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Abstract—In the field of information forensics, many emerging
problems involve a critical step that estimates and tracks weak
frequency components in noisy signals. It is often challenging
for the prior art of frequency tracking to i) achieve a high
accuracy under noisy conditions, ii) detect and track multiple
frequency components efficiently, or iii) strike a good trade-off
of the processing delay versus the resilience and the accuracy
of tracking. To address these issues, we propose Adaptive Multi-
Trace Carving (AMTC), a unified approach for detecting and
tracking one or more subtle frequency components under very
low signal-to-noise ratio (SNR) conditions and in near real
time. AMTC takes as input a time-frequency representation of
the system’s preprocessing results (such as the spectrogram),
and identifies frequency components through iterative dynamic
programming and adaptive trace compensation. The proposed
algorithm considers relatively high energy traces sustaining
over a certain duration as an indicator of the presence of
frequency/oscillation components of interest and track their time-
varying trend. Extensive experiments using both synthetic data
and real-world forensic data of power signatures and physio-
logical monitoring reveal that the proposed method outperforms
representative prior art under low SNR conditions, and can be
implemented in near real-time settings. The proposed AMTC
algorithm can empower the development of new information
forensic technologies that harness very small signals.

Index Terms—Spectrogram, multi-trace tracking, dynamic
programming, heart rate, electric network frequency (ENF).

I. INTRODUCTION

HE recent two decades have seen a rapid growth of digital

information forensic research [2], with applications from
tampering detection, to spatial-temporal verification, to more
recently, physiological forensic analysis. Many of these emerg-
ing information forensic problems involving small and noisy
signals include a critical step of estimating and tracking the
instantaneous frequency or oscillation rate. Examples include
the imperceptible environmental frequency traces such as
power signatures in the form of Electric Network Frequency

Q. Zhu was with the Department of Electical and Computer Engi-
neering, University of Maryland, Collge Park, MD, 20742 USA, where
the work was carried out, and is now with Facebook Inc. E-mail:
zhugiang @terpmail.umd.edu.

M. Chen and M. Wu are with the Department of Electrical and Computer
Engineering, University of Maryland, Collge Park, MD, 20742 USA. E-mail:
{mchen126, minwu} @umd.edu.

C.-W. Wong was with the Department of Electrical and Computer
Engineering, University of Maryland, College Park, MD, 20742 when this
work was started, and is now with the Department of Electrical and Computer
Engineering, North Carolina State University, Raleigh, NC, 27695 USA. E-
mail: chauwai.wong@ncsu.edu.

A preliminary version reporting early-stage results of this work was
presented in the 2018 Asilomar Conference on Signals, Systems, and Com-
puters [1].

(ENF) signals [3]-[5], and the pulse frequency traces in the
form of remote photoplethysmogram from facial videos [6]-
[8].

As the extraction of frequency traces often plays a key
role in the aforementioned forensic applications, one needs
to carefully answer the following questions before deploying
a frequency estimator:

1) Can the frequency components be detected from the

digital recording?

2) If a frequency component is detected, can the frequency
be accurately estimated, especially in low signal-to-noise
ratio (SNR) conditions?

Answering the above problems can be challenging due to the
relatively low signal strength of the components-of-interest
compared with other audio or visual contents in the recording.
To successfully estimate the frequency of interest within the
noisy signal, an algorithm must be robust under strong noise
and have the capability to exclude strong interferences.

In this paper, we take as input the time-frequency rep-
resentation of the system’s preprocessing results, such as a
spectrogram, to perform frequency estimation and tracking.
We propose a detection and tracking method for multiple
frequency traces based on iterative dynamic programming and
adaptive trace compensation. Inspired by the seam carving
algorithm for content-aware image resizing [9], we relate the
problem of finding a smooth frequency trace to that of finding
the trace of maximum energy in a spectrogram. Consider-
ing the inherent continuity in many forensic problems, we
incorporate an additional temporal regularization term that
favors close frequency estimates in consecutive time bins.
Such a problem can be efficiently solved using a dynamic
programming framework.

Considering the presence of multiple traces within the
frequency range of interest is possible, we propose an it-
erative frequency tracking method named Adaptive Multi-
Trace Carving (AMTC) to track all candidate traces. We
first apply a proposed single-frequency tracking method to
obtain the dominating frequency and then compensate the
energy of the previous trace at the end of each iteration to
facilitate the estimation of a next trace. Fig. 1 shows two
tracking examples using AMTC on highly-corrupted signals,
where the estimation results of AMTC are almost identical to
the references. An efficient near real-time algorithm is also
proposed by assuming the Markovian property of traces and
introducing a bidirectional time window. We call it the online-
AMTC. Although we mainly consider the spectrogram in this
paper, our proposed techniques can be applied to other time-
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Fig. 1. (a) Spectrogram of a synthetic —10 dB signal with three frequency
components and (c) the same image overlaid with ground-truth frequency
components (white dashed line) and the frequency estimates using AMTC
(blue line). (b) Spectrogram of a remote-photoplethysmogram signal with a
weak pulse trace masked by a strong trace induced by the motion of a subject
exercising on an elliptical machine [11] and (d) the spectrogram overlaid with
pulse rate estimate (blue line) after compensating the first trace (magenta line)
using AMTC. The estimation result is compared with the heart rate (white
dashed line) simultaneously measured by an electrocardiogram-based sensor.

frequency representations of the signal for which the temporal
tracking of signal traces is needed [10].
The main contributions of this work are as follows:

1) For the task of the frequency-based media forensics, we
have proposed a robust approach for frequency detection
and tracking which can accurately and efficiently track
multiple frequency traces in very low SNR conditions
(usually < —10 dB). This method does not require
the prior knowledge of the signal’s specific statistical
characteristics.

2) We adapt our proposed baseline algorithm of offline-
AMTC into an efficient near-real-time algorithm. We re-
duce the computational complexity with a queuing data
structure and maintain the performance level comparable
with the offline version.

3) We conduct extensive experiments and analysis using
challenging synthetic data and real-world forensic data.
Several estimation methods initially proposed for other
applications (such as the pitch estimation) are imple-
mented, re-trained (the factorial hidden Markov model
based method [12]), and compared. The results in Sec-
tion V-A will show that the proposed offline-AMTC
outperforms the Particle Filter method [13] and the
YAAPT method [14] (which integrated normalized cross
correlations, spectrogram peaks, and dynamic program-
ming) in terms of the accuracy in a single-trace tracking
scenario, and outperforms the factorial hidden Markov
model based method [12] in terms of the accuracy and
efficiency in a multi-trace tracking scenario.

4) We present a novel detection method based on the
AMTC framework to accurately test the presence of
trace and discuss other considerations when using the
approach, such as the estimation of the number of fre-
quency components and the accommodation of human-
in-the-loop involvement.

The rest of the paper is organized as follows. In Section II,
the background information and the related work about the
frequency tracking problems are discussed. In Section III, we
formulate the problem of single-trace tracking and solve it
using dynamic programming. In Section IV-A, we propose
the offline multi-trace tracking method or the offline-AMTC,
based on an iterative and greedy search strategy. In Sec-
tion IV-B, we present the online-AMTC. In Section V, we
show the experimental results comparing the performance of
AMTC with several representative prior methods using both
synthetic and real-world data. In Section VI, we evaluate the
impact of various factors on the performance. In Section VII,
we discuss several practical issues as well as the limitations
of the AMTC algorithms. Section VIII concludes the paper.

II. BACKGROUND AND RELATED WORKS
A. Micro-Signal Extraction

A number of information forensic challenges often boil
down to the frequency extraction problem, where the signals-
of-interest have smaller amplitude or size, typically by about
one order of magnitude, than the dominating or hosting
signals [15]. Among the forensic applications involving micro-
signals, the Electric Network Frequency (ENF) signals and
the video-based remote-photoplethysmography (rPPG) are two
emerging examples. Here, we briefly discuss these two appli-
cations that inspired this work and will serve as the source
of real-world data examples to demonstrate our proposed
algorithms.

