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This study provides a detailed account of stochastic approaches that may be utilized
in Eulerian—Lagrangian simulations to account for neighbour-induced drag force
fluctuations. The frameworks examined here correspond to Langevin equations for the
particle position (PL), particle velocity (VL) and fluctuating drag force (FL). Rigorous
derivations of the particle velocity variance (granular temperature) and dispersion
resulting from each method are presented. The solutions derived herein provide a basis
for comparison with particle-resolved direct numerical simulation. The FL method allows
for the most complex behaviour, enabling control of both the granular temperature and
dispersion. A Stokes number St is defined for the fluctuating force that relates the integral
time scale of the force to the Stokes response time. Formal convergence of the FL scheme
to the VL scheme is shown for Stx >> 1. In the opposite limit, St < 1, the fluctuating drag
forces are highly inertial and the FL scheme departs significantly from the VL scheme.
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1. Introduction

The multi-scale nature of particle-laden flows gives rise to rich and complex physics that
have significant impact on natural and industrial processes. Particularly, inertial particle
motion at moderate to high mass loadings is intimately coupled to the carrier fluid flow
(Elgobashi 2006). Eulerian—Lagrangian (EL) methods (also referred to in the literature
as computational fluid dynamics—discrete element modelling or point particle methods)
have gained substantial traction for modelling such strongly coupled particle-laden flows
due to a balance between speed and resolution (see Cundall & Strack 1979; Tsuji,
Kawaguchi & Tanaka 1993; van der Hoef er al. 2008; Capecelatro & Desjardins 2013).
Since EL methods do not resolve the boundary layer around each particle, they enable
grid spacings of the order of or larger than the particle diameter. The reduced resolution
in EL methods requires a model for the fluid—particle force (i.e. drag), which generally
depends upon the undisturbed fluid velocity. In many cases, two-way coupling can
lead to self-induced disturbances (Ireland & Desjardins 2017; Horwitz & Mani 2018;
Balachandar, Liu & Lakhote 2019) or neighbour-induced disturbances (Akiki, Jackson
& Balachandar 2017) that affect the observed accuracy of an EL method. By contrast,
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particle-resolved direct numerical simulation (PR-DNS) does not require a model for the
interphase force since the detailed flow around each particle is captured. For strongly
coupled flows with inertial particles, increasing the quantitative agreement between EL
methods and PR-DNS requires critical assessment of the drag force model. Existing drag
force closures developed for EL methods typically capture the mean fluid—particle force
experienced by an assembly of particles. Therefore, the variance in drag force, arising from
neighbour-induced, sub-grid fluid velocity fluctuations (referred to as pseudo-turbulent
kinetic energy; PTKE), is generally ignored. However, recent works have highlighted the
importance of PTKE in particle-laden flows; see the closed-form model in Mehrabadi
et al. (2015) and transport equations in Shallcross, Fox & Capecelatro (2020). Establishing
connections between the drag force fluctuations and particle fluctuations (granular
temperature and mean-square displacement) creates a platform for development of an EL
drag framework that may be informed by the local PTKE.

When comparing EL and PR-DNS, Kriebitzsch, van der Hoef & Kuipers (2013)
highlighted that the mean drag and drag variance were under-predicted by EL methods.
More recently, Tenneti, Mehrabadi & Subramaniam (2016) demonstrated that EL. methods
with a mean drag force closure are incapable of capturing the steady granular temperature
observed in PR-DNS with freely evolving particles. Numerous works with PR-DNS have
since emphasized that flow past a collection of monodisperse spheres will yield drag forces
that are normally distributed (Akiki, Jackson & Balachandar 2016; Esteghamatian er al.
2017; Huang et al. 2017). Akiki et al. (2016) demonstrated that significant lift forces are
generated by neighbour-induced pressure asymmetry. They found that, for static particle
assemblies, the lift forces are also normally distributed and the variance in lift is similar
in magnitude to the variance in drag. Results obtained by Esteghamatian et al. (2017),
with freely evolving particles, also indicated that large ‘drift’ forces were present in the
transverse direction of their fluidized bed simulations. It has thus become increasingly
clear that the variance of the drag force distribution, arising from fluid disturbances by
neighbouring particles, provides a source for fluctuating particle velocity and dispersion
in EL methods. While the emphasis here is placed on EL methods, it is noted that sources
to granular temperature resulting from interphase drag fluctuations also play a crucial role
in Euler—Euler (EE) methods for gas—solids flows; see kinetic theories derived in Koch
(1990); Koch & Sangani (1999) and Garz6 et al. (2012).

Previous efforts to account for the drag force distribution in EL methods may be
broadly grouped into deterministic and stochastic approaches. In the former, the drag
force experienced by a given particle is directly mapped to its pairwise neighbour
interactions (Akiki et al 2017), requiring that the relative position of each particle
be known when computing the drag force. It is worth noting that the aforementioned
information is available in an EL framework but not in an EE framework where the solids
are treated as a continuum. By contrast, stochastic approaches aim to capture the particle
statistics (granular temperature and dispersion) resulting from neighbour-induced drag
force fluctuations. Similar to pioneering works with turbulent single-phase flows (Haworth
& Pope 1986; Sawford 1991; Pope 1994, 2002), stochastic approaches for multiphase flows
often employ simple Langevin equations (Iliopoulos, Mito & Hanratty 2003; Pozorski
& Apte 2009; Pai & Subramaniam 2012; Tenneti et al. 2016). However, the random
increments in a stochastic approach may be introduced into the particle properties at
various ‘levels’ (position, velocity or force), leading to different dynamical responses for
the granular temperature and dispersion.

In general, position Langevin (PL) equations are utilized for non-inertial tracer particles
where the relaxation of the particle velocity due to drag is not resolved; see Papavassiliou
& Hanratty (1997) and Na, Papavassiliou & Hanratty (1999) for single-phase and Metzger,
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Rahli & Yin (2013) and Lattanzi, Yin & Hrenya (2020) for multiphase examples.
However, a variety of velocity Langevin (VL) approaches have been employed for
inertial particles. When examining dilute particles in isotropic turbulence, Pozorski &
Apte (2009) considered a Langevin equation for the fluctuating fluid velocity that is
closed with the sub-grid kinetic energy and sub-grid fluid time scale. By contrast, for
moderate solids loading and Reynolds number, Tenneti e al. (2016) considered a Langevin
equation for the fluctuating particle velocity and related the model inputs to PR-DNS
statistics. To appropriately capture the interphase turbulent kinetic energy transfer in dilute
particle-laden turbulent flows, Pai & Subramaniam (2012) developed a coupled system of
Langevin equations for the fluctuating fluid velocity and the fluctuating particle velocity.
When applying a random force contribution, referred to here as a force Langevin (FL),
fewer considerations have been given. Andrews, Loezos & Sundaresan (2005) considered
a fluctuating force Langevin in coarse-grid EE simulations of a vertical riser and
informed the model inputs (force time scale and variance) with fine-grid EE simulations.
Esteghamatian et al. (2018) implemented a Langevin model for the fluctuating drag
coefficient into their EL framework and utilized PR-DNS to obtain model closure. For
liquid—solid beds with homogeneous fluidization, improved predictions with the stochastic
drag coefficient model were reported. However, for gas—solid beds with heterogeneous
fluidization, Esteghamatian et al. (2018) suggest that the EL method already captures
dynamic coherent structures (e.g. clusters or bubbles) and the stochastic force formulation
offers little benefit. The stochastic drag model of Esteghamatian et al. (2018) was also
utilized by Rao & Capecelatro (2019) for EL simulations of a dense particle bed subject
to fluid shearing (sub-aqueous sedimentary flow). Similar to Esteghamatian et al. (2018),
Rao & Capecelatro (2019) reported improved predictions for bed height when the flow was
near the onset of erosion, but minor benefit was observed at higher flow rates.

