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Doubly-Adaptive Artificial Compression Methods

for Incompressible Flow

William Layton and Michael McLaughlin

Abstract. This report presents adaptive artificial compression methods in which the time-

step and artificial compression parameter ε are independently adapted. The resulting algo-

rithms are supported by analysis and numerical tests. The first and second-order methods

are embedded. As a result, the computational, cognitive and space complexities of the

adaptive ε, k algorithms are negligibly greater than that of the simplest, first-order, con-

stant ε, constant k artificial compression method.
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1 Introduction

Artificial compression (AC) methods are based on replacing ∇ · u = 0 by εpt +
∇ · u = 0 (0 < ε small) in the incompressible Navier-Stokes equations (NSE),

uncoupling velocity and pressure and advancing the pressure explicitly in time.

Their high speed and low storage requirements recommend them for complexity

bound fluid flow simulations. Unfortunately, time-accurate artificial compression

approximations have proven elusive. Time accuracy (along with increased effi-

ciency and decreased memory) is obtained by time-adaptive algorithms. To our

knowledge, the defect correction based scheme of Guermond and Minev [17] and

the non-autonomous AC method in [6], both adapting the time-step with ε = k
(time-step), are the only previous implicit, time-adaptive AC methods.

This report presents time-adaptive AC algorithms based on a new approach of

independently adapting the AC parameter ε and time-step k. The methods proceed

as follows. A standard, first-order, implicit method, (1st Order) below, is used to

advance the momentum equation in the artificial compression equations. A second-

order velocity approximation, (2nd Order) below, is then computed at negligible

cost using a time filter adapted from [19]. The difference between the first-order

and second-order approximations gives a reliable estimator, EST(1), for the local

The research herein was partially supported by NSF grants DMS1522267, 1817542 and CBET

1609120.



2 W. Layton and M. McLaughlin

error in the momentum equation for the first-order method and is used to adapt the

time step in Algorithm 4.1, Section 4.

Adapting the AC parameter ε is more challenging. Stability of the standard AC

discrete continuity equation (εpt +∇ · u = 0) is unknown for variable ε, [6]. We

present two new, variable ε, discrete continuity equations in (1.4) below and prove

their unconditional, long-time stability in Theorems 2.1, 2.2 and 3.2. These results

show that adaptivity will respond to accuracy constraints rather than try to correct

stability problems with small time-steps. In these continuity equations, the size of

||∇ · u|| is monitored and used to adapt the choice of the AC parameter ε (e.g.,

Algorithm 3.1, Section 3) whereupon the calculation proceeds to the next time

step. The self-adaptive strategy for independently adapting ε also side steps the

practical problem of how to pick ε in AC methods and related penalty methods,

even for constant time-steps. The new discrete continuity equations reduce to the

standard εpt+∇·u = 0 for constant ε, improve, through greater simplicity, a non-

autonomous (ε = ε(t)) AC formulation in [6] and yield now three proven stable

extensions of the discrete AC continuity equation to variable ε. A comparison

of the three is presented in Section 5. Determining if one or some combination

of the three1 or some other, yet undetermined, possibility is to be preferred is an

important open problem.

The second-order method. To obtain an O(k2) approximation of the momen-

tum equation (with embedded error estimator), Algorithms 4.1 and 4.2 incorporate

a recent idea of [19] of increasing accuracy and estimating errors by time filters.

Theorem 3.2 of Section 3.1 gives a proof of unconditional, long-time stability of

the second order, constant time-step but variable ε method. The resulting embed-

ded structure of Algorithms 4.1 and 4.2 suggests low-complexity, variable-order

methods may be possible once an adaptive ε strategy is well developed.

The second-order method is a one leg method. Reliable estimators of the lo-

cal truncation error (LTE) in one leg methods are expensive as detailed in [10].

An inexpensive estimator, EST(2) in Algorithm 4.2, of the LTE in the method’s

linear multistep twin, based on a second time filter, is presented. For the one leg

method, this estimator is inexpensive but heuristic. The doubly adapted, second-

order method in Algorithm 4.2 is tested in Section 5. The embedded structure of

the first and second-order method suggests that adapting the method order in ad-

dition to the time-step and AC parameter ε may increase accuracy and efficiency

further.

Three stable treatments of the momentum equation (first, second and even vari-

able order) are possible. Three stable treatments of the variable ε continuity are

now possible: two in (1.1) below and one in [6]. The result is nine adaptive AC

1 The stability proof extends to weighted averages of the three discrete continuity equations.
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methods with computational complexity comparable to the common first-order

method, described next.

1.1 Review of a Common Artificial Compression Method

Denote by u the velocity, p the pressure, ν the kinematic viscosity, and f the ex-

ternal force. Consider the slightly compressible/hyposonic2, [38], approximation

to the incompressible Navier-Stokes equations in a domain Ω in R
d, d = 2, 3

{

ut + u · ∇u+ 1
2
(∇ · u)u+∇p− ν∆u = f

εpt +∇ · u = 0, where 0 < ε is small.
(1)

This is the most common of several possible formulations reviewed in Section 1.1

of [6]. To present methods herein we will consistently suppress the secondary spa-

cial discretization3. Let u∗ denote the standard (second order) linear extrapolation

of u from previous values4 to tn+1

u∗ =

(

1 +
kn+1

kn

)

un − kn+1

kn
un−1 (= 2un − un−1 for constant time-step) .

To fix ideas, among many possible, e.g., [14], [15], [16], [22], [24], [27], [9], [26],

[37], consider a common, constant time-step, semi-implicit time discretization of

(1):

un+1 − un
k

+ u∗ · ∇un+1 +
1

2
(∇ · u∗)un+1 +∇pn+1 − ν∆un+1 = f(tn+1),

(2)

ε
pn+1 − pn

k
+∇ · un+1 = 0.

Here k is the time-step, tn = nk, un, pn are approximations to the velocity and

pressure at t = tn. This has consistency error O(k + ε) leading to the most

common choice of selecting ε = k to balance errors. Since ∇pn+1 = ∇pn −
(k/ε)∇∇ · un+1, this uncouples into a velocity solve followed by an algebraic

2 We do not include a traditional superscript "ε" as we shall focus only on AC models and meth-

ods.
3 All stability results proven herein hold, by the same proof, for standard variational spatial dis-

cretizations such as finite element methods with div-stable elements.
4 Temperton and Staniforth [33] advocated even higher order extrapolation.
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pressure update

un+1 − un
k

+ u∗ · ∇un+1 +
1

2
(∇ · u∗)un+1 −

k

ε
∇∇ · un+1

−ν∆un+1 = −∇pn + fn+1,

then given un+1: pn+1 = pn − k

ε
∇ · un+1. (3)

For constant ε, k, this method is unconditionally, nonlinearly, long-time stable,

e.g., [14], [15], [31], [30]. Its long-time stability for variable ε, k is an open

problem, [6].

1.2 New Methods for Variable ε, k

Although well motivated, the choice ε = k cannot be more than a step to a cor-

rect choice. First observe that Units(ε) = T ime2/Length3 while Units(k) =
T ime. Thus, a correct choice of ε should be scaled to be dimensionally consistent

and afterwards the constant multiplier optimized. Aside from dimensional incon-

sistency, the standard choice ε = k ignores the different roles of ε and k. To lead-

ing orders, the consistency error in the continuity equation is O(ε), independent of

k, and the consistency error in the momentum equation is O(k), independent of ε.

This observation on the standard method (2), (3) motivates the development plan

for the doubly adaptive algorithms herein:

• Develop first (Section 2) and second (Section 3) order methods stable for

variable k, ε.

• Adapt εn to control the consistency error in the continuity equation by moni-

toring ||∇ · u||, Sections 3, 4.

• Develop inexpensive estimators for momentum equation consistency error

and adapt k = kn for its control, Section 4.

