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a b s t r a c t

Classical eddy viscosity models add a viscosity term with turbulent viscosity coefficient
whose specification varies from model to model. Turbulent viscosity coefficient approx-
imations of unknown accuracy are typically constructed by solving associated systems
of nonlinear evolution equations or by data driven approaches such as deep neural
networks. Often eddy viscosity models over-diffuse, so additional fixes are added. This
process increases model complexity and decreases model comprehensibility, leading to
the following two questions: Is an eddy viscosity model needed? Does the eddy viscosity

model fail? This report derives diagnostic quantities of interest that answer these two
questions. A notable quality of the derived quantities of interest for the eddy viscosity
model is that they are a posteriori computable and require no a priori knowledge
of the parameterization. For neural network based parameterizations these diagnostic
quantities provide an indication of when the eddy viscosity model fails due to over
diffusion of the flow.
©2020 TheAuthors. Published by Elsevier B.V. This is an open access article under the CCBY

license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

In computational fluid dynamics, turbulence [1], incomplete data, quantification of uncertainty [2], a finite predictabil-
ity horizon [3], flow sensitivity [4] and other issues lead to the problem of computing averages (denoted u(x, t)) of under
resolved (higher Reynolds number) solutions of the Navier–Stokes equations. The most common approach [5], among
many, is to solve numerically an eddy viscosity3 model for the fluid velocity u(x, t) and pressure p(x, t)

ut + u · ∇u − ∇ ·
(

[2ν + νturb(·)]∇su
)

+ ∇p = f (x) and ∇ · u = 0, (1.1)

subject to initial and boundary conditions. Here, ν is the kinematic viscosity, f (x) is the body force, ∇su is the symmetric
part of ∇u, and νturb(·) is the eddy or turbulent viscosity. We let U and L denote a characteristic velocity and length scales
respectively (defined precisely in Section 2). The usual Reynolds number is then Re = LU/ν. This holds in a 3d, bounded,
regular flow domain Ω subject to no-slip boundary conditions (u = 0 on ∂Ω) and initial condition u(x, 0) = u0(x). We
assume f (x) is smooth, ∇ · f = 0 in Ω , and f (x) = 0 on ∂Ω .
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Herein, u′ denotes the fluctuation about the mean velocity u. Thus, the induced turbulent kinetic energy (TKE) density
is k′(x, t) := 1

2
|u′|2(x, t). The Kolmogorov–Prandtl relation for νturb (see [6] p.369, Section 10.3, for a derivation) is

νturb(l, k
′) =

√
2µl

√
k′, (1.2)

where l(x, t) has units of length (a mixing length or turbulent length scale) and µ is a calibration parameter. Determining

νturb(·) then reduces to modeling the unknowns l, k′ in terms of computable flow variables and then calibrating µ.

In all cases, two central questions, addressed herein via a posteriori computable conditions, arise: Is an eddy viscosity

necessary? and Does the model fail?

Question 1. Is an eddy viscosity model necessary? Phenomenology and many numerical tests suggests that an

under-resolved simulation will be under-diffused and energy will accumulate in the smallest resolved scale (non-

physical O(△x) oscillations). The classical interpretation has been that eddy viscosity is necessary if the mesh does not

resolve energetically significant eddies (△x ≃ Re−3/4L, the Kolmogorov micro-scale). Answering question 1, Theorem 1,
Section 3 shows, surprisingly, that if the mesh resolves the Taylor microscale (if △x ≃

√
15Re−1/2L ) then the flow in the

aggregate is not under diffused. Then added eddy viscosity to correct aggregate under diffusion is not necessary.

Question 2. Does the model fail? Eddy viscosity models most commonly4 fail by over damping the solution, either

producing a lower Re flow or even driving the solution to a nonphysical steady state. One can compute the aggregate

model dissipation,
∫

νturb|∇su|2dx, and signal failure if too large. (Like a diagnosis that a patient ‘‘looks sick’’, this offers

little insight into the cause or its correction.) Theorem 2, Section 4 separates out the effect of the chosen turbulent viscosity

parameterization from the symmetric gradient, proving

time-average model energy dissipation ≤
(

1

2
+ Re−1 +

avg(νturb)

LU

)

U3

L
,

where avg(νturb) denotes the average turbulent viscosity defined as

avg(νT ) = lim sup
T→∞

1

T

∫ T

0

1

|Ω|

∫

Ω

|νturb(x, t)|dx.

