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AN ARTIFICIAL COMPRESSION REDUCED ORDER MODEL∗

VICTOR DECARIA† , TRAIAN ILIESCU‡ , WILLIAM LAYTON† ,

MICHAEL MCLAUGHLIN† , AND MICHAEL SCHNEIER§

Abstract. We propose a novel artificial compression, reduced order model (AC-ROM) for the
numerical simulation of viscous incompressible fluid flows. The new AC-ROM provides approxima-
tions not only for velocity but also for pressure, which is needed to calculate forces on bodies in
the flow and to connect the simulation parameters with pressure data. The new AC-ROM does not
require that the velocity-pressure ROM spaces satisfy the inf-sup (Ladyzhenskaya–Babuska–Brezzi)
condition, and its basis functions are constructed from data that are not required to be weakly
divergence-free. We prove error estimates for the reduced basis discretization of the AC-ROM. We
also investigate numerically the new AC-ROM in the simulation of a two-dimensional flow between
offset cylinders.
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1. Introduction. We consider the Navier–Stokes equations (NSE) with no-slip
boundary conditions:

ut + u · ∇u+∇p− ν∆u = f and ∇ · u = 0 in Ω× (0, T ],

u = 0 on ∂Ω× (0, T ] and u(x, 0) = u0(x) in Ω.
(1.1)

Here u is the velocity, f is the known body force, p is the pressure, and ν is the kine-
matic viscosity. For the past three decades, reduced order models (ROMs) have been
successfully used in the numerical simulation of fluid flows modeled by the NSE (1.1)
[4, 12, 18, 19, 21, 22, 35, 38, 39, 44]. The ROM construction is similar to the full
finite element approximation except we seek a solution in a low-dimensional ROM
space XR using the basis {ϕi}Ri=1. These basis functions are often assumed to be
weakly divergence-free. This assumption holds true, for example, if the ROM ba-
sis functions are constructed from data from a NSE discretization with finite ele-
ment velocity-pressure pairs that satisfy the inf-sup (Ladyzhenskaya–Babuska–Brezzi
(LBB)) condition. In this case, the pressure drops out from the ROM, which yields
approximations only for the velocity field, such as for the linearly implicit backward
Euler method
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where unR denotes the ROM velocity approximation at time step n, b∗(w, u, v) :=
1
2 (w · ∇u, v)− 1

2 (w · ∇v, u) ∀u, v, w ∈ [H1(Ω)]d, and the superscript denotes the time
step number.

We emphasize, however, that even when the pressure is not required in the ROM,
one may still need a ROM pressure approximation. This happens, for example, in
fluid-structure interaction problems, if drag and lift coefficients need to be computed
or if the residual has to be calculated [7]. Another practical issue with velocity only
ROMs is that internal (industrial) flows will often have reliable pressure data but
little to no velocity data. A velocity only ROM will be unable to incorporate pressure
data to improve accuracy, calibrate the model, or check if a control loop is functioning
properly.

When a ROM pressure approximation is required, there are three main approaches
that are currently used:

(I) Inf-sup/LBB condition. In the first approach, the velocity and pressure ROM
approximations satisfy the inf-sup/LBB condition:

inf
qM∈QM

sup
vR∈XR

(∇ · vR, qM )

‖∇vR‖ ‖qM‖ ≥ βis > 0 .(1.3)

