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Abstract. We study a continuous data assimilation (CDA) algorithm for a

velocity-vorticity formulation of the 2D Navier-Stokes equations in two cases:
nudging applied to the velocity and vorticity, and nudging applied to the ve-

locity only. We prove that under a typical finite element spatial discretization

and backward Euler temporal discretization, application of CDA preserves the
unconditional long-time stability property of the velocity-vorticity method and

provides optimal long-time accuracy. These properties hold if nudging is ap-
plied only to the velocity, and if nudging is also applied to the vorticity then

the optimal long-time accuracy is achieved more rapidly in time. Numerical

tests illustrate the theory, and show its effectiveness on an application problem
of channel flow past a flat plate.

1. Introduction. Performing accurate simulations of complex fluid flows that
match real-world observations or experiments typically requires highly precise knowl-
edge of the initial data. However, such data is often known in very sparsely-
distributed locations, which is the case in, e.g., weather observation, ocean mon-
itoring, etc. Thus, accurate, deterministic simulations based on initial data are
often impractical. Data assimilation is a collection of methods that works around
this difficulty by incorporating incoming data into the simulation to increase ac-
curacy, hence data assimilation techniques are highly desirable to incorporate into
simulations. However, the underlying physical equations often suffer from stabil-
ity issues which can reduce the accuracy gained by using data assimilation. While
there are many ways to stabilize numerical simulations, it is far from obvious how
to adapt data assimilation techniques to combine them with cutting-edge stabiliza-
tion methods. Therefore it becomes worthwhile to seek new ways to incorporate
data assimilation into stabilized schemes. In this article, we propose and analyze
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a new approach to this problem which combines continuous data assimilation with
velocity-vorticity stabilization.

Since Kalman’s seminal paper [29] in 1960, a wide variety of data assimilation
algorithms have arisen (see, e.g., [14, 32]).In [5], Azouani, Olson, and Titi proposed
a new algorithm known as continuous data assimilation (CDA), also referred to as
the AOT algorithm. Their approach revived the so-called “nudging” methods of the
1970’s (see, e.g., [4, 26]), but with the addition of a spatial interpolation operator.
This seemingly minor change had profound impacts, and the authors of [5] were
able to prove that using only sparse observations, the CDA algorithm applied to
the 2D Navier-Stokes equations converges to the correct solution exponentially fast
in time, independent of the choice initial data. This stimulated a large amount of
recent research on the CDA algorithm; see, e.g., [3, 6, 7, 10, 11, 13, 17, 18, 19, 20,
21, 22, 27, 31, 30, 35, 40, 41] and the references therein. The recent paper [15]
showed that CDA can be effectively used for weather prediction, showing that it
can indeed be a powerful tool on practical large scale problems. Convergence of
discretizations of CDA models was studied in [30, 41, 27, 21] , and found results
similar to those at the continuous level. Our interest in the CDA algorithm arises
from its adaptability to a wide range of nonlinear problems, as well as its small
computational cost and straight-forward implementation. These qualities make it
an ideal candidate for combining data assimilation with stabilization techniques;
in particular, with the recently developed velocity-vorticity stabilization, described
below.

Flows of incompressible, viscous Newtonian fluids are modeled by the Navier-
Stokes equations (NSE), which take the form

ut − ν∆u+ (u · ∇)u+∇p =f,

∇ · u =0,
(1)

together with suitable boundary and initial conditions. Here, u denotes a velocity
vector field, p is pressure, f is external (given) force, and ν > 0 represents the kine-
matic viscosity which is inversely proportional to the Reynolds number. Solving the
NSE is important in many applications, however it is well known that doing so can
be quite difficult, especially for small ν. Many different tools have been used for
more accurate numerical simulations of the NSE, for example using NSE formula-
tions tailored to particular application problems [23, 12, 37, 33] or discretization and
stabilization methods [39, 28], and more recently using observed data to improve
simulation [5, 30, 43, 44, 8].

We consider in this paper discretizations of a continuous data assimilation (CDA)
enhancement applied to the following velocity-vorticity (VV) formulation of the 2D
NSE:

ut − ν∆u+ ω × u+∇P = f,

∇ · u = 0,

ωt − ν∆ω + (u · ∇)ω = rot f.

(2)

Here, ω represents the (scalar) vorticity, P := p + 1
2 |u|

2 is the Bernoulli pressure,

and rot is the 2D curl operation: rot
(
f1
f2

)
:= ∂f2

∂x −
∂f1
∂y . In the NSE, the velocity and

vorticity are coupled via the relationship ω = rotu (or equivalently, the Biot-Savart
Law). However, the VV formulation typically does not enforce this relationship, so
u and ω are only coupled via the evolution equations in (2), and the relationship
ω = rotu is recovered a posteriori, so that at the continuous level, (2) is formally
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equivalent to (1). However, in practice, discretizations of VV can behave quite
differently from typical discretizations of NSE, providing better stability as well as
accuracy (especially for vorticity) for vortex dominated or strongly rotating flows,
see [36, 37, 34, 2] and references therein. A very interesting property of (2) was
recently shown in [25], where it was proven that the system (2) when discretized
with standard finite elements and a decoupling backward Euler or BDF2 temporal
discretization was unconditionally long-time stable in both L2 and H1 norms for
both velocity and vorticity; no such analogous result is known for velocity-pressure
discretizations/schemes. Hence the scheme itself is stabilizing, even though it is
still formally consistent with the NSE. The recent work in [2] showed that these
unconditionally long-time stable schemes also provide optimal vorticity accuracy,
yielding a vorticity solution that is one full order of spatial accuracy better than for
an analogous velocity-pressure scheme.

We consider herein CDA applied to (2), which yields a model of the form

vt − ν∆v + w × v +∇q + µ1IH(v − u) = f,

∇ · v = 0,

wt − ν∆w + (v · ∇)w + µ2IH(w − ω) = rot f,

(3)

where IH is an appropriate interpolation operator, IH(u) and IH(ω) are assumed
known from measurement data (i.e. u and ω are known at some points in space),
and µ1, µ2 ≥ 0 are nudging parameters. If µ2 = 0, then vorticity is not nudged
and IH(ω) need not be assumed known. Due to the success of (2) in recent papers
[25, 2, 36] and that of CDA in the works mentioned above, combining these ideas
and studying (2) is a natural next step to see whether CDA will provide optimal
long-time accuracy for the VV schemes already known to be unconditionally long-
time stable. Herein, we do find that CDA provides convergence of (3), with any
initial condition, to the true NSE solution (up to optimal discretization error) and
moreover that CDA preserves the long-time stability.

This paper is organized as follows. In Section 2, we introduce the necessary
notation and preliminaries needed in the analysis. In Section 3, we propose and
analyze a fully discrete scheme for (3), and show that for nudging velocity and
vorticity together and nudging just velocity, algorithms are long-time stable in L2

and H1 norms and long-time optimally accurate in L2 velocity and vorticity (under
the usual CDA assumptions on the coarse mesh and nudging parameter). In Section
4, we illustrate the theory with numerical tests, and finally draw conclusions in
section 5.

2. Notation and preliminaries. We now provide notation and mathematical
preliminaries to allow for a smooth analysis to follow. We consider the domain
Ω ⊂ R2 to be the 2π-periodic box, with the L2(Ω) norm and inner product denoted
by ‖ · ‖ and (·, ·) respectively, while all other norms will be appropriately labeled.

For simplicity, we use herein periodic boundary conditions for velocity and vor-
ticity. Extension to full nonhomogeneous Dirichlet conditions can be performed
by following analysis in [34], although for no-slip velocity together with the more
physically consistent natural vorticity boundary condition studied in [36, 38] more
work would be needed to handle the boundary integrals. We denote the natural
corresponding function spaces for velocity, pressure, and vorticity by



2226 M. GARDNER, A. LARIOS, L. REBHOLZ, D. VARGUN AND C. ZERFAS

X := H1
#(Ω)2 =

{
v ∈ H1

loc(R)2, v is 2π-periodic in each direction,

∫
Ω

v dx = 0

}
,

Q := L2
#(Ω) =

{
q ∈ L2

loc(R), q is 2π-periodic in each direction,

∫
Ω

q dx = 0

}
,

W := H1
#(Ω) =

{
v ∈ H1

loc(R), v is 2π-periodic in each direction,

∫
Ω

v dx = 0

}
.