ENF signal can be captured by audio recordings made near
mains-powered appliances due to electromagnetic interference,
acoustic hum, and/or mechanical vibrations. ENF signal can
also be captured by photodiodes and cameras due to ENF-
induced flicking of mains-powered light sources. As the ENF
variation at each time instant and location differs from each
other, the recording time and place can be validated by
matching the ENF extracted from the recording with the
reference obtained from the power mains.

The rPPG technique is an emerging approach to tackle face
sproofing and forgeries [7], [8]. It has been shown possible
in [6] to extract a person’s instantaneous pulse rate (PR)
from his/her facial video by examining the subtle pulse-
induced color change of the facial skin pixels, including when
the video contains significant movement and environmental
illumination changes [11], [16]. rTPPG based physiological
forensics are showing promise in sports, fitness, as well as
public health [17].

In these forensic applications, the presence of multiple
frequency traces within a certain frequency range is possible.
For the ENF scenario, strong acoustic interference from other
sources may very well dominate the weak ENF traces. For the
rPPG scenario, the frequency trace resulting from a person’s
movement (such as running on a treadmill) may coexist with
the pulse frequency trace, as seen in Fig. 1(b). Using a
multi-trace search strategy increases the chance of finding the
appropriate trace-of-interest. In addition, being able to run a
tracking algorithm in real time may also be important for such
applications as physiological sensing.



B. Prior Art on Frequency Tracking

Traditional frequency estimation algorithms are often ap-
plied individually to each temporal segment, assuming
segment-wise signal stationarity. Subspace methods such as
multiple signal classification (MUSIC) [18] and estimation
of signal parameters via rotational invariance technique (ES-
PIRIT) [19] build pseudo power spectra using parametric
models of pure sinusoids. These frame-wise estimation algo-
rithms do not explicitly exploit the temporal correlation of
neighboring segments and become less accurate as the SNR
drops and frequently generate outliers.

The problem of tracking a single frequency component has
been extensively studied. In [13], a sequential Monte Carlo
method was proposed, and importance sampling was used to
approximate the posterior distribution of each frequency state.
However, without a backward smoothing procedure, the output
tracking results tend to be inaccurate when substantial inter-
ference exists, and the resampling stage makes the algorithm
time-consuming. In [20], a prior knowledge of trace dynamic
was utilized, and the problem was formulated as a hidden
Markov model (HMM) problem. The maximum a posteriori
probability estimate was efficiently calculated by running a
Viterbi solver. However, HMM requires both the modeling and
calibration of a key building block, the emission probability.
Such a pre-calibration requirement often makes this method
hard to be deployed in real-world forensic tasks, especially
when the training data is unavailable. The recently developed
Yet Another Algorithm for Pitch Tracking (YAAPT) [21] fo-
cused on single pitch estimation of speech signal based on both
spectrogram and correlogram. The authors proposed using
dynamic programming to estimate the fundamental frequency
trace from a set of candidate peaks of proposed harmonic
spectral features. A similar tracking method can be found
in [22]. Such local-peak based methods guarantee excellent
performance in high SNR cases, but often generate biased
estimates under low SNR, as the probability that a local peak
represents the actual signal frequency drops significantly.

The problem of tracking multiple frequency components
from the spectrogram image has also been investigated. Image
processing techniques such as morphological operators [23]
and active contour [24] methods have been applied to this
area, but these methods may be difficult to be adapted to real-
time tracking algorithms. Wohlmayr et al. [12] modeled the
probability of pitch using Gaussian mixture models (GMMs),
and then used the junction tree algorithm to decode a speaker-
dependent factorial HMM (fHMM). A similar approach can
be found in [25], where the emission probability was modeled
by a deep neural network (DNN). Although both methods
provide excellent performance in terms of accuracy for speech
analysis, it is not always possible to meet the general needs in
the real world for the following two reasons. First, the training
phase requires a large amount of real-world data, which is
often unavailable for most tasks beyond speech applications.
Second, it is relatively time-consuming to compute the frame-
wise joint emission probability and to decode the fHMM with
the junction tree algorithm. More recent studies [26], [27]
proposed to use linear programming to find the best connection

path of the frequency peaks on the spectrogram. These two
methods first obtain all frequency peaks in the spectrogram as
candidates and then find the best path from the candidates via
linear programming. For low SNR scenarios, such approaches
may find a large number of frequency peaks as the candidates,
leading to huge memory and computational cost that is not
scalable.

III. TRACKING A SINGLE FREQUENCY TRACE

In this section, we present a trace tracking method which
provides a practical and robust solution for tracking a single
frequency trace. We formulate the problem by taking into
account the energy as well as the smoothness of the trace. We
adopt a dynamic programming algorithm to efficiently search
for a candidate trace. A trace presence test is applied at the
frame level to finalize the estimated trace.

A. Problem Formulation

We first formulate a frequency tracking problem for the
scenarios that only a single trace exists in a frequency range
of interest. Let Z € R_I:_/I *N be the magnitude of a signal
spectrogram image, which has NV discretized bins along the
time axis and M bins along the frequency axis. We define a
frequency trace as

f= {(f(n)7n)}£y:17 (D

where f: [1, N] — [1, M] is a function. Given the spectrogram
Z and a candidate trace f, we define an energy function for
the trace as E(f) = 25:1 Z(f(n),n). A reasonable estimate
of the frequency trace for the given signal is the trace f that
maximizes the energy function shown as follows

f= arglfnax E(f). 2)
Problem (2) is equivalent to the peak-finding method [3], [28]
where f(n) = argmax Z(f(n),n), ¥n € [1, N]. It also shares
a similar spirit as (th)e weighted average approach [3].

To take into consideration the smoothness assumption of the
trace along time, we add a regularization term that penalizes
jumps in the frequency value. We model the change of the
frequency value between two consecutive bins at n — 1 and n
as a one step discrete-time Markov chain, characterized by the
prior distribution function P,, and the transition probability
matrix P € RM*M_ where P,, = P(f(1) = m) and
Poim = P(f(n) =m|f(n—1) =m/), Ym,m' =1,..., M,
and Vn = 2, ..., N. Note that we assume P, to be uniformly
distributed throughout this paper to treat the initial presence
of each frequency state equally, even though it is possible
to use other choices based on the available prior knowledge.
The regularized single-trace frequency tracking problem is
formulated as follows

f = argmax E(f) + AP(f),
£

N
where P(f) £ log P(f(1)) + 32,_,log P(f(n)|f(n — 1)),
and A > 0 is a regularization parameter that controls the
smoothness of the resulting trace.

3)
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Fig. 2. Illustrations for an offline-AMTC estimation process: (a) spectrogram of a synthetic —8 dB signal with two frequency components. The unvoiced
segment is from 1.5 to 2.5 min (white dots: ground truth); (b) first and (c) second trace estimates in voiced decision regions (white line) and unvoiced decision
regions (black line) by AMTC; (e)—(f) test statistic RER and the corresponding voiced decision; (d) final trace estimate.

B. Efficient Tracking via Dynamic Programming

The regularized tracking problem in (3) can be solved
efficiently via dynamic programming. First, we recursively
compute an accumulated regularized maximum energy map
G € Rf\f *N'column by column for all entries (m,n) as
follows

Z(m,n) + Alog P, n=1;
G(m,n) = { max{G(m',n — 1) + Alog Ppym }
m/
+Z(m,n), n > 1.
“)
After completing the calculation at column n = N, the

maximum value of the Nth column is denoted as f(NV).
Second, we find the optimal solution by backtracking from
the maximum entry of the last column of the accumulated
map G. Specifically, we iterate n from N — 1 back to 1 to
solve for f(n) as follows

f(n) = argmax  G(f(n),n) + Nog Py iy (5)

f(n)
Note that we can avoid transitions from state m’ to state m
by setting P, = 0, since the regularization term would

penalize the total energy to —oco. If we assume uniform
random walk transitions within the window containing 2k + 1
frequency bins around f(n — 1) = m’, i.e., Ppim = Tlﬂ,
|m’ — m| < k, then problem (3) is degenerated, where the
value A does not affect the solution.

