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Doubly-Adaptive Artificial Compression Methods
for Incompressible Flow

William Layton and Michael McLaughlin

Abstract. This report presents adaptive artificial compression methods in which the time-
step and artificial compression parameter € are independently adapted. The resulting algo-
rithms are supported by analysis and numerical tests. The first and second-order methods
are embedded. As a result, the computational, cognitive and space complexities of the
adaptive ¢, k algorithms are negligibly greater than that of the simplest, first-order, con-
stant €, constant k artificial compression method.
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1 Introduction

Artificial compression (AC) methods are based on replacing V - v = 0 by ep; +
V -u = 0 (0 < € small) in the incompressible Navier-Stokes equations (NSE),
uncoupling velocity and pressure and advancing the pressure explicitly in time.
Their high speed and low storage requirements recommend them for complexity
bound fluid flow simulations. Unfortunately, time-accurate artificial compression
approximations have proven elusive. Time accuracy (along with increased effi-
ciency and decreased memory) is obtained by time-adaptive algorithms. To our
knowledge, the defect correction based scheme of Guermond and Minev [17] and
the non-autonomous AC method in [6], both adapting the time-step with ¢ = k
(time-step), are the only previous implicit, time-adaptive AC methods.

This report presents time-adaptive AC algorithms based on a new approach of
independently adapting the AC parameter € and time-step k. The methods proceed
as follows. A standard, first-order, implicit method, (1st Order) below, is used to
advance the momentum equation in the artificial compression equations. A second-
order velocity approximation, (2nd Order) below, is then computed at negligible
cost using a time filter adapted from [19]. The difference between the first-order
and second-order approximations gives a reliable estimator, EST(1), for the local
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error in the momentum equation for the first-order method and is used to adapt the
time step in Algorithm 4.1, Section 4.

Adapting the AC parameter ¢ is more challenging. Stability of the standard AC
discrete continuity equation (ep; + V - u = 0) is unknown for variable ¢, [6]. We
present two new, variable €, discrete continuity equations in (1.4) below and prove
their unconditional, long-time stability in Theorems 2.1, 2.2 and 3.2. These results
show that adaptivity will respond to accuracy constraints rather than try to correct
stability problems with small time-steps. In these continuity equations, the size of
||V - u|| is monitored and used to adapt the choice of the AC parameter ¢ (e.g.,
Algorithm 3.1, Section 3) whereupon the calculation proceeds to the next time
step. The self-adaptive strategy for independently adapting ¢ also side steps the
practical problem of how to pick € in AC methods and related penalty methods,
even for constant time-steps. The new discrete continuity equations reduce to the
standard ep; +V -u = 0 for constant £, improve, through greater simplicity, a non-
autonomous (¢ = £(t)) AC formulation in [6] and yield now three proven stable
extensions of the discrete AC continuity equation to variable €. A comparison
of the three is presented in Section 5. Determining if one or some combination
of the three! or some other, yet undetermined, possibility is to be preferred is an
important open problem.

The second-order method. To obtain an O(k?) approximation of the momen-
tum equation (with embedded error estimator), Algorithms 4.1 and 4.2 incorporate
a recent idea of [19] of increasing accuracy and estimating errors by time filters.
Theorem 3.2 of Section 3.1 gives a proof of unconditional, long-time stability of
the second order, constant time-step but variable € method. The resulting embed-
ded structure of Algorithms 4.1 and 4.2 suggests low-complexity, variable-order
methods may be possible once an adaptive ¢ strategy is well developed.

The second-order method is a one leg method. Reliable estimators of the lo-
cal truncation error (LTE) in one leg methods are expensive as detailed in [10].
An inexpensive estimator, EST(2) in Algorithm 4.2, of the LTE in the method’s
linear multistep twin, based on a second time filter, is presented. For the one leg
method, this estimator is inexpensive but heuristic. The doubly adapted, second-
order method in Algorithm 4.2 is tested in Section 5. The embedded structure of
the first and second-order method suggests that adapting the method order in ad-
dition to the time-step and AC parameter € may increase accuracy and efficiency
further.

Three stable treatments of the momentum equation (first, second and even vari-
able order) are possible. Three stable treatments of the variable € continuity are
now possible: two in (1.1) below and one in [6]. The result is nine adaptive AC

! The stability proof extends to weighted averages of the three discrete continuity equations.
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methods with computational complexity comparable to the common first-order
method, described next.

1.1 Review of a Common Artificial Compression Method

Denote by u the velocity, p the pressure, v the kinematic viscosity, and f the ex-
ternal force. Consider the slightly compressible/hyposonic?, [38], approximation
to the incompressible Navier-Stokes equations in a domain Q in R?,d = 2,3

ut+u-Vu+%(V~u)u+Vp—l/Au:f o
ept + V- u =0, where 0 < ¢ is small.

This is the most common of several possible formulations reviewed in Section 1.1

of [6]. To present methods herein we will consistently suppress the secondary spa-

cial discretization®. Let u* denote the standard (second order) linear extrapolation

of u from previous values* to ¢, |

k k

wt = (14 ot Up, — ntl Up—1 (= 2up — uy— for constant time-step) .
K, kn,

To fix ideas, among many possible, e.g., [14], [15], [16], [22], [24], [27], [9], [26],

[37], consider a common, constant time-step, semi-implicit time discretization of

(1):

Un+1 — Un

1
k +u" -V + 2 (V- u™)uppt + Vot — vAupp1 = f(tns),

2
2)

ew—kv-unﬁ =0.

Here k is the time-step, t,, = nk, u,, p, are approximations to the velocity and
pressure at ¢ = t,. This has consistency error O(k + ¢) leading to the most
common choice of selecting € = k to balance errors. Since Vp,y1 = Vp, —
(k/e)VV - uy+q, this uncouples into a velocity solve followed by an algebraic

2 We do not include a traditional superscript "e" as we shall focus only on AC models and meth-
ods.

3 All stability results proven herein hold, by the same proof, for standard variational spatial dis-
cretizations such as finite element methods with div-stable elements.