In X (and W ), we have the Poincaré inequality: there exists a constant CP
depending only on Ω such that for any φ ∈ X (or W ),

‖φ‖ ≤ CP ‖∇φ‖.
We define the skew-symmetric trilinear operator b∗ : X ×W ×W → R to use for

the nonlinear term in the vorticity equation, by

b∗(u, ω, χ) :=
1

2
((u · ∇ω, χ)− (u · ∇χ, ω)) .

The following lemma is proven in [30], and is useful in our analysis.

Lemma 2.1. Suppose constants r and B satisfy r > 1, B ≥ 0. Then if the sequence
of real numbers {an} satisfies

ran+1 ≤ an +B,

we have that

an+1 ≤ a0

(
1

r

)n+1

+
B

r − 1
.

2.1. Discretization preliminaries. Denote by τh a regular, conforming triangu-
lation of the domain Ω, and let Xh ⊂ X, Qh ⊂ Q be velocity-pressure spaces that
satisfy the inf-sup condition. We will assume the use of Xh = X ∩ Pk(τh) and
Qh = Q∩Pk−1(τh) Taylor-Hood or Scott-Vogelius elements (on appropriate meshes
and/or polynomial degrees, see [24] and references therein). The discrete vorticity
space is defined as Wh := W ∩Pk(τh). Define the discretely divergence free subspace
by

Vh := {vh ∈ Xh | (∇ · vh, qh) = 0 ∀ qh ∈ Qh}.
We will assume the mesh is sufficiently regular so that the inverse inequality

holds in Xh: There exists a constant C such that

‖∇χh‖ ≤ Ch−1‖χh‖ ∀ χh ∈ Xh.

The discrete Laplacian operator is defined as: For φ ∈ H1(Ω)2, ∆hφ ∈ Xh satisfies

(∆hφ, vh) = −(∇φ,∇vh) ∀vh ∈ Xh. (4)

The definition for ∆h is written the same way when applied in Wh, since this is
simply the above definition restricted to a single component.

The discrete Stokes operator Ah is defined as: For φ ∈ H1(Ω)2, find Ahφ ∈ Vh
such that for all vh ∈ Vh,

(Ahφ, vh) = −(∇φ,∇vh). (5)

By the definition of discrete Laplace and Stokes operators, we have the Poincaré
inequalities

‖∇χh‖ ≤ CP ‖∆hχh‖ ∀χh ∈ Xh, (6)

‖∇φh‖ ≤ CP ‖Ahφh‖ ∀φh ∈ Vh. (7)
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We recall the following discrete Agmon inequalities and discrete Lp bounds [25]:

‖vh‖L∞ ≤ C‖vh‖1/2‖Ahvh‖1/2 ∀vh ∈ Vh, (8)

‖vh‖L∞ ≤ C‖vh‖1/2‖∆hvh‖1/2 ∀vh ∈ Xh, (9)

‖∇vh‖L3 ≤ C‖vh‖1/3‖∆hvh‖2/3 ∀vh ∈ Xh. (10)

We note that all bounds above for Xh trivially hold in Wh, since Wh functions can
be considered as components of functions in Xh.

A function space for measurement data interpolation is also needed. Hence we
require another regular conforming mesh τH , and define XH = Pr(τH)2 and WH =
Pr(τH) for some polynomial degree r. We require that the coarse mesh interpolation
operator IH used for data assimilation satisfies the following bounds: for any w ∈
H1(Ω)d,

‖IH(w)− w‖ ≤ CH‖∇w‖, (11)

‖IH(w)‖ ≤ C‖w‖. (12)

These are key properties for the interpolation operator that allow for both mathe-
matical theory as well as providing guidance on how small H should be (i.e. how
many measurement points are needed). We note the same IH operator is used
for vector functions and scalar functions, with it being applied component-wise for
vector functions.

3. Analysis of a CDA-VV scheme. We consider now a discretization of (3) that
uses a finite element spatial discretization and backward Euler temporal discretiza-
tion. The backward Euler discretization is chosen only for simplicity of analysis;
all results extend to the analogous BDF2 scheme following analysis in [2, 25]. One
difference of our scheme below compared to other discretizations of CDA is that IH
is also applied to the test functions in the nudging terms. This was first proposed
by the authors in [41], and allows for a simpler stability analysis as well as to the
use of special types of efficient interpolation operators.

Algorithm 3.1. Given v0
h ∈ Vh and w0

h ∈Wh, find (vn+1
h , wn+1

h , Pn+1
h ) ∈ (Xh,Wh,

Qh) for n = 0, 1, 2, ..., satisfying

1

∆t

(
vn+1
h − vnh , χh

)
+ (wn

h × vn+1
h , χh)− (Pn+1

h ,∇ · χh) + ν(∇vn+1
h ,∇χh)

+µ1(IH(vn+1
h − un+1), IH(χh)) = (fn+1, χh), (13)

(∇ · vn+1
h , rh) = 0, (14)

1

∆t

(
wn+1

h − wn
h , ψh

)
+ b∗(vn+1

h , wn+1
h , ψh) + ν(∇wn+1

h ,∇ψh)

+µ2(IH(wn+1
h − rotun+1), IH(ψh)) = (rot fn+1, ψh),

(15)

for all (χh, ψh, rh) ∈ (Xh,Wh, Qh), where IH(un+1), IH(rotun+1) are assumed
known for all n ≥ 0.

We begin our analysis with long-time stability estimates, followed by long-time
accuracy.
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3.1. Stability analysis of Algorithm 3.1. In this subsection, we prove that
Algorithm 3.1 is unconditionally long-time L2 and H1 stable for both velocity and
vorticity. This property was proven for the scheme without nudging in [25], and so
these results show that CDA preserves this important property that is (seemingly)
unique to VV schemes of this form.

Lemma 3.2 (L2 stability of velocity and vorticity ). Let f ∈ L∞(0,∞;L2) and u ∈
L∞(0,∞;H1). Then, for any ∆t > 0, any integer n > 0, and nudging parameters
µ1, µ2 ≥ 0, velocity and vorticity solutions to Algorithm 3.1 satisfy

‖vnh‖2 ≤α−n‖v0
h‖2 +

CC2
P

ν
(ν−1‖f‖2L∞(0,∞;H−1) + µ1‖u‖2L∞(0,∞;L2)) =: C1, (16)

‖ωnh‖2 ≤α−n‖ω0
h‖2 +

CC2
P

ν
(ν−1‖f‖2L∞(0,∞;L2) + µ2‖ rotu‖2L∞(0,∞;L2)) =: C2,

(17)

where α = 1 + νC−2
P ∆t.

Proof. Begin by choosing χh = 2∆tvn+1
h in (13), which vanishes the nonlinear and

pressure terms, and leaves

‖vn+1
h ‖2 − ‖vnh‖2 + ‖vn+1

h − vnh‖2 + 2∆tν‖∇vn+1
h ‖2 + 2∆tµ1‖IH(vn+1

h )‖2

= 2∆t(fn+1, vn+1
h ) + 2∆tµ1(IH(un+1), IH(vn+1

h )).

The first right hand side term is bounded using the dual norm and Young’s inequal-
ity via

2∆t(fn+1, vn+1
h ) ≤ ∆tν−1‖fn+1‖2−1 + ∆tν‖∇vn+1

h ‖2,

and for the interpolation term, we use Cauchy-Schwarz, the interpolation property
(12) and Young’s inequality to get

2∆tµ1(IH(un+1), IH(vn+1
h )) ≤2∆tµ1‖IH(un+1)‖‖IH(vn+1

h )‖
≤C∆tµ1‖un+1‖‖IH(vn+1

h )‖
≤C∆tµ1‖un+1‖2 + ∆tµ1‖IH(vn+1

h )‖2.