The term avg(νturb)/LU is a computable quantity which, if O(1), implies the eddy viscosity model does not over diffuse the

flow. Answering Question 2, the model then does not fail due to over diffusing the flow in the aggregate. From (1.2),

νturb has two contributors: the parameterization of l and k′. Further, Theorem 2, Section 4 shows avg(νturb)/LU = O(1) if

avg(l)/L = O(1), where avg(l) denotes the average length scale defined as

avg(l) = lim sup
T→∞

1

T

∫ T

0

1

|Ω|

∫

Ω

|l(x, t)|2dx

and the model’s predicted turbulent intensity Imodel = O(1) as Re → ∞ with Imodel defined as

(

lim supT→∞
1
T

∫ T

0

∫

Ω
2k′dx

lim supT→∞
1
T

∫ T

0

∫

Ω
|u′|2dx

)1/2

.

This follows from estimate (4.1) in Theorem 3, Section 4:

avg(νturb)

LU
≤ µ

avg(l)

L

√

Imodel,

indicating the evolution of the model length scale and the model’s predicted turbulent intensity are determining quantities of

interest to monitor. The importance of this result is that the three computable quantities

avg(νturb)

LU
,
avg(l)

L
, Imodel,

can all be monitored in a calculation. As long as they are O(1), the aggregate eddy viscosity is not over dissipating the

(aggregate) flow. If too large, their spatial distribution can be checked and the resulting information used to isolate

the cause and improve its parameterization. Neural network (NN) based parameterizations have seen an explosion

of interest in determining these quantities, e.g., [8,9]. While NN based approximations have been successful, they lack

theoretical guarantees of stability and convergence. These quantities of interest can be used to indicate the need to retrain

the neural network parameterization or incorporated as a constraint into the training procedure of the neural network.

4 Other failure modes, not considered herein, do occur intermittently when reproducing observed flow phenomena requires brief intervals of

negative eddy viscosity values, resulting in numerical instabilities, Starr [7]. Simulations can also fail by having a correct aggregate model dissipation

but an incorrect distribution.



W. Layton and M. Schneier / Results in Applied Mathematics 8 (2020) 100099 3

We therefore consider the eddy viscosity model (1.1). Let ∥ · ∥ denote the L2 spatial norm. Taking the dot product with

the solution and integrating in space and time shows that a classical solution satisfies the energy equality (e.g. [10])

1

2
∥u(T )∥2 +

∫ T

0

∫

Ω

[2ν + νturb(x, t)]|∇su(x, t)|2dxdt = (1.3)

=
1

2
∥u0∥2 +

∫ T

0

(f , u(t)) dt.

The model’s space-averaged energy dissipation rate is thus ε = ε0 + εturb where

ε0 =
1

|Ω|

∫

Ω

2ν|∇su(x, t)|2dx and εturb =
1

|Ω|

∫

Ω

νturb(x, t)|∇su(x, t)|2dx.

We assume that solutions exist for the model and satisfy a standard energy inequality. There has been slow but steady

progress on an existence theory for eddy viscosity models, summarized in Chacón–Rebollo and Lewandowski [11], but

many open questions remain since the number of models seems to be increasing faster than their analytic foundations

develop.

Assumption. We assume that weak solutions of (1.1) exist5 for any divergence free u0, f ∈ L2 and satisfy the energy

inequality

1

2

1

|Ω|
∥u(T )∥2 + (1.4)

+
∫ T

0

1

|Ω|

∫

Ω

2ν|∇su(x, t)|2 + νturb(x, t)|∇su(x, t)|2dxdt

≤
1

2

1

|Ω|
∥u0∥2 +

∫ T

0

1

|Ω|
(f , u(t)) dt.

