coded. The diagonal plots show the estimated marginal density functions of each cellular marker (i.e., feature). The lower
triangle plots show 2D scatter plots of the cells, and the upper triangle plots show the estimated bi-variate densities.
In every plot, visualization is provided for the eight clusters simultaneously which are distinguished by different colors.

The histograms show that the average coverage ratio is always
above 50%.

In Figure 4(b), the cumulative probability distribution
is shown for D∗W for every color scheme. In Figure 4(c),
we compare OT-RMC, OT, and NN in the following way.
For each of the three methods, we select the lowest 1% of
the distances (a set of 42) over all the images. As these 42
images are generally different for different methods, we can-
not interpret the difference in any measure as performance
difference on any particular image. For OT-RMC, D̃∗W is used
for selection (thus guarantee coverage ratio of at least 30%).
For each color scheme, a pair of plots (arranged vertically)
are shown. The top plot shows the sorted distances separately
for each method. The bottom plot shows the coverage ratios
obtained by OT-RMC and NN for their respective set of 42
images. As OT does not select colors, the coverage ratio is
always 1, thus not shown in the plots. We see that for each
color scheme, the lowest distances by OT are considerably
higher than that of OT-RMC and NN. The difference between
the latter two is relatively small comparingwithOT.However,
there is significant difference between the coverage ratios
of OT-RMC and NN. For OT-RMC, the coverage ratio is
ensured to be at least 30%, with the average in the range of
[0.50, 0.55]. For NN, the coverage ratio is nearly zero for a
very high percentage of images. Specifically, for the six color

schemes, the percentage of images with coverage ratio below
2% by NN ranges from 88% to 95%. Hence, although NN
yields lower distances on its lower end images, the coverage
ratios are too small to be useful.

In Figure 6, we show some example paintings and the
color schemes that matched well with the paintings. Here,
a good match means the distance yielded by OT-RMC is
small. The color scheme is shown below the images. To show
the pixels that are selected by OT-RMC, meaning that the
representative colors of the clusters which the pixels belong to
are selected, we show these pixels in the original color, while
the pixels not selected are shown in brightened gray scale. It is
interesting that the selected pixels help us better see a certain
color scheme by separating the scheme from the rest of the
painting. This separation helps viewers focus their attention
on the usage of certain colors, which might be overlooked in
a painting rich in color, and perhaps better understand and
appreciate the artistic choices of the painter.

C. CLUSTER ALIGNMENT FOR SINGLE-CELL DATA
Single-cell technologies, including flow cytometry (FCM),
Cytometry by Time-Of-Flight mass spectrometry (CyTOF),
single-cell RNA-seq, have revolutionized biology through
transcriptomic profiling at the single-cell level [29].
Single-cell analysis is key to a better understanding of cellular
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FIGURE 8. Compare OT-RMC with OT for cluster alignment of the three FCM datasets. Results for OT-RMC are shown in the plots (a), (c),
and (e) on the left, while those for OT are (b), (d), and (f) on the right. Each plot is a heatmap with every box corresponding to one entry
in the matching weight matrix. The value of each entry is indicated in its box. The two datasets aligned in each plot are indicated along
the horizontal and vertical axis.

plasticity, stem cell biology, immunology, and cancer het-
erogeneity. Clustering is one of the most commonly applied
analyses of single-cell RNA-seq data. In various disease
studies and vaccine development, cell clusters identified
computationally help reveal different patterns across con-
ditions (e.g., healthy vs. diseased; placebo vs. vaccinated;
different tumor samples), based on which existing biomed-
ical conjectures may be substantiated, or new hypothe-
ses/experiments on potentially important biomarkers, disease
monitoring and treatments, and vaccine development may be
inspired [30]–[37].

One key challenge encountered by single-cell cluster-
ing analysis is how to relate clustering results for datasets

acquired from multiple sources. For reasons such as privacy
of data, limitation of communication systems, and storage
restrictions, it can be impractical or impossible to access
all the datasets at a central site for simultaneous analysis.
It is thus necessary to consolidate clustering results obtained
from different datasets. We call this the cluster alignment
problem.We applyOT-RMCwith no upper bounds on the gap
variables. Different from the first two applications, the two
distributions in problem (4) are treated symmetrically here.