Combining the above estimates and dropping ‖vn+1
h − vnh‖2 and ‖IH(vn+1

h )‖2 from
the left hand side produces the bound

‖vn+1
h ‖2 + ∆tν‖∇vn+1

h ‖2 ≤ ‖vnh‖2 + ∆tν−1‖fn+1‖2−1 + C∆tµ1 ‖un+1‖2,

and thanks to the Poincaré inequality, we obtain

(1 + C−2
P ∆tν)‖vn+1

h ‖2 ≤ ‖vnh‖2 + C∆t
(
ν−1‖fn+1‖2−1 + µ1‖un+1‖2

)
.

Defining α = 1+C−2
P ∆tν > 1, and then applying Lemma 2.1 reveals the L2 stability

bound (16) for the velocity solution of Algorithm 3.1.
Applying similar analysis to the above will produce the stated L2 vorticity bound.

Lemma 3.3 (H1 stability of velocity and vorticity ). Let f ∈ L∞(0,∞;H1) and u ∈
L∞(0,∞;H1). Then, for any ∆t > 0, any integer n > 0, and nudging parameters
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µ1, µ2 ≥ 0, velocity and vorticity solutions to Algorithm 3.1 satisfy

‖∇vnh‖2 ≤ α−n‖∇v0
h‖2

+
CC2

P

ν2

(
‖f‖2L∞(0,∞;L2) + C4

2C
2
1ν
−2 + µ2

1‖u‖2L∞(0,∞;L2) + µ2
1C

2
1

)
=: C̃1,

(18)

‖∇wnh‖2 ≤ α−n‖∇w0
h‖2

+
C2
PC

ν2

(
‖ rot fn+1‖2 + ν−4C̃6

1C
2
2 + ν−2C̃4

1C
2
2 + µ2

2‖ rotun+1‖2 + µ2
2C

2
2

)
,

(19)

where α = 1 + νC−2
P ∆t.

Proof. After testing the velocity equation (13) with χh = 2∆tAhv
n+1
h , we obtain

‖∇vn+1
h ‖2 − ‖∇vnh‖2 + ‖∇(vn+1

h − vnh)‖2 + 2∆tν‖Ahvn+1
h ‖2

≤ 2∆t(fn+1, Ahv
n+1
h ) + 2∆t|(wnh × vn+1

h , Ahv
n+1
h )|

+ 2∆tµ1(IH(un+1 − vn+1
h ), IH(Ahv

n+1
h )).

We now bound the right hand side terms. First, the forcing term is bounded by
Cauchy-Schwarz and Young’s inequalities via

2∆t(fn+1, Ahv
n+1
h ) ≤ C∆tν−1‖fn+1‖2 +

ν

4
∆t‖Ahvn+1‖2. (20)

Then, for the nonlinear terms, we again apply Hölder, discrete Agmon (9) and
generalized Young inequalities, and the result of Lemma 3.2 to get

2∆t|(wnh × vn+1
h , Ahv

n+1
h )| ≤2∆t‖wnh‖‖vn+1

h ‖L∞‖Ahvn+1
h ‖

≤C∆t‖wnh‖‖vn+1
h ‖1/2‖Ahvn+1

h ‖3/2

≤C∆tν−3‖wnh‖4‖vn+1
h ‖2 +

ν

8
∆t‖Ahvn+1

h ‖2

≤CC2
2C1∆tν−3 +

ν

8
∆t‖Ahvn+1

h ‖2.

Lastly, the interpolation term is bounded using Cauchy-Schwarz and interpolation
property 12, followed by Young’s inequality and the result of Lemma 3.2 to obtain

2∆tµ1(IH(un+1 − vn+1
h ), IH(Ahv

n+1
h ))

≤ 2∆tµ1

(
|(IHun+1, IHAhv

n+1
h )|+ |(IHvn+1

h , IHAhv
n+1
h )|

)
≤ C∆tµ1‖IHun+1‖‖IHAhvn+1

h ‖+ C∆tµ1‖IHvn+1
h ‖‖IHAhvn+1

h ‖

≤ C∆tµ2
1ν
−1‖un+1‖2 + C∆tµ2

1ν
−1C1 +

ν

8
∆t‖Ahvn+1

h ‖2. (21)

Combining all these bounds for right hand side terms and dropping nonnegative
term ‖∇(vn+1

h − vnh)‖2 on left hand side give us that

‖∇vn+1
h ‖2 + ∆tν‖Ahvn+1

h ‖2 ≤ ‖∇vnh‖2 + C∆tν−1‖fn+1‖2 + ν−3∆tCC2
2C1

+ ∆tµ2
1ν
−1C‖un+1‖2 + C∆tµ2

1ν
−1C1.
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By the Poincaré inequality (7), we now get

α‖∇vn+1
h ‖2 ≤ ‖∇vnh‖2 + C∆t

(
ν−1‖fn+1‖2

+ ν−3C2
2C1 + µ2

1ν
−1‖un+1‖2 + µ2

1ν
−1C1

)
,

where α = 1 + νC−2
P ∆t. Finally, we apply Lemma 2.1 and reveal (18).

For the vorticity estimate, choose ψh = 2∆t∆hw
n+1
h in (15) to get

‖∇wn+1
h ‖2 − ‖∇wnh‖2 + ‖∇(wn+1

h − wnh)‖2 + 2∆tν‖∆hw
n+1
h ‖2

≤ 2∆t|(rot fn+1,∆hw
n+1
h )|+ 2∆t|b∗(vn+1

h , wn+1
h ,∆hw

n+1
h )|

+ 2∆tµ2(IH(rotun+1 − wn+1
h ), IH(∆hw

n+1
h )).

From here, the proof follows the same strategy as the H1 velocity proof above,
except the nonlinear term is handled slightly differently. We use the discrete Agmon
inequality (9), the discrete Sobolev inequality (10), the result of Lemma 3.2, the
H1 stability bound for vorticity (18) proven above, and the generalized Young’s
inequality, as follows.

2∆t|b∗(vn+1
h , wn+1

h ,∆hw
n+1
h )|

≤ 2∆t

(
|(vn+1

h · ∇wn+1
h ,∆hw

n+1
h )|+ 1

2
|((∇ · vn+1

h )wn+1
h ,∆hw

n+1
h )|

)
≤ 2∆t‖vn+1

h ‖L6‖∇wn+1
h ‖L3‖∆hw

n+1
h ‖+ ∆t‖∇vn+1

h ‖‖wn+1
h ‖L∞‖∆hw

n+1
h ‖

≤ C∆tC̃1‖wn+1
h ‖1/3‖∆hw

n+1
h ‖5/3 + C∆tC̃1‖wn+1

h ‖1/2‖∆hw
n+1
h ‖3/2

≤ C∆tC̃1C
1/3
2 ‖∆hw

n+1
h ‖5/3 + C∆tC̃1C

1/2
2 ‖∆hw

n+1
h ‖3/2

≤ C∆tν−5C̃6
1C

2
2 + C∆tν−3C̃4

1C
2
2 +

ν

3
∆t‖∆hw

n+1
h ‖2.

Now proceeding as in the velocity H1 bound will produce the H1 vorticity stability
bound (19).

3.2. Long-time accuracy of Algorithm 3.1. We now consider the difference
between the solutions of (13) - (15) to the NSE solution. We will show that the
algorithm solution converges to the true solution, up to an optimal O(∆t + hk+1)
discretization error, independent of the initial condition, provided a restriction on
the coarse mesh width and nudging parameters. We will give two results, the first
for µ2 > 0 and the second for µ2 = 0; while they both provide optimal long-time
accuracy, when µ2 > 0 the convergence to the true solution occurs more rapidly in
time.