* Temperton and Staniforth [33] advocated even higher order extrapolation.
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pressure update

— 1 k
%Lkun + u* - Vun+1 + E(V . u*)um_l — EVV * Up+1
—VAUp11 = —Vpp + for1,
then given up 10 ppy1 = pn — gv *Un+1- (3)

For constant ¢, k, this method is unconditionally, nonlinearly, long-time stable,
e.g., [14], [15], [31], [30]. Its long-time stability for variable €,k is an open
problem, [6].

1.2 New Methods for Variable ¢, k

Although well motivated, the choice ¢ = k cannot be more than a step to a cor-
rect choice. First observe that Units(e) = Time?/Length® while Units(k) =
T'ime. Thus, a correct choice of ¢ should be scaled to be dimensionally consistent
and afterwards the constant multiplier optimized. Aside from dimensional incon-
sistency, the standard choice € = k ignores the different roles of € and k. To lead-
ing orders, the consistency error in the continuity equation is O(¢), independent of
k, and the consistency error in the momentum equation is O(k), independent of .
This observation on the standard method (2), (3) motivates the development plan
for the doubly adaptive algorithms herein:

e Develop first (Section 2) and second (Section 3) order methods stable for
variable k, ¢.

» Adapt €, to control the consistency error in the continuity equation by moni-
toring ||V - ul|, Sections 3, 4.

e Develop inexpensive estimators for momentum equation consistency error
and adapt k = ky, for its control, Section 4.

e Use (Section 4) and test (Section 5) the estimators in a doubly adaptive, vari-
able ¢, k, algorithm.

In adaptive methods, strong stability is necessary, so €y, k,, can be adapted for
time-accuracy rather than to correct instabilities. One key difficulty, resolved by
the two methods (4) below, is that useful stability is unknown for the common AC
method (2) with variable €, see [6], and even for the continuum model (1) with
e = ¢(t). A second key difficulty is that (unconditional, nonlinear) G-stability for
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variable time-steps is uncommon’. (For example, the popular BDF2 method loses
A—stability for increasing time-steps.)

The continuity equation is treated by either a geometric average (GA-Method)
or a minimum term (min-Method) as follows. Given tuy,, Py, €n, select €y, 1, kniq
calculate 1,41 then®

GA-Method: ~ StPntl vEnilEnPn 4 7.y 1 =0, or

kn+1

“4)

min-Method: Ent1P ”*'_?IT{]E“"E”}’) 4+ V- tupy =0.
n

These methods are proven in Section 2 to be unconditionally, variable ¢, k stable.
For the discrete momentum equation, recall ©* is an extrapolated approximation
to u(t,+1). The first-order method’s momentum equation is the standard one (2)
above given by

%w*wnm%(v-u*)unHanH—uAun+1 = fus1. (Ist Order)

n+

The (linearly implicit) treatment of the nonlinear term is inspired by Baker [4].
The second method, adapted from [19], adds a time filter to obtain (’)(kz) accuracy
and automatic error estimation as follows. Let the time-step ratio be denoted 7 =
kpns1/kn. Call U; 1 the solution obtained from the first-order method (1st Order)
above. The second-order approximation u,, | is obtained by filtering u}l I

1
U, — U 1
71?71” e Vg + E(V U+ Vst — VAU = fait,
n+

Frit oty = TFT) en (2nd Order)

kYT (1 27)

w2 2R
T I T  Vkn ks T T kA ke

For 7 =

Denote by D, (n + 1) the quantity above in braces

2k 1

_ n u 2kn+]
kn =+ kn+l i

D2(TL+ 1) : mun_
n n

—2uy + 1.

Note that Dy (n + 1) is 2k, ky,41 % (a second divided difference).

5> To our knowledge, the only such two-step method is the little explored one of Dahlquist, Lin-
iger, and Nevanlinna [7]. This second issue may be resolvable by a variable (first and second)
order implementation since it would include the A-stable, fully implicit method.

® A convex combination of the two continuity equations discretizations is also stable.
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The usual L? norm || - || and inner product (-, -) are denoted

]| = (/Qv(x)|2dx>l/2 and (v, w) :/Qv(x)-’w(x)dx.

A simple estimate of the local error in the first-order approximation “711 41 1s given
by a measure (here the L? norm) of the difference of the two approximations

aj
EST(1) = |[uns1 — wp || = > [[Da(n + D]

Estimating the error in the second-order approximation. Naturally one
would like to use the second-order approximation for more than an estimator. It
is possible to use E'ST'(1) above as a pessimistic estimator for u,,.1. In Section
3 we show that, eliminating the intermediate step u}z 41 the second-order method
is equivalent to the second-order, one leg method (12) below. Estimation of the
LTE for this OLM cannot be done by a simple time filter for reasons delineated
in [10] and based on classical analysis of the LTE in OLMs of Dahlquist. We
test an inexpensive but heuristic estimator that can be calculated by a second time
filter. EST'(2) below is an LTE estimator for the OLMs linear multi-step twin.
To estimate the local error in the second order approximation we use the third di-
vided difference with multiplier chosen (by a lengthy but elementary Taylor series
calculation) to cancel the first term of the LTE of the methods linear multi-step
twin

a3

EST(2) = =

3kn—1
kn+1 + kn + kn—l

3kn—l
k’n+1 + kn + kn—l

Dz(nJr 1) — Dz(n)

where

ay = (1 7o+ T+ D(AT1 + 5741 + 7o) and 7, = kp /kn_1
- 3(7'n7—7%+1 + 47Tt + 2T 1 + T + 1) ’ " e

The resulting adaptive algorithm uncouples like (3) into a velocity update with a
grad-div term then an algebraic pressure update. More reliable but more expensive
estimators are possible. The above inexpensive but heuristic one is tested herein
because the motivation for AC methods is often based on the need for faster and
reduced memory algorithms in specific applications.