• Use (Section 4) and test (Section 5) the estimators in a doubly adaptive, vari-

able ε, k, algorithm.

In adaptive methods, strong stability is necessary, so εn, kn can be adapted for

time-accuracy rather than to correct instabilities. One key difficulty, resolved by

the two methods (4) below, is that useful stability is unknown for the common AC

method (2) with variable ε, see [6], and even for the continuum model (1) with

ε = ε(t). A second key difficulty is that (unconditional, nonlinear) G-stability for
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variable time-steps is uncommon5. (For example, the popular BDF2 method loses

A−stability for increasing time-steps.)

The continuity equation is treated by either a geometric average (GA-Method)

or a minimum term (min-Method) as follows. Given un, pn, εn, select εn+1, kn+1

calculate un+1 then6

GA-Method:
εn+1pn+1−

√
εn+1εnpn

kn+1
+∇ · un+1 = 0, or

min-Method:
εn+1pn+1−min{εn+1,εn}pn

kn+1
+∇ · un+1 = 0.

(4)

These methods are proven in Section 2 to be unconditionally, variable ε, k stable.

For the discrete momentum equation, recall u∗ is an extrapolated approximation

to u(tn+1). The first-order method’s momentum equation is the standard one (2)

above given by

un+1 − un
kn+1

+u∗·∇un+1+
1

2
(∇·u∗)un+1+∇pn+1−ν∆un+1 = fn+1. (1st Order)

The (linearly implicit) treatment of the nonlinear term is inspired by Baker [4].

The second method, adapted from [19], adds a time filter to obtain O(k2) accuracy

and automatic error estimation as follows. Let the time-step ratio be denoted τ =
kn+1/kn. Call u1

n+1 the solution obtained from the first-order method (1st Order)

above. The second-order approximation un+1 is obtained by filtering u1
n+1:

u1
n+1 − un

kn+1

+ u∗ · ∇u1
n+1 +

1

2
(∇ · u∗)u1

n+1 +∇pn+1 − ν∆u1
n+1 = fn+1,

For τ =
kn+1

kn
let α1 =

τ(1 + τ)

(1 + 2τ)
, then :

un+1 = u1
n+1 −

α1

2

{

2kn
kn + kn+1

u1
n+1 − 2un +

2kn+1

kn + kn+1

un−1

}

.

(2nd Order)

Denote by D2(n+ 1) the quantity above in braces

D2(n+ 1) :=
2kn

kn + kn+1

u1
n+1 − 2un +

2kn+1

kn + kn+1

un−1.

Note that D2(n+ 1) is 2knkn+1×(a second divided difference).

5 To our knowledge, the only such two-step method is the little explored one of Dahlquist, Lin-

iger, and Nevanlinna [7]. This second issue may be resolvable by a variable (first and second)

order implementation since it would include the A-stable, fully implicit method.
6 A convex combination of the two continuity equations discretizations is also stable.
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The usual L2 norm || · || and inner product (·, ·) are denoted

||v|| =
(
∫

Ω

|v(x)|2dx
)1/2

and (v, w) =

∫

Ω

v(x) · w(x)dx.

A simple estimate of the local error in the first-order approximation u1
n+1 is given

by a measure (here the L2 norm) of the difference of the two approximations

EST (1) = ||un+1 − u1
n+1|| =

α1

2
||D2(n+ 1)||.

Estimating the error in the second-order approximation. Naturally one

would like to use the second-order approximation for more than an estimator. It

is possible to use EST (1) above as a pessimistic estimator for un+1. In Section

3 we show that, eliminating the intermediate step u1
n+1, the second-order method

is equivalent to the second-order, one leg method (12) below. Estimation of the

LTE for this OLM cannot be done by a simple time filter for reasons delineated

in [10] and based on classical analysis of the LTE in OLMs of Dahlquist. We

test an inexpensive but heuristic estimator that can be calculated by a second time

filter. EST (2) below is an LTE estimator for the OLMs linear multi-step twin.

To estimate the local error in the second order approximation we use the third di-

vided difference with multiplier chosen (by a lengthy but elementary Taylor series

calculation) to cancel the first term of the LTE of the methods linear multi-step

twin

EST (2) =
α2

6

∥

∥

∥

∥

3kn−1

kn+1 + kn + kn−1

D2(n+ 1)− 3kn−1

kn+1 + kn + kn−1

D2(n)

∥

∥

∥

∥

where

α2 =
τn(τn+1τn + τn + 1)(4τ 3

n+1 + 5τ 2
n+1 + τn+1)

3(τnτ 2
n+1 + 4τnτn+1 + 2τn+1 + τn + 1)

, and τn = kn/kn−1.

The resulting adaptive algorithm uncouples like (3) into a velocity update with a

grad-div term then an algebraic pressure update. More reliable but more expensive

estimators are possible. The above inexpensive but heuristic one is tested herein

because the motivation for AC methods is often based on the need for faster and

reduced memory algorithms in specific applications.

Section 2 presents the analysis of the two first-order methods, proving long-

time, unconditional stability for variable ε, k. This analysis develops the key treat-

ment of the discrete continuity equation necessary for stability. Section 3.1 gives

a proof of unconditional, long time stability for the variable ε, constant k sec-

ond order method. This proof can be extended to decreasing time-steps but not

increasing time-steps.
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1.3 Related work

Artificial compression (AC) methods were introduced in the 1960’s by Chorin,

Oskolkov and Temam. Their mathematical foundation has been extensively de-

veloped by Shen [29], [30], [31], [32] and Prohl [27]. Recent work includes [24],

[9], [15], [16], [22], [26] and [37]. The GA-method (geometric averaging method)

herein is motivated by work in [5] for uncoupling atmosphere-ocean problems sta-

bly.

There has been extensive development of adaptive methods for assured accu-

racy in fully coupled, v− p discretizations, e.g., [21], and adaptive methods based

on estimates of local truncation errors including [20], [23], [34]. In complement,

the work herein aims at methods that use less expensive local (rather than global)

error estimators, do not provide assured time-accuracy but emphasize (consistent

with the artificial compression methods) low cognitive, computational, and space

complexity. Aside from [6] and Guermond and Minev [17], extension of implicit,

time-adaptive methods to artificial compression discretizations is undeveloped.

Herein accuracy is increased and local errors estimated by time filters. Other

approaches are clearly possible. Time filters are an important tool in GFD to cor-

rect weak instabilities and extend forecast horizons, [3], [25], [28], [35], [36]. In

[19], it was noticed that a time filter can also increase the convergence rate of the

backward Euler method and estimate errors. G-stability of the resulting (constant

time-step) time discretization was recently proven for the fully-coupled, velocity-

pressure Navier-Stokes equations in [11].

2 First-Order, Variable k, ε Methods

This section establishes unconditional, long-time, nonlinear stability of the two

variable k, ε first-order methods of Section 1.2 in the usual L2(Ω) norm, denoted

|| · || with associated inner product (·, ·). The methods differ in the treatment of the

discrete continuity equation and reduce to the standard AC method (2) for constant

ε, k. We prove that the first order implicit discretization of the momentum equation

with both new methods (5), (6) are unconditionally, nonlinearly, long-time stable

without assumptions on εn, kn. We study these new methods in a bounded, regular

domain Ω subject to the initial and boundary conditions

u0 = u0(x) and p0 = p0(x), in Ω,

un = 0 on ∂Ω for t > 0.
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The two, first-order methods are: Given un, pn, εn, select εn+1, kn+1 and

un+1 − un
kn+1

+ u∗ · ∇un+1 +
1

2
(∇ · u∗)un+1 +∇pn+1 − ν∆un+1 = fn+1,

εn+1pn+1 − ε̂pn
kn+1

+∇ · un+1 = 0, where

ε̂ = min{εn+1, εn} for the min-Method and (5)

ε̂ =
√
εn+1, εn for the GA-Method (6)

For constant ε both methods reduce to the standard method (2), (3) for which

stability is known. Thus, the interest is stability for variable ε.