In our theory below for long-time accuracy of Algorithm 3.1, we assume the
use of Scott-Vogelius elements. This is done for simplicity, as for non-divergence-
free elements like Taylor-Hood elements, similar optimal results can be obtained
(although with some additional terms and different constants) but require more
technical details; see, e.g., [21]. We define the following projection operator, PV ,
which will be used in the following accuracy analysis: Given φ ∈ H1(Ω) with
∇ · φ = 0, PV (φ) ∈ Vh satisfies (∇(φ − PV (φ)),∇vh) = 0 for all vh ∈ Vh. We also
define PW : H1(Ω)→Wh in the same way, with Vh replaced by Wh. The operators
PV and PW are known to have optimal approximation properties on the divergence
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free subspace of X and on W , respectively, in both L2 and H1 norms, provided
some commonly assumed properties of the domain [9, 42].

Theorem 3.4 (Long-time L2 accuracy of Algorithm 3.1 with µ1 > 0 and µ2 > 0).
Let true solutions u ∈ L∞(0,∞;Hk+2(Ω)), p ∈ L∞(0,∞;Hk(Ω)) where k ≥ 1 and
ut, utt ∈ L∞(0,∞;H1). Then, assume that time step ∆t is sufficiently small, and
that µ1 and µ2 satisfy

Cν−1
(
‖ωn+1‖2L∞ + ‖ωn+1 − PWωn+1‖2L∞

)
≤ µ1 ≤

Cν

H2
,

Cν−1
(
‖un+1‖2L3 + ‖un+1 − PV un+1‖2L3

)
≤ µ2 ≤

Cν

H2
,

where H is chosen so that this inequality holds. Then, for any time tn, n = 0, 1, 2, ...,
we have for solutions of Algorithm 3.1 using Scott-Vogelius elements,

‖vnh − un‖2 + ‖wn
h − rotun‖2 ≤ (1 + λ∆t)−n(‖v0h − u0‖2 + ‖w0

h − rotu0‖2) + Cλ−1R,

where

R :=
(
µ−1

1 ∆t2 + µ−1
2 ∆t2 + ν−1h2k+2 + µ1h

2k+2 + µ2h
2k+2

)
,

and λ = min
{
µ1

4 +
νC−2

P

4 , µ2

4 +
νC−2

P

4

}
with C independent of ∆t, h and H.

Proof. The true NSE solution satisfies the VV system

1

∆t
(un+1 − un) + ωn × un+1 +∇Pn+1 − ν∆un+1 = fn+1 + ∆tutt(t

∗)

+ (ωn − ωn+1)× un+1, (22)

∇ · un+1 = 0, (23)

1

∆t
(ωn+1 − ωn) + un+1 · ∇ωn+1 − ν∆ωn+1 = rot fn+1 + ∆tωtt(t

∗∗), (24)

where un is the velocity at time tn, Pn the Bernoulli pressure, ωn := rotun, and
t∗, t∗∗ ∈ [tn, tn+1]. Note that by Taylor expansion, we can write ωn − ωn+1 =
−∆tωt(s

∗) where s∗ ∈ [tn, tn+1].
The difference equations are obtained by subtracting the solutions to Algorithm

3.1 from (22)-(24) after testing them with test functions from χh ∈ Xh, rh ∈ Qh
and ψh ∈Wh, respectively. We define the differences between velocity and vorticity
as env := vnh − un and enw := wnh − ωn, respectively. Next, we will decompose the
error into a term that lies in the discrete space Vh and one outside. To do so, add
and subtract the discrete Stokes projection of un, denoted PV u

n, to env and let
ηnv := PV u

n − un, φnh,v := vnh − PV un. Then env = φnh,v + ηnv and φnh,v ∈ Vh. In a

similar manner, by taking the H1
0 projection of rotun into Wh denoted by PWω

n,
we obtain enw = φnh,w + ηnw with φnh,w ∈ Vh.

For velocity, since (∇ηn+1
v ,∇φn+1

h,v ) = 0, the difference equation becomes

1

2∆t
[‖φn+1

h,v ‖
2 − ‖φnh,v‖2 + ‖φn+1

h,v − φ
n
h,v‖2] + ν‖∇φn+1

h,v ‖
2 + µ1‖φn+1

h,v ‖
2

= ∆t(utt(t
∗), φn+1

h,v )− 1

∆t
(ηn+1
v − ηnv , φn+1

h,v )−∆t(ωt(s
∗), φn+1

h,v )− (enω × vn+1
h , φn+1

h,v )

− (ωn × ηn+1
v , φn+1

h,v )− 2µ1(IH(φn+1
h,v )− φn+1

h,v , φ
n+1
h,v )− µ1‖IHφn+1

h,v − φ
n+1
h,v ‖

2

− µ1(IHη
n+1
v , IHφ

n+1
h,v ), (25)
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and similarly for vorticity, we have

1

2∆t
[‖φn+1

h,w ‖
2 − ‖φnh,w‖2 + ‖φn+1

h,w − φ
n
h,w‖2] + ν‖∇φn+1

h,w ‖
2 + µ2‖φn+1

h,w ‖
2

= ∆t(ωtt(t
∗∗), φn+1

h,w )− 1

∆t
(ηn+1
w − ηnw, φn+1

h,w ) + b∗(en+1
v , ηn+1

w , φn+1
h,w )

+ b∗(un+1, ηn+1
w , φn+1

h,w ) + b∗(en+1
v , ωn+1, φn+1

h,w )− 2µ2(IH(φn+1
h,w )− φn+1

h,w , φ
n+1
h,w )

− µ2‖IHφn+1
h,w − φ

n+1
h,w ‖

2 − µ2(IHη
n+1
w , IHφ

n+1
h,w ), (26)

where in (25) we have added and subtracted φn+1
h,v to write it in the form found

above using

µ1(IHe
n+1
v , IHχh)

= µ1(IHφ
n+1
h,v , IHχh) + µ1(IHη

n+1
v , IHχh)

= µ1(IHφ
n+1
h,v − φ

n+1
h,v + φn+1

h,v , IHχh − φ
n+1
h,v + φn+1

h,v ) + µ1(IHη
n+1
v , IHχh)

= µ1‖φn+1
h,v ‖

2 + µ1(IHφ
n+1
h,v − φ

n+1
h,v , φ

n+1
h,v ) + µ1(φn+1

h,v , IHχh − φ
n+1
h,v )

+ µ1(IHφ
n+1
h,v − φ

n+1
h,v , IHχh − φ

n+1
h,v ) + µ1(IHη

n+1
v , χh),

and similarly for (26).
Next, we bound the terms on right hand side of difference equations, starting

with the velocity difference equation (25). The first three right hand side terms are
bounded using Cauchy-Schwarz and Young’s inequalities, via

∆t(utt(t
∗), φn+1

h,v ) ≤ ∆t‖utt‖L∞(0,∞;L2(Ω))‖φn+1
h,v ‖

≤ C∆t2µ−1
1 ‖utt‖2L∞(0,∞;L2(Ω)) +

µ1

20
‖φn+1

h,v ‖
2,

|∆t(ωtt(s∗), φn+1
h,v )| ≤ C∆t‖ωtt‖L∞(0,∞;L2(Ω))‖un+1‖L∞‖φn+1

h,v ‖

≤ C∆t2µ−1
1 ‖ωtt‖2L∞(0,∞;L2(Ω))‖u

n+1‖2L∞ +
µ1

20
‖φn+1

h,v ‖
2,

1

∆t
(ηn+1
v − ηnv , φn+1

h,v ) = (ηv,t(s
∗), φn+1

h,v )

≤ ‖ηv,t(s∗)‖‖φn+1
h,v ‖

≤ Cµ−1
1 ‖ηv,t(s∗)‖2 +

µ1

20
‖φn+1

h,v ‖
2,

where s∗ ∈ [tn, tn+1].
For nonlinear terms in (25), first we add and subtract en+1

w in the first component,
and un+1 in second component to get

(enw × vn+1
h , φn+1

h,v ) = ((enw − en+1
w )× en+1

v , φn+1
h,v ) + (en+1

w × en+1
v , φn+1

h,v )

+ ((enw − en+1
w )× un+1, φn+1

h,v ) + (en+1
w × un+1, φn+1

h,v )

= ((enw − en+1
w )× ηn+1

v , φn+1
h,v ) + (en+1

w × ηn+1
v , φn+1

h,v )