Section 2 presents the analysis of the two first-order methods, proving long-
time, unconditional stability for variable ¢, k. This analysis develops the key treat-
ment of the discrete continuity equation necessary for stability. Section 3.1 gives
a proof of unconditional, long time stability for the variable ¢, constant k sec-
ond order method. This proof can be extended to decreasing time-steps but not
increasing time-steps.
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1.3 Related work

Artificial compression (AC) methods were introduced in the 1960’s by Chorin,
Oskolkov and Temam. Their mathematical foundation has been extensively de-
veloped by Shen [29], [30], [31], [32] and Prohl [27]. Recent work includes [24],
[9], [15], [16], [22], [26] and [37]. The GA-method (geometric averaging method)
herein is motivated by work in [5] for uncoupling atmosphere-ocean problems sta-
bly.

There has been extensive development of adaptive methods for assured accu-
racy in fully coupled, v — p discretizations, e.g., [21], and adaptive methods based
on estimates of local truncation errors including [20], [23], [34]. In complement,
the work herein aims at methods that use less expensive local (rather than global)
error estimators, do not provide assured time-accuracy but emphasize (consistent
with the artificial compression methods) low cognitive, computational, and space
complexity. Aside from [6] and Guermond and Minev [17], extension of implicit,
time-adaptive methods to artificial compression discretizations is undeveloped.

Herein accuracy is increased and local errors estimated by time filters. Other
approaches are clearly possible. Time filters are an important tool in GFD to cor-
rect weak instabilities and extend forecast horizons, [3], [25], [28], [35], [36]. In
[19], it was noticed that a time filter can also increase the convergence rate of the
backward Euler method and estimate errors. G-stability of the resulting (constant
time-step) time discretization was recently proven for the fully-coupled, velocity-
pressure Navier-Stokes equations in [11].

2 First-Order, Variable k, ¢ Methods

This section establishes unconditional, long-time, nonlinear stability of the two
variable k, € first-order methods of Section 1.2 in the usual L?(€) norm, denoted
|| - || with associated inner product (-, -). The methods differ in the treatment of the
discrete continuity equation and reduce to the standard AC method (2) for constant
€, k. We prove that the first order implicit discretization of the momentum equation
with both new methods (5), (6) are unconditionally, nonlinearly, long-time stable
without assumptions on €, k,,. We study these new methods in a bounded, regular
domain Q subject to the initial and boundary conditions

up = up(z) and pp = po(x), in Q,
U, = 0on 0Q fort > 0.
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The two, first-order methods are: Given wy,, Py, €n, select €41, kn1 and

u — U * 1 *
e LY VAT (V- u")upyt + Vpugptr — vAup 1 = fag,
kn+l 2
w+v.un+] =0, where
kn+l
£ =min{e,41,&,} for the min-Method and 5)
€ =./ent1,en for the GA-Method 6)

For constant € both methods reduce to the standard method (2), (3) for which
stability is known. Thus, the interest is stability for variable c.
Stability of the min-Method. It is useful to recall that

(ens1 —en)" =max{0,e,11 —&n} = ny1 —min{0, e, 41 — 5}
Theorem 2.1 (Stability of the min Method). The variable €, k min-Method is un-
conditionally, long-time stable. For any N > 0 the energy equality holds:

1
/ lun|* + en|pn[*da+
2 Ja

N-1

>

n=0

/ (min{5n+175n}(pn+l - pn)2 + (5n+1 - 5n)+pn+12
Q

| =

N-1
1
+ (En - 5n+1)+pn2)dx + Z / (§|un+1 - un|2 + kn+ly|vun+l|2)d$
n=0 Q

N—-1

1
= 2/ (‘UO|2 —I—EOPOZ)CL’E + Z kn+1 / Up+1 * fn+1d.’E.
Q Q

n=0
Consequently, the stability bound holds:

1
5 / |uN|2 + szdex—i-
Q

N-1

1 .
Z 2/9 (mln{5n+175n}(pn+l *pn)2 + (Ent1 — En)+p$z+1
n=0

N—-1
1
+ (en — €n+1)+pn2)d1‘ + § 2/ (|un+1 - Un|2 + kn+ly|vun+l|2)dx
Q
n=0

N-—1
1 1
<5 [ ol +com?)ao + > hnsig sl
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Proof. First we note that using the polarization identity, algebraic rearrangement
and considering the cases €,41 > €, and £, 41 < £, We have

(5n+1pn+l - min{5n+l ) Sn}pm pn+1)

= En+l ||pn+] ||2 - min{5n+] ) 5n}(pn;pn+l)

. 1 1 1
R CAIEN R ETPTCEE PR TP
= \Entl T 5 min{eni1,&n} ) [|Pn1|

1 . I .
_5 mln{5n+175n}||pn||2 + 5 mlIl{En-H, En}”pn - pn+1||2

1 1 1 .
= §5n+1||pn+l I §5n||17n||2 + 5 min{e, 11, H|Pn — P[>+

1

. 1 .
45 (ensr = minfenct, ) net P+ 5 (e = minfensr,<n}) lpn

We have €,,11 — min{e,4+1,&,} = (epnt1 — sn)Jr and €, — min{e, 41,6, } =
(en — 5n+1)+ . Thus,

e

(5n+1pn+l - min{5n+175n}pn7pn+l) = @)