Stability of the min-Method. It is useful to recall that

(εn+1 − εn)
+ = max{0, εn+1 − εn} = εn+1 − min{0, εn+1 − εn}.

Theorem 2.1 (Stability of the min Method). The variable ε, k min-Method is un-

conditionally, long-time stable. For any N > 0 the energy equality holds:

1

2

∫

Ω

|uN |2 + εN |pN |2dx+

N−1
∑

n=0

1

2

∫

Ω

(

min{εn+1, εn}(pn+1 − pn)
2 + (εn+1 − εn)

+ pn+1
2

+(εn − εn+1)
+ pn

2
)

dx+

N−1
∑

n=0

∫

Ω

(1

2
|un+1 − un|2 + kn+1ν|∇un+1|2

)

dx

=
1

2

∫

Ω

(

|u0|2 + ε0p0
2
)

dx+
N−1
∑

n=0

kn+1

∫

Ω

un+1 · fn+1dx.

Consequently, the stability bound holds:

1

2

∫

Ω

|uN |2 + εNpN
2dx+

N−1
∑

n=0

1

2

∫

Ω

(

min{εn+1, εn}(pn+1 − pn)
2 + (εn+1 − εn)

+ p2
n+1

+(εn − εn+1)
+ pn

2
)

dx+

N−1
∑

n=0

1

2

∫

Ω

(

|un+1 − un|2 + kn+1ν|∇un+1|2
)

dx

≤ 1

2

∫

Ω

(

|u0|2 + ε0p0
2
)

dx+
N−1
∑

n=0

kn+1

1

2ν
||fn+1||2−1.
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Proof. First we note that using the polarization identity, algebraic rearrangement

and considering the cases εn+1 > εn and εn+1 < εn we have

(εn+1pn+1 − min{εn+1, εn}pn, pn+1)

= εn+1||pn+1||2 − min{εn+1, εn}(pn, pn+1)

= εn+1||pn+1||2 − min{εn+1, εn}
{

1

2
||pn||2 +

1

2
||pn+1||2 −

1

2
||pn − pn+1||2

}

=

(

εn+1 −
1

2
min{εn+1, εn}

)

||pn+1||2

−1

2
min{εn+1, εn}||pn||2 +

1

2
min{εn+1, εn}||pn − pn+1||2

=
1

2
εn+1||pn+1||2 −

1

2
εn||pn||2 +

1

2
min{εn+1, εn}||pn − pn+1||2+

+
1

2
(εn+1 − min{εn+1, εn}) ||pn+1||2 +

1

2
(εn − min{εn+1, εn}) ||pn||2.

We have εn+1 − min{εn+1, εn} = (εn+1 − εn)
+

and εn − min{εn+1, εn} =
(εn − εn+1)

+ . Thus,

(εn+1pn+1 − min{εn+1, εn}pn, pn+1) = (7)

=
1

2
εn+1||pn+1||2 −

1

2
εn||pn||2 +

1

2
min{εn+1, εn}||pn − pn+1||2+

+
1

2
(εn+1 − εn)

+ ||pn+1||2 +
1

2
(εn − εn+1)

+ ||pn||2.

With this identity, take the inner product of the first equation with kn+1un+1, the

second with kn+1pn+1, integrate over the flow domain, integrate by parts, use skew

symmetry, use the polarization identity twice and add. This yields

1

2

∫

Ω

(

|un+1|2 − |un|2 + |un+1 − un|2
)

dx+

∫

Ω

(

kn+1ν|∇un+1|2
)

dx

+
1

2

∫

Ω

(εn+1pn+1 − min{εn+1, εn}pn)pn+1dx = kn+1

∫

Ω

un+1 · fn+1dx.

From (7) the energy equality becomes

1

2

∫

Ω

(

|un+1|2 + εn+1|pn+1|2
)

dx− 1

2

∫

Ω

(

|un|2 + εnpn
2
)

dx

+

∫

Ω

(

kn+1ν|∇un+1|2dx+
1

2

∫

Ω

(un+1 − un)
2 + min{εn+1, εn}(pn − pn+1)

2

+(εn+1 − εn)
+ pn+1

2 + (εn − εn+1)
+ pn

2
)

dx = kn+1

∫

Ω

un+1 · fn+1dx.



10 W. Layton and M. McLaughlin

Upon summation the first two terms telescope, completing the proof of the energy

equality. The stability estimate follows from the energy equality and the Cauchy-

Schwarz-Young inequality.

The stability analysis shows that the numerical dissipation in the min-Method

is

Numerical

Dissipation
=

1

2
k2
n+1

∫

Ω

[

|un+1 − un
kn+1

|2 + min{εn+1, εn}(
pn+1 − pn

kn+1

)2 +

+

(

εn+1 − εn
kn+1

)+

p2
n+1 +

(

εn − εn+1

kn+1

)+

pn
2
]

dx.

The GA-Method. The proof of stability of the GA-method differs from the last

proof only in the treatment of the variable ε term, resulting is a different numerical

dissipation for the method.

Theorem 2.2 (Stability of GA-Method). The variable ε, k, first-order GA-Method

is unconditionally, long-time stable. For any N > 0 the energy equality holds:

1

2

∫

Ω

(

|uN |2 + εN |pN |2
)

dx+

+
N−1
∑

n=0

1

2

∫

Ω

(

|un+1 − un|2 + (
√
εn+1pn+1 −

√
εnpn)

2 + 2kn+1ν|∇un+1|2
)

dx

=
1

2

∫

Ω

(

|u0|2 + ε0|p0|2
)

dx+

N−1
∑

n=0

kn+1

∫

Ω

un+1 · fn+1dx

and the stability bound holds:

1

2

∫

Ω

(

|uN |2 + εN |pN |2
)

dx+

+

N−1
∑

n=0

[

1

2

∫

Ω

(

|un+1 − un|2 + (
√
εn+1pn+1 −

√
εnpn)

2 + kn+1ν|∇un+1|2
)

dx

]

≤ 1

2

∫

Ω

(

|u0|2 + ε0|p0|2
)

dx+
N−1
∑

n=0

kn+1

1

2ν
||fn+1||2−1.
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Proof. First we note that using the polarization identity we have

(εn+1pn+1 −
√
εn+1εnpn, pn+1) =

= εn+1||pn+1||2 − (
√
εnpn,

√
εn+1pn+1)

= εn+1||pn+1||2 −
{

1

2
εn||pn||2 +

1

2
εn+1||pn+1||2 −

1

2
||√εnpn −√

εn+1pn+1||2
}

=
1

2
εn+1||pn+1||2 −

1

2
εn||pn||2 +

1

2
||√εn+1pn+1 −

√
εnpn||2.

The remainder of the proof is the same as for the min-Method.

The stability analysis shows that the numerical dissipation in the GA-Method is

Numerical

Dissipation
=

1

2
k2
n+1

∫

Ω

[

∣

∣

∣

∣

un+1 − un
kn+1

∣

∣

∣

∣

2

+

(√
εn+1pn+1 −

√
εnpn

kn+1

)2
]

dx.

There is no obvious way to tell á priori which method’s numerical dissipation is

larger or to be preferred. A numerical comparison is thus presented in Section 5.

Remark 2.3. The continuum analogs. It is natural to ask if there is a non-

autonomous continuum AC model associated with each method. The momentum

equation for each continuum model is the standard

ut + u · ∇u+
1

2
(∇ · u)u+∇p− ν∆u = f.

The associated continuum continuity equation for the min-Method is

ε(t)pt + ε+t p+∇ · u = 0, (8)

whereas the continuum continuity equation for the GA-method is

√
ε(
√
εp)t +∇ · u = 0.

Analyzing convergence of each to a weak solution of the incompressible NSE as

(non-autonomous) ε(t) → 0 is a significant open problem.