+ ((enw − en+1
w )× un+1, φn+1

h,v ) + (en+1
w × un+1, φn+1

h,v ).
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The all resulting terms are bounded by Hölder’s and Young’s inequalities to obtain

((enw − en+1
w )× ηn+1

v , φn+1
h,v )

≤ C‖φnh,w − φn+1
h,w ‖‖η

n+1
v ‖L3‖φn+1

h,v ‖L6 + C‖ηnw − ηn+1
w ‖L∞‖ηn+1

v ‖‖φn+1
h,v ‖

≤ Cν−1‖φnh,w − φn+1
h,w ‖

2‖ηn+1
v ‖2L3 +

ν

8
‖∇φn+1

h,v ‖
2

+ Cµ−1
1 ‖ηnw − ηn+1

w ‖2L∞‖ηn+1
v ‖2 +

µ1

20
‖φn+1

h,v ‖
2,

(en+1
w × ηn+1

v , φn+1
h,v ) ≤ C‖φn+1

h,w ‖‖η
n+1
v ‖L3‖φn+1

h,v ‖L6 + C‖ηn+1
w ‖‖ηn+1

v ‖L∞‖φn+1
h,v ‖

≤ Cν−1‖φn+1
h,w ‖

2‖ηn+1
v ‖2L3 +

ν

8
‖∇φn+1

h,v ‖
2

+ Cµ−1
1 ‖ηn+1

w ‖2‖ηn+1
v ‖2L∞ +

µ1

20
‖φn+1

h,v ‖
2,

((enw − en+1
w )× un+1, φn+1

h,v )

≤ C‖φnh,w − φn+1
h,w ‖‖u

n+1‖L3‖φn+1
h,v ‖L6 + C‖ηnw − ηn+1

w ‖‖un+1‖L∞‖φn+1
h,v ‖

≤ Cν−1‖φnh,w − φn+1
h,w ‖

2‖un+1‖2L3 +
ν

8
‖∇φn+1

h,v ‖
2

+ Cµ−1
1 ‖ηnw − ηn+1

w ‖2‖un+1‖2L∞ +
µ1

20
‖φn+1

h,v ‖
2,

(en+1
w × un+1, φn+1

h,v ) ≤ C‖φn+1
h,w ‖‖u

n+1‖L3‖φn+1
h,v ‖L6 + C‖ηn+1

w ‖‖un+1‖L∞‖φn+1
h,v ‖

≤ Cν−1‖φn+1
h,w ‖

2‖un+1‖2L3 +
ν

8
‖∇φn+1

h,v ‖
2

+ Cµ−1
1 ‖ηn+1

w ‖2‖un+1‖2L∞ +
µ1

20
‖φn+1

h,v ‖
2.

Then, for the last nonlinear term, we apply Hölder’s, Poincaré’s and Young’s in-
equalities and get

(ωn × ηn+1
v , φn+1

h,v ) ≤ ‖ωn‖L∞‖ηn+1
v ‖‖φn+1

h,v ‖

≤ Cν−1‖ωn‖2L∞‖ηn+1
v ‖2 +

ν

8
‖∇φn+1

h,v ‖
2.

Next, the first interpolation term on the right hand side of (25) will be bounded
with Cauchy-Schwarz inequality and (11) to obtain

µ1(IH(φn+1
h,v )− φn+1

h,v , φ
n+1
h,v ) ≤ µ1‖IH(φn+1

h,v )− φn+1
h,v ‖‖φ

n+1
h,v ‖

≤ µ1CH‖∇φn+1
h,v ‖‖φ

n+1
h,v ‖

≤ Cµ1H
2‖∇φn+1

h,v ‖
2 +

µ1

20
‖φn+1

h,v ‖
2.

For the second interpolation term, we apply inequality (12), which yields

µ1‖IHφn+1
h,v − φ

n+1
h,v ‖

2 ≤ Cµ1H
2‖∇φn+1

h,v ‖
2.

Finally, the last interpolation term will be bounded using Cauchy-Schwarz, (12),
and Young’s inequality to get the bound

µ1(IHη
n+1
v , IHφ

n+1
h,v ) ≤ Cµ1‖ηn+1

v ‖2 +
µ1

20
‖φn+1

h,v ‖
2.

We now move on to the vorticity difference equation, (26). All the linear terms are
majorized in a similar manner as in the velocity case, and so we show below the
bounds only for the nonlinear terms. Due to the use of Scott-Vogelius elements,
the skew-symmetric form reduces to the usual convective form, so b∗(u, v, w) =
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(u · ∇v, w), with ‖∇ · u‖ = 0. To bound the first nonlinear term on the right hand
side of (26), we begin by breaking up the velocity error term, then apply Hölder’s
and Young’s inequalities, yielding

b∗(en+1
v , ηn+1

w , φn+1
h,w ) = (en+1

v · ∇ηn+1
w , φn+1

h,w )

= (φn+1
h,v · ∇η

n+1
w , φn+1

h,w ) + (ηn+1
v · ∇ηn+1

w , φn+1
h,w )

= (φn+1
h,v · ∇φ

n+1
h,w , η

n+1
w ) + (ηn+1

v · ∇φn+1
h,w , η

n+1
w )

≤ C‖φn+1
h,v ‖‖∇φ

n+1
h,w ‖‖η

n+1
w ‖L∞ + C‖ηn+1

v ‖‖∇φn+1
h,w ‖‖η

n+1
w ‖L∞

≤ Cν−1‖φn+1
h,v ‖

2‖ηn+1
w ‖2L∞ +

ν

10
‖∇φn+1

h,w ‖
2 + Cν−1‖ηn+1

v ‖2‖ηn+1
w ‖2L∞

+
ν

10
‖∇φn+1

h,w ‖
2.

For the second nonlinear term, we use Hölder’s, Póincare’s and Young’s inequalities,
which gives

b∗(un+1, ηn+1
w , φn+1

h,w ) = (un+1 · ∇ηn+1
w , φn+1

h,w )

= −(un+1 · ∇φn+1
h,w , η

n+1
w )

≤ C‖un+1‖L∞‖∇φn+1
h,w ‖‖η

n+1
w ‖

≤ Cν−1‖un+1‖2L∞‖ηn+1
w ‖2 +

ν

10
‖∇φn+1

h,w ‖
2.

For the last nonlinear term, we begin by breaking up the velocity error term, then
apply Hölder’s and Young’s inequalities to get

b∗(en+1
v , ωn+1, φn+1

h,w ) = (en+1
v · ∇ωn+1, φn+1

h,w )

= (φn+1
h,v · ∇ω

n+1, φn+1
h,w ) + (ηn+1

v · ∇ωn+1, φn+1
h,w )

= (φn+1
h,v · ∇φ

n+1
h,w , ω

n+1) + (ηn+1
v · ∇φn+1

h,w , ω
n+1)

≤ C‖φn+1
h,v ‖‖∇φ

n+1
h,w ‖‖ω

n+1‖L∞ + C‖ηn+1
v ‖‖∇φn+1

h,w ‖‖ω
n+1‖L∞

≤ Cν−1‖φn+1
h,v ‖

2‖ωn+1‖2L∞ +
ν

10
‖∇φn+1

h,w ‖
2 + Cν−1‖ηn+1

v ‖2‖ωn+1‖2L∞

+
ν

10
‖∇φn+1

h,w ‖
2.