Some ambiguity has persisted in the particle-laden flow literature when selecting a
Langevin framework. Particularly, FL. approaches have admittedly been ad hoc proposals.
For single-phase turbulent flows, seminal contributions have been made to acceleration
Langevin approaches (Sawford 1991). As a result, such frameworks have been placed on a
much firmer theoretical foundation and are capable of reproducing statistics obtained from
single-phase DNS (Yeung & Pope 1989). With an ultimate goal of model development for
EL methods, we present a rigorous derivation of the particle velocity variance (granular
temperature) and dispersion (mean-square displacement) resulting from a PL, VL and
FL equation. Solutions derived herein provide a basis for comparison with PR-DNS
results and allow an informed decision to be made as to which Langevin equation is
appropriate for a given flow. Analytical solutions are verified against numerical integration
of the corresponding stochastic differential equation (SDE). We start with Stokes drag,
collisionless particles and an isotropic diffusion tensor. However, it is emphasized that
the assumptions allow closed-form solutions to be obtained that highlight similarities and
differences between the methods, and are not inherent restrictions of any of the Langevin
equations.

In §3 it is shown that random increments on the particle position (PL) leads to
dispersion behaviour that follows simple diffusion and gives no direct control of the
granular temperature. In § 4 we consider random increments on the particle velocity (VL)
and show that it leads to dispersion behaviour with a ballistic and diffusive regime. If the
particles are initialized with a Maxwellian velocity distribution whose variance matches
the steady velocity variance, then the ballistic regime follows the classic result of Taylor
(1922). However, if the particles are initialized with zero velocity, then additional time
scales are introduced into the ballistic regime that act to inhibit particle dispersion due
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to the temporal growth of granular temperature. In contrast to PL, VL allows for direct
control of the velocity variance since sources (neighbour-induced force fluctuations) and
dissipation (due to drag) are present in the granular temperature balance; see discussion
in Tenneti et al. (2016). However, VL treats the fluctuating drag force, due to the presence
of neighbouring particles, as a zero memory process. By contrast, the fluctuating drag
force experienced by a given particle may persist for finite time scales in some systems.
Random increments on the particle force (FL) are considered in § 5 and it is shown that
FL allows for fluctuating drag forces with finite memory. Additionally, random increments
in FL physically correspond to the fluctuating drag force extracted from PR-DNS, which
have been shown to be well approximated by a Gaussian distribution (Akiki er al. 2016;
Esteghamatian er al. 2017; Huang et al. 2017). The ratio of the Stokes response time, 7,
to the force time scale, 77, defines a Stokes number for the fluctuating force given by
Stp = 1,/ Tp. At large Str, FL converges to VL. For small Szz, FL leads to larger velocity
variances and dispersion due to the persistence of force—velocity correlations. Both the
velocity variance and dispersion may be controlled with the FL framework and the inputs
have physical connections to force statistics available in PR-DNS.

2. System under consideration

Three types of Langevin equations are discussed in the following sections and the
evolution equations for velocity variance and dispersion are derived. The present study
considers dispersion from a line source in a statistically homogeneous flow (mean particle
velocity is homogeneous). We motivate the case study by considering particles in an
EL method, where unresolved fluid velocity fluctuations (PTKE) give rise to drag force
fluctuations that induce velocity variance and particle dispersion. In all cases, we consider
an initial impulse of particles centred at x = 0 and uniformly distributed in the y-direction.
The particle velocities are initialized as either (i) all initially static i.e. U,; = 0; 8(u) or
(i) a Maxwellian velocity distribution N[0, o%]; where A is a normal distribution with
zero mean and variance o 2.

Analytical solutions derived here are compared to results obtained from numerical
solutions of the Langevin equations. In the present study, numerical integration of the
Langevin equations is considerably more straightforward than deriving the exact solution.
For this reason, simulation results are considered less error prone and included here as a
confirmation of the analytical results. The SDEs are integrated with an Euler—-Maruyama
method (Kloeden & Platen 1992) with 10° particles, and the smallest time scale of the
system is resolved by 25 time steps. We do not consider particle collisions in the present
work, and thus, the two relevant time scales are those associated with mean drag defined
as T, = ppdgf (18w) and the fluctuating drag force tz; where p, is the particle density, d,
is the particle diameter and w is the fluid dynamic viscosity. The computational domain
is a doubly periodic rectangular grid with aspect ratio of 6. Probability distributions for
the particle phase were obtained by decomposing the length of the domain into 501 bins
and computing the particle number density within each bin. It is worth noting that particle
dispersion here is one-dimensional in nature and particles do not interact with the periodic
x-direction boundaries. The two-dimensional domain merely allows for more intuitive
visualization; see figure 1 for example.

As noted above, the theory here treats particles as collisionless and emphasis is placed
on hydrodynamic force fluctuations. For inelastic granular flows, a Chapman—Enskog
expansion shows that the granular temperature follows a hydrodynamic equation where
acceleration is balanced by generation due to shear work, diffusion and dissipation from
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FIGURE 1. (a.b) Analytical and numerical predictions for particle dispersion with the VL
framework and an impulse velocity condition. (c,d) Analytical and numerical predictions for
particle dispersion with the VL framework and a Maxwellian velocity condition. In all cases,
St = 5, Pe = 2 and the particles (left half of images) are coloured by the magnitude of their
velocity in the x-direction. (a,c) t = 0.500, (b,d) t = 1.000.

inelastic collisions (Garz6 & Dufty 1999). Extending the kinetic theory to account for fluid
phase effects shows that additional source and sink terms arise from hydrodynamic forces
(Koch & Sangani 1999; Garzo et al. 2012). For a homogeneous flow of elastic particles,
the granular temperature balance only retains the hydrodynamic source and sink terms
(Tenneti et al. 2016). It is this fluctuation dissipation relation that we probe via stochastic
methods. In regard to dispersion, collisions will affect particle migration and the closures
derived here should be viewed as upper bounds that are more appropriate for dilute flows.
While not considered here, the method outlined by Pai & Subramaniam (2009) would
provide a path for including the effect of a uniform shear flow.



Downloaded from https:///www.cambridge.org/core. lowa State University Library, on 01 Dec 2020 at 15:29:39, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10,1017/jfm.2020.625

903 A7-6 A. M. Lattanzi and others

3. Position Langevin

Evolution of a particle’s position follows from the definition of its velocity

dX,;
dr

= Up,, (3.1)

where X, ; is the position of particle i and U, ; is the velocity of particle i. Introducing
random fluctuations into (3.1) leads to the following SDE

dX,; = U,;dt+ b(X, 1) dW,, (3.2)

where b(X, ) is the diffusion tensor and dW,; is a Wiener process increment. Utilizing
It6 calculus, (3.2) corresponds to the following Fokker—Planck (FP) equation (detailed
derivations of the Fokker—Planck equation are not provided here but the interested reader
is referred to chapter 4 of Risken & Frank (1996).)

N

dP(u, x;1|v, y, s) P dD;P
- +y —= le XI; -, (3.3)
= J=

where P(u, x; t|v, y, 5) is the probability distribution conditioned on the initial condition
for velocity v, position y and time s, u; is the particle velocity and D = bb' /2. For a
constant diffusivity tensor D, (3.3) follows an advection—diffusion equation.

Here, we consider the particle diameter d,,, Stokes response time 7, and terminal velocity
Vr = 1,8(1 — ps/p,) as reference scales, where p; is the fluid density. From these scales,

we define the Stokes number St = V7 1,/d, and Péclet number Pe = V;d,/D. Taking 5,;,- =
+/2Dé;;, we obtain a dimensionless form for (3.2)

dX,,; = St U, dit + v/25t Pe-1 dW, (3.4)

that leads to the following Fokker—Planck equation

P

m + StV - (uP) = St Pe”' A(P). (3.5)
In general, the Fokker—Planck equation poses a significant challenge to analytical methods.
However, closed-form solutions are highly instructive when possible. For one dimension
and constant velocity, a change of reference frame (n = x — Stur) yields the diffusion
equation

P
- = St Pe™'—. (3.6)

An initial impulse at the origin, 6(x), leads to the classic heat kernel solution

P(n;1) = (3.7)

1 n*
—_—p| ——— |,
VanSt Pe—'t p( 4SfPe“r)

or N[0, 28t Pe~'t] for shorthand. Equation (3.6) will serve as the starting point in the
following subsections and connections will be made to (3.7).
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3.1. Fluctuating velocity (PL)

Since random increments are introduced at the particle position level, the PL framework
does not provide a direct source or sink to granular temperature in the homogeneous
mean velocity cases considered here. However, we note that granular temperature may
be generated indirectly by utilizing a PL method in conjunction with a soft-sphere
contact model (commonly employed within EL frameworks) or by kinetic streaming of
particles within inhomogeneous flows. Specifically, random displacements are unaware
of the net force vector exerted on a particle; and thus, particle overlap may be induced
by position fluctuations, thereby leading to artificially high restorative forces during a
collision. The indirect generation of velocity fluctuations with a soft-sphere contact model
is non-physical and quantifying this phenomenon is not considered here. Therefore, we do
not consider the role of velocity variance in a PL framework.