1.1. Related work

The energy dissipation rate is a fundamental quantity of interest of turbulence, e.g., [6,12]. In 1992, Constantin and

Doering [13] established a direct link between phenomenology and NSE predicted energy dissipation. This work builds

on [14,15] (and others) and has developed in many important directions subsequently e.g., [12,15–17]. For some simple

turbulence models, a priori analysis has shown that avg(ε) = O(U3/L), e.g., [18–29]. Often these models are significantly

simpler than ones used in practice. For example, most of the models presented in Wilcox [5] evolve to high complexity.

Many require different parameterizations of l and k′ in different subregions (that must be identified a priori through

previous flow data). Since the number of models seems to be growing faster than their a priori analytical foundation, there

is a need for a posteriori model analysis identifying (as herein) computable quantities of interest for model assessment.

2. Notation and preliminaries

Let Ω be an open, regular domain in R
d(d = 2 or 3). The L2(Ω) norm and the inner product are ∥·∥ and (·, ·). Likewise,

the Lp(Ω) norms is ∥ · ∥Lp . C represents a generic positive constant independent of ν,Re, other model parameters, and

the flow scales U, L defined below.

Definition 1. The finite and long time averages of a function φ(t) are defined by

⟨φ⟩T =
1

T

∫ T

0

φ(t)dt and ⟨φ⟩∞ = lim sup
T→∞

⟨φ⟩T .

These satisfy

⟨φψ⟩T ≤
⟨

|φ|2
⟩1/2

T

⟨

|ψ |2
⟩1/2

T
, ⟨φψ⟩∞ ≤

⟨

|φ|2
⟩1/2

∞

⟨

|ψ |2
⟩1/2

∞ (2.1)

and
⟨

⟨φ⟩∞
⟩

∞ = ⟨φ⟩∞ .

5 Even in the absence of a complete existence theory, the analysis of energy dissipation rates can be performed for variational discretizations

in space (such as finite element methods or spectral methods). The same sequence of steps shows that the discrete solutions satisfy the same

energy dissipation rate bounds uniformly in any space discretization parameter (such as mesh width or frequency cutoff). Since the primary utility

of turbulence models is to account for breaking the communication between the inertial range and dissipation range in numerical simulations after

space discretizations, this analysis is highly relevant for the uses of the models. It however adds significant notational complexity without requiring

any new mathematical ideas or even steps, we shall assume the above about the continuum model for purposes of greater clarity.
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Definition 2. The viscous and turbulent viscosity energy dissipation rate (per unit volume) are

ε0(u) =
1

|Ω|

∫

Ω

2ν|∇su(x, t)|2dx and εturb(u) =
1

|Ω|

∫

Ω

νturb(x, t)|∇su(x, t)|2dx.

The force, large scale velocity, and length scales, F ,U, L, are

F =
1

|Ω|
1
2

∥f ∥, U =
⟨

1

|Ω|
∥u∥2

⟩
1
2

∞
, U ′ =

⟨

1

|Ω|
∥u′∥2

⟩
1
2

∞
(2.2)

L = min

⎧

⎨

⎩

|Ω|
1
3 ,

F

∥∇f (·)∥∞
,

F
1

|Ω|
1
2

∥∇f ∥

⎫

⎬

⎭

.

L has units of length and satisfies

∥∇f ∥∞ ≤
F

L
and

1

|Ω|
∥∇f ∥2 ≤

F 2

L2
. (2.3)

Dimensional consistency (the Kolmogorov–Prandtl relation) requires νturb(l, k
′) =

√
2µl

√
k′. Thus, picking νturb means a

choice for l(x, t) and a model k′
model for k′ are induced. Since k′ = 1

2
|u′|2 this determines a model for |u′| ≃ |u′|model =

√

2k′
model.

Definition 3. Define the velocity scales U,U ′,U ′
model by

U =
⟨

1

|Ω|
∥u∥2

⟩1/2

∞
,U ′

model =
⟨

1

|Ω|

∫

Ω

2k′dx

⟩1/2

∞
and U ′ =

⟨

1

|Ω|

∫

Ω

|u′|2dx
⟩1/2

∞
.