1
25n+1 ||Pn+1] |2 - §5n| |l |2

1 .
+ 5 m1n{€n+1, 5n}| |pn — Pn+1 | |2+

1 4 2 1 + 2
"’E (ent1 —€n)" |[Pasr1ll” + ) (en = €nt1)” |lpnll™
With this identity, take the inner product of the first equation with k,, 1,11, the
second with k,, 1 py+1, integrate over the flow domain, integrate by parts, use skew

symmetry, use the polarization identity twice and add. This yields

1
2/ (|un+1|2 - ‘unlz + |un+1 - un’2)dl' +/ (kn+1’/|vun+1|2)d$
Q Q
1 .
+§ / <5n+1pn+1 - mln{5n+1>5n}pn)pn+ldm = kn+1 / Up+1 * fny1d.
Q Q
From (7) the energy equality becomes

1 1
3 [ Qs Pt el P)de = 5 [ (ol + ) o
Q Q

1 .
+/ (k1| Vuin 1 [Pda + 5 / (tnt1 — un)? + min{eni1, €0} (P — Pri1)’
Q Q

+ (ent1 — En)+pn+12 + (en — €n+1)+pn2)d$ = knt1 / Upt1 - fnr1d.
Q



10 W. Layton and M. McLaughlin

Upon summation the first two terms telescope, completing the proof of the energy
equality. The stability estimate follows from the energy equality and the Cauchy-
Schwarz-Young inequality. i

The stability analysis shows that the numerical dissipation in the min-Method
is

Numerical 1 Upt] — U . Pni1 — P
e Sk [P e mine, e (PR
Dissipation n+1 n+1

_ + _ +
+ (En-};l 5n> p%wrl + <5nk 5n+1) pn2i| dr.
n+1 n+1
The GA-Method. The proof of stability of the GA-method differs from the last

proof only in the treatment of the variable ¢ term, resulting is a different numerical
dissipation for the method.

Theorem 2.2 (Stability of GA-Method). The variable ¢, k, first-order GA-Method
is unconditionally, long-time stable. For any N > 0 the energy equality holds:

1
/ (Jun|? + enlpn|?)dz+
Q

2
N-1y
+ Z 2/ (|un+1 - Un|2 + (VEnt1Pn+1 — Ven n)2 + 2kn+1V|VUn+1|2)dJC
Q
n=0

1 N-1

= 2/ (Juo|* + eolpol*) da + Z Kn+1 / Up+1 * fop1de
Q ot Q

and the stability bound holds:

1
2/Q(|UN|2+EN|pN|2)dCU+

N-1
1
+ Z |:/ (lun+1 - un’2 + (\/ En+1Pn+1 — VEn n)z + kn+1V|vun+l|2)dx
Q

N—1
1 1
< 2/9 (Juo|* + eolpol*)dz + nz_;) kn+l£||fn+l||2_1-
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Proof. First we note that using the polarization identity we have

(5n+1pn+l -V 5n+15npnapn+l) =
= En+l||pn-§—1||2 - (\/Enpna V 5n+1pn+l)

1 1 1
= <uiallputl = { Jenllpal + eniallpwl = 511VEmpn — VEmsipn |}

1 1 1
= §5n+aln+l||2 - §5n||pn||2 + 5”\/ En+1Pn+1 — VEén n||2

The remainder of the proof is the same as for the min-Method. o

The stability analysis shows that the numerical dissipation in the GA-Method is
Numerical 1., : VER+1Pn+1 — v/EnDn ?

Lo =Sk + dx.
Dissipation 2 Q

kn+]
There is no obvious way to tell d priori which method’s numerical dissipation is
larger or to be preferred. A numerical comparison is thus presented in Section 5.

Un4+1 — Un

knJrl

Remark 2.3. The continuum analogs. It is natural to ask if there is a non-
autonomous continuum AC model associated with each method. The momentum
equation for each continuum model is the standard

ut+u'Vu+%(V~u)u+Vp—1/Au:f.
The associated continuum continuity equation for the min-Method is
e)pt+efp+V-u=0, (8)
whereas the continuum continuity equation for the GA-method is

Ve(Vep)i +V-u=0.

Analyzing convergence of each to a weak solution of the incompressible NSE as
(non-autonomous) £(t) — 0 is a significant open problem.

3 Second-Order, Variable € Methods

The first-order methods are now extended to embedded first and second-order
methods adapting [19] from ODEs to the NSE. First we review the idea of ex-
tension used.
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Review of the ODE algorithm. Consider the initial value problem

y'(t) = f(t,y(t)),y(0) = yo.

Recall 7 = ky41/ky, is the time-step ratio. The second-order accurate, variable
time-step method of [19] is the standard backward Euler (fully implicit) method
followed by a time filter:

Step 1 W = f(t n+1:y711+1)
pick filter parameter (1) = < 15;)) then 9)

_ 1 2k, n
Sep2 Ynti =Yy — %‘{kﬁkwynﬂ 2 + Foh Yn 1}

The combination is second-order accurate, A—stable for constant or decreasing
time-steps and a measure of the pre- and post-filter difference

EST(1) = |yby — Yn+1 (10)

can be used in a standard way as a local error estimator for the lower order ap-
proximation y}l 41 Or a (pessimistic) estimator for the higher order approximation
Yn+1-

A simple, adaptive—e, second-order AC algorithm. The continuity equation
for both methods can be written

En+1Pn+1 — EP A -
% + V- upq1 =0 where & = /e, 16, or min{ey,1,6p}.
n+1

This can be used to uncouple velocity and pressure using

£ kn+1
an -
En+l En+l

Vpni1 = \VAVARTRIN

The discrete momentum equation for either first-order method is then

1

U —u k
n+1 n .V V- n+1
un+1 ( u ) n+1

kn 1 Entl

VvV U}HI

_VAuiwl = fot1 — Vpn.