3 Second-Order, Variable ε Methods

The first-order methods are now extended to embedded first and second-order

methods adapting [19] from ODEs to the NSE. First we review the idea of ex-

tension used.
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Review of the ODE algorithm. Consider the initial value problem

y′(t) = f(t, y(t)), y(0) = y0.

Recall τ = kn+1/kn is the time-step ratio. The second-order accurate, variable

time-step method of [19] is the standard backward Euler (fully implicit) method

followed by a time filter:

Step 1
y1
n+1−yn
kn+1

= f(tn+1, y
1
n+1),

pick filter parameter α(1) = τ(1+τ)
(1+2τ) , then

Step 2 yn+1 = y1
n+1 − α1

2

{

2kn
kn+kn+1

y1
n+1 − 2yn + 2kn+1

kn+kn+1
yn−1

}

.

(9)

The combination is second-order accurate, A−stable for constant or decreasing

time-steps and a measure of the pre- and post-filter difference

EST (1) = |y1
n+1 − yn+1| (10)

can be used in a standard way as a local error estimator for the lower order ap-

proximation y1
n+1 or a (pessimistic) estimator for the higher order approximation

yn+1.

A simple, adaptive−ε, second-order AC algorithm. The continuity equation

for both methods can be written

εn+1pn+1 − ε̂pn
kn+1

+∇ · un+1 = 0 where ε̂ =
√
εn+1εn or min{εn+1, εn}.

This can be used to uncouple velocity and pressure using

∇pn+1 =
ε̂

εn+1

∇pn − kn+1

εn+1

∇∇ · un+1.

The discrete momentum equation for either first-order method is then

u1
n+1 − un

kn+1

+ u∗ · ∇u1
n+1 +

1

2
(∇ · u∗)u1

n+1 −
kn+1

εn+1

∇∇ · u1
n+1

−ν∆u1
n+1 = fn+1 −

ε̂

εn+1

∇pn.

Applying the time filter of (9) to the velocity approximation increases the methods

accuracy to O(k2). This combination yields a simple, second-order, constant time-

step but adaptive ε algorithm. In the algorithm below the change in ε is restricted

to be between halving and doubling the previous ε value.
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Algorithm 3.1. [Simple, adaptive ε, constant time-step, second-order AC method].

●✐✈❡♥ un, un−1, pn, k, εn+1, εn, ❛♥❞ t♦❧❡r❛♥❝❡ TOLc✱

❙❡❧❡❝t✿ ε̂ =
√
εn+1εn or ε̂ = min{εn+1, εn}

❙❡t✿ u∗ = 2un − un−1.

❙♦❧✈❡ ❢♦r u1
n+1

u1
n+1 − un

k
+ u∗ · ∇u1

n+1 +
1

2
(∇ · u∗)u1

n+1 −
k

εn+1

∇∇ · u1
n+1

−ν∆u1
n+1 = fn+1 −

ε̂

εn+1

∇pn.

❋✐❧t❡r✱ ❈♦♠♣✉t❡ ❡st✐♠❛t♦r ESTc , ❋✐♥❞ pn+1

un+1 = u1
n+1 −

1

3

{

u1
n+1 − 2un + un−1

}

,

ESTc = ||∇ · un+1|| =
1

3

∥

∥u1
n+1 − 2un + un−1

∥

∥ ,

pn+1 =
ε̂

εn+1

pn − kn+1

εn+1

∇ · un+1.

❆❞❛♣t ε : ■❋ ESTc > TOLc , ❚❍❊◆ r❡♣❡❛t st❡♣ ❛❢t❡r r❡s❡tt✐♥❣ εn+1

❜②

εn+1 = max{0.9εn+1

TOLc

ESTc
, 0.5εn+1}

❊▲❙❊

εn+2 = max{min{0.9εn+1

TOLc

ESTc
, 2εn+1}, .5εn+1}

❛♥❞ ♣r♦❝❡❡❞ t♦ ♥❡①t st❡♣✳

3.1 Stability of the second-order method for variable ε, constant k

This section establishes unconditional, nonlinear, long-time stability of the second-

order GA-method for constant time-steps but variable ε. The proof addresses the

interaction between the filter step with the continuity equation. It is adapted to the

min-Method following ideas in the proof of Theorem 2.1. For constant time-steps

and variable ε the GA-method is as follows. Given un, pn, εn, select εn+1 and
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u∗ = 2un − un−1 (since the time-step is here constant). Then,

u1
n+1 − un

k
+ u∗ · ∇u1

n+1 +
1

2
(∇ · u∗)u1

n+1 +∇pn+1 − ν∆u1
n+1 = fn+1,

Filter: un+1 = u1
n+1 −

1

3

{

u1
n+1 − 2un + un−1

}

(11)

Find pn+1 :
εn+1pn+1 −

√
εn+1εnpn

k
+∇ · u1

n+1 = 0 & proceed to next step.

We now prove an energy equality for the method which implies stability.

Theorem 3.2. The method (11) satisfies the following discrete energy equality

(from which stability follows). For any N > 1

[

1

4

∫

Ω

(

|uN+1|2 + |2uN+1 − uN |2 + |uN+1 − uN |2 + 2εN+1|pN+1|2
)

dx

]

+
N
∑

n=1

∫

Ω

(3

4
|un+1 − 2un + un−1|2 +

1

2
|√εn+1pn+1 −

√
εnpn|2

)

dx+

+
N
∑

n=1

k

∫

Ω

ν|∇
[

3

2
un+1 − un +

1

2
un−1

]

|2dx+

=

[

1

4

∫

Ω

(

|u1|2 + |2u1 − u0|2 + |u1 − u0|2 + 2ε1|p1|2
)

dx

]

+k

N
∑

n=1

∫

Ω

fn+1 ·
(

3

2
un+1 − un +

1

2
un−1

)

dx.

Proof. To prove stability, eliminate the intermediate value u1
n+1 in the momentum

equation. From the filter step un+1 = u1
n+1 − 1

3

{

u1
n+1 − 2un + un−1

}

we have

u1
n+1 =

3

2
un+1 − un +

1

2
un−1.

Replacing u1
n+1 by 3

2
un+1 −un+

1
2
un−1 yields the equivalent discrete momentum
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equation:

3
2
un+1 − 2un + 1

2
un−1

k
+

+u∗n · ∇
(

3

2
un+1 − un +

1

2
un−1

)

+
1

2
(∇ · u∗n)

(

3

2
un+1 − un +

1

2
un−1

)

(12)

+∇pn+1 − ν∆

(

3

2
un+1 − un +

1

2
un−1

)

= fn+1.

Multiply by the time-step k, take the L2 inner product of the momentum equation

(12) with 3
2
un+1 − un + 1

2
un−1, the L2 inner product of the discrete continuity

equation with pn+1 and add. Two pressure terms cancel since u1
n+1 = 3

2
un+1 −

un+
1
2
un−1and the nonlinear terms vanish due to skew-symmetry. Thus, we obtain

(

3

2
un+1 − 2un +

1

2
un−1,

3

2
un+1 − un +

1

2
un−1

)

+

+(εn+1pn+1 −
√
εn+1εnpn, pn+1)

+νk

∥

∥

∥

∥

∇
[

3

2
un+1 − un +

1

2
un−1

]∥

∥

∥

∥

2

= k

(

fn+1,
3

2
un+1 − un +

1

2
un−1

)

The key terms are the first two. For the first term, apply the following identity

from [11] with a = un+1, b = un, c = un−1

[

a2

4
+

(2a− b)2

4
+

(a− b)2

4

]

−
[

b2

4
+

(2b− c)2

4
+

(b− c)2

4

]

+
3

4
(a− 2b+ c)2 = (

3

2
a− 2b+

1

2
c)(

3

2
a− b+

1

2
c).