It has not been necessary herein to specify the initial average leading to the eddy viscosity term and used to
define U ′. Our intuition is that for a properly defined (and commonly used) averaging operations U ′ ≤ U and thus
0 ≤ I(u) ≤ 1.

Definition 4. The models’ predicted turbulent intensity is

Imodel(u) =
(

U ′
model

U

)2

.

The average model length-scale and average turbulent viscosity are

avg(l) =
⟨

1

|Ω|
∥l(x, t)∥2

⟩1/2

∞
,

avg(νT ) =
⟨

1

|Ω|

∫

Ω

|νturb(x, t)|dx
⟩

∞
.

3. Is an eddy viscosity model necessary?

This is a question that can only be sensibly asked after discretization in space in a standard way on a spatial mesh
or grid with mesh size denoted h and with νT = 0. (Thus in this section U represents the NSE velocity scale.) For the
chosen numerical (spatial) discretization, we assume that (i) no model or numerical dissipation is present (A1 below), (ii) the
largest discrete gradient representable is proportional to 1/meshwidth (A2 below, see [30,31], and [32] for proofs in specific
settings) and, as kinetic energy is concentrated in the largest scales, (iii) the discrete kinetic energy is comparable to the

true kinetic energy (A3 below).
A1. [No model or numerical dissipation] The total energy dissipation rate of uh is ε0(u

h).
A2. [Inverse Assumption] There is a parameter h = △x, representing a typical meshwidth, and an O(1) constant CI such

that for all discrete velocities uh

∥∇suh∥ ≤ CIh
−1∥uh∥.

A3. [Assumption on energy of approximate velocity]. There are constants cE , CE such that the kinetic energy of the true

and approximate velocities satisfy

0 < cE ≤
Uh

U
=

√

⟨

∥uh∥2
⟩

∞
⟨

∥u∥2
⟩

∞

≤ CE < ∞,

where Uh is defined analogously to U in Definition 3.
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Definition 5. The Taylor microscale λT ( e.g., [6,33–35]) of the fluid velocity u(x, t) is

λT (u) :=

(

1
15

⟨

∥∇u∥2
⟩

∞
⟨

∥u∥2
⟩

∞

)−1/2

. (3.1)

For fully developed, 3d turbulent flows (away from walls), it is known, e.g., [6,33,34], that λT is significantly larger
than the Kolmogorov microscale and scales with the Reynolds number as

λT ≃ Re−1/2L. (3.2)

The Taylor microscale λT (u) represents an average length of the velocity u. For example, one can have Re ≫ 1 , but
λT = O(1) for artificially constructed/manufactured laminar velocities, such as the Taylor–Green vortex [36,37].

We then have the following.

Theorem 1. Let A1, A2 and A3 hold. If the meshwidth h ≫ 2(CICE)
√
15Re−1/2L, then

⟨

ε(uh)
⟩

∞ ≪
U3

L
and

⟨

ε(uh)
⟩

∞ → 0 as Re → ∞.

Contrarily,
⟨

ε(uh)
⟩

∞ ≃ U3

L
if the Taylor microscale of the computed solution uh satisfies

λT (u
h) ≤

√
30

2
Re−1/2L.

Proof. By A1, A2
⟨

ε(uh)
⟩

∞ = 2ν
⟨

∥∇suh∥2
⟩

∞ ≤ 2νC2
I h

−2
⟨

∥uh∥2
⟩

∞

≤ 2νC2
I h

−2U2
h =

ν

LU
C2
I

(

h

L

)−2 (
Uh

U

)2
U3

L

≤ 2

[

Re−1C2
I C

2
E

(

h

L

)−2
]

U3

L
, by A3.

Thus, the first case of under-dissipation occurs when the bracketed term

Re−1C2
I C

2
E

(

h

L

)−2

≪
1

2
⇔ h ≫

√
2 (CICE)Re−1/2L = O (λT (u)) .

For the second claim, by A1, A3,

⟨

ε(uh)
⟩

∞ = 2ν
⟨

∥∇suh∥2
⟩

∞ = 2ν

⟨

∥∇suh∥2
⟩

∞
⟨

∥uh∥2
⟩

∞

⟨

∥uh∥2
⟩

∞

= 30
ν

LU
λT (u

h)−2LUU2
h

= 30Re−1

(

λT (u
h)

L

)−2 (
Uh

U

)2
U3

L
≤ 30C2

E

[

Re−1

(

λT (u
h)

L

)−2
]

U3

L
.