En+1
Applying the time filter of (9) to the velocity approximation increases the methods
accuracy to O(k?). This combination yields a simple, second-order, constant time-
step but adaptive € algorithm. In the algorithm below the change in ¢ is restricted
to be between halving and doubling the previous ¢ value.
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Algorithm 3.1. [Simple, adaptive ¢, constant time-step, second-order AC method].
Given Uy, Un—1,Pn, K, Entl,En, and tolerance TOL,,

Select: &= .,/E,t116, or & = min{epi1,6n}

Set: u* = Uy — Up—1-
Solve for u}LH
“711+1 —Un * 1 1 Y, 1 k 1
Gl T o Tub (Vi — YVl
k 2 En+1
1 é
_VAun—H = foi1 — Vpn.
En+l
Filter, Compute estimator EST.,Find p,ii
1 Loy
Uptl = Upyp — 3 {un+1 = 2up + un—l} )
T
BST. = IV unpll = 3 [[uper = 2un +una |,
3 kn+l
Pn+1 = Pn — Vo tpyi.
En+l En+l

Adapt e : IF EST. > TOL. , THEN repeat step after resettingepii
by

TOL,
9 70~5€n+1}

en+1 = max{0.9e,,1; TIT.

ELSE
TOL

= s 2€TL+1 }, '5€7L+1}

Ent2 = max{min{0.9¢,, EST,

and proceed to next step.

3.1 Stability of the second-order method for variable ¢, constant k

This section establishes unconditional, nonlinear, long-time stability of the second-
order GA-method for constant time-steps but variable . The proof addresses the
interaction between the filter step with the continuity equation. It is adapted to the
min-Method following ideas in the proof of Theorem 2.1. For constant time-steps
and variable € the GA-method is as follows. Given u,, py,&n, select £, and
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u* = 2u, — u,— (since the time-step is here constant). Then,

1
Uy — U N 1 .
”Hk L ~Vu7ll+1 + E(V ‘u )u;lﬂ + Vpp+1 — VAu7]1+l = fat1,
. 1
Filter: w1 = )| — 3 {uh ) — 2up +up—1} (11)
€ — /Ent1€
Find pp41 : nt 1Pl ntlEntn +V. u,llﬂ = 0 & proceed to next step.

k

We now prove an energy equality for the method which implies stability.

Theorem 3.2. The method (11) satisfies the following discrete energy equality
(from which stability follows). For any N > 1

1

[4/ (lun1? + 2uns1 — un|* + [uns1 — un* + 2en41 o) d
Q

N
3 1
57 [ Clunss = 2un + wns1 P+ 5 1VErr st — vEnpal?) dat
n=1 Q 4 2

N
3 1
+Zk/ﬂy|v |:2Un+1 — Uy, + Zun_l} |*dx+
n=1

1
= (3 [ G 1200 = o+ o = o+ 221 e
Q

N
3 1
"HC;/anJrl ' <2un+1 — Up + 2Un1> dx.

1
n+

equation. From the filter step u,+; = uLH — % {u;LH — 2uy, + unfl} we have

Proof. To prove stability, eliminate the intermediate value v, , | in the momentum

.3 1
Upt1 = Eun—&-l — Up + Eun—b

Replacing urll 41 by %Un+1 —Uup + %un,l yields the equivalent discrete momentum
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equation:
3 2 1
5Un+1 — £Up + 3 Un—1
k
. 3 1 1 w3 1
+uy, -V <2un+1 — Uy + 2un1> + E(V Suy) <2un+1 — Uy + 2un1>

(12)

3 1
+Vppt1 — VA <2Un+1 — Uy + Zun1> = fn+1-
Multiply by the time-step k, take the L? inner product of the momentum equation
(12) with %unH — Up + %un_ 1, the L? inner product of the discrete continuity
equation with p,; and add. Two pressure terms cancel since uil = %unH —

Up %un_ 1and the nonlinear terms vanish due to skew-symmetry. Thus, we obtain

2 2 2
+ (5n+1pn+l - \/5n+15npnvpn+l)

3 1 3 1
Eun+l - 2un + ZUn—1, ZUp+1 — Un + ZUL—1 | +

2

3 1 ? 3 1
+vk ||V EunJrl —Up + ZUp—] =k fn+17 Eun+l — Up + Eunfl

The key terms are the first two. For the first term, apply the following identity
from [11] with a = upy1, b = up, ¢ = up_y

a2 (2a—0b)? (a—0b)? ¥ (2b—c)?  (b—c)?
[4+ 7 e
3 > 3 1.3 1
—i—Z(a—Zb—I—C) = (2a—2b+ 20)(2(1 b+ 26).

This yields
3 1 3 1
iunJrl — 2uy + Eunflv Eun+1 — Up + Eunfl =
1 1 1
llanealP 4 511201 =l s = ]

1 1 1
[ gi1ualP + 51200 = a1 + 3l = a2

3
+Z||un+1 — 2uy, + Un—l||2'
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For the pressure term (, /Ent1EnPn, pn+1) the polarization identity, suitably ap-
plied, yields

(\/ En+1En 'rupn—H) = (\/ EnPny+/ 5n+1pn+l) =
1 1 1
= §5n+1“pn+l||2 + §€n||pn||2 - 5”\/ Ent+1Pn+1 — VEn n||2
Thus

(5n+1pn+l — VEn+1€n nvpn-H) =

1 1 1
= §5n+l“pn+l||2 - Egn”pn”z + 5 lIVEntipas = Ven nll?

Combining the pressure and velocity identities, we have

1 1 1 En+l
gm0 =l 4 Gl =l + S5 P

1 1 1 €
[ Gi1ualP 4 1200 = I+ Gl = sl Sl +
3 2 1 2
+Z||u"+l = 2up + un—1[” + §||\/5n+1pn+l — Venpnl|

g 3 1
) =k fo+1, EunJrl — Up + Eunfl .