This approach has been extensively developed in the reduced basis method (RBM)
community over the past decade [19, 38]. This approach yields accurate ROM ap-
proximations for both velocity and pressure and eliminates the spurious numerical
instabilities in the pressure approximation that are often generated by ROMs that do
not satisfy the inf-sup condition. Furthermore, rigorous error estimates are proven
for the LBB conforming ROM approximations. The RBM has been successfully used
in numerous scientific and engineering applications [19, 38]. However, enforcing the
inf-sup condition (1.3) is significantly more challenging for ROMs than for finite ele-
ments. Indeed, in the finite element context, the approximation spaces (e.g., piecewise
quadratic for the velocity and piecewise linear for the pressure, i.e., the Taylor–Hood
element) are specified beforehand and the corresponding discrete inf-sup condition
can be investigated a priori. In the ROM context, on the other hand, the approx-
imation spaces are problem-dependent—they are known only after the underlying
finite element simulations (or the actual physical experiments) have been carried out.
Thus, in a ROM context, the inf-sup condition needs to be enforced for each problem
separately. In the RBM context, this is generally achieved by enriching the ROM
basis with supremizers, which need to be computed in the offline stage, either with
a Galerkin [19, 38] or a Petrov–Galerkin [1, 49] formulation. In realistic fluid flow
applications (e.g., the NSE at high Reynolds numbers), enforcing the inf-sup condi-
tion can be prohibitively expensive (see, e.g., sections 4.2.2 and 4.2.3 in [5], as well
as [43]).

(II) Pressure Poisson equation. In the second approach to generate ROM ap-
proximation for the pressure, the available ROM velocity approximation is used to
solve a pressure Poisson equation for the ROM pressure approximation

∆pM = −∇ · ((uR · ∇)uR) in Ω ,(1.4)

which is obtained by taking the divergence of the NSE (1.1). This approach has been
used in, e.g., [2, 7, 36, 43]. We note that this approach faces several significant chal-
lenges: We emphasize that the Poisson equation (1.4) is not valid anymore if the ROM
basis functions are not weakly divergence-free. This is the case, for example, if the
ROM basis functions are built from data from NSE discretizations with finite element
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velocity-pressure pairs that do not satisfy the inf-sup/LBB condition, e.g., when the
artificial compression, penalty, or projection methods are used [16]. Furthermore, the
boundary conditions for (1.4) are not clear. Finally, the numerical investigation in [7]
showed that even when weakly divergence-free snapshots were used, the ROMs that
solve the pressure Poisson equation (1.4) were less competitive in terms of numerical
accuracy and computational efficiency.

(III) Pressure stabilization. In the numerical discretization of the NSE (1.1)
with standard numerical methods (e.g., finite elements), there are two main types
of numerical instability: (i) the convective instability, which occurs in underresolved
numerical simulations when the convection term dominates the diffusion term in the
NSE, and (ii) the pressure instability, which occurs, e.g., when finite elements that
violate the inf-sup condition are used. We emphasize that the two types of numerical
instability are different (although they are often treated together) [26]. Indeed, the
convective instability (i) is relevant even in equations that do not have a pressure term
(e.g., convection-diffusion equations), whereas the pressure instability (ii) is relevant
even in equations that do not have a convective term (e.g., the Stokes equations).

In this paper, we propose a novel pressure stabilized ROM that addresses the pres-
sure instability. To construct the new ROM, we use the artificial compression (AC)
method, which, together with related approaches (e.g., the penalty and projection
methods) have found significant success in the CFD community [10, 13, 16].

In standard numerical discretizations (e.g., finite elements), the AC method
replaces the incompressibility condition in the NSE with an AC condition. Thus,
the AC method decouples the velocity and pressure computations, which results in
significant savings in execution time and storage. Furthermore, since the velocity and
pressure computations are decoupled, the AC method allows the use of finite element
pairs that do not satisfy the inf-sup/LBB condition [30]. (We also note that, because
the incompressibility condition is not satisfied exactly, the AC method yields velocity
fields that are not weakly divergence-free.)

In this paper, we use the AC method to construct a novel artificial compression
ROM (AC-ROM), which is a pressure stabilization ROM. The fully discrete algorithm
for the new AC-ROM can be written as

(
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ε
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+
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R , ψ

)

= 0 ∀ψ ∈ QM ,(1.5b)

where ({ϕi}Ri=1, {ψk}Mk=1) is the ROM basis for the ROM space (XR, QM ). The new
AC-ROM (1.5a)–(1.5b) has several significant advantages over the approaches (I)
and (II):

• The AC-ROM does not require that the velocity-pressure ROM spaces sat-
isfy the inf-sup/LBB condition, thus avoiding the challenges encountered in
approach (I).