The bracketed term is O(1) provided λT (u
h) ≃

√
30Re−1/2L, as claimed. ■

4. Does the eddy viscosity model fail?

The most common failure mode of eddy viscosity models is model over dissipation. Model dissipation can be studied
at the level of the continuum model (1.1), that is, without a spatial discretization. Since this simplifies notation, we do so
in this section. Consider therefore the model (1.1) and recall that the data u0(x), f (x) is smooth, divergence free, and both
vanish on ∂Ω . The next theorem establishes that model dissipation is independent of solution gradients and controlled
by the average of the chosen eddy viscosity parameterization avg(νturb)

avg(νturb) =
⟨

1

|Ω|

∫

Ω

|νturb(x, t)|dx
⟩

∞
.

Theorem 2. The time averaged rate of total energy dissipation for the eddy viscosity model satisfies the following. For any
0 < β < 1,

⟨ε0 + εturb⟩ ≤
(

2

2 − β
+

2

β(2 − β)
Re−1 +

1

β(2 − β)

avg(νturb)

LU

)

U3

L
.
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The key term is
avg(νturb)

LU
. For this term we can further separate the effects of the choice of l and k′ in the model as

follows.

Theorem 3. We have

avg(νturb)

LU
≤ µ

avg(l)

L

√

I model(u) = µ
avg(l)

L

U ′
model

U ′

√

I(u). (4.1)

As a consequence there follows.

Corollary 1. The time averaged energy rate of total energy dissipation for the general eddy viscosity model satisfies the
following. For any 0 < β < 1,

⟨ε0 + εturb⟩∞ ≤
(

2

2 − β
+

2

β(2 − β)
Re−1 +

1

β(2 − β)
µ
avg(lm)

L

U ′
m

U

)

U3

L

and

⟨ε0 + εturb⟩∞ ≤
(

2

2 − β
+

2

β(2 − β)
Re−1 +

1

β(2 − β)
µ
avg(l)

L

U ′
m

U ′

√

I(u)

)

U3

L
.

Proof. The claim follows by rearranging the last term in the estimate using the definition of the turbulent intensity
I(u) = (U ′/U)2. ■

As noted above, the importance of this result is that the three quantities

avg(νturb)

LU
,
avg(l)

L
,
U ′
m

U
,

are computable. If too large, their spatial distribution can be checked and the resulting information used to improve the
model.

4.1. Proof of Theorem 1

From (1.3)

1

2T

1

|Ω|
∥u(T )∥2 + ⟨ε0 + εturb⟩T ≤

1

2T

1

|Ω|
∥u0∥2 +

⟨

1

|Ω|
(f , u(t))

⟩

T

, (4.2)

and standard arguments, it follows that, uniformly in T ,

sup
T∈(0,∞)

∥u(T )∥2 ≤ C(data) < ∞ and ⟨ε0 + εturb⟩T ≤ C(data) < ∞. (4.3)

For the RHS of the energy inequality, from (2.1) there follows

⟨

1

|Ω|
(f , u(t))

⟩

T

≤ F

√

⟨

1

|Ω|
∥u(t)∥2

⟩

T

,

which, from (4.2), implies

⟨ε0 + εturb⟩T ≤ O(
1

T
) + F

⟨

1

|Ω|
∥u∥2

⟩
1
2

T

. (4.4)

To bound F in terms of flow quantities, take the inner product of the model (1.1) with f (x), integrate by parts (using
∇ · f = 0 and f (x) = 0 on ∂Ω), and average over [0, T ]. This gives

F 2 =
(u(T ) − u0, f )

T |Ω|
−
⟨

1

|Ω|
(uu,∇f )

⟩

T

(4.5)

+
⟨

1

|Ω|

∫

Ω

2ν∇su : ∇sf + νturb(x, t)∇su : ∇sfdx

⟩

T

.