3 1
+vk Hv |:2un+1 — Up + Un1:|

Summing from n = 1 to IV proves unconditional, long-time stability. o

4 Doubly k, € Adaptive Algorithms

We present three doubly adaptive AC algorithms: first-order, second-order method
and a third that adapts the method order. The first two are tested in Section 5.
While not tested herein, we include the variable order adaptive algorithm for its
clear interest. In the first algorithm, the error is estimated by a time filter and the
next time-step and next € are adapted’ based on

TOL,, \"*
first-order prediction: kye. = koig (EST(I)) and e = €old

TOL,
IV - ||

In our implementation, a safety factor of 0.9 is used and the maximum change in
both is (additionally) restricted to be between 0.5 & 2.0.

7 The formula for £,e. could be improvable.
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Algorithm 4.1 (Doubly £, € Adaptive, First-Order Method). Given TOL,,,
TOL¢, Uy, Up—1, Up—2 and ki1, kn, kn_1

Compute: 7T = kg—f and aj = T((;f;oi)

Select: &= ,/en116, 0r & =min{ep 1,60}

Set uw*=(1+7T)up— TUp_1.

Find BE approximation uy4

Up+] — U . 1 N k 5
el gy N1+ (Vu™)up 1 — n+1VV'un+1—Z/Aun+1 = fnt1— Vpn.
kni1 2 Entl Entl
Compute difference D, and Estimators
an 1 2kn+1
Dy= —up. | —2Uup + —————Up—
Pk T k)

[0
EST(1) = =D
ESTc = ||V - upi1]]-

IF EST, > TOL, or EST(1) > TOL,, THEN repeat step after resetting
5n+1>kn+l by
TOL

En+l = maX{0.9€n+1WT’C,O.5€n+1}
c
TOL, \'* TOL, \'*
kn+1 = 09=x (_ESCT(I)) max 09]{3n m 70.5kn+1

ELSE Predict best next step for each approximation:

: TOL, \'?
kn+2 = max {mln {ngn+1 <ES’I_|(1)> y 2kn+1 s O.Skn+1

TOL

ent2 = max{min{0.9¢, WTC’ 2en41},0.56041}
C
ENDIF
Update pressure: Dnt1 = %pn — Z—L‘V “Upt]-

Proceed to next step.

The second-order, doubly adaptive algorithm. For the second-order, doubly
adaptive method, we predict the next € value the same as in the first-order method

and predict the next time step based on

TOL, \'/*
second-order prediction: kpew = kold ( EST(2) )
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EST(2) is calculated as follows. The second-order method is equivalent, after
elimination of the intermediate (first-order) approximation, to a one leg method
exactly as in (11) in the constant time-step case. The one leg method’s linear
multistep twin has local error proportionate to k3w + O(k*). Thus, an estimate
of uy; is computed using difference of D, as follows. Write
an 2kn+1

1
— U —2u + —uy
kn + kn+1 i " k =+ kn+1

Dz(n + 1) =
From differences of Dy(n + 1), D,(n) we obtain the estimator:

3kn—l
kn+l + kn + kn—l

3kn—l
kn+l + kn + kn—l

@2
6

)

EST(2) =

DQ(TL—F 1) — Dz(n)

where the coefficient o, is determined through a Taylor series calculation to be

Tn(TnJrlTn + Th + 1)(47- +1 + 572 a1 T Tn+1)
3(7_717— +1 +4TnTn+l + 27—n+l + 7n + 1)

p =

Algorithm 4.2 (Doubly Adaptive, Second-Order Algorithm). Given TOL,,, TOL.,

Up s Up—1, Up—2, previous 2nd difference Dy(n)and kyii, kn, kn—1
. _ kn+l _ T(IO+T) _ Tn (T’n+l7—n+7—n+l)(4‘r n+l +57' n+1 +Tn+l)
Compute: 7 = En 0 ¥ = Tor2070 2= 3(TnT2  H4Tn T 1 H2Tn 1+ +1)

Select: é = \/Ent1En or £ = min{e, 11,6, }.
Set: =1 47)up — TUp_1.
Find BE approx1mation “711+1
Up g1 — Un Kt 1 1
A +u vUn+1+ (V Uity gy — VIVt =VAU, = frg1— Vpn.
n+1 En+1 En+1

Compute difference ) and update velocity

Zk‘n an 1
Dy(n+1) = ——2 4l —2u, + el YN
2( ) kn+kn+l n-+1 n kn+kn+l n—1
1 @]
Untl = Upgy = 5 Da(n+1)

Compute estimators

3kn—l
kn—O—l + kn + kn—l

% 3kn—l
6 kn—H + kn + kn—l
ESTc = ||V -upt1]l.

EST(2) =

Dz(n)

Dz(n+ ]) —

)
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IF EST, > TOL, or EST(2) > TOL,, THEN repeat step after resetting
Ent1; knt1 bY
TOL

Enil = max{0.98n+1ﬁ,0.56n+1}
C

, TOLn \'°
kn+1 = max {mln {O9kn+1 (W> ,2kn+1 ,O.Skn+1

ELSE Predict best next step:

. TOL,, \'/?
knia = max{mln{0.9kn+1 <ES’T(mZ)> y, 2kni1 ¢ ,0.5k, 1

TOL
En+2 = max{min{O.%nHFTc, 25n+1}70-55n+1}
c

~ k’n
Update pressure: Ppal = ﬁpn — ?le U
Proceed to next step.

The adaptive order, time-step and ¢ algorithm. To adapt ¢, k& and the method
order we use the local truncation error indicators for the momentum and continuity
equations, respectively,

Adapt k for u' using : EST(1)
Adapt k for w using EST(2)
Adapte for pusing : EST. := ||V - upi1]].