• The AC-ROM basis functions are constructed from data that do not have to be
weakly divergence-free, such as those from NSE discretizations with the AC,
penalty, or projection methods. Thus, the AC-ROM avoids the challenges
faced by approach (II).

Stabilized ROMs addressing the convective instability (i) have been extensively
investigated (see, e.g., [6, 47] and references therein). We emphasize, however, that
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stabilized ROMs addressing the pressure instability (ii) have been much less investi-
gated.

Stabilized ROMs addressing the convective and pressure instabilities monolithi-
cally were proposed in [6] (see also [46]): The residual was used to construct ROM
stabilizations of streamline upwind Petrov–Galerkin (SUPG) and variational multi-
scale type for the convective instability. However, since the residual contained a ROM
pressure term (although no ROM model was used for the pressure), the ROM stabi-
lization in [6] could also be interpreted as ROM pressure stabilization.

In [7], although the convective and pressure instabilities were also treated to-
gether, in contrast to [6], different stabilization terms with different parameters were
used for each source of instability: An SUPG term was used for the convective in-
stability, and a pressure stabilization Petrov-Galerkin term was used for the pressure
instability.

To our knowledge, the AC-ROM (1.5) is the first ROM stabilization model that ex-
clusively targets the pressure instability. Furthermore, to our knowledge, the AC-ROM
error estimates proven below represent the first instance when the parameter scalings
for ROM pressure stabilization are determined through mathematical arguments in-
stead of heuristics, as used in [6, 7, 46]. See also [40] for recent work on a related but
different approach.

Additionally, we present a novel analysis for the AC-ROM (1.5). In the finite
element setting it is known that AC and projection methods utilizing basis functions
that do not satisfy the inf-sup condition have a decreased rate of convergence (see
[16]). The novelty of our analysis is that we show in the ROM setting that this
convergence rate degradation may be alleviated, based on an a priori computable
value, determined by the ROM velocity and pressure spaces (see Remark 5.10). This
same approach can be used for other pressure stabilized ROMs such as projection
methods.

The rest of the paper is organized as follows: In section 2, we introduce some
notation. In section 3, we describe the proper orthogonal decomposition, which we
use to construct the ROM basis. In sections 4 and 5, we prove the stability and an
error estimate of the AC-ROM (1.5a)–(1.5b), respectively. In section 6, we investigate
numerically the new AC-ROM in the simulation of a two-dimensional flow between
offset cylinders. Finally, in section 7, we draw conclusions and outline future research
directions.

2. Notation and preliminaries. We denote by ‖ · ‖ and (·, ·) the L2(Ω) norm
and inner product, respectively, and by ‖ · ‖Lp and ‖ · ‖Wk

p
the Lp(Ω) and Sobolev

W k
p (Ω) norms, respectively. Hk(Ω) =W k

2 (Ω) with norm ‖ · ‖k. For a function v(x, t)
that is well defined on Ω× [0, T ], we define the continuous norms

‖v‖L2(a,b;L2(Ω)) :=

(

∫ b

a

‖v(·, t)‖2dt
)

1
2

and ||v||∞ := ess sup[0,T ]‖v(·, t)‖.

The space H−1(Ω) denotes the dual space of bounded linear functionals defined on
H1

0 (Ω) = {v ∈ H1(Ω) : v = 0 on ∂Ω}; this space is equipped with the norm

‖f‖−1 = sup
0 6=v∈X

(f, v)

‖∇v‖ ∀f ∈ H−1(Ω).

The solutions spaces X for the velocity and Q for the pressure are, respectively,
defined as
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X := [H1
0 (Ω)]

d = {v ∈ [L2(Ω)]d : ∇v ∈ [L2(Ω)]d×d and v = 0 on ∂Ω},

Q := L2
0(Ω) =

{

q ∈ L2(Ω) :

∫

Ω

qdx = 0

}

.