C. Trace Presence Test

To determine the presence of a frequency component in
a specific time interval, we first make independent decisions
for every frame within the time interval on the presence of
the frequency component, and then refine the decisions by

considering neighborhood correlations. Adopting the termi-
nology from the speech analysis, we refer to those frames
with a frequency component as voiced frames, or otherwise
as unvoiced frames. We propose to test the presence of a
frequency component by evaluating the relative energy of the
detected trace. A test statistic named the Relative Energy Ratio
(RER) is defined as follows:

RER(n) — \F 2 (). m) ©

Zme]:(n) Z(mﬂ Tl) ’

where F(n) £ [1, M]\[max(L, f(n) — &), min(M, f(n) +
d¢)] is a conservative set of frequency indices that does not
contain the frequency indices around the estimated frequencys;
d; is a predetermined parameter, and | - | is the cardinality
of a set. It is evident that the higher RER(n) is, the more
probable that nth frame is voiced. The decision is made
by comparing the test statistic RER(n) with an empirically
determined threshold Agrggr. A discussion about the optimal
selection of Agrgr Will be presented later in Section V-A3.

Next, we improve the initial frame-based presence detec-
tion results by merging nearby segments of the same type.
Specifically, we propose to merge two consecutive voiced
segments if they are separated by an unvoiced segment shorter
than A1, and then merge two unvoiced segments if they are
separated by a voiced segment shorter than A,. Here, A,
and A, are the upper bounds for determining unvoiced and
voiced segments that allow merging, respectively. Fig. 2(e)
and Fig. 2(f) illustrate two examples of the decision making
process in which the dash—dot blue curve corresponds to the
initial decision results and the solid blue curve corresponds to
the refined/final decision results. Note that the final decisions
have successfully excluded short segments given by the initial
decisions.




Algorithm 1 Offline Adaptive Multi-Trace Carving (offline-
AMTC)

1: procedure AMTC(Z, L)

2: Z(l) — Z

3: f) < argmax Bz, (f) + AP(f)
£

> L: number of output traces

4: V(1) ¢ DetectPresence(Z ), f‘(l), ARgr, A1, Ap)!
5: for [ < 2to L do
6: Update Z;y according to (7)
7: fu) < argmax Ez, (f) + AP(f)

£
8: V(1) < DetectPresence(Z;), f(;), Arer, A1, Do)
9: return f‘(lzL)a \A’(l:L)

IV. TRACKING MULTIPLE TRACES VIA ITERATIVE
FREQUENCY COMPENSATION

In the previous section, we have introduced a single fre-
quency trace tracking and detection method using dynamic
programming and trace presence testing, respectively. For
some forensic tasks such as extracting pulse rate from the face
video containing subject’s motion, as shown in Fig. 1(c), the
presence of multiple traces in the frequency range of interest
is possible, and the dominating trace in the spectrogram might
not be the one of interest. A crude deployment of any single-
trace tracking method on such tasks would generate com-
pletely wrong answers. To address this problem, we extend the
single-trace tracking method to be able to track multiple traces
by extracting each trace iteratively to find all candidates. We
name this method the Adaptive Multi-Trace Carving (AMTC).
In the rest part of this section, we first present the offline
version of AMTC (offline-AMTC), when the trace estimate
is optimized according to the entire available signal. We next
adapt the offline-AMTC to an efficient online version (online-
AMTC), which runs in near real time with low delay.

A. Offline-AMTC

Similar to the iterative nature of the seam carving algo-
rithm [9], a greedy algorithm can be used to search multiple
traces by iteratively running the single-trace tracker proposed
in Section III. Since the single-trace tracker only extracts
the dominating trace from the spectrogram, the previously
detected traces need to be erased or compensated before
invoking the single-trace tracker in the next iteration.

Below, we describe the trace compensation process. Sup-
pose f(l) is the estimated frequency trace at the [th iteration.
For each time frame of the spectrogram, i.e., Z (1 : M,n),
we search for a left boundary point m;;)(n) from f(l)(n)
to its left side. We set my)(n) = m, where m is the
nearest point to f(l)(n) that is either a local minimum point
in Z(;)(1 : M,n) or a local minimum point in the first-order
difference of Z;y(1 : M,n). The search of the right boundary
point my(;y(n) works similarly except it considers the local
maximum point in the first-order difference of Z)(1: M, n).

DetectPresence(-) refers to the trace presence detection algorithm de-
scribed in Section II-C. ¥(;y € {0, 1} is the trace presence decision with
0 as unvoiced and 1 as voiced.

fm
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Fig. 3. Tllustrations for the trace compensation process: (a) the spectrogram
of a synthetic —8 dB signal with two frequency components; (b) first trace
estimate by AMTC (white line); (c) the spectrogram after the first trace
compensation; (d) sampled spectral distribution centered at f 1)(n), where
n = 400, see the vertical line in (b); (e) the first-order difference of the
spectral function in (d); (f) the generated point-wise compensation weights.
The value of &(21) is determined by the values within the green dashed segment
in (d).

In this paper, we call Zy(myy(n) : mogy(n),n) the effective
peak of fy(n).

One example of the trace compensation process is shown in
Fig. 3. The plot in (d) shows the spectral energy distribution
centered at f(l) (n), which corresponds to the light blue vertical
line in (b). In this case, my(1)(n) is selected as the first local
minimum point, and my(1)(n) as the local maximum point in
the first-order difference of Z ;) (1 : M, n). Based on my;(n)
and my(;y(n), we propose to use a flipped Gaussian-shaped
function to compensate the energy of the estimated frequency
component. The compensated power spectrum at the (I + 1)st
iteration is updated point-wise in n and m as follows

- (m - f(z)(n))2
2&(2l)(n)

Z(41)(m,n) < |1 —exp “Zy(m,n),

ma ) (n) 7
Yy () Ly (msm)(m = fiy(n)?

ma)(n)
Emzzlnll(l) (n) Z(l) (m7 n)

5'(21)(”) =

(N
where &(21)(”) is used to quantify the width of the effective
peak at the [th iteration. The pseudo code of the offline-AMTC
is shown in Algorithm 1. In Fig. 2, we give an example of
two-trace estimation process on a synthetic heart beat signal.
The final estimate is almost identical with the ground truth,
and the unvoiced segments are successfully detected.

If we define L as the number of traces to track,
the computational complexity for the offline-AMTC is
O(NLM?). To compare, the fHMM methods [12], [25] re-
quires O(N LM%+1) without considering operations for com-
puting emission probability. The efficiency of offline-AMTC
is mostly explained by the idea of the introduced iterative
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Fig. 4. A flowchart for the online-AMTC algorithm for three-trace estimation
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search. We will later show in Section V that the demonstrated
efficiency is not achieved at the expense of performance drop.

B. Online-AMTC: An Efficient and Near Real-Time Approach

For the use cases of real-time tracking, we propose online-
AMTC by adapting the offline-AMTC to track multiple fre-
quency components in near real time (NRT) with a delay of
ko time units. In this NRT scenario, the tracking goal at the
time instant 7 is to estimate f(;.1)(n) based on the available
spectrogram information Z1)(1 : n + k2)*.