The algorithm computes two velocity approximations. The first ! is first-order
and A—stable for all combinations of time-step and . The second u is second-
order, A-stable for constant (or decreasing) time-step but only O—stable for in-
creasing time-steps. Variable (1 or 2) order is introduced as follows. The local
error in each approximation is estimated. If both are above the tolerance, the step
is repeated. Otherwise, the optimal next time-step is predicted for each method by

TOL,, \'
first-order prediction: kni1 = kn <EST(1)> ’
TOL, \'

second-order prediction: knv1 = kn <EST(2)>

The actual &, presented below and in the tests in Section 5 is restricted to be
(0.5t02.0) x k,, and includes a safety factor of 0.9.
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Algorithm 4.3 (Adaptive order, k, €). Given TOL,,, TOL., tUn, Up—1, Un—2,
previous second difference Dy(n) and kyi1, kn, kn—1

3 2
.  knp _ 7(1.0+7) _ Ta(Ta1 TntTn+ 1) (47 4577 +Tni1)
Compute: T ==, a1 = 7555, 02 = 3(Tn T2 H4T T+ 2Tt T D)
Select: 2 = \/Ent16n or & = min{e,41,6p}.
Set: w = (147)up — TUp—1.

Find BE approximation uiwrl

1

U — Up, 1 kn, 3
" Vg 5 (VoS g — LUV Ul —vAU, g = foi1— : V.
kn+1 2 En+1 n+1
Compute difference D, and updated velocity
2ky, 2kn41
D +1) = —=2 4l -2 —i—Lun,
2(” ) kn + knJrl Hntl i kn + kn+l !
«Q
Upr] = ’U,},L+1 — %Dz(n + 1)
Compute estimators
aq
EST(1) = S |Da(n+ 1),
ap 3kn 3kn—1
EST(2) = — D +1)— D>(n)||,
( ) 6 kn+l + kn + knfl 2(” ) knJrl + kn + knfl 2( )
ESTc = ||V - upt1ll-
IF EST, > TOL. or min{EST(1),EST(2)} > TOL,, THEN repeat
step, resettingepyq, knt1 by
TOL,
En+1 = maX{O.9€n+]ﬁ,o.5€n+]}
TOLy, \'/? TOL, \'?
TEPBE = 0.9 . 0.9k, | —~ ,0.5k,
° (zsmy) w09 () .
TOL,, \'/* TOL,, \'/?
TEPFi = 0. — 0.9k, | = 0.5k,
S ilter 0.9 (EST(2)> max (EST(Z)) 1

kni1 = max{STEPBE,STEPFilter}
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ELSE Predict ¢,k for each approximation:

1/2
STEPBE = max {min {0.91@”“ <TOLm) ,2]{:”“} ,O.5k:n+1}

EST(1)
TOL,, \'?
STEPFilter = max {mln {09]{5”+1 <_E'S”I'(2)) ,2]{7”+1 ,O.Sk}n+1
. TOL.
Ent2 = max{m1n{0.9sn+1WTC,%”H},O.S%H}

Select method order with larger next step:
IF (STEPBE > STEPFilter) Then
Un+l = “:LH
knio = STEPBE
ELSE knio = STEPFilter
ENDIF

Update pressure:  pnii = ———pp — 220V -y .

En+1 En+l
Proceed to next step

The fixed order methods can, if desired, be implemented by commenting out
parts of the variable order Algorithm 4.3.

5 Three Numerical Tests

The stability and accuracy of the new methods are interrogated in two numerical
tests and the three discrete continuity equations are compared in our third test.
The tests employ the finite element method to discretize space, with Taylor-Hood
(P, /) elements, [18]. All the stability results proven herein hold for this spatial
discretization by essentially the same proofs. The meshes used for both tests are
generated using a Delaunay triangulation. The software package FEniCS is used
for both experiments [1].

We begin with comparative tests of the adaptive k, e, first and second-order
method. Both adapt ¢ based on ||V - u||. The first-order method accepts the
first-order approximation “7]1 .1 and adapts the time-step based on £ST'(1). The
second-order method accepts u,,1 as the approximation and adapts the time step
based on EST'(2).



22 W. Layton and M. McLaughlin

5.1 Test 1: Flow Between Offset Circles

To interrogate stability and accuracy of the GA-method, we present the results of
two numerical tests. Pick

Q={(x,y):2* +y* <rfand (x — 1) + (y — 2)* > 13},
1

rr=1,r=0.1,c=(¢,c) = (5,

f=min{t, 1}(—4y(1 — 2 — ), 4z(1 —2* — *)), for 0 <t < 10.

0),

with no-slip boundary conditions on both circles and ¥ = 0.001. The finite element
discretization has a maximal mesh width of 7,4, = 0.0133, and the flow was
solved using the direct solver UMFPACK [8]. For this test, we use fixed
tolerances TOL,, = TOL. = 0.001. The flow (inspired by the extensive work on
variants of Couette flow, [12]), driven by a counterclockwise force (with f = 0 at
the outer circle), rotates about (0, 0) and interacts with the immersed circle. This
induces a von Karman vortex street which re-interacts with the immersed circle
creating more complex structures. There is also a central (polar) vortex that alter-
nately self-organizes then breaks down. Each of these events includes a significant
pressure response.

For both approximations we track the evolution of k,, and ,,, the pressure at the
origin, the violation of incompressibility, and the algorithmic energy [|u}""||> +
en+1]p) T ||%. These are all depicted in Figure 1 below. Figure 1A shows that the
second-order scheme consistently chooses larger time-steps than the first-order
method. The evolution of ¢, in Figure 1B, behaves similarly for both methods
once the flow evolves. In testing AC methods pressure initialization often causes
irregular, transient spiky behavior near ¢ = 0 such as in Figures 1A, 1B, 1D.