This yields

(

3

2
un+1 − 2un +

1

2
un−1,

3

2
un+1 − un +

1

2
un−1

)

=

[

1

4
||un+1||2 +

1

4
||2un+1 − un||2 +

1

4
||un+1 − un||2

]

−
[

1

4
||un||2 +

1

4
||2un − un−1||2 +

1

4
||un − un−1||2

]

+
3

4
||un+1 − 2un + un−1||2.
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For the pressure term
(√

εn+1εnpn, pn+1

)

the polarization identity, suitably ap-

plied, yields

(
√
εn+1εnpn, pn+1) = (

√
εnpn,

√
εn+1pn+1) =

=
1

2
εn+1||pn+1||2 +

1

2
εn||pn||2 −

1

2
||√εn+1pn+1 −

√
εnpn||2.

Thus

(εn+1pn+1 −
√
εn+1εnpn, pn+1) =

=
1

2
εn+1||pn+1||2 −

1

2
εn||pn||2 +

1

2
||√εn+1pn+1 −

√
εnpn||2.

Combining the pressure and velocity identities, we have

[

1

4
||un+1||2 +

1

4
||2un+1 − un||2 +

1

4
||un+1 − un||2 +

εn+1

2
||pn+1||2

]

−
[

1

4
||un||2 +

1

4
||2un − un−1||2 +

1

4
||un − un−1||2 +

εn
2
||pn||2

]

+

+
3

4
||un+1 − 2un + un−1||2 +

1

2
||√εn+1pn+1 −

√
εnpn||2

+νk

∥

∥

∥

∥

∇
[

3

2
un+1 − un +

1

2
un−1

]
∥

∥

∥

∥

2

= k

(

fn+1,
3

2
un+1 − un +

1

2
un−1

)

.

Summing from n = 1 to N proves unconditional, long-time stability.

4 Doubly k, ε Adaptive Algorithms

We present three doubly adaptive AC algorithms: first-order, second-order method

and a third that adapts the method order. The first two are tested in Section 5.

While not tested herein, we include the variable order adaptive algorithm for its

clear interest. In the first algorithm, the error is estimated by a time filter and the

next time-step and next ε are adapted7 based on

first-order prediction: knew = kold

(

TOLm

EST (1)

)1/2

and εnew = εold
TOLc

||∇ · un+1||
.

In our implementation, a safety factor of 0.9 is used and the maximum change in

both is (additionally) restricted to be between 0.5 & 2.0.

7 The formula for εnew could be improvable.
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Algorithm 4.1 (Doubly k, ε Adaptive, First-Order Method). ●✐✈❡♥ TOLm✱

TOLc, un, un−1, un−2 ❛♥❞ kn+1, kn, kn−1

❈♦♠♣✉t❡✿ τ = kn+1

kn
❛♥❞ α1 = τ(1.0+τ)

1.0+2.0τ
❙❡❧❡❝t✿ ε̂ =

√
εn+1εn or ε̂ = min{εn+1, εn}.

❙❡t u∗ = (1 + τ)un − τun−1.
❋✐♥❞ ❇❊ ❛♣♣r♦①✐♠❛t✐♦♥ un+1

un+1 − un
kn+1

+u∗·∇un+1+
1

2
(∇·u∗)un+1−

kn+1

εn+1

∇∇·un+1−ν∆un+1 = fn+1−
ε̂

εn+1

∇pn.

❈♦♠♣✉t❡ ❞✐❢❢❡r❡♥❝❡ D2 ❛♥❞ ❊st✐♠❛t♦rs

D2 =
2kn

kn + kn+1

u1
n+1 − 2un +

2kn+1

kn + kn+1

un−1

EST (1) =
α1

2
||D2||,

ESTc = ||∇ · un+1||.

■❋ESTc > TOLc ♦rEST (1) > TOLm ❚❍❊◆ r❡♣❡❛t st❡♣ ❛❢t❡r r❡s❡tt✐♥❣

εn+1, kn+1 ❜②

εn+1 = max{0.9εn+1

TOLc

ESTc
, 0.5εn+1}

kn+1 = 0.9 ∗
(

TOLm

EST (1)

)1/2

max

{

0.9kn

(

TOLm

EST (1)

)1/2

, 0.5kn+1

}

❊▲❙❊ Pr❡❞✐❝t ❜❡st ♥❡①t st❡♣ ❢♦r ❡❛❝❤ ❛♣♣r♦①✐♠❛t✐♦♥✿

kn+2 = max

{

min

{

0.9kn+1

(

TOLm

EST (1)

)1/2

, 2kn+1

}

, 0.5kn+1

}

εn+2 = max{min{0.9εn+1

TOLc

ESTc
, 2εn+1}, 0.5εn+1}

❊◆❉■❋

❯♣❞❛t❡ ♣r❡ss✉r❡✿ pn+1 = ε̂
εn+1

pn − kn+1

εn+1
∇ · un+1.

Pr♦❝❡❡❞ t♦ ♥❡①t st❡♣✳

The second-order, doubly adaptive algorithm. For the second-order, doubly

adaptive method, we predict the next ε value the same as in the first-order method

and predict the next time step based on

second-order prediction: knew = kold

(

TOLm

EST (2)

)1/3

.
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EST (2) is calculated as follows. The second-order method is equivalent, after

elimination of the intermediate (first-order) approximation, to a one leg method

exactly as in (11) in the constant time-step case. The one leg method’s linear

multistep twin has local error proportionate to k3uttt + O(k4). Thus, an estimate

of uttt is computed using difference of D2 as follows. Write

D2(n+ 1) =
2kn

kn + kn+1

u1
n+1 − 2un +

2kn+1

kn + kn+1

un−1

From differences of D2(n+ 1), D2(n) we obtain the estimator:

EST (2) =
α2

6

∥

∥

∥

∥

3kn−1

kn+1 + kn + kn−1

D2(n+ 1)− 3kn−1

kn+1 + kn + kn−1

D2(n)

∥

∥

∥

∥

,

where the coefficient α2 is determined through a Taylor series calculation to be

α2 =
τn(τn+1τn + τn + 1)(4τ 3

n+1 + 5τ 2
n+1 + τn+1)

3(τnτ 2
n+1 + 4τnτn+1 + 2τn+1 + τn + 1)

Algorithm 4.2 (Doubly Adaptive, Second-Order Algorithm). ●✐✈❡♥ TOLm✱ TOLc✱

un✱ un−1✱ un−2, ♣r❡✈✐♦✉s ✷♥❞ ❞✐❢❢❡r❡♥❝❡D2(n) ❛♥❞ kn+1✱ kn✱ kn−1

❈♦♠♣✉t❡✿ τ = kn+1

kn
, α1 = τ(1.0+τ)

1.0+2.0τ , α2 =
τn(τn+1τn+τn+1)(4τ 3

n+1
+5τ 2

n+1+τn+1)

3(τnτ 2
n+1

+4τnτn+1+2τn+1+τn+1)

❙❡❧❡❝t✿ ε̂ =
√
εn+1εn or ε̂ = min{εn+1, εn}.

❙❡t✿ u∗ = (1 + τ)un − τun−1.
❋✐♥❞ ❇❊ ❛♣♣r♦①✐♠❛t✐♦♥ u1

n+1

u1
n+1 − un

kn+1

+u∗·∇u1
n+1+

1

2
(∇·u∗)u1

n+1−
kn+1

εn+1

∇∇·u1
n+1−ν∆u1

n+1 = fn+1−
ε̂

εn+1

∇pn.