Replacing the right hand sides of (25) and (26) with the computed bounds and
dropping nonnegative terms with ‖φn+1

h,v − φnh,v‖2 yields the bound

1

2∆t

(
‖φn+1

h,v ‖
2 + ‖φn+1

h,w ‖
2 − ‖φn

h,v‖2 − ‖φn
h,w‖2

)
+

(
1

2∆t
− Cν−1(‖ηn+1

v ‖2L3 + ‖un+1‖2L3)

)
‖φn+1

h,w − φ
n
h,w‖2

+
ν

4
‖∇φn+1

h,v ‖
2 +

(ν
4
− Cµ1H

2
)
‖∇φn+1

h,v ‖
2

+
ν

4
‖∇φn+1

h,w ‖
2 +

(ν
4
− Cµ2H

2
)
‖∇φn+1

h,w ‖
2

+
µ1

4
‖φn+1

h,v ‖
2 +

(µ1

4
− Cν−1(‖ωn+1‖2L∞ + ‖ηn+1

w ‖2L∞)
)
‖φn+1

h,v ‖
2

+
µ2

4
‖φn+1

h,w ‖
2 +

(µ2

4
− Cν−1(‖un+1‖2L3 + ‖ηn+1

v ‖2L3)
)
‖φn+1

h,w ‖
2
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≤ C∆t2
(
µ−1
1 ‖utt‖2L∞(0,∞;L2) + µ−1

1 ‖ωtt‖2L∞(0,∞;L2)‖u
n+1‖2L∞ + µ−1

2 ‖ωtt‖2L∞(0,∞;L2)

)
+ Cµ−1

1

(
‖ηv,t‖2L∞(0,∞;L2) + ‖ηn+1

w − ηnw‖2L∞‖ηn+1
v ‖2

+ ‖ηn+1
w ‖2‖ηn+1

v ‖2L∞ + ‖ηn+1
w − ηnw‖2‖un+1‖2L∞

+ ‖ηn+1
w ‖2‖un+1‖2L∞

)
+ Cµ−1

2 ‖ηw,t‖2L∞(0,∞;L2)

+ Cν−1(‖ωn‖2L∞‖ηn+1
v ‖2 + ‖ηn+1

v ‖2‖ηn+1
w ‖2L∞

+ ‖ηn+1
v ‖2‖ωn+1‖2L∞ + ‖ηn+1

w ‖2‖un+1‖2L∞
)

+ Cµ1‖ηn+1
v ‖2 + Cµ2‖ηn+1

w ‖2.

Using the assumptions on H and the nudging parameters, the time step restriction,
and smoothness of the true solution, this reduces to

1

2∆t

(
‖φn+1

h,v ‖
2 + ‖φn+1

h,w ‖
2 − ‖φnh,v‖2 − ‖φnh,w‖2

)
+
ν

4
‖∇φn+1

h,v ‖
2 +

ν

4
‖∇φn+1

h,w ‖
2

+
µ1

4
‖φn+1

h,v ‖
2 +

µ2

4
‖φn+1

h,w ‖
2

≤ C∆t2
(
µ−1

1 + µ−1
1 + µ−1

2

)
+ Cµ−1

2 ‖ηw,t‖2L∞(0,∞;L2)

+ Cµ−1
1

(
‖ηv,t‖2L∞(0,∞;L2) + ‖ηn+1

w − ηnw‖2L∞‖ηn+1
v ‖2

+ ‖ηn+1
w ‖2‖ηn+1

v ‖2L∞ + ‖ηn+1
w − ηnw‖2 + ‖ηn+1

w ‖2
)

+ Cν−1
(
‖ηn+1
v ‖2 + ‖ηn+1

v ‖2‖ηn+1
w ‖2L∞ + ‖ηn+1

v ‖2 + ‖ηn+1
w ‖2

)
+ Cµ1‖ηn+1

v ‖2 + Cµ2‖ηn+1
w ‖2.

Now define

λ1 :=
µ1

4
+
νC−2

P

4
,

λ2 :=
µ2

4
+
νC−2

P

4
.

Using this in the inequality after applying Poincare’s inequality and multiplying
each side by 2∆t, we get

(1 + ∆tλ1)‖φn+1
h,v ‖

2 + (1 + ∆tλ2)‖φn+1
h,w ‖

2

≤ C∆t
(
µ−1
1 ∆t2 + µ−1

2 ∆t2 + ν−1h2k+2 + µ1h
2k+2 + µ2h

2k+2
)

+ ‖φn
h,v‖2 + ‖φn

h,w‖2.

Then, with R :=
(
µ−1

1 ∆t2 + ν−1∆t2 + ν−1h2k+2 + µ1h
2k+2 + µ2h

2k+2
)

and λ :=
min {λ1, λ2}, we obtain the bound

(1 + λ∆t)
(
‖φn+1

h,v ‖
2 + ‖φn+1

h,w ‖
2
)
≤ C∆tR+ ‖φnh,v‖2 + ‖φnh,w‖2.

By Lemma 2.1, this implies

‖φn+1
h,v ‖

2 + ‖φn+1
h,w ‖

2 ≤ Cλ−1R+ (1 + λ∆t)−(n+1)(‖φ0
h,v‖2 + ‖φ0

h,w‖2).

Lastly, applying triangle inequality completes the proof.

Theorem 3.5 (Long-time L2 accuracy of Algorithm 3.1 with µ1 > 0, µ2 = 0).
Let true solution u ∈ L∞(0,∞;Hk+2(Ω)), p ∈ L∞(0,∞;Hk(Ω)) where k ≥ 1
and ut, utt,∈ L∞(0,∞;H1). Then, assume that time step ∆t is sufficiently small,
µ2 = 0, and that µ1 satisfies

Cν−1 max{(‖un+1‖2L∞ + ‖un+1 − PV u
n+1‖2L∞ ), (‖ωn+1‖2L∞ + ‖ωn+1 − PWωn+1‖2L∞ )}

≤ µ1 ≤
Cν

H2
,
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where H is chosen so that this inequality holds. Then for any time tn, n = 0, 1, 2, ...,
solutions of of Algorithm 3.1 using Scott-Vogelius elements satisfy

‖vnh − un‖2 + ‖wn
h − rotun‖2 ≤ (1 + λ∆t)−n(‖v0h − u0‖2 + ‖w0

h − rotu0‖2) + Cλ−1R,
(27)

where

R :=
(
µ−1

1 ∆t2 + ν−1∆t2 + ν−1h2k+2 + µ1h
2k+2

)
,

and λ = min
{
µ1

4 +
C−2

P ν

4 ,
C−2

P ν

4

}
with C independent of ∆t, h and H .

Remark 1. Algorithm 3.1 converges to the true solutions up to optimal discretiza-
tion error in both cases µ1, µ2 > 0 and µ1 > 0, µ2 = 0. The key difference between
two cases is that when µ2 = 0, the convergence in time to reach optimal accuracy is
much slower since λ does not scale with the nudging parameters. This phenomena
is illustrated in our numerical tests.

Proof. We follow the same steps with the proof of Theorem 3.4. The difference
equation for velocity is already the same with (25), and just two nonlinear terms
in the velocity difference equation are bounded with differently in this case. By
Hölder, Poincaré and Young’s inequalities, we get the bounds

(en+1
w × ηn+1

v , φn+1
h,v ) ≤ C‖φn+1

h,w ‖‖η
n+1
v ‖L3‖φn+1

h,v ‖L6 + C‖ηn+1
w ‖‖ηn+1

v ‖L∞‖φn+1
h,v ‖

≤ Cµ−1
1 ‖∇φ

n+1
h,w ‖

2‖ηn+1
v ‖2L∞ +

µ1

16
‖φn+1

h,v ‖
2

+ Cµ−1
1 ‖ηn+1

w ‖2‖ηn+1
v ‖2L∞ +

µ1

20
‖φn+1

h,v ‖
2,

(en+1
w × un+1, φn+1

h,v ) ≤ C‖φn+1
h,w ‖‖u

n+1‖L3‖φn+1
h,v ‖L6 + C‖ηn+1

w ‖‖un+1‖L∞‖φn+1
h,v ‖

≤ Cµ−1
1 ‖∇φ

n+1
h,w ‖

2‖un+1‖2L∞ +
µ1

16
‖φn+1

h,v ‖
2

+ Cµ−1
1 ‖ηn+1

w ‖2‖un+1‖2L∞ +
µ1

20
‖φn+1

h,v ‖
2.