A weak formulation of the NSE is given as follows: find u : (0, T ] → X and
p : (0, T ] → Q that, for almost all t ∈ (0, T ], satisfy











(ut, v) + (u · ∇u, v) + ν(∇u,∇v)− (p,∇ · v) = (f, v) ∀v ∈ X,

(∇ · u, q) = 0 ∀q ∈ Q,

u(x, 0) = u0(x).

(2.1)

We denote conforming velocity and pressure finite element spaces based on a
regular triangulation of Ω having maximum triangle diameter h by Xh ⊂ X and
Qh ⊂ Q. We also assume that the finite element spaces satisfy the approximation
properties

inf
vh∈Xh

‖v − vh‖ ≤ C(v)hs+1 ∀v ∈ [Hs+1(Ω)]d,

inf
vh∈Xh

‖∇(v − vh)‖ ≤ C(v)hs ∀v ∈ [Hs+1(Ω)]d,

inf
qh∈Qh

‖q − qh‖ ≤ C(q)hk ∀q ∈ Hk(Ω),

where C is a positive constant that is independent of h.
We define the trilinear form

b(w, u, v) = (w · ∇u, v) ∀u, v, w ∈ [H1(Ω)]d

and the explicitly skew-symmetric trilinear form given by

b∗(w, u, v) :=
1

2
(w · ∇u, v)− 1

2
(w · ∇v, u) ∀u, v, w ∈ [H1(Ω)]d ,

which satisfies the bounds [30]

b∗(w, u, v) ≤ Cb∗(‖w‖‖∇w‖)1/2‖∇u‖‖∇v‖ ∀u, v, w ∈ X,(2.2)

b∗(w, u, v) ≤ Cb∗‖∇w‖(‖u‖‖∇u‖)1/2‖∇v‖ ∀u, v, w ∈ X.(2.3)

To ensure the uniqueness of the NSE solution and ensure that standard finite
element error estimates hold, we make the following regularity assumptions on the
data and true solution [30].

Assumption 2.1. In (2.1) we assume that u0 ∈ X, f ∈ L2(0, T ;L2(Ω)), u ∈
L∞(0, T ;L2(Ω))∩L4(0, T ;Hs+1(Ω))∩H1(0, T ;Hs+1(Ω))∩H2(0, T ;L2(Ω)), and p ∈
L∞(0, T ;Q ∩Hk(Ω)).

Taking N to be a positive integer, we consider a uniform discretization of the
interval [0, T ], 0 = t0 < t1 < · · · < tN = T . The full space and time model on
which we base our method is a backward Euler based AC scheme with a Taylor–Hood
spatial discretization, i.e., P s − P s−1 with s ≥ 2. Given u0h ∈ Xh, p

0
h ∈ Qh for

n = 0, 1, 2, . . . , N − 1, find un+1
h ∈ Xh and pn+1

h ∈ Qh satisfying
(

un+1
h − unh

∆t
, vh

)

+ b∗
(

unh, u
n+1
h , vh

)

+ ν
(

∇un+1
h ,∇vh

)

−
(

pn+1
h ,∇ · vh

)

= (fn+1, vh) ∀vh ∈ Xh,

ε

(

pn+1
h − pnh

∆t
, qh

)

+
(

∇ · un+1
h , qh

)

= 0 ∀qh ∈ Qh.

(2.4)
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We then assume the following error estimate for the finite element solution of
(2.4) used to compute the velocity and pressure snapshots.

Assumption 2.2. We assume that the finite element errors satisfy the following
error estimates:

∥

∥uN − uNh
∥

∥

2
+
∥

∥pN − pNh
∥

∥

2
+ ν∆t

N
∑

n=1

‖∇(un − unh)‖2 ≤ C(ν, u, p)
(

h2s + h2k +∆t2
)

.