A naive brute-force approach can be constructed by it-
eratively running the offline-AMTC from time instant 1 to
n + ko. For each time instant n, the time complexity is
O(nLM?). If the total number of the spectral frames is N,
this slow but accurate approach will require O(N M) in space
and S O(nLM?) = O(N2LM?) in time. The compu-
tational complexity in space and time increases linearly and
quadratically in [V, respectively. This unbounded increase will
eventually lead to both memory overflow and CPU overload,
especially when systems are deployed for a longer term.

Another way to adapt the offline-AMTC for the NRT
scenario and to solve the computational issue of the brute-force
approach is to segment the time signal into non-overlapping
chunks, and let the offline-AMTC run independently on each
segment. This segment-based approach (aka, the segment-
based offline-AMTC) trades accuracy for space and time
complexity since the information before the block of interest
is not used in the estimation process. This issue is more
severe for those with shorter block length, as confirmed by
the experimental results in Section V-Al.

The online-AMTC is developed to address the storage
and computational issues mentioned above with comparable
accuracy with the offline-AMTC. We propose to use a fixed-
length queue buffer for storing and updating the intermediate
values of Z, G, and f . As a result, the running time and the

2For concise representation, we use G(n1 : n2) and Z(ny
shorthand for G(1: M,n1 : n2) and Z(1 : M, nq

1 ng) as a
: ng), respectively.

memory requirement are greatly reduced and are independent
of time n.

We introduce the online-AMTC by first discussing online
iterations for the estimation process of the first trace. The
processing flow of the online-AMTC algorithm at the instant
n is illustrated in Fig. 4. Suppose the allowed delay length
is ko, and f(l)(n — 1) has been computed by backtrack-
ing from the accumulated regularized maximum energy map
G(1)(n—1:n+ky—1). At the arrival of the next innovation
frame Z;)(n + k2) (the orange frame in Fig. 4), our goal
is to estimate f(l)(n). From the forward update rule of G
in (4), it can be seen that G(1)(n : n + kz — 1) would remain
unchanged compared to the output in the previous time instant
n — 1. We therefore only need to update the right most frame
G(1)(n+k2) given G(1)(n+kz—1) and the innovation frame
Z(1)(n + k) as shown in the middle box of the first row
of Fig 4. We can then obtain f(l)(n) via backtracking from
G1(n : n+ ko) according to (5).

Denote the previous estimates at time n — 1 obtained from
the backtracking process that leads to f(1)(n—1) as fpre( -

n + ko — 1). During the backtracking process for f 1)( ) if
f(l) f(1) at the time instant index T, € [n,n+ ko), f( y(n
T.) stays unchanged as fg;(n T.). This claim holds because
G1)(n : Tc) remains the same during the process. In this
regard, we consider storing and updating fpre (n—1:n+ko—1)
in a buffer, whereby the update process of fg; stops at the

instant T, if f1)(T%) = fg;(Te), as shown in the right box of
the first row of Fig. 4. In this way, the computation complexity
is further reduced.

Different from the estimation process for the first trace, any
change from previous trace estimation f(l:l—l) would have
influence on the formation of Z;), G(;), and therefore f(l).
In order to obtain a robust estimate for f(l), I > 1, we
introduce a look-back length, k; > 0 in this process. As
demonstrated from second and third rows in Fig. 4, for [th
trace estimation at time instant n, we utilize the previous trace
estimates f(l,l)(n —ki:n+ko)and Zg_1y(n—ki:n+ ko)
to obtain new Zy(n — k1 : n+kz) and Gy (n—Fky : n+ks),
and thus f(l)(n — k1 : n+ ks). Efficient backtracking can also
be achieved using the previous backtracking strategy, same as
the case in estimating the first trace. The details of the online-
AMTC algorithm at the nth iteration is shown in Algorithm 2.

The worst-case computational complexity for the online-
AMTC is O(N (k1 + ko) LM?), which appears to be (k1 + k2)
times higher than the offline version. In a statistical sense,
however, the expected complexity of the online-AMTC is
much less than the worst-case analysis result because the
probability that an entire trace estimate being changed from
the previous one is low at each time instant. We will compare
the average computation time running the offline- and online-
AMTC in Section V-A2.

V. EXPERIMENTS AND PERFORMANCE ANALYSIS

In this section, we carry out experiments to examine the
performances of the AMTC algorithms, including the baseline



Algorithm 2 Online-AMTC at time n

1: procedure AMTC(Z1.1)(1 : 72 — 1), G(1.py (11 : 72 — 1), fé’l“fL) (r1:72—1), Zy(12)) > En—ki, n2n+k.
2: Z1)(71 : T2) < concatenate Z(1 : 72 — 1) and Zyy(72); Te < 12 — 1

3: Update G 1)(72) according to (4) using G(1)(72 — 1) and Z;)(72)

4: for [ < 1to L do

5: Estimate f(l)(Te +1: 72) according to (5) using G;)(T. + 1 : 72)

6: if [ < L then X

7: Update Z41)(Te + 1 : 72) according to (7) using Zy(T. +1: 72) and fy(Te +1: 72)
8: for : < T, to 7, do

9: Estimate f(l)(i) according to (5) using f(l)(i +1) and Gy (i)

10: if [ < L then

11 Update Z;1)(4) according to (7) using Z;) (i) and f(l)(i)

12: if fu)(i) == f() (i) then

13: Update G(;41)(i + 1 : 7o) according to (4) using Z;41)(i +1: 7o) and G;41)(i)

14: fay(my ) = fy (7 4); T + i; break

15: else if : == 7 then

16: Update G ;41)(71 : 72) according to (4) using Z1(i : 72); Te < i

17: @(l)(Tl : 7'2) = DetectPresence(Z(l)(Tl : 7'2), f(l)(Tl : 7'2), ARER7 Al, Ag)

18 return f(1.0)(n), 91.0)(n), Zopy (i + 1 7). Gaopy(m + 1), fauny(m +1:7)
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Fig. 5. (a) Spectrogram of a synthetic —10 dB signal with one frequency
component; Trace tracking results (red line) by (b) YAAPT, (c) particle filter,
and (d) offline-AMTC, respectively. The ground-truth trace is shown in dashed
black line in each plot.

version and multiple variants. We first use synthetic data with
known ground truth, and then study with real-world data.

A. Simulation Results and Comparison with Known Ground
Truth

1) Single Trace: We first evaluate the performance of
the AMTC algorithm using synthetic data containing a single
frequency trace. The AMTC algorithm is compared with the
Particle Filter [13] and the local peak based YAAPT [14] meth-
ods. For the offline-AMTC and the online-ATMC, we used
the uniform random walk model specified in Section III-B.
The hyperparameters k, Agrgr, A1, Ao, ki, and ko were
set as 3, 2.41, 30, 30, 50, and 100 throughout the paper,
respectively, unless otherwise stated. For the Particle Filter
method, the number of particles was set to 1024. For each
test signal, we generated a time-varying pulse rate trace
present from the beginning to the end of the timeline. More
specifically, denote s[n] as the temporal measurement of the

corrupted frequency signal, s[n] = sin®[n] + €[n|, where
®[n] = ®n — 1] + 2rf[n]/fs, f[n] is the time-varying
synthesis frequency, fs is the sampling rate set to 30 Hz, and
€[n] is the noise quantified by a zero-mean white Gaussian
process. The variance of €[n] is an adjustable parameter for
achieving different SNR levels. To generate frequency signals
f[n] that behave similarly as real-world pulse rate signals, we
trained a 9-tap autoregressive model using heart rate signals
collected by a Polar H7 chest belt in both exercise mode and
still mode. We use beat per minute (bpm) as the frequency unit.
The duration of each test signal is 3 minutes. The spectrograms
were generated by short-time Fourier transform (STFT) with
a rectangular window of length 10 seconds and 98% overlap
between adjacent frames. We padded zeros to the end of each
frame to make neighboring frequency bins 0.17 bpm apart.
We generated 500 trials under each of the five SNR con-
ditions, or 250 for each mode (namely, the exercise and the
still cases) using the estimated parameters of the autoregressive
models. We used three metrics. Namely, the root mean squared
error (RMSE), the error rate (ERATE), and the error count
(ECOUNT) defined as follows to evaluate the performance:

e RMSE = \/% S (e 102,
« ERATE = =37 | f; _ft‘/ft’
o ECOUNT = ‘{t €L,1]: ‘ft _ft‘/ft > T}‘/T’

where |{-}| denotes the cardinality of a countable set, f; and
ft are the frequency estimate and the ground-truth frequency
at tth time frame respectively, and 7 was chosen to be 0.03
empirically determined from the spread of the frequency
components. Fig. 5 shows tracking results of a —10 dB
synthetic signal with one frequency component using offline-
AMTC, YAAPT, particle filter, respectively. In this example,
AMTC outputs the best trace estimate among the three without
much deviation from the ground truth. The results of overall




160 100 4

[CIYAAPT
[ Particle
B AMTC

120 4

[ ———

60

e
Y
R ——
B
B

ERate (%)

40

20

- -
.