To demonstrate the application of OT-RMC to cluster
alignment across different datasets, we first analyze a set
of three FCM samples. These three samples correspond to
the first replicates of Stanford center in the T-cell Lyoplate
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FIGURE 9. t-SNE plot of individual cells color coded by four human donors. (a): t-SNE is performed on the raw data; (b): t-SNE is
performed on the 13-dimensional canonical vectors output from Seurat CCA.

panel of the SeraCare cell HIPC study for each of the
three available patients denoted ‘‘P1228R1’’, ‘‘P1349R1’’
and ‘‘P1369R1’’ [38]–[40]. The original raw data files are
available on the immunspace platform. In addition, we have
a reference manual gating (i.e., manually identified) of those
cells for each patient into 8 mutually exclusive cell popu-
lations. We first remove dead cells and doublets to focus
on manually gated cells. The resulting datasets P1228R1,
P1349R1 and P1369R1 contain 30, 427, 31, 228 and 32, 948
cells, respectively. In addition, each cell was characterized
by 7 cellular markers (i.e. features), namely CCR7, CD4,
CD45RA, CD3, HLADR, CD38, and CD8. Figure 7 shows
a descriptive representation of the 1228R1 FCM data. The
proportion of the largest cell population (aka, cell cluster)
is about 30% and the smallest being 0.2%. The proportion
of each cell cluster can vary dramatically across the three
patients. For instance, for any cluster across two patients, sup-
pose the proportions of this cluster are a1 and a2 respectively.
We compute the ratio |a1−a2|/max(a1, a2), which is referred
to as the disparity ratio of proportions. This ratio ranges
from 4.5% to 91.6% with median 38.2%, the first quartile
24.6%, and the third quartile 61.6%. The large variation in the
proportions of the cell clusters poses difficulty in alignment.

In this example, the 8 cell populations are one-to-one
matched across the three datasets according to the man-
ually gated results (ground truth). We will examine the
alignment results based on OT-RMC and OT, specifically,
the matching weight matrices obtained by each, and see
whether the matrices indicate one-to-one match between
the clusters. To perform OT-RMC, we first represent the
cell populations for each dataset by the distribution Pk =
{(x(k)1 , q

(k)
1 ), (x(k)2 , q

(k)
2 ), . . . , (x(k)8 , q

(k)
8 )}, k = 1, 2, 3, where

the probabilities are estimated by the empirical proportions
of the cell populations. The support point for the ith cluster,
x(k)i ∈ R7, is the mean vector for cell population i in the
kth dataset. Since there is no target distribution (dataset)
in this example, we perform pairwise alignment among the

three datasets. We use the square of Euclidean distance as
cost between two support points and set λ = 0.5 for OT-
RMC. Figure 8 displays the matching weight matrices for
both OT-RMC and OT as heatmaps. Figure 8(a), (c) and
(e) show that the resulting matching weight matrices by
OT-RMC are all diagonal, indicating that the 8 cell popu-
lations are one-to-one matched across any pair of datasets.
In contrast, OT tends to split or merge several cell populations
from one dataset and align them with a cluster from another
dataset. In fact, even if we apply post-processing to the
matching weights to enforce one-to-one matching, OT would
still result in some wrong matches. For example, cluster 3 in
P1228 would match with cluster 7 in P1349 since either
would be the best-matched cluster of the other. Similarly,
cluster 7 in P1228 would match with cluster 6 in P1349.