All terms on the right hand side of vorticity difference equation for Theorem 3.4
are bounded identically. Proceeding as in the previous proof, we arrive at

1

2∆t

(
‖φn+1

h,v ‖
2 + ‖φn+1

h,w ‖
2 − ‖φn

h,v‖2 − ‖φn
h,w‖2

)
+

(
1

2∆t
− Cν−1(‖ηn+1

v ‖2L3 − ‖un+1‖2L3)

)
‖φn+1

h,w − φ
n
h,w‖2

+
µ1

4
‖φn+1

h,v ‖
2 +

(µ1

4
− Cν−1(‖ωn+1‖2L∞ + ‖ηn+1

w ‖2L∞)
)
‖φn+1

h,v ‖
2 +

ν

4
‖∇φn+1

h,v ‖
2

+
(ν

4
− Cµ1H

2
)
‖∇φn+1

h,v ‖
2 +

ν

4
‖∇φn+1

h,w ‖
2

+
(ν

4
− Cµ−1

1 (‖un+1‖L∞ + ‖ηn+1
v ‖L∞)

)
‖∇φn+1

h,w ‖
2

≤ C∆t2
(
µ−1
1 ‖utt‖2L∞(0,∞;L2) + µ−1

1 ‖ωtt‖2L∞(0,∞;L2)‖u
n+1‖2L∞ + µ−1

2 ‖ωtt‖2L∞(0,∞;L2)

)
+ Cµ−1

1

(
‖ηv,t‖2L∞(0,∞;L2) + ‖ηn+1

w − ηnw‖2L∞‖ηn+1
v ‖2 + ‖ηn+1

w ‖2‖ηn+1
v ‖2L∞

+ ‖ηn+1
w − ηnw‖2‖un+1‖2L∞ + ‖ηn+1

w ‖2‖un+1‖2L∞
)

+ Cν−1(‖ωn+1‖2L∞‖ηv‖2

+ ‖ηn+1
v ‖2‖ηn+1

w ‖2L∞ + ‖ηn+1
v ‖2‖ωn+1‖2L∞ + ‖ηn+1

w ‖2‖un+1‖2L∞
)

+ Cµ1‖ηn+1
v ‖2.

Provided ∆t is sufficiently small and the restriction

max
{
Cν−1(‖un+1‖2L∞ + ‖ηn+1

v ‖2L∞), Cν−1(‖ωn+1‖2L∞ + ‖ηn+1
w ‖2L∞)

}
≤ µ1 ≤

Cν

H2
,
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holds, then applying Poincaré inequality to the terms on left hand side and using

λ1 :=
µ1

4
+
C−2
P ν

4
,

λ2 :=
C−2
P ν

4
,

and assumptions on the true solution, we obtain

(1 + ∆tλ1)‖φn+1
h,v ‖

2 + (1 + ∆tλ2)‖φn+1
h,w ‖

2

≤ C∆t
(
µ−1

1 ∆t2 + ν−1∆t2 + ν−1h2k+2 + µ1h
2k+2

)
+ ‖φnh,v‖2 + ‖φnh,w‖2.

From here, the proof is finished in the same way as the previous theorem.

3.3. Second order temporal discretization. We now present results for a sec-
ond order analogue of the first order algorithm studied above.

Algorithm 3.6. Find (vn+1
h , wn+1

h , qn+1
h ) ∈ (Xh,Wh, Qh) for n = 0, 1, 2, ..., satis-

fying

1

2∆t

(
3vn+1
h − 4vnh + vn−1

h , χh
)

+ ((2wnh − wn−1
h )× vn+1

h , χh)− (Pn+1
h ,∇ · χh)

+ν(∇vn+1
h ,∇χh) + µ1(IH(vn+1

h − un+1), IHχh) = (fn+1, χh),
(28)

(∇ · vn+1
h , rh) = 0,

(29)

1

2∆t

(
3wn+1

h − 4wnh − vn−1
h , ψh

)
+ (vn+1

h · ∇wn+1
h , ψh) + ν(∇wn+1

h ,∇ψh)

+µ2(IH(wn+1
h − rotun+1), IH(ψh)) = (rot fn+1, ψh),

(30)

for all (χh, ψh, rh) ∈ (Xh,Wh, Qh), with v0 ∈ X and IH(un+1), IH(rotun+1) given.

Stability and convergence results follow in the same manner as the first order
scheme results above, using G-stability theory as in [1, 2, 30].

Theorem 3.7 (Long-time stability and accuracy of Algorithm 3.6 with µ1 > 0 and
µ2 > 0). For any time step ∆t > 0, and any time tn, n = 0, 1, 2, ..., we have that
solutions of Algorithm 3.6 satisfy

‖vnh‖+ ‖wnh‖+ ‖∇vnh‖+ ‖∇wnh‖ ≤ C,

with C independent of n, ∆t, h, H.
Furthermore, if we suppose the true solution u ∈ L∞(0,∞;Hk+2(Ω)), p ∈

L∞(0,∞;Hk(Ω)) where k ≥ 1 and ut, uttt,∈ L∞(0,∞;H1), that time step ∆t
is sufficiently small, Scott-Vogelius elements are used, and that µ1 and µ2 satisfy
C(u) ≤ µ1, µ2 ≤ Cν

H2 , we have the bound

‖vnh − un‖2 + ‖ωn
h − rotun‖2 ≤

(1 + λ∆t)−n(‖v0h − u0‖2 + ‖ω0
h − rotu0‖2 + ‖v1h − u1‖2 + ‖ω1

h − rotu1‖2) + Cλ−1R,

where

R :=
(
µ−1

1 ∆t4 + µ−1
2 ∆t4 + ν−1h2k+2 + µ1h

2k+2 + µ2h
2k+2

)
,

and λ = min
{
µ1

4 +
νC−2

P

4 , µ2

4 +
νC−2

P

4

}
with C independent of ∆t, h and H.
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4. Numerical experiments. In this section, we illustrate the above theory with
two numerical tests, both using Algorithm 3.6. Our first test is for convergence
rates on a problem with analytical solution, and the second test is for flow past a
flat plate. For both tests, we report results only for (P2, P1) Taylor-Hood elements
for velocity and pressure, and P2 for vorticity; however we also tried Scott-Vogelius
elements on barycenter refined meshes that produced similar numbers of degrees of
freedom, and results were very similar to those of Taylor-Hood. The coarse velocity
and vorticity spaces XH and WH are defined to be piecewise constants on the same
mesh used for the computations. The interpolation operator IH was taken to be
the L2 projection operator onto XH (or WH), which is known to satisfy (11)-(12)
[16].

4.1. Experiment 1: Convergence rate test. For our first test, we investigate
the theory above for Algorithm 3.6. Here we use the analytic solution

u =

[
cos(π(y − t))
sin(π(x+ t))

]
, p = (1 + t2) sin(x+ y),

on the unit square domain Ω = (0, 1)2 with kinematic viscosity ν = 1.0, and use the
NSE to determine f and boundary conditions. We take the final time T = 1, and
choose initials conditions for Algorithm 3.6’s velocity and vorticity to be 0. For the
discretization, (P2, P1) Taylor-Hood elements are used for velocity and pressure, P2

for vorticity, and a time step size of ∆t = 0.001. From Section 3, we expect third
order spatial convergence rate in the L2 norm for large enough times. Results are
presented below for two cases, µ2 > 0 and µ2 = 0.

4.1.1. Results for µ1 > 0 and µ2 > 0. To test this case, we first calculated spatial
convergence rates at the final time T = 1 with the L2 error, using successively
refined uniform meshes and µ1 = µ2 = 100. Errors and rates are shown in table
1, and show clear third order spatial convergence of both velocity and vorticity.
Deterioration of the rates for the smallest h is expected since the time step ∆t is
fixed while the spatial mesh width decreases.

h ‖ev(T )‖ rate ‖ew(T )‖ rate
1/4 2.62008e-03 - 7.70647e-03 -
1/8 3.20467e-04 3.0314 9.68456e-04 2.9923
1/16 3.97307e-05 3.0146 1.20888e-04 3.0041
1/32 4.94529e-06 3.0061 1.50809e-05 3.0029
1/64 6.19332e-07 2.9973 1.99325e-06 2.9195
1/128 8.13141e-08 2.9247 3.15236e-07 2.5855

Table 1. Shown above are L2 velocity and vorticity errors and
convergence rates on varying mesh widths, at the final time T = 1,
using Algorithm 3.6 with µ1 = µ2 = 100.