-
[

C_JYAAPT 7 ﬁ : B [CvaaPT
[ Particle - D . [ Particle
B AMTC | | | AMTC

—————ma
[

[,

.
3
1
[ 3K

—o— look-ahead 0
—+—|ook-ahead 100
——look-ahead 200
—»— look-ahead 300
—o—look-ahead 400
offline-AMTC

~
-

T T T
-20 -16 -12
SNR (dB)

—o— look-ahead 0

—+— |ook-ahead 100
—— look-ahead 200
—»— look-ahead 300
—o—look-ahead 400

—o— look-ahead 0
——|ook-ahead 100
—+—look-ahead 200
—»— look-ahead 300
—o—look-ahead 400
offline-AMTC

offline-AMTC

———R—9—9-—29
o T T T 1

-20 -15 -10 -5 0
SNR (dB)

0

Fig. 6. First row: Comparison of the performance of single-trace tracking by the proposed offline-AMTC, particle filter, and YAAPT methods at different levels
of SNR. Statistics of the RMSE, the ERATE, and ECOUNT of frequency estimates are summarized using box plots. Second row: Trace tracking performance
by the online-AMTC with different levels of look-ahead window length and SNR. The results for the offline-AMTC are also shown in the plots for the

comparison purpose.

performance are shown in the first row of Fig. 6 in terms of
box plots that each box compactly shows the median, upper
and lower quantiles, and the max and min values of a dataset.
It is evident from the box plots that, under all SNR levels,
offline-AMTC generally outperforms the particle filter method
and the YAAPT not only in terms of the average but also in
the variance of the error statistics.

Next, we tested the online-AMTC algorithm using different
look-ahead (k2) time lengths. The evaluation was conducted
using the same setting mentioned above, and the averaged
behavior of each look-ahead length is plotted in the second row
of Fig. 6. The numbers in the legends indicate the lengths of
look-ahead window lengths represented by the number of time
bins in the spectrogram. We have two observations from these
plots. First, a performance jump from no look-ahead versus
100-bin look-ahead length is observed. The performance curve
moves closer to that of the offline-AMTC as the look-ahead
length increases. This observation coincides with the intuition
that a small look-ahead length would cause the online trace
estimator to find a locally optimum solution. Second, given
the shape of the curve, the performance starts to converge
from SNR = —10 dB upwards and is almost identical when
the look-ahead length is greater than 100 frames. This trend of
performance convergence is also expected as the signal quality
is high enough for AMTC to track the correct trace.

Finally, we compared the performance among the online-
AMTC, the brute-force approach, and the segment-based
offline-AMTC in terms of their runtime and ERATE in NRT
scenario using a 2014 MacBook Pro with a 2.3 GHz Intel Core
15 processor. In Table I, we show the performance comparison
when the SNR is —12 dB with the experimental setting

TABLE I
PERFORMANCE COMPARISON BETWEEN THE ONLINE-AMTC, THE
BRUTE-FORCE APPROACH, AND THE SEGMENT-BASED OFFLINE-AMTC

NRT Delay (# of Frames) 0 50 100
Runtime (seconds per 100 frames)

Online-AMTC 0.22 0.33 0.38

Brute-Force 1.59 2.24 2.50

Segment-Base Offline-AMTC 0.09 0.09 0.09

ERATE (%)

Online-AMTC 6.99 3.36 3.26

Brute-Force 6.99 3.36 3.26

Segment-Based Offline-AMTC  23.32  16.12  12.01

specified in this section. Note that the ERATE of the segment-
based offline-AMTC is more than three times higher than that
of the online-AMTC when the NRT delay equals 100 frames,
and more than four times higher than that of the online-
AMTC when the delay equals 50 frames. The advantage in
computational time complexity of the segment-based offline-
AMTC is at a cost of a significant drop in estimation accuracy,
where we observe an increase of ERATE by more than 8.5%
when the NRT delay is up to 100 frames. We also observed
that the runtime of the brute-force approach is significantly
higher than that of the online-AMTC in the same estimation
accuracy. This can also be seen in Fig. 7(a), where we compare
the runtime of the online-AMTC and the brute-force approach
in terms of the number of processed frames with the look-
ahead length equaling 100 frames. We see that the online-



57.7 20

60 - [ Brute-Force
I online-AMTC

—@— Brute-Force
== online-AMTC

1

A Runtime (sec)
>

0.7 0.7 0.6 0.6
0 T T T T

300 450 600 750 900 450 600 750 900
Number of Frames Number of Frames

() (b)

Fig. 7. (a) The runtime function of the brute-force approach and the online-
AMTC in near real-time scenario. The trace estimates are identical for the
two methods. (b) First-order difference function of the runtime curves in (a).

AMTC runs ten times faster than the brute-force approach
when the total frames to process is more than 750. From the
first-order difference function of the runtime curves shown
in Fig. 7(b), the runtime of the brute-force approach and
the online-AMTC appears to be quadratic and linear in the
number of processed frames. This observation coincides with
our analysis in Section IV-B.

2) Multiple Traces: In this section, we evaluate the perfor-
mance of the offline- and online-AMTC using simulated data
in the presence of multiple traces and compare them with the
fHMM method. To allow a fair comparison of our methods
with fHMM, we adopt the performance measure proposed
in [29] with a slight change. We give details on our experiment
setup as well as the error measure below.

To test both algorithms, we generated a corrupted fre-
quency signal s[n] with two frequency traces, i.e., s[n] =
212:1 sin ®(;)[n] + €[n]. The model trained in still mode for
generating ®[n] in Section V-Al is adopted for synthesizing
both traces. The variance of €[n] is tuned to achieve six SNR
levels from 0 to —10 dB. To cope with the high computational
cost associated with running fHMM at a full scale, we cut
signals to 1 minute, set the number of frequency bins to 64, and
made neighboring frequency bins 1 bpm apart. The cardinality
of frequency state was set to 169 so that it uniformly covers
the whole frequency range of interest. For each trace, we also
introduced a 20 seconds unvoiced segment. The starting point
of the segment is drawn uniformly from the interval [20, 30]
s in the one-minute long signal.