Next, we demonstrate OT-RMC with a more challenging
example. The datasets are single-cell RNA-seq of pancre-
atic islets and they contain gene expression data from the
same tissue of four human donors with 20215 genes (fea-
tures) detected in total [41]. All four datasets contain the
same 14 cell populations which are identified independently
based on a droplet-based single-cell RNA-seq method called
inDrop. The proportion of the largest cell population is about
45% and the smallest being 0.07%, a verywide range. In addi-
tion, comparing with the FCM datasets, the same cell popu-
lation can differ more dramatically in proportion across the
four datasets. The disparity ratio of proportions ranges from
1.4% to 99.3% with median 50.4%, the first quartile 28.8%,
and third quartile 72.8%.

Figure 9(a) shows the two-dimensional t-SNE plot [42] of
single-cell RNA-seq data with cells color coded by the four
human donors. Further, it shows that cells tend to cluster not
only by cell type but also by donor, which suggests the exis-
tence of batch effects among the four datasets. Thus, we first
apply Seurat CCA (Canonical Correlation Analysis) [43] to
remove batch effects before we align clusters across these
four datasets. Seurat CCA performs dimension reduction and
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FIGURE 10. Compare OT-RMC with OT for cluster alignment of the four single-cell RNA-seq datasets. Results for OT-RMC are shown by (a)-(f) in the top
two rows, while those for OT are (g)-(l) in the bottom two rows. Each plot is a heatmap with every box corresponding to one entry in the matching weight
matrix. The value of each entry is indicated in its box. The two datasets aligned in each plot are indicated along the horizontal and vertical axis.

aligns the subspaces of different datasets using dynamic time
warping. Figure 9(b) shows the t-SNE plot obtained from
the 13-dimensional canonical vectors which are output by
Seurat CCA. It verifies that cells are no longer grouped by
donor. Next, as with the FCM datasets, we represent the cell
populations for each donor by a discrete distribution over
the derived 13-dimensional canonical vectors. Every support
point corresponds to one cluster and is given by the average
of the 13-dimensional vectors in that cluster. Comparing with
the FCM datasets, the cost given by the square of Euclidean
distance is much smaller between any of the clusters. Thus we
use L1 norm as cost instead, and set λ = 0.01. In Figure 10,

the top two rows show the pairwise matching weight matrices
obtained by OT-RMC, and the bottom two rows show the
results of OT. The matching weight matrices by OT-RMC are
all nearly diagonal, indicating one-to-one correspondence of
cell populations across the four donors. However, OT again
fails to detect the one-to-one correspondence between many
clusters.

V. CONCLUSION
In this paper, we propose the framework of OT-RMC, which
is motivated by intrinsic limitations of OT in applications.
OT-RMC can be solved efficiently by linear programming.
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The framework is flexible for a range of application scenarios.
OT-RMC enables us to extract patterns that are embedded
with noise and to better handle the case of varying object
proportions when aligning two sets. We illustrate the usage
of OT-RMC with three example applications, each with a
different setup of the optimization problem. These examples
show the diverse usages of OT-RMC and its advantages over
OT and the nearest neighbor matching scheme. Given that
it is an extension of OT, we expect OT-RMC to have wide
potential applications.

APPENDIX A
PROPERTIES OF THE FIXED TARGET
MATCHING PROBLEM
Let the source distribution be P1: {(x

(1)
i , q

(1)
i ), i = 1, . . . , n1}

and the target distribution be P2: {(x
(2)
i , q

(2)
i ), i = 1, . . . , n2}.

For the pixel pattern extraction application in Subsec-
tion IV-A, we use OT-RMC formulated by problem (4) with
gup,1 = +∞ and gup,2 = 0. Let the support sets of the two
distributions be X1 and X2 respectively. This case of prob-
lem (4) can be stated equivalently as the following problem:

R(c,q1,q2) = min
w,g
〈c,w〉 + λL(g1) (10)

s.t. w ≥ 0

1
t
n1 · w · 1n2 = 1

q1 − g1 ≤ w · 1n2 ≤ q1 + g1
wt
· 1n1 = q2

We call Eq. (10) the fixed target matching problem. The
marginal constraints on the target distribution is strict, but not
so on the source.