Remark 2.3. Error estimates of this form have been proven for (2.4) in [37]. We
have implicitly assumed, as is the standard approach, that ε = O(∆t); therefore,
the constant appearing on the right-hand side is independent of ε. We note that it
is also possible to generate the snapshots using other stabilized schemes such as the
incremental pressure correction scheme in [15]. However, depending upon the scheme
used, a different assumption on the finite element error may be needed. We also
note that the constant C(ν, u, p) contains the term exp(CTν3 ) due to the need to use
Gronwall’s inequality in the finite element error analysis [30].

Lastly, we define the discrete norms

||v||2,s :=
(

N
∑

n=0

‖vn‖2s∆t
)

1
2

and ||v||∞,s := max
0≤n≤N

‖vn‖s.

3. Proper orthogonal decomposition (POD). In this section we briefly
describe the POD method and apply it to the AC algorithm (2.4). A more detailed
description of this method can be found in [29].

Given a positive integer N , let 0 = t0 < t1 < · · · < tN = T denote a uniform
partition of the time interval [0, T ]. Denote by unh,S(x) ∈ Xh, p

n
h,S(x) ∈ Qh, n =

0, . . . , N , the finite element solution to (2.4) evaluated at t = tn, n = 1, . . . , N .
We denote by unS and pnS the vector of coefficients corresponding to the finite

element functions unh,S and pnh,S . We then define the velocity snapshot matrix A and
pressure snapshot matrix B as

A =
(

u1S , u
2
S , . . . , u

NV

S

)

and B =
(

p1S , p
2
S , . . . , p

NP

S

)

,

i.e., the columns of A and B are the finite element coefficient vectors corresponding
to the discrete snapshots. The POD method then seeks a low-dimensional basis

XR := span{ϕi}Ri=1 ⊂ Xh and QM := span{ψi}Mi=1 ⊂ Qh,

which can approximate the snapshot data. Let δij denote the Kronecker delta. These
bases can be determined by solving the constrained minimization problems

1

N + 1
min

N
∑

n=0

∥

∥

∥

∥

∥

∥

unh,s −
R
∑

j=1

(unh,s, ϕj)ϕj

∥

∥

∥

∥

∥

∥

2

subject to (ϕi, ϕj) = δij for i, j = 1, . . . , R

(3.1)

and

1

N + 1
min

N
∑

n=0

∥

∥

∥

∥

∥

∥

pnh,s −
M
∑

j=1

(pnh,s, ψj)ψj

∥

∥

∥

∥

∥

∥

2

subject to (ψi, ψj) = δij for i, j = 1, . . . ,M.

(3.2)
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To find the solutions to (3.1)–(3.2), we use the method of snapshots [42]. Defining the
correlation matrices C = 1

N+1A
TMA and D = 1

N+1B
TMB, where M denotes the finite

element mass matrix, these problems can then be solved by considering the eigenvalue
problems

C~ai = λi~ai

and

D~bi = σi~bi.

It can then be shown that the POD basis functions will be given by

~ϕi =
1√
λi

A~ai, i = 1, . . . , R,

and

~ψi =
1√
σi

B~bi, i = 1, . . . ,M.

Using this POD basis we can now construct the AC-ROM algorithm. The con-
struction is similar to the full finite element approximation except that we seek a
solution in the POD space (XR, QM ) using the basis ({ϕi}Ri=1, {ψk}Mk=1). The fully
discrete algorithm for the AC-ROM algorithm can be written as

(

un+1
R − unR

∆t
, ϕ

)

+ b∗
(

unR, u
n+1
R , ϕ

)

+ ν
(

∇un+1
R ,∇ϕ

)

(3.3a)

−
(

pn+1
M ,∇ · ϕ

)

=
(

f j,n+1, ϕ
)

∀ϕ ∈ XR,

ε

(

pn+1
M − pnM

∆t
, ψ

)

+
(

∇ · un+1
R , ψ

)

= 0 ∀ψ ∈ QM .(3.3b)

4. Stability. In this section we prove the unconditional, nonlinear, longtime
stability of the AC-ROM algorithm.

Theorem 4.1 (unconditional stability of AC-ROM). For any n, we have the
energy equality