3.2. Dispersion (PL)

The variance in position given by Var(x) = ((x — (x))?) is utilized here to characterize
particle dispersion, for which the first two moments (x); (x?) are of great significance. The
(-) notation employed here indicates an ensemble average over all the particles and at each
instance in time, although different definitions for the mean may be adopted depending
upon the solution method. Higher dimension distributions will arise in subsequent
sections, leading to conditional averages — e.g. (x{(u|x)) reads as the ensemble average of
the product of position and velocity conditioned on position. When computing moments
of the Fokker—Planck equation, the following relations are useful

dP d(x™)
—dx = , 3.8
fx ot dr (3.8a)
oP dx"P
fx”—dx - [ al —nx"—lp] dx = —n{x"), (3.8b)
ox Jx
azp ax"~'p s s
f 81:2 = [Bx ( Bx) —-n e +n(n—1)x P] dx = n(n — 1){x"79),
(3.8¢)

where integration is performed over the real line and the last equalities in (3.8b) and
(3.8¢) are obtained with integration by parts and decay of the distribution function
(lim,_, ;oo x"P = 0). (Similar approaches are employed when taking moments of the
Boltzmann equation; see chapter 9 of Vincenti & Kruger (1975). Additionally, the
Gaussian functions obtained here can be shown to decay faster than a polynomial of
order n.) Utilizing (3.8a)—(3.8¢), the first and second moments of (3.6) follow
dix) _
dr
d{x?)
dt
Employing the impulse initial condition when integrating (3.9a)-(3.9b) allows for
evaluation of the position variance
(x — (x))) = 28t Pe 1. (3.10)

Equation (3.10) shows that the dispersion obtained with a PL treatment is consistent
with the known solution in (3.7) — i.e. random increments in particle position yield a

(3.9a)

= 28t Pe . (3.9b)
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diffusion process. Equation (3.10) connects the mean-squared displacement to diffusion
in one dimension but will be multiplied by the dimensionality d for isotropic diffusion in
higher dimensions.

Returning (3.10) to dimensional form may be completed in a straightforward manner.
We first note that St Pe~' = D1, /d;. Multiplying the right-hand side of (3.10) by @} and
replacing ¢ with #/1,, we obtain the classic result: Var(x) = 2Dr.

4. Velocity Langevin

Since collisions are not considered here, the relevant forces acting on the particle are due
to interphase drag, F ;. In general, the drag force is proportional to the slip velocity Fg; =
f(@, Rey,)(us — Up;), where f(¢, Rey) is a function of the solids volume fraction ¢ and
particle Reynolds number Re,, = ((1 — ¢)d,p¢|us — U, ;|)/w. Established correlations for
the drag force at varying Reynolds number and solids loading may be found in Gidaspow
(1994), Hill, Koch & Ladd (2001), Beetstra, van der Hoef & Kuipers (2007), Tenneti, Garg
& Subramaniam (2011) and Rubinstein, Derksen & Sundaresan (2016). For Stokes flow,
the system of SDEs for position and velocity is

pr’;' = UPJ d!, (41(1)
—U,; _

dU,; = Y= Zrige 4 BV, X; dW,. (4.1b)
Tp

In the absence of collisions, the velocity SDE in (4.1b) contains a restoring force that
relaxes the particle velocity towards the fluid velocity Fg;/mp; = (uy — U, ;) /T, and a
random fluctuation bdW,.

When defining the driving force for drag, we utilize the instantaneous particle velocity
U, ;. which is resolved in an EL method. When considering a VL approach, Tenneti et al.
(2016) utilized the mean particle velocity (Up) to define the driving force for mean drag. By
doing so, Tenneti ef al. (2016) was able to introduce a different time scale for the relaxation
of particle velocity fluctuations y. This new time scale implies that the viscous dissipation
of particle velocity fluctuations is fundamentally different than the drag force for mean
particle velocity. Similarly, the dissipation of granular temperature due to viscous effects
has been probed via multi-pole (Sangani & Mo 1996) and lattice Boltzmann simulations
(Wylie, Koch & Ladd 2003). These works also suggest that the viscous dissipation of
particle velocity fluctuations can depart from mean drag and will scale with solids volume
fraction and Reynolds number Re; = (pfdpﬁ )/ based on granular temperature T (see
Rgis(¢) in Sangani et al. 1996; Koch & Sangani 1999; Wylie er al. 2003). Here, we
decompose the instantaneous particle velocity into a mean and fluctuating component
Upi= (UP) + U, ; and substitute into the drag force correlation. The process employed
here is consistent with treatments employed by EL methods but requires that the velocity
fluctuations inherit the mean drag time scale. The dissipation time scale obtained via direct
substitution 1/, will be compared to results with the time scale of Sangani et al. (1996)
and Tenneti et al. (2016) in § 6; Ras(¢) /T, and y respectively.

For a reference frame moving with the average particle velocity (similar to § 3), the drag
force term in (4.1b) becomes —U,, ;/t, dr, where we drop the (-)" notation for the sake
of readability and it is understood that the variables are fluctuating quantities. Taking the
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diffusion tensor to be b; = /2D /778, the dimensionless system of SDEs is given by

dX,; = StU,  dr, (4.2a)

dU,; = —U,;dt + /2 (Pe Sty dW.. (4.2b)

The corresponding Fokker—Planck equation is

OP(u, x;tlv, y,s)
Jar

+ StV « (uP) — V,, - (uP) = (Pe St)"' Au(P), (4.3)

where the subscripts on the differential operators denote the coordinates of phase space
that the derivatives are taken with respect to (position or velocity). Integration of (4.3)
over the spatial coordinate yields the Fokker—Planck equation for the marginal velocity
distribution. In one dimension, the equation is given by

AP (u; t|v, 9 (uP 9P
:tjv.s) dWP) _ pogn-12P (4.4)
ot ou ou?

Given an impulse initial condition for the particle velocity 8(u — V}), the solution to (4.4)
may be obtained via Fourier transform and method of characteristics (Risken & Frank
1996; Pope 2000; Gardiner 2009)

P(u: 1) 1 ox ( (u — Voexp(—1))? ) @.5)
I, = — 3 .
V270 (Pe SH)~1[1 — exp(—21)] P 2(Pe St)~'[1 — exp(—21)]

or N[V, exp(—t1), (Pe St)~'[1 — exp(—2¢)]] for shorthand. We note that the restoring force
in the Ornstein—Uhlenbeck process yields a bounded Gaussian distribution for velocity
in the long time limit (¢ 3> 7,) with variance of (Pe Sr)~'; as opposed to the unbounded
variance for position obtained for the diffusion process in (3.10).

4.1. Fluctuating velocity (VL)

Applying the moment relations in § 3.2 to the Fokker—Planck equation given in (4.4)
leads to

W -, (4.6a)

2
d(d’i) = —2(u*) +2(PeSn)™". (4.6b)

Equation (4.6b) is the one-dimensional analogue to the granular temperature balance
obtained by Koch & Sangani (1999) and Tenneti er al. (2016). The first term on the
right-hand side is the velocity dissipation, defined as I = 2Ruiss(¢)T /1, by Koch &
Sangani (1999) and directly modelled from PR-DNS data by Tenneti e al. (2016). Due to
the non-dimensionalization here, the 1/7, cancels on our dissipation term, and thus, the
difference between our dissipation and that of Koch & Sangani (1999) can be attributed
to Ry (¢). The second term is the source due to drag fluctuations, which VL. models as
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a Wiener process increment. With a Vj initial condition, integration of (4.6a) and (4.6b)
yields

(u) = Vyexp(—1), (4.7a)
(u?) = (PeSt)™" + (V2 — (Pe St)™") exp(—21). (4.7b)

The time evolution of the velocity variance is then given by
((u = (u))*) = (PeSt)~'[1 — exp(=21)], (4.8)

which is again consistent with the known solution given in (4.5).