The behavior of the pressure at the origin, p(0,0;¢) vs. ¢, is depicted in Fig-
ure 1C. To our knowledge, there is no convergence theory for AC methods (or
even fully coupled methods) which implies maximum norm convergence for the
pressure over significant time intervals and for larger Reynolds numbers. Still, the
irregular behavior observed in approximate solutions, while not conforming to a
convergence theory, reflects vortex events across the whole domain and is inter-
esting to compare. The profiles of the pressure at the origin are similar for both
methods over 0 < ¢ < 4. For ¢ > 4, p(0,0;t) for the second-order scheme is less
oscillatory. This is surprising because the first-order scheme has more numerical
dissipation. The divergence evolution of the schemes also differ in the initial tran-
sient of ||V - u(t)||. After the initial transient, the divergence behavior is similar.
It is also possible that the difference in ||V - u|| transients is due to the strategy
of e—adaptation being sub-optimal. The model energy of both methods is largely




Doubly-Adaptive Artificial Compression Methods 23

comparable. We note that the model energy depends on the choices of € made.
Thus model energy is not expected to coincide exactly. Generally, Figures 1D—1E
behave similarly for both algorithms.

5.2 Test 2: Convergence and Adaptivity

The second numerical test concerns the accuracy and adaptivity of the GA-method.
Let Q =|0,1[%, with v = 1. Consider the exact solution (obtained from [14]
and applied to the Navier-Stokes equations)

u = 7 sint(sin 27y sin® wz, — sin 27z sin® 7y)

p = costcosmxsinmy,

and consider a discretization of Q obtained by 300 nodes on each edge of the
square. We proceed by running five experiments, adapting both the first- and
second-order schemes using the algorithms above, where the tolerance for the
continuity and momentum equations is 10 (25143) for § = 0,1,2,3,4. To control
the size of the timesteps, we require k,, to be chosen such that

EST(1) € (TOL,,/10,TOL,,). The solutions were obtained in parallel,
utilizing the MUMPS direct solver [2]. To examine convergence, we present in
Figure 2 log-log plots of the errors of the pressure and the velocity against the
average time-step taken during the test. We also present semilog plots of the evo-
lution of the pressure error and timestep during the final test below. The plots show
that the time-step adaptation is working as expected and reducing the velocity er-
ror, Figure 2C. Our intuition is that the pressure error is linked to satisfaction of
incompressibility; however, Figure 2D indicates convergence with respect to the
timestep. In our calculations we did observe the following: If ||V - u]| is, e.g., two
orders of magnitude smaller then the tolerance, € is rapidly increased to be even
O(1). At this point the pressure error and violation of incompressibility spike up-
ward and ¢ is then cut rapidly. This behavior suggests that a band of acceptable
e-values should be imposed in the adaptive algorithm.

To compare the GA, Min method and the scheme introduced in [6], we use the
test problem given above in this section with a known exact solution. The results
are given in Figure 3 below. Here, we use a mesh with the same density and final
time T = 1. A timestep k, = 1072 is kept constant in this run to highlight
differences in the evolution of the variable £,,, which has an initial value ¢y =
10~*. These tests are preliminary: In them, the min-Method seems preferable in
error behavior but yields smaller values and thus less well-conditioned systems.
In the evolution of all four quantities, the GA- and the CLM [6] method exhibit
near identical behavior. The min-Method, however, forces ¢ to be an order of
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magnitude lower than the values obtained by the other two schemes. This, in turn,
forces the divergence to be reduced. Furthermore, both the velocity and pressure
errors for the min-Method are smaller than those of the GA- and CLM-Methods.

6 Conclusions, open problems and future prospects

There are many open problems and algorithmic improvements possible. The dou-
bly adaptive algorithm selected smaller values of ¢ than £ in our tests with the
same tolerance for both. A further synthesis of the methods herein with the mod-
ular grad-div algorithm of [13] would eliminate any conditioning issues in the
linear system arising. Developing doubly adaptive methods of order greater than
two (with modular grad-div) is an important step to greater time accuracy. We
mention in particular the new embedded family of orders 2,3,4 of [10] as a natural
extension. The method of Dahlquist, Liniger and Nevanlinna [7] is unexplored for
PDE:s, but has promise in CFD because it is A-stable for both increasing and de-
creasing time-steps. Improved error estimators for the second-order method herein
would increase reliability. For AC methods, pressure initialization and damping
of nonphysical acoustics are important problems where further progress would be
useful.

Open problems. The idea of adapting independently & and ¢ is promising but
new so there are many open problems. These include:

* Is the e-adaptation formula €,y = €,q(TOL/||V-u||) improvable? Perhaps
the quotient should be to some fractional power. Perhaps adapting e should
be based of a relative error in ||V - u||, such as ||V - u||/||Vul|. Analysis of
the local (in time) error in ||V - u|| is needed to support an improvement.

» The e-adaptation strategy seems to need preset limits, €pyin, Emax, to enforce
€min < € < €max. The preset of en, is needed because V - © = 0 cannot
be enforced pointwise in many finite element spaces. Finding a reasonable
strategy for these presets is an open problem. Similarly, it would be useful to
develop a coherent strategy for relating the two tolerances rather than simply
picking them to be equal (as herein).

» Proving convergence to a weak solution of the incompressible NSE of solu-
tions to the continuum analogs of the GA-method and min-Method for vari-
able ¢ is an important open problem. In this analysis it is generally assumed
that €(¢) — 0 in an arbitrary fashion. A more interesting problem is to link
(t) and ||V - u| in the analysis. Similarly, an 4 priori error analysis for vari-
able ¢ is an open problem and may yield insights on how the variance of €(t)
should be controlled within an adaptive algorithm. The consistency error of
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the two methods are O(k + ¢) and O(k? + ¢), respectively. Energy stability
has been proven herein for the first order method and for the constant time-
step, second order method. Thus, error estimation while technical, should be
achievable.

« Comprehensive testing of the variable (first or second) order method is an
open problem. VSVO methods are the most effective for systems of ODEs
but have little penetration in CFD. Testing the relative costs and accuracy of
VSVO in CFD is an important problem.
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Figure 1. Stability and adaptability results.
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Figure 3. Comparison between GA, Min, and CLM methods.