In NNmatching, each support point in the target is matched
with the closest point in the source according to the definition
of the cost c, e.g., ci,j = ‖x

(1)
i − x(2)j ‖

2 with ‖ · ‖ being the

L2 norm. Suppose x(2)j is matched to x(1)ν∗(j) in the source by
NN. We define the matching weight matrix of NN, denoted
by wNN , as follows. For the (i, j)th element, let

wNNi,j =

{
q(2)j i = ν∗(j)

0 i 6= ν∗(j).
.

Clearly wNN is a joint distribution on X1 ×X2. Thus the NN
induced distribution on the support of the source distribution
is given by

q̃(1),NNi =

∑
j:ν∗(j)=i

q(2)j , i = 1, . . . , n1 .

If a support point in the source is not matched with any
point in the target, its induced probability is 0, otherwise, its
induced probability is the sum of the probabilities on all its
matched points in the target.
Theorem 2: The fixed target matching problem (10) at

λ = 0 is solved by NN matching weight matrix wNN .
Proof: Let thematchingweightmatrix of the fixed target

problem at λ = 0 be w∗ = (w∗i,j)i=1,...,n1,j=1,...,n2 . Let the
induced distribution by w∗ on the source be q̃(1).

The objective function of problem (10) becomes

R(c,q1,q2) =
n2∑
j=1

n1∑
i=1

w∗i,jci,j

≥

n2∑
j=1

n1∑
i=1

w∗i,j ·min
i′
ci′,j

=

n2∑
j=1

min
i′
ci′,j ·

n1∑
i=1

w∗i,j

=

n2∑
j=1

cν∗(j),j · q
(2)
j (11)

The last equality comes from the strict marginal constraints
on the target. If we set w∗ = wNN , then

R(c,q1,q2) =
n2∑
j=1

cν∗(j),j · q
(2)
j .

That is, the lower bound on R(c,q1,q2) in Eq. (11) is
achieved by wNN . If we define g1 =

∣∣∣wNN
· 1n2 − q1

∣∣∣,
obviously, wNN and g1 satisfy all the constraints in prob-
lem (10). ThuswNN solves the fixed target matching problem
at λ = 0. �
Recall that DW is the Wasserstein distance solved by

OT between the fixed target distribution and the trun-
cated conditional distribution of the source restricted to the
selected pixels. We denote the conditional distribution by
P̆1: {(x

(1)
i , q̆

(1)
i ), i = 1, . . . , n1}. Let the corresponding opti-

mal matching weight matrix solved by OT be w∗. For the
p-Wasserstein distance, the cost is the pth power of a norm in
Rd , ci,j = c(x(1)i , x

(2)
j ) = ‖x(1)i − x(2)j ‖

p, and DpW = 〈c,w
∗
〉.

We define a lower bound DLB based on NN matching for
distance DW as follows:

DpLB =
n2∑
j=1

cν∗(j),j · q
(2)
j .

Following the proof for (11), it is straightforward to see that

DpW =
n2∑
j=1

n1∑
i=1

w∗i,jci,j ≥
n2∑
j=1

cν∗(j),j · q
(2)
j = DpLB .

DLB can be trivially solved without a numerical algorithm,
and is used as a lower bound on DW .

APPENDIX B
ADDITIONAL RESULTS
The effect of translation on the solution of OT-RMC is
demonstrated in Figure 11. The target pattern is the circle
image shown on the top left corner of Figure 1, and the
source image is the one to its right. The target pattern is
shifted to 25 locations across the source image, and the
corresponding pattern extracted (shown as black pixels) from
the source is shown together with the target pattern (shown in
light gray). Although a considerable portion of the embedded
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FIGURE 11. The extracted patterns from the source image when the target pattern is shifted to different locations. The light gray circle in
each image is the shifted target pattern, and the black pixels are extracted from the source.

circle has been extracted even when the target circle is dis-
placed from the embedded one, we cannot expect OT-RMC
to fully reverse the effect of translation. In practice, we can
achieve robustness against translation by centering both the
source and target distributions or as we did in this experi-
ment, by testing a collection of translated target distributions.
Which approach is suitable depends on the application and
available computational power.