Following the arguments given at the end of § 3.2, (4.5) may be cast in dimensional
form by replacing (Pe Sf)~' with D/(V7z,), multiplying by V7 and setting t = t/7,. We
note that the diffusion tensor for an Ornstein—Uhlenbeck process is often set as ,/202/1,.

rather than  /2D/t] as is done here; where o2 is a specified velocity variance. We set the

diffusion tensor such that a canonical form is obtained for the dispersion solutions, thereby
allowing straightforward comparison across different frameworks (PL, VL and FL). If one

wishes to employ a diffusion tensor of \/2¢2/t, for the VL framework, then the variance

solutions (4.8) and (4.12a) may be converted to dimensional form by substituting 027, in
place of D — i.e. in dimensional variables, the steady granular temperature in (4.8) would
be directly set by o2.

4.2. Dispersion (VL)
The spatial marginal distribution (integration of (4.3) over velocity space) leads to

aP(x;t|ly,s)

- + 81V, - ({u]x)P) = 0, (4.9)

where (u|x) is the average velocity conditioned on position. Taking the first and second
spatial moments of (4.9) leads to

dx) _ 4.10a
Tl (u), (4.10a)
d{x?)
= 2Si(x ulx), (4.10b)
2 5
W = 28¢((r (ulx)) — (x) () = 28¢ f Kuu(s1, 52) dst, (4.10¢)
0

where K, = Pe '{exp(—(s; — 51)) —exp(—(s2 + 51))} is the velocity autocovariance
function. Obtaining the second equality in (4.10¢) is non-trivial and the detailed derivation
is given in appendix A.l. Integrating (4.10c), we arrive at the evolution equation for
position variance.

An important simplification to the present derivation may be observed for the case of
a constant velocity variance — i.e. if the particle velocity is initialized with a Maxwellian
distribution N[0, (Pe St)~'] ((4.5) at steady state). For the Maxwellian initial condition,
the velocity variance is independent of time and the autocovariance may be written in
terms of a single time lag K,,(s;) = (Pe St)~' exp(—s;); leading to different dispersion
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behaviour at early times (see derivation in appendix A.2 and discussion in §4.3).
Evaluating the integral for mean position (4.10a) leads to

(x) = VoSt[1 — exp(—1)], (4.11)

while the integral for position variance (A 5) gives

((x — (x))?) = 28t Pe™! {r —2E, + %EQ] , 4.12a)
E; =[1 —exp(=0)], (4.12b)
E; = [1 — exp(=20)]. (4.12¢)

4.3. Preliminary discussion

Comparing the position variance arising from PL and VL (Maxwellian and impulse initial
condition), viz.

((x — (x))*) =28t Pe't, (4.13a)
((x — (x)?) =285t Pe 't — E;}, (4.13b)
((x — (x))?) =28t Pe”! Ir —2E, + %Eg} . (4.13¢)

demonstrates the canonical form prefaced in §4.1. Namely, PL gives pure diffusion
while VL gives diffusion in addition to exponential time scales [E; that arise from the
drag force and the initial condition. At sufficiently long times, VL dispersion converges
to pure diffusion. If the particle velocities are initialized with the steady Maxwellian
distribution in VL, then the velocity variance has no time dependence and the velocity
autocovariance function depends upon a single time lag s;. As a direct result, the integral
in (A 5) simplifies and the classic ballistic—diffusive solution of Taylor (1922) is recovered;
see (4.13b). By contrast, if the particles are initialized with zero velocity, then the
granular temperature evolves in time and additional time scales are introduced into the
ballistic regime that act to suppress dispersion; see (4.13c). Thus, the solution in (4.13¢)
demonstrates the impact of a temporally evolving velocity variance on particle dispersion
with the VL framework. Since ballistic dispersion terms scale with rpz, they are most
significant for highly inertial particles.

The solutions given in (4.13b) and (4.13c¢) are first verified against numerical integration
of (4.2a) and (4.2b) with St =5 and Pe = 2. Specifically, the analytical distribution
P(x; 1) = N[0, 0?], with o2 given in (4.13a)—(4.13¢) is compared to distributions obtained
on the binned computational domain; see figure 1. Strong agreement is observed between
the analytical solutions and numerical results for both the impulse (figure la.,b) and
Maxwellian (figure 1¢.d) velocity conditions. Additionally, the ensemble averaged velocity
variance and position variance, at Pe = 5 and St = 1, 10, 100, are compared to (4.8) and
(4.13¢) in figure 2. As the Stokes number is reduced, particles behave more like fluid
tracers and their velocity fluctuations undergo rapid relaxation, thereby yielding reduced
dispersion. The classic ballistic (r < 1) and diffusive (r > 5) regimes may be seen in the
dispersion curves in figure 2.
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FIGURE 2. (a) Analytical and numerical predictions for velocity variance with the VL
framework and an impulse velocity condition. (b) Analytical and numerical predictions for
position variance with the VL framework and an impulse velocity condition. Pe = 5 for each
Stokes number.

5. Force Langevin (FL)

As noted in § 1, force Langevin treatments are far less pervasive within the particle-laden
flow literature; the works by Esteghamatian er al. (2018) and Andrews et al. (2005) being
noted exceptions. Since the application of FL schemes has been empirical in nature, the
velocity variance and dispersion resulting from such a framework has not been emphasized
in the literature. While not a force Langevin, the fluctuating fluid velocity model of
Pozorski & Apte (2009) has some interesting analogies to the FL scheme. Specifically, an
additional SDE is introduced for the fluctuating fluid velocity which is commonly taken
to follow an Ornstein—Uhlenbeck process. We consider a similar approach for the force
Langevin, motivated by the Gaussian drag forces reported by PR-DNS studies. While we
do not consider the task here, solutions obtained within this section for FL. may be readily
adapted to fluid VL schemes.

For the FL treatment we begin by splitting the total drag force into a mean
and fluctuating component F,; = (Fq) + F,, (Esteghamatian er al. 2018). Random
increments introduced on the particle force lead to

dX,; = U, dt (5.1a)
I Fai
dU,; = ——U,, dt + 2 d, (5.1b)
Tp mp‘:'
I .
dFy; = ——F 4, dt + bdw, (5.1¢c)
TF

where the (-)’ notation is again omitted for readability. In order to keep the fluctuating
force distribution bounded, a restorative component must be present in the force SDE.
Similar to Pozorski & Apte (2009) and Esteghamatian et al. (2018), we consider an
Ornstein—Uhlenbeck process with relaxation time scale 7. Setting the diffusion tensor
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. we arrive at a dimensionless form of

asb; = [2Dm} ,/T2T38y,

dX,; = StU, ; dt, (5.2a)
dUp’;‘ = —Up‘i der+ Fd’g df, (SZb)

dF; = —StpFa; dt + /252 (Pe St)~' dW,, (5.2¢)

where Sty = 1,/7F relates the Stokes response time to the integral time scale of the
fluctuating drag force. For large fluctuating Stokes numbers Stg, the fluctuating drag
forces have a short lifespan in comparison to the particle response time. Under these
conditions, one would expect the FL treatment to be similar to the VL treatment, where
the fluctuating drag force contains no memory; see (4.15). In the opposite limit of small
Stz, the fluctuating forces persist for time scales larger than the Stokes response time
and significant departure from the VL treatment should be expected. The corresponding
one-dimensional Fokker—Planck equation is given by

i +Sri( P) + i[( )P] — St i{ ) = St2 (P Sr)_]82_1° (5.3)
ar Tl M) gL~ rap b = Str(Ped o
Details derived for the Ornstein—Uhlenbeck process in §4 ((4.6a)-(4.8)) may be
directly applied to the fluctuating force — i.e. a mean of f;exp(—Strt) and variance of
Sty (Pe St)~'[1 — exp(—2St:1)].