We estimate the GMM parameters of the single-trace obser-
vation probabilistic model in the fHMM framework using the
EM algorithm [30]. At each SNR level, we generated 6000
spectrum frames with a single frequency component for each
169 frequency states (where the first state encodes unvoiced
decision). We set the maximum number of components per
GMM to 20 and used MDL [12] to determine the number
of components automatically. The parameters were trained in
an SNR-dependent (SD) and an SNR-independent (SI) fashion
(i.e., each SD model was trained only with samples of the cor-
responding SNR, and the SI model was trained with all sam-
ples). We adopted the mixture-maximization interaction model
proposed in [12], and set the prior distribution for both fHMM
and AMTC uniformly as P(f)(1) = m) = 1/169, ¥m, and
the transition probability follows a uniform distribution with
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Fig. 8. Box plots of Efgpe (top) and Eoa (bottom) of the two-trace tracking
performance of SD-fHMM, SI-fHMM, online-AMTC, and offline-AMTC at
different levels of SNR.

width parameter £ = 2. Moreover, the voiced to unvoiced
transition probability for fHMM was empirically selected as
P(voiced|unvoiced) = 0.2, and P(unvoiced|voiced) = 0.1.
To compare the tracking performance, we use the well-
adopted error measure proposed in [29] as described below:
e I;;: the percentage of time frames where ¢ frequency
components are misclassified as j.
o EGuoss: the percentage of frames where 3, s.t. Afy) >
20%. We define the relative frequency deviation A f; =

min%, and f(;) is the reference frequency for /th
1

component.
. Efline: the average relative frequency deviation from the

reference of the Ith frequency component for those frames
where VI, Afq) < 20%.

Note that both FE;; and FEgu represent a frame counting
measure. We therefore group them together to form the total
gross error: By = Eo1+Eoo+E10+E12+E20+E21+Egross,
and define Efne = Ef,. + Fi .-

To test the performance, we generated 300 test signals for
each SNR level using the same setting mentioned above. We
compared the performance of SD-fHMM, SI-fHMM, offline-
AMTC and online-AMTC using the aforementioned error
measures and the results are listed in Table II. We depict
the distribution of Fro, and Fgge specifically in Fig. 8. All
methods have a similar performance in terms of the fine detec-
tion error Egpe, while AMTC slightly outperforms fHMM in
terms of Froa, the main contributor of which is EF5. Table 111
shows the average computation time for the mixmax likelihood
estimation procedure [12], together with the tracking time
requirement tested on a 2014 MacBook Pro with a 2.3 GHz
Intel Core i5 processor. Note that the preprocessing stage of
fHMM to compute the emission probability also consumes
almost 0.4 s/frame for the SD and 2.0 s/frame for the SI model,
which makes the real-time implementation almost impossible
for a usual hardware setting. AMTC, on the other hand, is
much more computationally efficient than fHMM even without
considering the mixmax likelihood computing. For this task,



TABLE II
AVERAGE PERFORMANCE OF FHMM AND AMTC ON MULTI-TRACE TRACKING TEST

Eo1 Eoz E1o Ei2 E20 E21 EGross Erotal Efine
SD-fHMM  3.26% 1.28% 0.28% 12.13% 022% 1.40% 0.02% 18.59% 1.75%
SI-fHMM  2.71% 1.18% 048% 11.20% 0.23% 1.85% 0.02% 17.67% 1.84%
online-AMTC  1.42% 0.30% 2.85% 1.73% 0.36% 8.00% 0.02% 14.64% 1.67%
offline-AMTC  1.49% 032% 2.71% 226% 041% 7.18% 0.03% 1440% 1.80%
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Fig. 9. (a) Spectrogram of one test instance with SNR = —8 dB; (b)

same spectrogram overlaid by ground-truth traces. Tracking results by (c)
SD-fHMM, (d) SI-fHMM, (e) offline-AMTC, and (f) online-AMTC.

Fig. 10. (a) Ground-truth frequency traces at —10 dB in the spectrogram of
a synthetic signal. (b) Three estimated traces by AMTC.

(a) (b)

Fig. 11. (a) ROC curves for the proposed trace detection method at different
SNR levels. (b) The zoomed-in plot of the shaded area in (a) with optimal
operating points (black circle) and operating points using fixed threshold
(ARgr = 2.41, pink plus sign).

the online-AMTC reported a similar performance compared
with the offline version at 4.4 ms/frame. It guarantees real-time
adaptation with almost no performance drop. Fig. 9 shows the
experimental results of the proposed algorithm and fHMM on
a test signal with SNR = —8 dB. We can observe that in a low
SNR environment, the performance of the offline- and online-
AMTC are better than fHMM algorithm in terms of accuracy
and false-positive detections.

Fig. 10(b) shows an example of the tracking result of
the offline-AMTC when SNR is —10 dB and three traces
are presented. We can see three traces have been accurately
estimated as compared to the ground truth on the left when
two weak traces with different levels of strength intersect.

3) Trace Detection: In this part, we evaluate the trace detec-
tion performance and the optimal selection of threshold Aggr
using the synthetic data under five SNR levels. We generated
100 trials for each level of SNR with the generative model
described in Section V-Al. An unvoiced segment was inserted
in each test signal with the starting time position randomly
selected from the signal. The length of the selected segment
ranged from 25% to 75% of the signal length, and, over the
whole dataset, the number of voiced spectral frames equaled
the number of unvoiced frames. In this experiment, the voiced
detection is treated as the positive case, and the detection
result (without the postprocessing operation using A; and As)
is summarized using the Receiver Operating Characteristic
(ROC) plot in Fig. 11(a). From the plot, we observe highly
accurate detection results for each SNR condition with the
Area Under the Curve (AUC) higher than 0.9.

In Fig. 11(b), we show the zoomed-in plot of the shaded
area in Fig. 11(a). The optimal operating points in terms of
minimizing the sum of false negative and false positive rate are



shown in black circles. The operating point corresponding to a
fixed threshold, namely, Aggr = 2.41 (the value we used for
the experiments in the paper), are also shown using pink plus
signs. Note that the detection results using a fixed threshold
value are close to those with the optimal choice at every SNR
level, demonstrating that the chosen value of Aggp is effective
and almost independent of the SNR.

B. Experimental Results on rPPG Data

We evaluated the performance of the proposed method on a
real-world dataset from the problem of the pulse rate estima-
tion from facial videos. We show by experiment that AMTC
can successfully extract the subtle pulse trace even when the
trace is dominated by another frequency component. To test
the robustness of the algorithm in a challenging situation, we
use the dataset where the video contains significant subject
motion [11]. In total, the dataset contains 20 videos in which
10 contain human motions on an elliptical machine, and the
other 10 contain motions on a treadmill. Each video is about
3 minutes long in order to cover various stages of fitness
exercise. Each video was captured in front of the subject’s face
by a commodity mobile camera (iPhone 6s) affixed on a tripod
or held by the hands of a person other than the subject. The
heart rate of the test subject was simultaneously monitored
by an electrocardiogram (ECG)-based chest belt (Polar H7)
for reference. The spectrogram of the preprocessed face color
feature was estimated using the same set of parameters as in
Section V-Al. The estimated SNR of the dataset is —6.31 dB
using the estimation method introduced in [31].

Fig. 12 gives an example of the tracking result using AMTC
with a uniform Markov transition probability model with
k = 60 for first motion-induced trace estimate and with k = 2
for second pulse-induced trace estimate. More freedom of
trace dynamic (k = 60) was assigned to the first estimate
as the variation of motion frequency can be much greater
than the heart rate. We notice that for each spectrogram, the
traces induced by subject motions dominate the heart rate
trace. Compared to the particle filter-based method that utilizes
additional information to compensate for the motion trace [11],
AMTC can faithfully track the dominating motion trace and
recognize the PR trace as the second trace. Notice that the trace
estimate from the particle filter would occasionally deviate to
the vertical motion trace. We summarize the sample mean
and standard deviation & of the error measures for all of our
videos, and the results are listed in Table IV. The average error
for AMTC is 2.21 bpm in the offline mode and 2.78 bpm in
the online mode in RMSE, and 3.16% in the offline mode and
4.01% in the online mode in relative error. The performance
of AMTC is more than twice as high compared to that of
the state-of-the-art approach employing motion notching and
particle filter.