We next consider convergence to the true solution exponentially in time (up
to discretization error). Here we take h = 1/32, and compute solutions using
µ1 = µ2 = µ, with µ = 1, 10, 100, 1000. Results are shown in figure 1, as L2

error versus time for velocity and vorticity. We observe exponential convergence
in time of both velocity and vorticity, up to about 10−5, which is consistent with
the choices of h and ∆t and the accuracy of the method. We note that as µ is
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increased, convergence is faster in time, which is consistent with our theory for the
case of µ1 > 0 and µ2 > 0.

Figure 1. Shown above are L2 velocity and vorticity errors for
Algorithm 3.6 with µ1 = µ2 = µ, with varying µ > 0.

4.1.2. Results for µ1 > 0 and µ2 = 0. We now consider the same tests as above, but
with µ2 = 0. This is an important case, since it is not always practical to obtain
accurate vorticity measurement data. Just as in the first case, we first calculated
spatial convergence rates at the final time T = 1 for the L2 error, on the same
successively refined uniform meshes, but now with µ1 = 100 and µ2 = 0. Errors
and rates are shown in table 2, and show clear third order spatial convergence of
both velocity and vorticity. Deterioration of the rates for the smallest h is expected
since the time step ∆t was fixed at 0.001, although the vorticity errors are slightly
worse than for the case of µ2 = 100 shown in table 1, and the deterioration of the
rates occurs a bit earlier. Hence we observe essentially the same velocity errors and
rates compared to the case of µ2 = 100, and slightly worse vorticity error but still
with optimal L2 accuracy.

h ‖ev(T )‖ rate ‖ew(T )‖ rate
1/4 2.62003e-03 - 7.79431e-03 -
1/8 3.20466e-04 3.0313 9.70492e-04 3.0056
1/16 3.97175e-05 3.0123 1.20897e-04 3.0049
1/32 4.94501e-06 3.0057 1.50883e-05 3.0023
1/64 6.17406e-07 3.0017 2.08215e-06 2.8573
1/128 8.11244e-08 2.9280 9.37122e-07 1.1518

Table 2. Shown above are L2 velocity and vorticity errors and
convergence rates on varying mesh widths, at the final time T = 1,
using Algorithm 3.6 with µ1 = 100 and µ2 = 0.

To test exponential convergence in time for the case of µ2 = 0, we again take
h = 1/32, and compute solutions using µ1 = 1, 10, 100, 1000. Results are shown
in figure 2, as L2 error versus time for velocity and vorticity. Although we do
observe exponential convergence in time of both velocity and vorticity, up to about
10−5 which is the same accuracy reached when µ2 = 100 above. An important
difference here compared to when µ2 = 100 is that the convergence of vorticity to
the true solution is independent of µ1, and the convergence of velocity is slower for
larger choices of µ1. This reduced dependence of the convergence on the nudging
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parameters when µ2 = 0 is consistent with our theory. Hence without vorticity
nudging, long-time optimal accuracy is still achieved, but it takes longer in time to
get there.

Figure 2. Shown above are L2 velocity and vorticity errors (from
left to right) for Algorithm 3.6 with varying µ1 and µ2 = 0.

4.2. Experiment 2: Flow past a normal flat plate. To test Algorithm 3.6 on
a more practical problem, we consider flow past a flat plate with Re = 50. The
domain of this problem is [−7, 20]× [−10, 10] rectangular channel with a 0.125× 1
plate fixed ten units into the channel from the left, vertically centered. The inflow
velocity is uin = 〈0, 1〉, no-slip velocity and the corresponding natural vorticity
boundary condition from [36] are used on the walls and plate, and homogeneous
Neumann conditions are enforced weakly at the outflow. A setup for the domain
is shown in figure 3. There is no external forcing applied, f = 0. The viscosity is
taken to be ν = 1/50 which is inversely proportional to Re, based on the height
of the plate. The end time for the test is T = 80. A DNS was run until for 160
time units (from t=-80 to t=80), and for t > 0 measurement data for the VV-DA
simulation was sampled from the DNS.

Figure 3. Setup for the flow past a normal flat plate.

We computed solutions using a Delaunay generated triangular meshes that pro-
vided 27, 373 total degree of freedom with (P2, P1, P2) velocity-pressure-vorticity
elements, and time step ∆t = 0.02. We first compared convergence in time to the
DNS solution, for two cases: µ1 = µ2 > 0 and µ1 > 0, µ2 = 0. Plots of L2 velocity
and vorticity error for both of these cases are shown in figure 4, with varying nudg-
ing parameters. There is a clear advantage seen in the plots for the simulations
with µ2 > 0: when vorticity is nudged in addition to velocity, convergence to the
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true solution is much faster in time. The convergence when µ2 = 0 appears to still
be occurring, but is much slower and even by t = 80 the L2 vorticity error is barely
smaller than O(1). We note that just like in the analytical test problem, when
µ2 = 0 the vorticity convergence in time is independent of µ1.

Figure 4. L2 velocity and vorticity errors (from left to right) for
Algorithm 3.6 with µ1 = µ2 = µ > 0 (top) and µ1 = µ > 0, µ2 = 0
(bottom)

To further illustrate the convergence of the DNS, we show contour plots of the
DNS solution, the VVDA solution, and their difference, in figures 5-8. For these
simulations, we used µ1 = µ2 = 10 in figures 5-6, but used µ2 = 0 for figures 7-8.
As expected due to the plots in figure 4, when µ1 = µ2 = 10 we observe rapid
convergence in the plots for VV-DA velocity and vorticity to the DNS velocity and
vorticity, and by t = 1 the contour plots are visually indistinguishable. This is not
the case, however, when µ2 = 0. In this case, while the velocity plots do agree
with DNS velocities by t = 1 (in the eyeball norm), the vorticity error remains
observable at t = 10 and even at t = 20 there are some small difference. The
contour plots of the errors at early times for vorticity show the largest errors occur
near vortex centers, indicating that the VV-DA method is not accurately predicting
the strength of the vortices.

4.2.1. Re=100. We also tested Re = 100 for flow past a flat plate, using the same
discretization parameters as above for the Re = 50 case, and overall see similar
results as for the Re = 50 case. When both velocity and vorticity are nudged,
convergence to the true solution is exponential for both velocity and vorticity in the
L2(Ω) norm, and we observe that at early times the larger µ convergence curves
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Figure 5. Contour plots of velocity for DNS (left), VV-DA with
µ1 = µ2 = 10 (center), and their difference (right), for times t =
0, 0.1, 1, 10, 20, 80 (top to bottom).

are steeper, but at later times µ = 1 converges more rapidly. When only velocity
is nudged, larger µ provides faster convergence of the velocity, but the vorticity
converges nearly independent of µ.

5. Conclusions. We have analyzed a VV scheme for NSE enhanced with CDA,
using linearized backward Euler or BDF2 in time and finite elements in space. We
proved that applying CDA preserves the unconditional stability properties of the
scheme, and also yields optimal long-time accuracy if both velocity and vorticity
are nudged, or velocity-only. If only velocity is nudged, then the convergence in
time to the true solution is slower, but still exponentially fast in time. Numerical
tests illustrate the theory, including the difference between nudging only velocity or
also nudging vorticity.

For future directions, since nudging vorticity is difficult in practice due to accu-
rate measurement data not typically being available, one may try to obtain better
results for the velocity-only-nudging by penalizing the difference between wh and
rot vh in the vorticity equation. That is, by setting µ2 = 0 and adding the term
γ(w− rotu) to the vorticity equation (3), it may be possible to analytically prove a
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Figure 6. Contour plots of vorticity for DNS (left), VV-DA with
µ1 = µ2 = 10 (center), and their difference (right), for times t =
0, 0.1, 1, 10, 20, 80 (top to bottom).

convergence result resembling Theorem 3.4. Determining whether this is possible,
and if so then for what values of γ, and whether it works in practice (i.e. how large
are associated constants), would need a detailed further study which the authors
plan to undertake.
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