In the limit of stationary particle assemblies, previous works have shown that a drag
force distribution with characteristic variance will be present; see cited works in § 1. For
this reason, we take the fluctuating force to be fully developed N[0, Stx(Pe St)~'] and
do not consider the temporal growth of its variance. Thus, in the present derivation, the
fluctuating force distribution is stationary with a constant variance and relaxation time.
In general, FL is not restricted to a constant variance or relaxation time, and previous
results with particle-resolved simulations suggest that these parameters will vary within a
general multiphase flow (Koch & Sangani 1999; Huang et al. 2017; Esteghamatian et al.
2018). Connections between the solutions derived here and PR-DNS are made in § 7, with
emphasis being given to how the model coefficients may be informed.

For the sake of completeness, we note that the diffusion tensor has again been set to yield
the canonical form for dispersion. If the diffusion tensor is set in the manner discussed at

the end of § 4.1 /2072/7r, then o2 characterizes the steady variance in fluctuating force.
For this case, the solutions derived in this section may be cast in dimensional form by
replacing D with o7 7z /m? .

5.1. Fluctuating velocity (FL)

Integrating (5.3) over the spatial (x) and fluctuating force (f) coordinates allows the
marginal velocity distribution to be obtained

oP(u; tlv, 5) d Pl—0 5.4
———— + = [({flu) — w)P] = 0. (5:4)
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The first two moments of (5.4) are given by

d(u)

dr

d@w?) _

dr

Comparing the granular temperature balance with FL (5.5b) to VL (4.6b) shows that
the functional form is unaltered but the source term is described by the force—velocity
covariance with FL. This is a direct result of modelling the force statistics via FL as
well as the substitution of the instantaneous particle velocity into Stokes drag. Since the
fluctuating force is defined to be stationary with variance Szr(Pe St)~', the unconditional
mean of force (({f|u)) is zero, leading to zero mean velocity (u). We quickly recognize

that (u(f|u)) must be handled via Lagrangian variables in a similar manner to {(x(u|x)) in
§4.2. Starting with Newton’s second law in dimensionless form

= —(u) + ((flu}), (5-5a)

—2(u?) + 2(u(flu)). (5.5b)

dz‘{;’" =—U,; +F,., (5.6)
the particle velocity with time is given by
U, i(t) = exp(—1) /: exp(t)Fp () dr, (5.7)
leading to
(u(flu)) = exp(—1) j; I3?‘13(!")(1"}.,s(t’ )Fp,i(0) dr'. (5-8)

Since the fluctuating force is fully developed, the two-time Lagrangian force correlation
(F,i(£)F, (1)) only depends upon a single time lag K,,(s;) = Sitz(Pe St)~" exp(—Sts);
s; =t — t'. Therefore, the source term in (5.5b) follows

u(fu)) = Stp(Pe St)~" exp(—1) ff exp(t) exp(—Stp(t — 1)) dr'. (5.9)
0
Integrating (5.9), we arrive at
St
(u(flu)) = (PBSI)_ S+ S L~ P+ D). (3.10)

Substituting (5.10) into (5.5b) allows an integrating factor solution for () to be found

S 1 1
(W?) = 2(PeSt)™ Sr:i ] {EEZ + 51 (E, — Eg} : (5.11a)

E; = [1 —exp(—(Str + D). (5.11b)

For the special case that Stz = 1 (tr = 1,,). the integrating factor for (5.5b) exactly offsets
the exponential term in (5.10) and a simplified solution is obtained

(u?) = (PeSt)™" I%]E2 — rexp(—Zr)l ) (5.12)

Granular temperatures computed from simulations with the FL scheme ((5.2a)—(5.2¢))
are in excellent agreement with (5.11a)—(5.12); see figure 3(a). In figure 3(a) the Stokes
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FIGURE 3. (a) Analytical and numerical prediction for transient growth in the velocity variance
with the FL framework and a §(u) initial condition. (b) Analytical and numerical predictions for
the same system but with particle velocities initialized as a Maxwellian. In all cases, St = 10.

number is held fixed while the fluctuating Stokes number and Péclet number are varied.
For demonstration purposes, the Péclet numbers are chosen such that the force variance
is conserved in all three simulations, thereby allowing the effect of the force memory,
Str, to be probed. Reducing Str, at a fixed force variance, causes the force fluctuations
to decay at a slower rate and ultimately giving rise to enhanced granular temperatures.
Therefore, fluctuating drag forces with significant inertia are characterized by small St. It
is important to note that the VL scheme inherently assumes that the fluctuating drag force
is non-inertial, just as the PL scheme assumes the particles themselves are non-inertial.
This hierarchy further motivates the Stokes number analogy employed for the fluctuating
force and allows a connection to be drawn to the VL scheme. Specifically, FL predicts
larger granular temperatures as the fluctuating forces become more inertial, smaller Stg,
just as the VL scheme predicts greater dispersion as the particles become more inertial,
larger St.

It is important to note that the solution obtained in (5.11a) converges to a steady velocity
variance of (u?),, = (PeSt)~'Stz/(Str + 1). However, the FL framework yields a time
dependent granular temperature even if the system is initialized with the steady velocity
variance. By contrast, the VL framework yields a constant granular temperature if the
system is initialized with the steady velocity variance; see (4.8) with an initial condition
of (Pe St)~'. To emphasize this point, we consider imposing an IC of (1?), When solving
(5.5b) to obtain

Str |1 1
2y = 2 (Pe St)™! — - E, —E;)}, 5.13
(u”) (Pe St) Sr;+1!2 SIF_I(Q 3)} (5.13)
and for the case Sty = 1
(u*) = (Pe St)™! !% - rexp(—2t)} ) (5.14)
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Comparing (5.13) to numerical results shows the time dependence of the granular
temperature; see figure 3(b). At long times, the system converges to a velocity variance of
(Pe St)~'Stg/(Sty + 1). However, an initial reduction in granular temperature is observed,
due to the E; time scale (force—velocity covariance), and the recovery time depends upon
the fluctuating Stokes number (competition between [E; and [, terms).

The aforementioned results may be physically understood by recognizing that the
Maxwellian distributions employed for the fluctuating force and particle velocity are
sampled independently when the system is initialized. Therefore, the fluctuating forces,
which drive the granular temperature, are not correlated with the particle velocities when
the system begins evolving. Since the force—velocity correlations develop over time scales
associated with the fluctuating Stokes number, the effect of the initial force condition
persists longer as Str is decreased and leads to the accentuated dips in figure 3(b). We
stress that the initial reduction in granular temperature, due to force—velocity covariances,
is indeed physical and was observed in the PR-DNS simulations of Tenneti et al. (2016)
with freely evolving particles (see green curve in figure 5a of Tenneti et al. 2016). As we
increase the fluctuating Stokes number, dips in granular temperature are less prominent;
and at sufficiently large Sty, the granular temperature remains constant. This behaviour is
consistent with what would be obtained by a VL framework, which treats the fluctuating
forces as non-inertial. In summary, the fluctuating Stokes number characterizes the inertia
of the fluctuating drag force and gauges the departure of FL from VL. The potential
dependencies of StF and connections with various types of flows are discussed in greater
detail in § 6.