C. Experimental Results on ENF Data

In this subsection, we test the performance of the proposed
algorithm on a real-world ENF dataset. In total, 27 pairs of
one-hour power grid signal and audio signal from a variety of
locations in North America were collected and tested. Each
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Fig. 12. (a) A weak heart-rate trace dominated by a strong trace induced by
vertical motion of the person running on an elliptical machine. The estimated
pulse SNR equaled —4.5 dB. (b) Heart rate estimation after compensating the
first trace estimate using the offline-AMTC. (c) Heart rate estimation using
motion spectrogram notching and particle filter method. The estimation result
is compared with the heart rate (white dashed line) simultaneously measured
by an electrocardiogram-based sensor.
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Fig. 13. (a) Spectrogram for a sample ENF audio signal. The estimated

ENF SNR is —8.2 dB. Trace estimates (red line) returned by (b) Quadratic
Interpolation, (c) Particle Filter, (d) YAAPT, and (e) offline-AMTC. The
reference ENF trace is shown in dashed black line in plots (b)—(e).

TABLE IV
PERFORMANCE COMPARISON OF THE PROPOSED METHOD AND THE
PARTICLE FILTER METHOD ON RPPG DATA

RMSE (bpm) ERATE (%) ECOUNT (%)
[ 1 [ o [ 12
MN+PF  5.29 551 941 1413 220 2.24
offline-AMTC  2.21 1.11  3.16 6.04 1.02 2.24
online-AMTC  2.78 1.20  4.01 642 1.25 242

pair of signals were simultaneously recorded using a battery-
powered Olympus Voice Recorder WS-700M at a sampling
rate of 44.1 kHz in MP3 format at 256 kbps. All the audio
signals were recorded in typical apartment rooms in U.S.
with only ambient noise and ENF interference induced by the
mains-powered appliances. We recorded the reference ENF



TABLE V
PERFORMANCE OF VARIOUS METHODS ON ENF DATA

RMSE (Hz)  Pearson’s p
m I m o
QI 024 0.18 0.18 0.26
Particle Filter ~ 0.04 0.07 0.55 0.37
YAAPT 0.16 0.12 0.23 0.28
offline-AMTC  0.01 0.01 0.85 0.18
online-AMTC  0.03 0.02 0.81 0.20

signal from the power mains of the electrical supply. To limit
the voltage to the safe range of the input of a sound card or a
digital recorder, we used a step-down transformer to convert
the power supply voltage level to 5 V and then used a voltage
divider with resistors of 33 Ohm and 33 kOhm to obtain an
input of 5 mV [3].

Taking the collected audio recordings, we downsample
the signals to 1 kHz to reduce the computational load,
and apply the harmonic combining method [32] to obtain
robust frequency strips around the nominal frequency, i.e.,
60 Hz in North America. The STFT is performed with a
rectangular window of 8 seconds long, no overlap between
adjacent frames, and neighboring frequency bins of 0.004 Hz
apart. The harmonic combining method exploits different ENF
components appearing in a signal, and adaptively combines
them based on the local SNR to achieve a more robust and
accurate estimate than that by using only one component. We
obtain the ground truth from the corresponding power grid
signals using Quadratic Interpolation (QI) [33], as the SNR
is high and frame-wise highest peak method is proved to be
the maximum likelihood estimator of signal frequency [28].
According to the extracted ground-truth ENF, the averaged
estimated SNR of the ENF signal is —5.23 dB using the
estimation method introduced in [34]. We use RMSE and
Pearson correlation coefficient p of the estimated versus the
ground-truth sequences of frequency variations as performance
indices. They are two well-adopted error measures for ENF
estimation.

Fig. 13 gives a tracking example using a piece of acoustic
recording captured in San Diego, CA. Note that the ENF trace
becomes weak after 15 minutes, which we define as a check-
point. AMTC can identify the trace from the noisy harmonic
combined spectrum feature. The particle filter approach gives
comparable results before the checkpoint but deviates from
the true trace occasionally due to nearby interference. Local
peak based tracking method YAAPT and frame-wise frequency
estimator QI completely lost the target after the checkpoint as
the peak information alone is not able to guarantee a good
estimate.

The performance of various methods is summarized in
Table V. We calculate the sample mean and standard deviation
of the error measures for 27 pieces of audio ENF signals. For
this very noisy dataset, AMTC can achieve 0.01 Hz in offline
mode and 0.03 Hz in online mode in average RMSE and 0.85
in offline mode and 0.81 in online mode in average correlation

with ground truth, which outperforms all other tested tracking
methods substantially both in average and variance of the error
statistics.

VI. IMPACT OF VARIOUS FACTORS

In this section, we further evaluate the impact to the perfor-
mance due to various factors. First, we study the performance
when the number of spectral frames varies. Then, we discuss
the effect of the trace variation level. Finally, we evaluate the
impact of the separation between two traces to the estimation
accuracy. The parameters are configured to be the same as
introduced in Section V-Al unless otherwise stated.

A. Impact of the Number of Frames

A frequency tracker starts to produce a meaningful tracking
result by using two or more frames, and it is generally expected
to have an improved tracking performance when more frames
are used. This can be seen from the information theoretic view-
point. Consider the true frequency state f at the time instant
n as a random variable and denote noisy observed data at
nth frame by Z(n). Using the “conditioning reduces entropy”
lemma [35] from information theory, we obtain the relation-
ship between two posteriors H (f(n)|Z(n),...,Z(2),Z(1)) <
H(f(n)|Z(n),...,Z(2)), where H(|-) is the conditional en-
tropy, suggesting less or equal uncertainty in f(n) when
more observations/frames are included during an inference
process. Below we use experimental results to confirm that
more accurate tracking results are achieved when the number
of frames in the spectrogram increases.

We generate 200 trials under SNR conditions at —16 dB,
—14 dB, —12 dB, —10 dB, and —8 dB. The duration of
the test signal is set to three and a half minutes, which is
equivalent to 1000 spectral frames in the spectrogram. The
1000 spectral frames are then segmented uniformly in time
without overlap based on the seven levels of evaluated number
of frames, and the offline-AMTC is performed independently
in each segment. Three performance metrics with respect to
the number of frames under different SNR levels are shown in
the first row of Fig. 14. Note that when the number of frame
equals one, the tracking result using AMTC degenerates to the
highest peak method. We can observe from the plots that the
performance of the algorithm improves significantly when the
signal length exceeds 10 frames. More frames are needed in
a lower SNR condition to reach a given performance level,
whereas the performance starts to converge when the number
of frames reach 300 for all SNR levels.

B. Impact of Trace Variation

During the formulation process of the frequency trace track-
ing problem, we have assumed the change of the frequency
value between two consecutive bins as a one-step discrete-
time Markov chain, characterized by a transitional probability
matrix P. With a training dataset of sufficient size available
to the user, one may learn the model parameters of P to
make a more precise tracking estimation. However, the training
set is often unavailable in a real-world setting, and the user
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Fig. 15. Spectrogram examples of raw signals with five trace variation levels
before being further corrupted.

has to make their own choice of the P before deploying the
algorithm. It is therefore important for a robust frequency
tracker to successfully track the frequency components even
when the variation of the frequency traces is at different levels.

We evaluate the system performance for both offline-AMTC
and online-AMTC with respect to five different trace variation
levels, and assume the transition probability follows the uni-
form distribution parameterized by k. 200 trials are generated
for each level of trace variation by tuning the variance of
f[n] in the generative signal model described in Section V-Al.

50 1
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Fig. 16. ERATE of the trace estimates by the online-AMTC and the offline-
AMTC (a) as a function of different trace variation levels when k = 4, and
(b) as a function of TRS when SNR= —8 dB.