❈♦♠♣✉t❡ ❞✐❢❢❡r❡♥❝❡ D2 ❛♥❞ ✉♣❞❛t❡ ✈❡❧♦❝✐t②

D2(n+ 1) =
2kn

kn + kn+1

u1
n+1 − 2un +

2kn+1

kn + kn+1

un−1

un+1 = u1
n+1 −

α1

2
D2(n+ 1)

❈♦♠♣✉t❡ ❡st✐♠❛t♦rs

EST (2) =
α2

6

∥

∥

∥

∥

3kn−1

kn+1 + kn + kn−1

D2(n+ 1)− 3kn−1

kn+1 + kn + kn−1

D2(n)

∥

∥

∥

∥

,

ESTc = ||∇ · un+1||.
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■❋ESTc > TOLc ♦rEST (2) > TOLm ❚❍❊◆ r❡♣❡❛t st❡♣ ❛❢t❡r r❡s❡tt✐♥❣

εn+1, kn+1 ❜②

εn+1 = max{0.9εn+1

TOLc

ESTc
, 0.5εn+1}

kn+1 = max

{

min

{

0.9kn+1

(

TOLm

EST (2)

)1/3

, 2kn+1

}

, 0.5kn+1

}

❊▲❙❊ Pr❡❞✐❝t ❜❡st ♥❡①t st❡♣✿

kn+2 = max

{

min

{

0.9kn+1

(

TOLm

EST (2)

)1/3

, 2kn+1

}

, 0.5kn+1

}

εn+2 = max{min{0.9εn+1

TOLc

ESTc
, 2εn+1}, 0.5εn+1}

❯♣❞❛t❡ ♣r❡ss✉r❡✿ pn+1 = ε̂
εn+1

pn − kn+1

εn+1
∇ · un+1.

Pr♦❝❡❡❞ t♦ ♥❡①t st❡♣✳

The adaptive order, time-step and ε algorithm. To adapt ε, k and the method

order we use the local truncation error indicators for the momentum and continuity

equations, respectively,

Adapt k for u1 using : EST (1)

Adapt k for u using : EST (2)

Adapt ε for p using : ESTc := ||∇ · un+1||.

The algorithm computes two velocity approximations. The first u1 is first-order

and A−stable for all combinations of time-step and ε. The second u is second-

order, A-stable for constant (or decreasing) time-step but only 0−stable for in-

creasing time-steps. Variable (1 or 2) order is introduced as follows. The local

error in each approximation is estimated. If both are above the tolerance, the step

is repeated. Otherwise, the optimal next time-step is predicted for each method by

first-order prediction: kn+1 = kn

(

TOLm

EST (1)

)1/2

,

second-order prediction: kn+1 = kn

(

TOLm

EST (2)

)1/3

The actual kn+1 presented below and in the tests in Section 5 is restricted to be

(0.5 to 2.0)× kn and includes a safety factor of 0.9.
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Algorithm 4.3 (Adaptive order, k, ε). ●✐✈❡♥ TOLm✱ TOLc✱ un, un−1, un−2,

♣r❡✈✐♦✉s s❡❝♦♥❞ ❞✐❢❢❡r❡♥❝❡D2(n) ❛♥❞ kn+1, kn, kn−1

❈♦♠♣✉t❡✿ τ = kn+1

kn
, α1 = τ(1.0+τ)

1.0+2.0τ , α2 =
τn(τn+1τn+τn+1)(4τ 3

n+1
+5τ 2

n+1+τn+1)

3(τnτ 2
n+1

+4τnτn+1+2τn+1+τn+1)

❙❡❧❡❝t✿ ε̂ =
√
εn+1εn or ε̂ = min{εn+1, εn}.

❙❡t✿ u∗ = (1 + τ)un − τun−1.

❋✐♥❞ ❇❊ ❛♣♣r♦①✐♠❛t✐♦♥ u1
n+1

u1
n+1 − un

kn+1

+u∗·∇u1
n+1+

1

2
(∇·u∗)u1

n+1−
kn+1

εn+1

∇∇·u1
n+1−ν∆u1

n+1 = fn+1−
ε̂

εn+1

∇pn.

❈♦♠♣✉t❡ ❞✐❢❢❡r❡♥❝❡ D2 ❛♥❞ ✉♣❞❛t❡❞ ✈❡❧♦❝✐t②

D2(n+ 1) =
2kn

kn + kn+1

u1
n+1 − 2un +

2kn+1

kn + kn+1

un−1

un+1 = u1
n+1 −

α1

2
D2(n+ 1)

❈♦♠♣✉t❡ ❡st✐♠❛t♦rs

EST (1) =
α1

2
‖D2(n+ 1)‖ ,

EST (2) =
α2

6

∥

∥

∥

∥

3kn−1

kn+1 + kn + kn−1

D2(n+ 1)− 3kn−1

kn+1 + kn + kn−1

D2(n)

∥

∥

∥

∥

,

ESTc = ||∇ · un+1||.

■❋ ESTc > TOLc ♦r min{EST (1), EST (2)} > TOLm ❚❍❊◆ r❡♣❡❛t

st❡♣✱ r❡s❡tt✐♥❣ εn+1, kn+1 ❜②

εn+1 = max{0.9εn+1

TOLc

ESTc
, 0.5εn+1}

STEPBE = 0.9 ∗
(

TOLm

EST (1)

)1/2

max

{

0.9kn

(

TOLm

EST (1)

)1/2

, 0.5kn+1

}

STEPFilter = 0.9 ∗
(

TOLm

EST (2)

)1/3

max

{

0.9kn

(

TOLm

EST (2)

)1/3

0.5kn+1

}

kn+1 = max{STEPBE,STEPFilter}
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❊▲❙❊ Pr❡❞✐❝t ε, k ❢♦r ❡❛❝❤ ❛♣♣r♦①✐♠❛t✐♦♥✿

STEPBE = max

{

min

{

0.9kn+1

(

TOLm

EST (1)

)1/2

, 2kn+1

}

, 0.5kn+1

}

STEPFilter = max

{

min

{

0.9kn+1

(

TOLm

EST (2)

)1/3

, 2kn+1

}

, 0.5kn+1

}

εn+2 = max{min{0.9εn+1

TOLc

ESTc
, 2εn+1}, 0.5εn+1}

❙❡❧❡❝t ♠❡t❤♦❞ ♦r❞❡r ✇✐t❤ ❧❛r❣❡r ♥❡①t st❡♣✿

■❋ (STEPBE > STEPFilter) ❚❤❡♥

un+1 = u1
n+1

kn+2 = STEPBE

❊▲❙❊ kn+2 = STEPFilter

❊◆❉■❋

❯♣❞❛t❡ ♣r❡ss✉r❡✿ pn+1 = ε̂
εn+1

pn − kn+1

εn+1
∇ · un+1.

Pr♦❝❡❡❞ t♦ ♥❡①t st❡♣

The fixed order methods can, if desired, be implemented by commenting out

parts of the variable order Algorithm 4.3.

5 Three Numerical Tests

The stability and accuracy of the new methods are interrogated in two numerical

tests and the three discrete continuity equations are compared in our third test.

The tests employ the finite element method to discretize space, with Taylor-Hood

(P2/P1) elements, [18]. All the stability results proven herein hold for this spatial

discretization by essentially the same proofs. The meshes used for both tests are

generated using a Delaunay triangulation. The software package FEniCS is used

for both experiments [1].

We begin with comparative tests of the adaptive k, ε, first and second-order

method. Both adapt ε based on ||∇ · u||. The first-order method accepts the

first-order approximation u1
n+1 and adapts the time-step based on EST (1). The

second-order method accepts un+1 as the approximation and adapts the time step

based on EST (2).
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5.1 Test 1: Flow Between Offset Circles

To interrogate stability and accuracy of the GA-method, we present the results of

two numerical tests. Pick

Ω = {(x, y) : x2 + y2 ≤ r2
1 and (x− c1)

2 + (y − c2)
2 ≥ r2

2},

r1 = 1, r2 = 0.1, c = (c1, c2) = (
1

2
, 0),

f = min{t, 1}(−4y(1 − x2 − y2), 4x(1 − x2 − y2))T , for 0 ≤ t ≤ 10.

with no-slip boundary conditions on both circles and ν = 0.001. The finite element

discretization has a maximal mesh width of hmax = 0.0133, and the flow was

solved using the direct solver UMFPACK [8]. For this test, we use fixed

tolerances TOLm = TOLc = 0.001. The flow (inspired by the extensive work on

variants of Couette flow, [12]), driven by a counterclockwise force (with f ≡ 0 at

the outer circle), rotates about (0, 0) and interacts with the immersed circle. This

induces a von Kármán vortex street which re-interacts with the immersed circle

creating more complex structures. There is also a central (polar) vortex that alter-

nately self-organizes then breaks down. Each of these events includes a significant

pressure response.