APPENDIX C
DISTANCE DEFINITIONS AND IMAGE PATCH SELECTION
FOR PIXEL PATTERN EXTRACTION
We hereby define the Translation-Rotation Adjusted Wasser-
stein distance DTRA and the angle distance DANG, assuming

the cost between support points is the square of the Euclidean
distance. These distances are used for the pixel pattern match-
ing problem, motivated by the fact that our perception of a
pixel pattern should not be affected by translation and small
or moderate amount of rotation. The Wasserstein distance
DW based on OT is not invariant to translation or rotation.
We remark that for other applications such as color scheme
matching, translation or rotation should matter for comparing
similarity, and thus we simply use DW .

Consider two distributions with support points specified by
the data matrix Xl ∈ Rnl×d , l = 1, 2, where nl is the support
size and d is the dimension of the data. Every row of the data
matrix corresponds to one point. For pixel pattern matching,
d = 2. Specifically, X1 contains the vertical and horizontal
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coordinates of black pixels in the source image and X2 con-
tains those in the target pattern. Let the ith row, i = 1, . . . , nl
of Xl be x(l)i . Let the probabilities on the support points be
ql = (q(l)1 , q

(l)
2 , . . . , q

(l)
nl )

t , l = 1, 2. Let the matching weight
matrix solved by OT be w∗ = (wi,j)i=1,...,n1,j=1,...,n2 . In our
setup, q2 is the target distribution, and q1 is the source distri-
bution on the selected pixels by OT-RMC or NN. Although q1
and q2 are uniform in our experiments, we discuss for general
distributions below.

To remove the effect of translation, we simply center the
support points in both Xl , l = 1, 2. Specifically, let the
expected data vector of Xl be x̄l =

∑nl
i=1 q

(l)
i x(l)i . Subtract

each row in Xl by x̄l . We then solve OT using the centered
support points. For brevity of notation, we will use Xl to
denote the centered data matrix in the discussion below. From
now on, we assume the operations presented below are all on
centered data matrices.

To remove the rotation effect (reflection included), we take
an iterative approach. In each iteration, OT solves the match-
ing weight matrix w∗, based on which a rotation matrix is
solved and applied to the second distribution. Equivalently,
we can apply rotation to the first distribution, while the
problem is essentially the same. Once the second distribution
has been updated by rotation, OT can be applied again to
yield a new w∗, and rotation can be applied to the second
distribution again, so on and so forth.We find empirically that
the rotation angle is not large, and after one round of rotation,
the results vary negligibly. Hence in our experiments, only
one iteration is applied. Denote the rotation matrix to be
applied to the second data matrix by A. We solve A by the
following optimization problem:

argmin
A

n1∑
i=1

n2∑
j=1

wi,j‖x
(1)
i − x(2)j · A

t
‖
2 , (12)

where ‖ · ‖ is the L2 norm. This is essentially the weighted
orthogonal Procrustes problem. Here we have n1 × n2 pairs
of points, x(1)i versus x(2)j with weight wi,j, i = 1, . . . , n1,
j = 1, . . . , n2. We use the algorithm of [44] to solve the
rotation matrix. Let S ∈ Rd×d be

S =
n1∑
i=1

n2∑
j=1

wi,jx
(2)
j

t
· x(1)i ,

and the singular value decomposition (SVD) of
S be S = U t6SV . Then

A = V · U t . (13)

OnceA is solved, OT is applied to data matricesX1 andX2 ·At ,
and the resulting DW is defined as DTRA. We summarize the
process in Algorithm 1.
When comparing DTRA or DLB (see Appendix A for the

definition of DLB) across target patterns that are scaled ver-
sions of each other (a multiplicative factor applied to the
data matrix), we would like to account for the scaling effect.
In particular, we apply the inverse scaling to DTRA and DLB.
The rationale is thatDTRA andDLB will reduce proportionally

Algorithm 1 Compute DTRA
Input: Data matrices X1, X2, and the two probability vectors

q1 and q2.
Output: DTRA
1: Center X1 and X2 by subtracting the mean vector from

each row.
2: Repeat the following steps k times.