Analysis of the first three terms on the RHS parallels the NSE case in, e.g., [12,13,15–17]. The fourth is the key, model-
specific term. The first term on the RHS is O(1/T ) by (4.3). The second is bounded by Holders inequality, (2.1), and (2.3)
as follows

⟨

1

|Ω|
(uu,∇f )

⟩

T

≤
⟨

∥∇f (·)∥∞
1

|Ω|
∥u(·, t)∥2

⟩

T

≤ ∥∇f (·)∥∞

⟨

1

|Ω|
∥u(·, t)∥2

⟩

T

≤
F

L

⟨

1

|Ω|
∥u(·, t)∥2

⟩

T

.
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The third term is bounded by analogous steps to the second. For any 0 < β < 1, we have
⟨

1

|Ω|

∫

Ω

2ν∇su(x, t) : ∇sf (x)dx

⟩

T

≤
⟨

4ν2

|Ω|
∥∇su∥2

⟩
1
2

T

⟨

1

|Ω|
∥∇sf ∥2

⟩
1
2

T

≤ ⟨ε0⟩
1
2
T

√
2ν

F

L
≤
βF

2U
⟨ε0⟩T +

UF

β

ν

L2
.

The fourth, model dependent term, is estimated successively as follows
⟨

1

|Ω|

∫

Ω

νturb∇su(x, t) : ∇sf (x)dx

⟩

T

≤
⟨

1

|Ω|

∫

Ω

√
νturb

(√
νturb|∇su|

)

|∇sf |dx
⟩

T

≤ ∥∇sf ∥L∞

⟨

(

1

|Ω|

∫

Ω

νturbdx

)1/2 (
1

|Ω|

∫

Ω

νturb|∇su|2dx
)1/2

dx

⟩

T

≤ ∥∇sf ∥L∞

⟨

(

1

|Ω|

∫

Ω

νturbdx

)1/2

ε
1/2

turb

⟩

T

≤
F

L

(

U

F

⟨

1

|Ω|

∫

Ω

νturbdx

⟩

T

)1/2 (
F

U
⟨εturb⟩T

)1/2

≤
β

2

F

U
⟨εturb⟩T +

1

2β

UF

L2

⟨

1

|Ω|

∫

Ω

νturbdx

⟩

T

.

Using these estimates in the bound for F 2 yields

F 2 ≤ O

(

1

T

)

+
F

L

⟨

1

|Ω|
∥u∥2

⟩

T

+
β

2
U−1F ⟨ε0⟩T +

1

β
UF

ν

L2

+
β

2

F

U
⟨εturb⟩T +

1

2β

UF

L2

⟨

1

|Ω|

∫

Ω

νturbdx

⟩

T

.

Thus, we have an estimate for F
⟨

1
|Ω|∥u∥

2
⟩
1
2

T

F

⟨

1

|Ω|
∥u∥2

⟩
1
2

T

≤ O

(

1

T

)

+
1

L

⟨

1

|Ω|
∥u∥2

⟩
3
2

T

+
β

2

⟨

1
|Ω|∥u∥

2
⟩
1
2

T

U
⟨ε0⟩T

+
1

β

⟨

1

|Ω|
∥u∥2

⟩
1
2

T

U
ν

L2
+
β

2

⟨

1
|Ω|∥u∥

2
⟩
1
2

T

U
⟨εturb⟩T

+
1

2β

⟨

1

|Ω|
∥u∥2

⟩
1
2

T

U

L2

⟨

1

|Ω|

∫

Ω

νturbdx

⟩

T

.

These four estimates then imply that
⎡

⎢

⎢

⎣

1 −
β

2

⟨

1
|Ω|∥u∥

2
⟩
1
2

T

U

⎤

⎥

⎥

⎦

⟨ε0 + εturb⟩T

≤ O

(

1

T

)

+
1

L

⟨

1

|Ω|
∥u∥2

⟩
3
2

T

+
1

β

⟨

1

|Ω|
∥u∥2

⟩
1
2

T

U
ν

L2
+

+
1

2β

⟨

1

|Ω|
∥u∥2

⟩
1
2

T

U

L2

⟨

1

|Ω|

∫

Ω

νturbdx

⟩

T

.