For both approximations we track the evolution of kn and εn, the pressure at the

origin, the violation of incompressibility, and the algorithmic energy ‖un+1
h ‖2 +

εn+1‖pn+1
h ‖2. These are all depicted in Figure 1 below. Figure 1A shows that the

second-order scheme consistently chooses larger time-steps than the first-order

method. The evolution of ε, in Figure 1B, behaves similarly for both methods

once the flow evolves. In testing AC methods pressure initialization often causes

irregular, transient spiky behavior near t = 0 such as in Figures 1A, 1B, 1D.

The behavior of the pressure at the origin, p(0, 0; t) vs. t, is depicted in Fig-

ure 1C. To our knowledge, there is no convergence theory for AC methods (or

even fully coupled methods) which implies maximum norm convergence for the

pressure over significant time intervals and for larger Reynolds numbers. Still, the

irregular behavior observed in approximate solutions, while not conforming to a

convergence theory, reflects vortex events across the whole domain and is inter-

esting to compare. The profiles of the pressure at the origin are similar for both

methods over 0 ≤ t ≤ 4. For t > 4, p(0, 0; t) for the second-order scheme is less

oscillatory. This is surprising because the first-order scheme has more numerical

dissipation. The divergence evolution of the schemes also differ in the initial tran-

sient of ||∇ · u(t)||. After the initial transient, the divergence behavior is similar.

It is also possible that the difference in ||∇ · u|| transients is due to the strategy

of ε−adaptation being sub-optimal. The model energy of both methods is largely
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comparable. We note that the model energy depends on the choices of ε made.

Thus model energy is not expected to coincide exactly. Generally, Figures 1D–1E

behave similarly for both algorithms.

5.2 Test 2: Convergence and Adaptivity

The second numerical test concerns the accuracy and adaptivity of the GA-method.

Let Ω =]0, 1[2, with ν = 1. Consider the exact solution (obtained from [14]

and applied to the Navier-Stokes equations)

u = π sin t(sin 2πy sin2 πx,− sin 2πx sin2 πy)

p = cos t cosπx sinπy,

and consider a discretization of Ω obtained by 300 nodes on each edge of the

square. We proceed by running five experiments, adapting both the first- and

second-order schemes using the algorithms above, where the tolerance for the

continuity and momentum equations is 10−(.25i+3) for i = 0, 1, 2, 3, 4. To control

the size of the timesteps, we require kn to be chosen such that

EST (1) ∈ (TOLm/10, TOLm). The solutions were obtained in parallel,

utilizing the MUMPS direct solver [2]. To examine convergence, we present in

Figure 2 log-log plots of the errors of the pressure and the velocity against the

average time-step taken during the test. We also present semilog plots of the evo-

lution of the pressure error and timestep during the final test below. The plots show

that the time-step adaptation is working as expected and reducing the velocity er-

ror, Figure 2C. Our intuition is that the pressure error is linked to satisfaction of

incompressibility; however, Figure 2D indicates convergence with respect to the

timestep. In our calculations we did observe the following: If ||∇ · u|| is, e.g., two

orders of magnitude smaller then the tolerance, ε is rapidly increased to be even

O(1). At this point the pressure error and violation of incompressibility spike up-

ward and ε is then cut rapidly. This behavior suggests that a band of acceptable

ε-values should be imposed in the adaptive algorithm.

To compare the GA, Min method and the scheme introduced in [6], we use the

test problem given above in this section with a known exact solution. The results

are given in Figure 3 below. Here, we use a mesh with the same density and final

time T = 1. A timestep kn = 10−2 is kept constant in this run to highlight

differences in the evolution of the variable εn, which has an initial value ε0 =
10−4. These tests are preliminary: In them, the min-Method seems preferable in

error behavior but yields smaller values and thus less well-conditioned systems.

In the evolution of all four quantities, the GA- and the CLM [6] method exhibit

near identical behavior. The min-Method, however, forces ε to be an order of
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magnitude lower than the values obtained by the other two schemes. This, in turn,

forces the divergence to be reduced. Furthermore, both the velocity and pressure

errors for the min-Method are smaller than those of the GA- and CLM-Methods.

6 Conclusions, open problems and future prospects

There are many open problems and algorithmic improvements possible. The dou-

bly adaptive algorithm selected smaller values of ε than k in our tests with the

same tolerance for both. A further synthesis of the methods herein with the mod-

ular grad-div algorithm of [13] would eliminate any conditioning issues in the

linear system arising. Developing doubly adaptive methods of order greater than

two (with modular grad-div) is an important step to greater time accuracy. We

mention in particular the new embedded family of orders 2,3,4 of [10] as a natural

extension. The method of Dahlquist, Liniger and Nevanlinna [7] is unexplored for

PDEs, but has promise in CFD because it is A-stable for both increasing and de-

creasing time-steps. Improved error estimators for the second-order method herein

would increase reliability. For AC methods, pressure initialization and damping

of nonphysical acoustics are important problems where further progress would be

useful.

Open problems. The idea of adapting independently k and ε is promising but

new so there are many open problems. These include:

• Is the ε-adaptation formula εnew = εold(TOL/||∇·u||) improvable? Perhaps

the quotient should be to some fractional power. Perhaps adapting ε should

be based of a relative error in ||∇ · u||, such as ||∇ · u||/||∇u||. Analysis of

the local (in time) error in ||∇ · u|| is needed to support an improvement.

• The ε-adaptation strategy seems to need preset limits, εmin, εmax, to enforce

εmin ≤ ε ≤ εmax. The preset of εmin is needed because ∇ · u = 0 cannot

be enforced pointwise in many finite element spaces. Finding a reasonable

strategy for these presets is an open problem. Similarly, it would be useful to

develop a coherent strategy for relating the two tolerances rather than simply

picking them to be equal (as herein).

• Proving convergence to a weak solution of the incompressible NSE of solu-

tions to the continuum analogs of the GA-method and min-Method for vari-

able ε is an important open problem. In this analysis it is generally assumed

that ε(t) → 0 in an arbitrary fashion. A more interesting problem is to link

ε(t) and ||∇ · u|| in the analysis. Similarly, an á priori error analysis for vari-

able ε is an open problem and may yield insights on how the variance of ε(t)
should be controlled within an adaptive algorithm. The consistency error of
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the two methods are O(k + ε) and O(k2 + ε), respectively. Energy stability

has been proven herein for the first order method and for the constant time-

step, second order method. Thus, error estimation while technical, should be

achievable.

• Comprehensive testing of the variable (first or second) order method is an

open problem. VSVO methods are the most effective for systems of ODEs

but have little penetration in CFD. Testing the relative costs and accuracy of

VSVO in CFD is an important problem.

Bibliography

[1] M. ALNÆS, J. BLECHTA, J. HAKE, A. JOHANSSON, B. KEHLET, A. LOGG, C.

RICHARDSON, J. RING, M.E. ROGNES, G.N. WELLS, The FEniCS project version

1.5, Archive of Numerical Software 3 (2015), 9–23.

[2] P. AMESTOY, I. DUFF, J.-Y. L’EXCELLENT, AND J. KOSTER, A fully asynchronous

multifrontal solver using distributed dynamic scheduling, SIAM Journal on Matrix

Analysis and Applications 23 (2001), 15–41.