5.2. Dispersion (FL)

Integrating (5.3) over the fluctuating force f and velocity u coordinates allows the marginal
spatial distribution to be obtained

dP(x;t|y,s)

3
- + St=—[{ulx)P] = 0. (5.15)

The first two moments of (5.15) are given by

% = St{{ulx)), (5.16a)
2
d((;} = 28t (x {u]x)). (5.16b)

The unconditional velocity ({u|x)) was shown to be zero in § 5.1 (stationary distribution
for f), and thus, the mean position will also be zero. The (x (u|x)) term is addressed in
the same manner as appendix A.l and the details are given in appendix A.3. Additionally,
for the sake of completeness, the velocity autocovariance function for a fully developed
velocity distribution is derived in appendix A.4. Integration of the velocity autocovariance
function gives a closed-form solution for position variance

(x?) =28t Pe 't — C\E, + G,E, — C;E; + C,E,}, (5.17)
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FIGURE 4. (a,b) Analytical and numerical predictions for particle dispersion with the FL
framework. An impulse velocity condition was utilized in all cases and the conditions are given
by St = 100, Pe = 0.1, Sty = 0.3. Particles (left half of images) are coloured by the magnitude
of their velocity in the x-direction. (a) t = 0.500, (b) t = 1.000.

where E; = [1 — exp(—Stz1)] and the constants (C;) are given by

285t — 1
Ci=—, (5.18a)
Stp — 1
St
C= ——— (5.18b)
2(Stg — 1)
1
C; = , (5.18¢)
(Str + D(Str — 1)
1
Cy = ————— . (5.184d)
Ste(Stg — 1)
Repeating the process for Str = 1 leads to
5 » 3 1
(x°) =285t Pe " {t —3E; + Z]Eg + texp(—t) — Etexp(—ZI) . (5.19)

The analytical solution for dispersion, Gaussian distribution P(x; r) = N[0, o] with the
variance specified by (5.17), is in strong agreement with numerical results; see figure 4.
The conditions in figure 4 are given by: St = 100, Pe = 0.1, and Stz = 0.3. Ensemble
averaging of the position variances, at the same conditions considered in figure 3 (constant
force variance), yields the curves in figure 5. Examination of figures 5 and 3 shows that,
for a constant force variance, smaller Str lead to larger granular temperature and greater
dispersion. Furthermore, it becomes clear that the force variance and the relaxation time
scale allow the FL. framework to control the granular temperature and dispersion. By
contrast, the VL framework with a mean drag closure only allows for control of the
granular temperature (dispersion is a result of the specified velocity variance), and the
PL framework only allows for control of the long time diffusion behaviour.
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FIGURE 5. Analytical and numerical predictions for dispersion with the FL framework. An
impulse velocity condition was utilized in all cases and St = 10.

6. Discussion

Comparing dispersion with FL (5.17), VL (4.12a) and PL (3.10) illustrates that the
functional form remains unaltered (long time diffusion and short time exponential
expansion); see figure 6. From a physical point of view, the curves in figure 6 may be
interpreted as the velocity variance required by a method to obtain a specified diffusion
coefficient. We note that velocity variance is an input to VL and an output of FL. Therefore,
the FL framework allows for the most complex behaviour since it may attain a desired level
of dispersion at different granular temperatures. To further demonstrate this, we consider
the behaviour of the FL scheme at large and small Str = 1,/7F. As Stp increases, the
fluctuating drag becomes less inertial (short force memory) and the treatment employed by
the VL framework is approached. Considering the limit Stz — oo on (5.18a)—(5.18d), we
formally show convergence of FL dispersion to VL dispersion (4.13¢). Similarly, the same
limit may be considered on (5.11a) to show convergence of FL granular temperature to VL
granular temperature (4.8). As Str is reduced, FL schemes predict larger velocity variances
(figure 3a) and greater dispersion (figure 5), due to the persistence of force—velocity
covariances. Therefore, FL. schemes are more appropriate for small fluctuating Stokes
numbers since they account for the inertia of the drag force fluctuations.

It is not known a priori how the fluctuating Stokes number will behave in a general
particle-laden flow. However, some qualitative expectations are instructive. For flows with
elevated granular temperature, the particle structure rapidly rearranges and the interactions
between particles and fluid wakes may be short lived (large Str). By contrast, at lower
granular temperature, particles may reside in the fluid wake of their neighbours for
appreciable time (small Str). Similarly, Koch & Sangani (1999) considered the role of
the force autocorrelation as a source to granular temperature and suggest that significant
changes to the particle structure will occur over time scales of d,/T"/%. For the force time
scale of Koch & Sangani (1999), a general multiphase flow may experience a range of
fluctuating Stokes numbers (local and time varying) where regions with high granular
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FIGURE 6. (a) Granular temperature obtained with VL and FL, (b) dispersion behaviour
obtained with PL, VL and FL with St = 1 and Pe = 1.

Rey, Rer Stp 17 Teol

10 13 43 50 49
20 20 67 55 6.2

TABLE 1. Parameters for comparison of FL and VL. The force time scale tz and mean-free
time scale 7., are non-dimensionalized by d,,/Vr., where V7 is the slip velocity specified by the
Reynolds number. All cases correspond to p,/pr = 100 and ¢ = 0.1.

temperature are appropriately approximated by a VL scheme but regions of low granular
temperature could require a FL. scheme.

Practically speaking, it is desirable to obtain the correct granular temperature and
dispersion in an EL framework. Therefore, we consider the position and velocity variance
obtained with VL, FL., the model of Tenneti et al. (2016) and adapting the theory of Koch &
Sangani (1999) to VL. Details regarding the implementation of Koch & Sangani (1999) are
given in appendix C.1. We specify the steady velocity variance o2 in VL with the granular
temperature correlation of Tenneti ef al. (2016). Therefore, VL and the model of Tenneti
et al. (2016) must obtain the same steady velocity variance regardless of differences in
their velocity dissipation time scale y versus 1/7,. However, differences in the velocity
dissipation will affect the resulting dispersion. The FL solutions obtained here require that
the force time scale 77 and force variance o be specified. These terms were extracted
from the PR-DNS of Tavanashad et al. (2019) in the direction of mean slip; see discussion
in appendix B. The normalized drag fluctuations are well approximated by a Gaussian
distribution with variance o2/F2 = 1, where F2 = (3ntnd,(1 — ¢)Vr)? represents Stokes
drag. The particle diameter d, = 500 x 10~° m, particle density p, = 100 kg m—2, fluid
viscosity i = 1.0 x 1075 Pas, fluid density py = 1.0 kgm~ and solids volume fraction
¢ = 0.1 were held fixed in all cases. The force time scales 7 are normalized by d,/Vr.
where V7 is determined by the mean Reynolds number Re, = 10, 20. Other relevant
properties are summarized in table 1.
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FIGURE 7. The granular temperature behaviour obtained at (a) Re, = 10 and (c) Re,, = 20
with VL, FL, the model of Tenneti er al. (2016) and adapting the closures of Koch & Sangani
(1999) to VL. Dispersion curves resulting from the aforementioned models at (b) Re,, = 10 and
(d) Re,, = 20. The grey regions correspond to +30 % about the granular temperature correlation
of Tenneti et al. (2016).

Since FL predicts the velocity variance, rather than taking it as an input, care must be
taken with this method. At the conditions considered here, Stokes flow will not adequately
describe the dissipation of velocity fluctuations. To account for finite Re,, and ¢, we
employ the drag correlation of Tenneti et al. (2011) to define an effective dissipation
time scale 1, for FL; see appendix C.2. The selected drag correlation is motivated by
the discussion in the second paragraph of § 4 where it was noted that particle velocity
fluctuations inherit the mean drag time scale when an instantaneous particle velocity is
utilized. Therefore, the treatment is intended to be consistent with an EL method that
utilizes the drag correlation of Tenneti et al (2011) and an instantaneous particle velocity.
We note that a similar approach is utilized for the adaptation of Koch & Sangani (1999),
where Rg () is utilized to approximate t, .. Therefore, the fluctuating Stokes numbers
reported in table 1 are computed as Stz = 1, . /7. Additionally, the PR-DNS simulations
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exhibit anisotropy in the velocity variance. Specifically, the velocity variance in the mean
slip direction is ~2x that in the transverse directions (Tavanashad et al. 2019). Since FL
solutions only use statistics from the mean slip direction, we account for anisotropy by
taking the granular temperature to be 2/3 the predicted velocity variance.

The dimensional granular temperature and dispersion curves are visualized in figure 7.
The theory of Koch & Sangani (1999) is obtained for Stokes flow and yields lower granular
temperatures than the other methods. As a direct consequence of the smaller velocity
variance, dispersion obtained with Koch & Sangani (1999) is also the lowest. While VL
and the model of Tenneti et al. (2016) must obtain the same steady granular temperature,
the dispersion resulting from each method need not match. The dispersion curves in
figure 7(b,d) for VL and Tenneti ef al. (2016) imply that y must be similar to or less
than 1/7, at the conditions considered here. Thus, in the model of Tenneti et al. (2016),
velocity fluctuations are dissipated much slower than the mean drag correlation of Tenneti
et al. (2011) or the R (¢) closure of Koch & Sangani (1999). The slow dissipation of
velocity fluctuations by Tenneti et al. (2016) results in larger dispersion.