∥

∥uN+1
R

∥

∥

2
+ ǫ
∥

∥pN+1
M

∥

∥

2
+

N
∑

n=0

(

∥

∥un+1
R − unR

∥

∥

2
+ ǫ∆t

∥

∥pn+1
M − pnM

∥

∥

2
)

+ 2∆tν

N
∑

n=0

∥

∥∇un+1
R

∥

∥

2
=
∥

∥u0R
∥

∥

2
+ ǫ
∥

∥p0M
∥

∥ + 2∆t

N
∑

n=0

(fn+1, un+1
R )

and, letting

Cstab :=
∥

∥u0R
∥

∥

2
+ ǫ
∥

∥p0M
∥

∥ +
4∆t

ν

N
∑

n=0

∥

∥fn+1
∥

∥

2

−1
,

the energy inequality

∥

∥uN+1
R

∥

∥

2
+ ǫ
∥

∥pN+1
M

∥

∥

2
+

N
∑

n=0

(

∥

∥un+1
R − unR

∥

∥

2
+ ǫ
∥

∥pn+1
M − pnM

∥

∥

2
)

+∆tν

N
∑

n=0

∥

∥∇un+1
R

∥

∥

2 ≤ Cstab.
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Proof. Let ϕ = 2∆tun+1
R and ψ = 2∆tpn+1

M in (3.3). By the polarization identity1

and skew-symmetry of the nonlinearity, we have

∥

∥un+1
R

∥

∥

2 − ‖unR‖2 +
∥

∥un+1
R − unR

∥

∥

2
+ 2∆tν

∥

∥∇un+1
R

∥

∥

2

− 2∆t(pn+1
M ,∇ · un+1

R ) = 2∆t(fn+1, un+1
R ),

ǫ
(

∥

∥pn+1
M

∥

∥

2 − ‖pnM‖2 +
∥

∥pn+1
M − pnM

∥

∥

2
)

+ 2∆t(∇ · un+1
R , pn+1

M ) = 0.

Adding the two equations gives

∥

∥un+1
R

∥

∥

2 − ‖unR‖2 +
∥

∥un+1
R − unR

∥

∥

2
+ ǫ
(

∥

∥pn+1
M

∥

∥

2 − ‖pnM‖2 +
∥

∥pn+1
M − pnM

∥

∥

2
)

+ 2∆tν
∥

∥∇un+1
R

∥

∥

2
= 2∆t(fn+1, un+1

R ).

Summing from n = 0 to N gives the energy equality above. By definition of the dual
norm and Young’s inequality, we have the energy inequality

∥

∥uN+1
R

∥

∥

2
+ ǫ
∥

∥pN+1
M

∥

∥

2
+

N
∑

n=0

(

∥

∥un+1
R − unR

∥

∥

2
+ ǫ∆t

∥

∥pn+1
M − pnM

∥

∥

2
)

+∆tν
N
∑

n=0

∥

∥∇un+1
R

∥

∥

2 ≤
∥

∥u0R
∥

∥

2
+ ǫ
∥

∥p0M
∥

∥ +
4∆t

ν

N
∑

n=0

∥

∥fn+1
∥

∥

2

−1
,

proving unconditional stability.

5. Error analysis. Next we provide an error analysis for the AC-ROM scheme.
We begin by stating preliminary results.

Let SR = (∇ϕi,∇ϕj)L2 be the POD stiffness matrix, and let ||| · |||2 denote the
matrix 2-norm. It was shown in Lemma 2 in [29] that this POD basis satisfies the
following inverse inequality.

Lemma 5.1 (POD inverse estimate).

‖∇ϕ‖ ≤ |||SR|||1/22 ‖ϕ‖ ∀ϕ ∈ XR.(5.1)

The norm |||SR|||2 on the right-hand side of (5.1) depends on the choice of the POD
basis with no universal pattern of growth with R (their number). Since R is small,
|||SR|||2 can be precomputed giving a precise number for the right-hand side of (5.1).