[3] R.A. ASSELIN, Frequency filter for time integration, Mon. Weather Review

100(1972), 487–490.

[4] G.A. BAKER, Galerkin approximations for the Navier-Stokes equations, Technical

Report,1976.

[5] J. M. CONNORS, J. HOWELL, AND W. LAYTON, Decoupled time stepping for a

fluid-fluid interaction problem, SIAM J. Numer. Anal. 50 (2012), pp. 1297-1319

[6] R.M. CHEN, W. LAYTON, AND M. MCLAUGHLIN, Analysis of variable step/non-

autonomous artificial compression methods, JMFM 21 (2018).

[7] G. DAHLQUIST, W. LINIGER AND O. NEVANLINNA, Stability of two-step methods

for variable integration steps , SIAM J. Numer. Anal. 20 (1983), 1071–1085.

[8] T. DAVIS, Direct methods for sparse linear systems, SIAM, vol. 2, 2006.

[9] V. DECARIA, W. LAYTON AND M. MCLAUGHLIN, A conservative, second-order,

unconditionally stable artificial compression method, CMAME 325 (2017), 733–747.

[10] V. DECARIA, A. GUZEL W. LAYTON AND YI LI, A new embed-

ded variable stepsize, variable order family of low computational complexity,

https://arxiv.org/abs/1810.06670, 2018.

[11] V. DECARIA, W. LAYTON AND HAIYUN ZHAO, Analysis of a low

complexity, time-accurate discretization of the Navier-Stokes equations,

https://arxiv.org/abs/1810.06705, 2018.

[12] C. EGBERS AND G. PFISTER, Physics of rotating fluids, Springer LN in Physics 549

(2018).



26 W. Layton and M. McLaughlin

[13] J. FIORDILINO, W. LAYTON, AND Y. RONG, An efficient and modular grad-div

stabilization, Computer Methods in Applied Mechanics and Engineering 335 (2018),

327–346.

[14] J.-L. GUERMOND, P. MINEV AND J. SHEN, An overview of projection methods for

incompressible flows, Comput. Methods Appl. Mech. Engrg. 195 (2006), 6011–6045.

[15] J.-L. GUERMOND AND P. MINEV, High-Order Time Stepping for the Incompress-

ible Navier–Stokes Equations, SIAM J. Sci. Comput. 37-6 (2015), A2656-A2681

http://dx.doi.org/10.1137/140975231.

[16] J.-L. GUERMOND AND P. MINEV, High-order time stepping for the Navier–Stokes

equations with minimal computational complexity, JCAM 310 (2017), 92–103.

[17] J.-L. GUERMOND AND P. MINEV, High-order, adaptive time stepping scheme for

the incompressible Navier–Stokes equations, technical report 2018.

[18] M.D. GUNZBURGER, Finite Element Methods for Viscous Incompressible Flows -

A Guide to Theory, Practices, and Algorithms, Academic Press, 1989.

[19] A. GUZEL AND W. LAYTON, Time filters increase accuracy of the fully implicit

method, BIT Numerical Mathematics, 58 (2018), 301-315.

[20] A. HAY, S. ETIENNE, D. PELLETIER AND A. GARON, hp-Adaptive time integra-

tion based on the BDF for viscous flows. JCP, 291 (2015), 151-176.

[21] J. HOFFMAN AND C. JOHNSON, Computational turbulent incompressible flow: Ap-

plied mathematics: Body and soul 4 (Vol. 4). Springer, Berlin, 2007.

[22] H. JOHNSTON AND J.-G. LIU, Accurate, stable and efficient Navier-Stokes solvers

based on an explicit treatment of the pressure term, JCP 199(2004) 221-259.

[23] D.A. KAY, P.M. GRESHO, P.M., GRIFFITHS AND D.J. SILVESTER, Adaptive time-

stepping for incompressible flow Part II: Navier–Stokes equations. SIAM Journal on

Scientific Computing, 32(2010), 111-128.

[24] G.M. KOBEL’KOV, Symmetric approximations of the Navier-Stokes equations,

Sbornik: Mathematics. 193(2002), 1027-1047.

[25] W. LAYTON, Y. LI, AND C. TRENCHEA, Recent developments in IMEX methods

with time filters for systems of evolution equations, J. Comp. Applied Math. 299

(2016), 50–67.

[26] T. OHWADA AND P. ASINARI, Artificial compressibility method revisited: Asymp-

totic numerical method for incompressible Navier Stokes equations. J. Comp. Physics,

229:16981723, 2010.

[27] A. PROHL, Projection and quasi-compressibility methods for solving the incom-

pressible Navier-Stokes equations, Springer, Berlin, 1997.

[28] A. ROBERT, The integration of a spectral model of the atmosphere by the implicit

method, Proc. WMO/IUGG Symposium on NWP, Japan Meteorological Soc. , Tokyo,

Japan, pp. 19-24, 1969.



Doubly-Adaptive Artificial Compression Methods 27

[29] J. SHEN, On a new pseudocompressibility method for the incompressible Navier-

Stokes equations, Appl. Numer. Math. 21 (1996), 71–90.

[30] J. SHEN, On error estimates of projection methods for the Navier-Stokes equations:

First-Order Schemes, SINUM 29(1992) 57-77.

[31] J. SHEN, On error estimates of higher order projection and penalty-projection

schemes for the Navier-Stokes equations, Numer. Math. 62(1992) 49-73.

[32] J. SHEN, On error estimates of the projection method for the Navier-Stokes equa-

tions: second-order schemes,Math. Comp. 65(1996)1039-1065.

[33] C. TEMPERTON AND A. STANIFORTH, An efficient two-time level semi-Lagrangian

semi-implicit scheme, Q.J.Royal Meteor. Soc. 113(1987),1027-1039.

[34] A. VENEZIANI AND U. VILLA, ALADINS: An algebraic splitting time-adaptive

solver for the incompressible Navier-Stokes equations, JCP 238(2013) 359-375.

[35] P.D. WILLIAMS, A proposed modification to the Robert-Asselin time filter, Monthly

Weather Review, 137(2009), 2538-2546.

[36] P.D. WILLIAMS, The RAW Filter: An Improvement to the Robert–Asselin Filter in

Semi-Implicit Integrations, Mon. Weather Rev., 139 (2011), 1996–2007.

[37] L. YANG, S. BADIA AND R. CODINA, A pseudo-compressible variational multi-

scale solver for turbulent incompressible flows, Comp. Mechanics 58(2016) 1051-

1069.

[38] R.KH. ZEYTOUNIAN, Topics in hyposonic flow theory, Lecture Notes in Physics,

Springer, Berlin, 2006.

Received ???.

Author information

William Layton, Department of Mathematics, University of Pittsburgh, Pittsburgh, PA

15260, United States.

E-mail: ✇❥❧❅♣✐tt✳❡❞✉

Michael McLaughlin, Department of Mathematics, University of Pittsburgh, Pittsburgh,

PA 15260, United States.

E-mail: ♠❡♠✷✻✻❅♣✐tt✳❡❞✉



28 W. Layton and M. McLaughlin

0 2 4 6 8 10

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

Δt

First Order
Second Order

(A) Timestep evolution

0 2 4 6 8 10

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030
ε

First Order
Second Order

(B) ε evolution

0 2 4 6 8 10
−120

−100

−80

−60

−40

−20

0

p(0, 0)

First Order
Second Order

(C) Pressure at the origin

0 2 4 6 8 10

0.0000

0.0005

0.0010

0.0015

0.0020

∇ ⋅ u
First Order
Second Order

(D) Divergence evolution

0 2 4 6 8 10

0

10

20

30

40

50

60

70

80
Energy

First Order
Second Order

(E) Energy evolution

Figure 1. Stability and adaptability results.
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Figure 2. Accuracy and adaptability results.
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Figure 3. Comparison between GA, Min, and CLM methods.