Specifically, the five levels of the trace variation correspond
to 0.001, 0.005, 0.01, 0.02, and 0.04 bpm as the standard
deviation of f[n]. Spectrograms of raw signals at different
levels of variation before being corrupted are shown in Fig. 15.
We observe a higher frequency energy diffusion when the trace
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Fig. 17. Examples of the spectral frame when the Trace Relative Separation
(TRS) equals 0.2, 0.4, 0.6, 0.8, and 1, respectively from (a) to (e). Only part
of the frame is displayed for better visualization.

variation increases, as the signal within each analysis window
becomes less stationary.

We show the averaged system performance of the offline-
AMTC in terms of RMSE, ERATE, and ECOUNT with respect
to different combinations of the trace variation level and
the selection of %k in the second row of Fig. 14. The SNR
was fixed to —10 dB. From the plots, we observe that the
performance decreases when the trace variation level gets
higher, especially above level III. Even though the optimal
selection of k increases along with the trace variation level,
ERATE are controlled below 5% when k is fixed as 4 or
6 with trace variation level lower than V, suggesting the
robustness of AMTC in terms of the trace variation level with
a proper selection of the transitional probability parameter.
The performance of the online-AMTC is slightly worse than
that of the offline-AMTC as shown for an example of k = 4
in Fig. 16(a). The other observations about the offline-AMTC
are also applicable to the online-AMTC.

C. Impact of Trace Separation

It is challenging for any frequency tracker to accurately
distinguish and track two frequency traces that run very
closely to each other, especially under low SNR conditions.
To quantify the separation between two frequency components
in a meaningful manner, we first defined a metric called Trace
Relative Separation (TRS) as the ratio of the distance of two
frequency components in the frequency domain to the mean
width of their effective peaks. In Fig. 17, we show examples
of the spectral distribution when TRS = 0.2, 0.4, 0.8, and 1,
respectively.

We generated 200 trials for each level of TRS using the
same generative signal model described in Section V-A2. No
unvoiced segment was added to the test signal and the TRS
of two frequency traces was identical over time within each
test signal. We show the averaged system performance of the
offline-AMTC with respect to different levels of TRS and
SNR in the last row of Fig. 14. From the plots, we know
that the offline-AMTC is capable of tracking the frequency
traces with ERATE lower than 3% when SNR < —8 dB, and
TRS > 0.4. The estimation result when TRS = 0.2 is highly
deviated from the ground truth. At this closeness level of TRS,
more information or prior knowledge about the frequency
components is expected to be incorporated to improve the
estimation. The performance of the online-AMTC is slightly
worse than that of the offline-AMTC with a similar trend in
TRS to that of the offline-AMTC, an example of which is
shown in Fig. 16(b) when the SNR= —8 dB.

i
(©

Fig. 18.
frequency components and (b) the same image overlaid with ground-truth
frequency components (white dashed line), the corresponding frequency
estimates f(;.3)(blue line) and one additional trace estimate f(4) (green line)
using AMTC. (c) The corresponding averaged relative energy ratio RER.

(a) Spectrogram image of a synthetic —8 dB signal with three

VII. DISCUSSIONS
A. Estimation of the Number of Traces

In previous sections, we presented both the offline- and the
online-AMTC algorithms with the assumption that the number
of traces L is known. In some cases, L is unknown and needs
to be estimated. Note that the process of estimating L in
the proposed AMTC system is equivalent to determining the
number of iterations AMTC needs to take. The problem is then
converted to deciding at which iteration should the AMTC
stop. This problem can be solved by testing the hypothesis of
the trace presence in the compensated spectrogram image Z ;)
at each iteration [.

In Section III-C, we propose to use the RER measure to
detect the presence of a frequency component in each frame.
We are motivated by the fact that a low RER measure of
a certain frame suggests low probability of the presence of a
trace in that frame. Similarly, to test globally the trace presence
at [th iteration of AMTC, we propose to evaluate the average of
the statistics RER;), namely, RER(jy = & > RER(;)(n).
As one example shown in Fig. 18, the ground-truth number of
traces in the spectrogram image is 3. We observe a significant
drop in RER(;y from [ = 3 to [ = 4 in Fig. 18(c), when we
run the offline-AMTC with four iterations. This observation
coincides with the actual absence of the fourth trace. We
therefore propose to estimate L as [ — 1 if at the [th iteration,
RER(;) is below a preset threshold. The selection of the
threshold is similar to the selection of Agrgr discussed in
Section V-A3. To test the effectiveness of the propose detection
method, we synthesized 2000 signals using the generative
model introduced in Section V-A2 with equal numbers of
signals which contained zero, one, two, three, and four fre-
quency traces. The detection accuracy under three levels of
SNR is shown in Fig. 19 in the form of confusion matrices. We
observe highly accurate results with 99.7% detection accuracy
when the SNR equals —12 dB and the number of traces is no
more than three in this experiment setting.

B. Signals with Multiple Harmonics

When multiple harmonic traces appear in the spectrogram
(e.g., audio signals, Electrocardiography (ECG) signals), the
AMTC algorithms may extract several harmonic traces that
originated from one single source. Take the human speech
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Fig. 20. (a) Spectrogram of a synthetic signal with ground-truth frequency
around 95 bpm and strong nearby interference from 0-0.4 min. (b) Uncon-
strained trace estimate. (c) Spectrogram overlaid with user input constraint
(in semi-transparent white circle). (d) Constrained trace estimate.

signal as an example. The fundamental frequency range of
interest, 85 Hz to 255 Hz [36], [37], may cover both fundamen-
tal frequency components as well as second-order harmonics.
For example, a peak in 200 Hz can be considered as the
fundamental frequency component of a female speaker, or
it can also represent the second-order harmonic of a male
speaker. In this regard, the STFT spectrum feature might
not be considered as a proper input of a robust fundamental
frequency tracker. Instead, this problem can be addressed by
introducing several alternative robust spectral features, e.g., the
subharmonic summation method [38], the discrete logarithmic
Fourier transform [39], and the frequency autocorrelation
function [21]. Similar to the idea of harmonic combining
algorithm [32] used for ENF case, these methods are capable
of combining harmonic spectral features and improving the
SNR of the fundamental frequency. The tracking performance
is therefore expected to be better by feeding in any of these
three features rather than the STFT spectrogram.

C. Accommodating Human-in-the-Loop Interactions

AMTC has its limitations in some specific cases. Due to
the greedy nature of the searching strategy in each iteration,
the algorithm may find incorrect traces when nearby strong
interference is present, or two traces with similar energies runs
closely in time. We show in Fig. 20(b) an example that strong
interference near the ground-truth frequency trace can make
it challenging for AMTC to find the correct trace. Without
extra information, even a human observer can make mistakes
in this scenario. For some applications when the analysis is
performed offline and people have some prior knowledge about
the trace shape or the trace frequency range, it is beneficial
to allow users to input high-level cues [9], [40] to guide our
proposed estimator’s priority to find the correct trace. As an
example, Fig. 20(c) shows a constraint provided by a user
using a semi-transparent white circle for an estimated trace
to pass through. Fig. 20(d) shows the constrained estimation

result, which is achieved by scaling up the spectrum entries in
the constraint region until the estimated trace passed through
the region. The constrained tracking result reveals that AMTC
correctly captured the true trace by shifting its attention from
interference to the user-defined region.

VIII. CONCLUSIONS

In this paper, we have addressed the problem of tracking
multiple weak frequency components from a time-frequency
representation of the system’s preprocessing results (such as a
spectrogram), and proposed both offline and online versions of
a new trace detection and tracking algorithm called AMTC. By
iteratively and adaptively estimating dynamic traces through
forward and backward passes, AMTC can provide accurate
estimates even for weak frequency traces. Extensive exper-
iments using both synthesis and real-world data reveal that
the proposed method outperforms several representative prior
methods under low SNR conditions and can be implemented in
near real-time settings. The effectiveness of the proposed algo-
rithm can empower the development of new frequency-based
forensic technologies and other small-signal applications.
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