The limit superior as T → ∞, which exists by (4.3), yields the following
[

1 −
β

2

]

⟨ε0 + εturb⟩∞ ≤
U3

L
+

1

β
U2 ν

L2
+

avg(νturb)

2β

U2

L2

≤
U3

L

(

1 +
1

β

ν

LU
+

1

2β

avg(νturb)

LU

)

.
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Thus, after rearranging,

⟨ε0 + εturb⟩∞ ≤
U3

L

(

2

2 − β
+

2

β(2 − β)
Re−1 +

1

β(2 − β)

avg(νturb)

LU

)

.

4.2. Proof of Theorem 2: estimating
avg(νturb)

LU

We now prove the estimate in Theorem 2 for avg(νturb). Since νturb=
√
2µl

√

1
2
|u′|2model we have

1

LU

⟨

1

|Ω|

∫

Ω

νturb(x, t)dx

⟩

T

=
1

LU

⟨

1

|Ω|

∫

Ω

√
2µl

√

1

2
|u′|2modeldx

⟩

T

=
µ

LU

⟨

1

|Ω|

∫

Ω

l|u′|modeldx

⟩

T

.

By the Cauchy–Schwarz inequality in space and (2.1) we have

1

LU

⟨

1

|Ω|

∫

Ω

νturbdx

⟩

T

≤
µ

LU

⟨

1

|Ω|
∥l∥2

⟩1/2

T

⟨

1

|Ω|
∥|u′|model∥

2

⟩

T

1/2. (4.6)

Taking the limit superior of (4.6) gives, as claimed,

avg(νturb)

LU
≤

µ

LU
avg(l)U ′

model = µ
avg(l)

L

U ′
model

U

= µ
avg(l)

L

√

Imodel(u) = µ
avg(l)

L

U ′
model

U ′

√

I(u).

5. Conclusions and open problems

One basic challenge is that the analysis of models has advanced more slowly than new models have been developed

to respond to the needs of predictive flow simulations. This means that models can evolve by more complex parameteri-

zations rather than more careful representation of the effects of fluctuations on mean velocities. The gap between model

complexity and model understanding is widening even further due to the current model development using machine

learning and neural networks based eddy viscosity models [8,9,38]. Since turbulence models are used in many safety

critical settings, there is an obvious need to assess models during a simulation. To this end, this report presents a new

approach to assess model dissipation. The first result (Theorem 1) is that, surprisingly, the need for eddy viscosity depends

on the mesh resolving the Taylor microscale rather than the Kolmogorov micro-scale. The second result (Theorem 2) is

when an eddy viscosity model is used, its total dissipation can be estimated in terms of several computable flow quantities

of interest. When the model over dissipates, these can be used to isolate the part of the model needing improvement;

the estimates separate the effects of the different model choices so that, when over-dissipation occurs, the source in

the various modeling decisions can be isolated. This is of particular interest for neural network based eddy viscosity

parameterizations. Due to the data driven nature of these approximations nothing can be said a priori about the quality

of the neural network based models. The computable quantities of interest derived in this work serve as a diagnostic tool

for when these models fail due to over dissipation of the flow. In particular they inform which specific part of the eddy

viscosity parameterization is causing over dissipation of the flow.

Open problems abound. Our analysis assumes that f (x) = 0 on the boundary. This means the effect of boundary layers is

less than small scales generated by the system nonlinearity. To seek the right computable quantity of interest for turbulent

boundary layers, an analysis of energy dissipation for shear flows is needed. There is a small number of eddy viscosity

models where quantities like the turbulent quantities of interest identified herein can be performed. Expanding this list

to models closer to those used in practice is an important collection of open problems. Numerical dissipation often is

much greater than model dissipation. Thus, analysis including numerical dissipation is of great importance. Estimation of

the effect of eddy viscosity terms on helicity dissipation rates is little studied but possibly critical for correct predictions

of rotational flows. Neural network based eddy viscosity models are at a beginning point in their development. Thus,

practically any question (analytical, theoretical of experimental) known for classic models is open for these.
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