Accounting for anisotropy, as well as Re,, and ¢ effects, in FL yields outputs for granular
temperature that agree with the correlation of Tenneti et al. (2016). Dispersion with FL is
significantly lower than that obtained with VL or Tenneti er al. (2016). This behaviour can
be attributed to the rapid dissipation of velocity fluctuations in FL with the correlation
of Tenneti et al. (2011). Namely, the St values are not sufficiently large that the velocity
dissipation T, ., and force dissipation 7 exhibit a complete separation of time scales.
Therefore, FL, to some degree, overcomes the increase in velocity dissipation with finite
memory forces to obtain the same granular temperature as VL and Tenneti er al. (2016).
It is worth noting that a VL model could be constructed with the t, .+ time scale utilized
for FL. Doing so would emphasize the force memory effects on dispersion, since both VL.
and FL would obtain the same granular temperature. Completing this task, we observe a
dispersion coefficient with FL that is ~15 % larger than VL.

7. Model development for Euler-Lagrange methods

In general, FL requires closure of two model parameters: (i) the drift vector (integral
time scale of fluctuating force; t) and (ii) the diffusion tensor (force variances; crﬁ).
Examining the fluid—particle force statistics within PR-DNS of freely evolving particles
allows both parameters to be probed. The relaxation time scale(s) may be examined via the
two-time force autocovariance; see appendix B here and equation (28) in Esteghamatian
et al. (2018). Preliminary examinations of the force autocovariance have been made by
Esteghamatian e al. (2017), but correlations for this quantity are not readily available in
the literature. Similarly, the drag force variance has been reported in a variety of PR-DNS
works (Koch & Sangani 1999; Wylie er al. 2003; Akiki er al. 2016; Huang er al. 2017),
but again, correlations for this quantity are not well established. Since force time scales
extracted from PR—-DNS may lead to small fluctuating Stokes numbers, where differences
between FL and VL occur, it appears that the FL. framework may have a significant impact
on certain multiphase flows. Therefore, well characterized inputs to the FL framework,
obtained from statistical analysis of the drag forces present in freely evolving suspensions,
would be useful.

There are a variety of means by which the present analysis may be extended. For large
Stokes numbers, Koch & Sangani (1999) approximate the time scale for the drag force with
the mean-free time between successive collisions (Chapman, Cowling & Burnett 1970)

d
e = —2— |2, (1)
240x VT
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where y is the radial distribution function (RDF) at contact. The mean-free time t.,.
computed with the correlation of Tenneti et al. (2016) and the RDF of Ma & Ahmadi
(1988), is observed to be in good agreement with the 7 time scales extracted from
PR-DNS; see table 1. It is worth noting that 7.; is ~13% larger than 7 for the
Re,, = 20 case and actually improves agreement between FL theory and the correlation
of Tenneti et al. (2016). Therefore, taking ., =~ 1 and correlating the force variances
of in static particle assemblies may constitute an appropriate model for large Stokes
numbers. Physically, larger granular temperatures will lead to rapid alteration of particle
structuring and shorter force memories. While the data in table 1 only constitute two
points, values of Stz are observed to increase with increasing Rer. Informing the force
time scale with the granular temperature would provide valuable connections between
the velocity and force equations, which are presently one-way coupled. Since the steady,
fluid-mediated, granular temperature is defined by the (or/p,. ¢, Re,) triple point
(Tenneti et al. 2016), an implicit relation between the flow conditions and FL inputs is
expected. Under this modelling paradigm, space—time locality should also be explored
since variation in the flow conditions will lead to variation in the FL inputs. Additionally,
sub-grid, pseudo-turbulent fluid velocity fluctuations (Mehrabadi et al. 2015) may prove
useful for informing the drag variance. Specifically, the use of rotation matrices, as in
Peng et al. (2019), may allow for anisotropic behaviour. For this case, fluctuating forces
in a body-fixed coordinate system aligned with the slip velocity would be constructed and
then rotated back to the laboratory reference frame. Such a framework could account for
stochastic forces in the direction of mean slip, as well as the transverse directions.

8. Conclusions

In the context of application to EL frameworks, three stochastic methods for
neighbour-induced drag force fluctuations were discussed. Stochastic methods correspond
to Langevin equations for the particle position, particle velocity and the fluctuating drag
force. Analytical solutions for the dispersion and velocity variance were derived under the
assumptions of Stokes drag and collisionless particles. Dispersion and velocity variance
solutions were verified against numerical results on a doubly periodic rectangular grid. The
solutions derived herein demonstrate that the system of Langevin equations (PL, VL, FL)
form a hierarchy in terms of the physics they are capable of resolving. Specifically, PL only
allows for control of the particle dispersion and does not provide a means for controlling
granular temperature. VL allows for control of the granular temperature, but the dispersion
is a consequence of the dissipation time scale for velocity fluctuations. FL allows for
control of the granular temperature and dispersion, but requires the statistics of the
neighbour-induced fluctuating drag force be specified (variance and integral time scale),
which are not classically correlated quantities. Formal convergence of the FL scheme to
the VL scheme is shown in the limit of large fluctuating Stokes numbers Stz — i.e. the
integral time scale of the fluctuating force is much smaller than the Stokes response time.
In the opposite limit, the fluctuating drag forces have non-negligible memory and the FL
scheme predicts greater dispersion than VL at the same granular temperature. Quantifying
inputs to the FL framework is most appropriately addressed via particle-resolved direct
numerical simulations with freely evolving particles. In this spirit, connections between
the force variance and the pseudo-turbulent Reynolds stresses may prove valuable.

In contrast to deterministic approaches that attempt to map the effect of
neighbour-induced velocity fluctuations directly to each particle (Akiki er al. 2017), the
present method is formulated to capture such effects on the statistics of an assembly of
particles (particle velocity variance and mean displacement). It should be noted that such
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an approach is not appropriate for cases in which precise details of individual particle
trajectories are needed, especially for small particle assemblies like in the classic example
of drafting, kissing and tumbling. The stochastic framework developed here acts as the
foundation for improved EL methods where the neighbour-induced flow, changing over
length scales comparable or smaller than the particle diameter, is not resolved. Near-future
work will consider quantification of FL inputs as well as implementation of the FL. method
within an EL framework. Additionally, FL theory leads to fluid-mediated source and sink
terms in the granular temperature balance. A long term goal of the present work is to
develop closures for these sink and source terms for use in EE frameworks.
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Appendix A. Supporting derivations

A.l. Velocity Langevin: §(u)

The moments in (4.10a)—(4.10c) are taken over all of phase space (position and velocity
coordinates) and thus should be equal to ensemble averaging of the Lagrangian particles.
Therefore, we seek to relate the unconditional mean of position and velocity to two-time
Lagrangian statistics. Utilizing the fact that particle position is the integral of velocity
x = St [ u, we obtain

(x(ulx)) = (Srf Upi(t) dr’ Up,;-(r)) = Srf (Up,i(t)YUpi(r)) dr', (A la)
0 0

I

(x) (u) E(Sff Up.i(1) df’)(%,s(ﬂ} :Sff (Up () (Upi(0) dr, (A 1b)
0

(1]

where (Up_i) is an ensemble average of the particle velocity. The last equality in (A 1a)
may be identified as the Lagrangian autocorrelation function. The autocorrelation function
is closed by splitting the joint velocity distribution into its conditional and marginal
components P(ua, uy; t, ty) = P(u; t|uy, t;)P(uq; ty) and then taking the moments

[ [ f UnP (sl 17) duz] wnPuy; 1) duy = (g (1)2) exp(—(t — 1)), (A 2a)