1) Solve the matching weight matrix w∗ by OT based
on Xl and ql , l = 1, 2.

2) Solve the rotation matrix A by Eq. (13).
3) Let X2 · At → X2.

3: Based on the updated X1 and X2, compute the cost matrix
c. Solve the matching weight matrix w∗ by OT using c,
q1, and q2.

4: Compute DTRA =
√
〈c,w∗〉.

if both the source and the target pattern are scaled down
although we prefer to consider that the patterns are essentially
the same unless the scaling is extreme, e.g., shrinking every
pattern to a tiny dot.

The angle distance DANG is inspired by approaches to
characterize the similarity between curves on a plane. The
local similarity between two points on the two curves often
depends on both the positions of the points and the orienta-
tions of the curves at those points. Consider two sets of points
Zl = {z

(l)
i , i = 1, . . . , n}, z(l)i = (z(l)i,1, z

(l)
i,2), l = 1, 2, where

a one-to-one correspondence between the points is estab-
lished.Without loss of generality, assume the correspondence
z(1)i ↔ z(2)i . Take Z2 as the reference set. For each point z(2)i ,
find its two nearest neighbors according to the Euclidean dis-
tance from Z2. Suppose the indices for the two nearest neigh-
bors of the ith point are νi,1 and νi,2. For example, if the points
in a set line up on a continuous and non-self-intersecting
curve and we trace the points along the curve, the two nearest
neighbors of a point are the two points immediately proceed-
ing and following it. The angle of the vector z(2)i − z(2)νi,1 is

computed by θi,1 = arccos
z(2)i,1 − z

(2)
νi,1,1

‖z(2)i − z(2)νi,1‖
. Similarly we can

define the angle θi,2 for vector z(2)i − z(2)νi,2 . If the two sets
Z1 and Z2 are the same or similar, the nearest neighbors of
a point in Z2 should carry over to its corresponding point
in Z1, and the angles formed between the point and each
of its neighbor should be retained. That is, if the two sets
capture the same pattern, the neighbors of z(1)i in Z1 should

be z(1)νi,1 and z(1)νi,2 , and the angles θ ′i,j = arccos
z(1)i,1 − z

(1)
νi,j,1

‖z(1)i − z(1)νi,j‖
should equal θi,j for j = 1, 2 respectively. The average
difference |θi,j − θ ′i,j| across i = 1, . . . , n and j = 1, 2 can be
used to quantify the local orientation difference between the
two sets.

We treat the support points in the target distribution
(the second distribution) as Z2. Here, we assume that the
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support sets of the source and target distributions have been
centered and the latter has been subject to the rotation
described above. That is, z(2)i = x(2)i , i = 1, . . . , n2. For
each x(2)i , i = 1, . . . , n2, its corresponding point in Z1 is the
weighted average of its mapped point in the first distribution:

z(1)i =

∑n1
j=1 wj,ix

(1)
j∑n1

j=1 wj,i
.

Then we define the angle distance DANG between the source
and target distributions by

DANG =
n2∑
i=1

q(2)i ·
|θi,1 − θ

′

i,1| + |θi,2 − θ
′

i,2|

2
.

We selected at most one patch from each image to con-
duct detailed experiments described in Subsection IV-A.
We experimented with three scales of the target distribu-
tions (scale 1.0, 0.85, 0.65) and the reflected patterns, thus
total of 6 versions of the same pattern. For each version
of the pattern, it is shifted across the image, and the lower
bound distance DLB is computed. If the lower bound DLB
is above a given threshold, the patch will be marked as a
poor match, and the exact DW based on the selected pixels
by OT-RMC will not be computed. If DLB is no greater
than the threshold, OT-RMC with λ = 20 is applied to
select pixels from the patch. Then DANG is computed using
the selected pixels. For any image in which DANG is com-
puted for multiple patches, we choose the patch yielding the
minimum DANG.
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