[ f 1P rzluhﬁ)duz} f wnPlug; 1) duy = (g (1)) exp(—(t — 1)), (A2b)

where u; denotes the velocity at time #; and u; denotes the velocity at time #,. The
last equalities in (A 2a) and (A 2b) are obtained by noting that the bracketed integral is
the average given in (4.7a) given an initial condition of u; at #;. In (A 2a) and (A 2b),
the times ¢, and t, may vary and thus yield different time lags (f, — #;). To this end, for
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t; > 0, the marginal distribution P(u,; t;) will be conditioned on the earlier times and
leads to

f WP (uy; 11| Vo, to) duy = (PeSH™" + (Vi — (Pe Sty exp(—2(t; — 1)), (A 3a)

f unP(ur; 1 [Vo, 10) duy = Vo exp(—(t1 — 10)), (A3b)

for a deterministic initial condition of & (u — V;) at #,. Note that the averages obtained in
(A 3a) and (A 3b) were already derived in (4.6a) and (4.6b). Substituting (A 3a) into (A 2a)
and (A 3b) into (A 2b), then taking the difference between (A 2a) and (A 2b) and noting
the autocorrelation integral is multiplied by St (A 1a) and (A 1b), we obtain the expression
for the velocity covariance function (K,,; (4.10c))

K51, 52) = Pe™ "' {exp(—(s2 — 51)) — exp(—(s2 + s1))}, (Ad)

where s; =1, — 1, and s, = 1, — 1p. Noting that s, > s, the evolution of the position
variance is given by

((x = (x))?) = 28t Pe™" f sz exp(—(s; — 51)) — exp(—(s, + s1)) ds; ds,. (AS)
0 Jo

A.2. Velocity Langevin: N[0, o%]

For particle velocities initialized according to the steady Maxwellian distribution ((4.5) at
long times), the velocity variance is constant. Therefore, (u;(#;)%) = (Pe St)~" in (A 2a),
or o2 in dimensional variables, where o2 is the specified steady velocity variance. For this
case, the s, lag does not arise in the autocovariance function since the velocity variance is
fully developed and not a time dependent quantity. Therefore, we obtain an autocovariance
function of

K (s1) = Pe™" {exp (—sy)} (A6)

and an evolution for position variance of

((x — (x))?) = 28t Pe™! f f Szexp(—s])dsld32. (A7)
0 Jo

A.3. Force Langevin: é(u)

Following the process in appendix A.1, we require the mean particle velocity at time #,,
given its state at time #, (bracketed integral in (A 3a)). Considering a particle with velocity
u; and fluctuating force f; at time #;, the particle velocity for ¢ > ¢, follows

duz

= =" + fiexp(=Stz(t — 1)), (A8)

where the source term in (A 8) is (f) given f; at t;, which is known from (4.7a) for an
Ornstein—Uhlenbeck process. The solution to (A 8) at time #, is given by

uy = urexp(—(t — 1)) —fi {exp(=Str(t — 1)) —exp(—(r2 — 11))}.  (A9)

Str — 1

Taking the moment of (A 9) with respect to u; (second operation in (A 3a)) and noting
that the (u3) and (u,f;) terms have been already been derived (see (5.11a) and (5.10);
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respectively), allows the velocity autocovariance function to be obtained. Noting again
that the velocity autocovariance integral will be multiplied by St (x = St [ u), we close the
source term in (5.16b), viz.

Ay (s, 52) dsy, (A 10a)

Str+ 1

St i
St(x (ulx)) = St Pe™ —— f Ay(s1, 52) —

S 1
Ai(s1,5) = {exp(—(sz —51)) — i exp(—(s2 + 51))

Sty — 1
ey LGN exp(—SrFsl)] , (A 10b)
.&2(.‘5‘1, Sg) = {exp(—SfF(Sg — Sl)) — EX]}(—(SQ — S]))
— exXp(—Stps2) exp(—s1) + exp(—s2) exp(—Strs1)}. (A 10¢)

Here, A, (s, s;) corresponds to the interaction between granular temperature and the
time scale for mean particle drag. By contrast, A,(s;, s,) corresponds to the interaction
between the force—velocity covariance and the time scales for the fluctuating force and
mean particle drag. Substituting (A 10a) into (5.16b) and integrating s, from 0 to ¢, we
obtain the solution for the particle dispersion given in (5.17).

A.4. Force Langevin: N[0, o?]

At long times, the velocity variance (u?) and force—velocity covariance (u,f;) considered in
appendix A.3 will be fully developed with no time dependence. For this case, we consider
lim,_, o on (5.11a) and (5.10) to yield (4?)oo = (Uf)oo = (Pe St)~'Str/(Sty + 1). Similar
to appendix A.2, the velocity autocovariance function will only depend upon a single
time lag. Substituting the steady granular temperature and force—velocity covariance into
(A 10a) yields a normalized velocity autocovariance function of

K (51) = exp(—s1) — {exp(—Strs;) — exp(—s1)}. (A1)

Str— 1
Integration of the velocity autocovariance function over all of time yields the integral time
scale for velocity fluctuations T,

Tusf Ku(s1) dsy = 1+ St (A 12)
0

An important result from (A 12) is that the integral velocity scale grows from the velocity
dissipation time scale when Stp < 1 (inertial drag; large t7) but yields the velocity
dissipation time scale in the opposite limit. Furthermore, (A 12) shows that FL obtains an
exponential velocity autocovariance at steady state, which was observed in the PR-DNS
of Tenneti ef al. (2016).

Appendix B. PR-DNS force statistics

The PR-DNS simulations utilized here to quantify statistical inputs to FL theory match
those described in Tavanashad et al. (2019). Five simulations with different initial particle
configurations were completed at the conditions given in table 1. The simulations were run
well into the statistical steady regime (time invariant granular temperature) with a total of
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FIGURE 8. (a) Fluctuating drag force probability distribution extracted from PR-DNS
simulation of freely evolving particles at the conditions given in table 1. (b) Fluctuating drag
force autocovariance Kp/pr extracted from PR-DNS simulation of freely evolving particles at the
conditions given in table 1 compared to the autocovariance function predicted by the Langevin
model.

five flow through times. At steady state, the fluctuating drag forces in the direction of mean
slip were utilized to compute the autocovariance and probability distribution; see figure 8.
Both statistics were ensemble averaged over the 200 particles and five simulations. For
completeness, we restate the normalized fluctuating force autocovariance

_ [Fu+9F0)
Kpp(s) = FOFQ) (B 1)
and integral time scale
T = fm Kpp(.s‘) ds. (B 2)
0

Appendix C. Model closure

C.1. VL: Koch & Sangani (1999)

For elastic particles in a gas—solid flow, Koch & Sangani (1999) derive the steady granular
temperature as

o2 R, 23
% = e "
where
: : (C2)

= X(1+3.5¢2 1 594)°
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and

Riiss(#) = 1+ 3/¢/2+ (135/64)¢ In ¢
+ 11.26¢(1 — 5.1¢ + 16.57¢* — 21.77¢>) — ¢ x In€pp. (C3)
In the above equations Ry(¢) is the viscous dissipation, x is the value of the radial
distribution function at contact and €, = 0.01 is the lubrication breakdown length. The

theory of Koch & Sangani (1999) has a viscous sink to granular temperature R ;;(¢) that
may be inverted to define an effective time scale for the dissipation of velocity fluctuations

T,

_ r
e = Rdiss(qb) ‘ (C 4)

The dissipation time scale in (C4) and steady granular temperature in (C 1) define a VL
model; see last paragraph of § 4.1 and replace 1, with 7, ..

C.2. FL velocity dissipation

To account for finite Re,, and ¢ effects in FL theory, we consider the drag correlation of
Tenneti et al. (2011)

-Fd,r' (Reim Qf)) _ ((]fisoi +f¢ +f¢,Rem) (l - ¢))(Hf _ UP.I')} (CS)

Mp.i —¢)° T
where
fisor = 1 + 0.15Re% (C 6a)
5819 P73 _
b= T e o
143
foken =3 (1 — @)Rey ( 0.95 + Dole” . (Céc)
! (1— ¢y

To approximate the dissipation time scale for velocity fluctuations, we evaluate
(C 6a)—(C 6¢) at the mean Re,, values in table 1 to obtain

P . (C7)

el = Jisol
(1—¢) (m + /s +f¢,Re,,.)
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