We define the L2 projection into the velocity space XR and the pressure space
QM as follows.

Definition 5.2. Let PR : L2(Ω) → XR and χM : L2(Ω) → QM such that

(u− PRu, ϕ) = 0 ∀ϕ ∈ XR and

(p− χMp, ψ) = 0 ∀ψ ∈ QM .
(5.2)

The following lemmas provide bounds for the error between the snapshots and
their projections onto the POD space. Lemma 5.3 is Proposition 1 in [29], and Lemma
5.4 is Theorem 5.3 in [41] (see also Lemma 3.2 in [24]).

1(a− b, a) = 1
2
‖a‖2 − 1

2
‖b‖2 + 1

2
‖a− b‖2.
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Lemma 5.3 (L2 POD projection error). With λi the eigenvalues of C = ATMA,
we have

1

N + 1

N
∑

n=0

∥

∥

∥

∥

∥

unh,s −
R
∑

i=1

(unh,s, ϕi)ϕi

∥

∥

∥

∥

∥

2

=

NV
∑

i=R+1

λi and

1

N + 1

N
∑

n=0

∥

∥

∥

∥

∥

pnh,s −
M
∑

i=1

(pnh,s, ψi)ψi

∥

∥

∥

∥

∥

2

=

NP
∑

i=M+1

σi.

(5.3)

Lemma 5.4 (H1 POD projection error). We have

1

N + 1

N
∑

n=0

∥

∥

∥

∥

∥

∇
(

unh,s −
R
∑

i=1

(unh,s, ϕi)ϕi

)
∥

∥

∥

∥

∥

2

=

NV
∑

i=R+1

‖∇ϕi‖2λi.(5.4)

The following error estimates then follow easily for the L2 projection error into the
velocity space XR using Assumption 2.2 and the techniques in Lemma 3.3 in [24].
We also note that, just as in Theorem 5.11, the constants C(ν, u, p) will be large
since they will contain terms of the form exp(CT/ν3), which are generally present in
standard error estimates for the finite element discretization of the NSE [31].

Lemma 5.5. For any un ∈ X the L2 projection error into XR satisfies the fol-
lowing estimates:

1

N + 1

N
∑

n=0

‖un − PRu
n‖2 ≤ C(ν, u, p)

(

h2s + h2k +∆t2 +

NV
∑

i=R+1

λi

)

and(5.5)

1

N + 1

N
∑

n=0

‖∇(un − PRu
n)‖2 ≤ C(ν, u, p)

(

h2s + h2k + |||SR|||2(h2s + h2k)

+ (1 + |||SR|||2)∆t2 +
NV
∑

i=R+1

‖∇ϕi‖2λi
)

.

Similarly for the L2 projection into the pressure space the following can be proven.

Lemma 5.6. For any pn ∈ Q the L2 projection error satisfies the following esti-
mates:

1

N + 1

N
∑

n=0

‖pn − χMp
n‖2 ≤ C(ν, u, p)

(

h2s + h2k +∆t2 +

NP
∑

i=M+1

σi

)

.(5.6)

In order to prove pointwise in time error estimates we also make the following
assumption, which is similar to Assumption 3.2 in [24] and Assumption A.1 in [34]
(see, e.g., Remark 3.2 in [24] for rationale).

Assumption 5.7. For any un ∈ V the L2 projection error into XR satisfies the
following estimates:
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max
n

‖un − PRu
n‖2 ≤ C(ν, u, p)

(

h2s + h2k +∆t2 +

NV
∑

i=R+1

λi

)

and(5.7)

max
n

‖∇(un − PRu
n)‖2 ≤ C(ν, u, p)

(

h2s + h2k + |||SR|||2(h2s + h2k)

+ (1 + |||SR|||2)∆t2 +
NV
∑

i=R+1

‖∇ϕi‖2λi
)

.

For any pn ∈ Q the L2 projection error satisfies the following estimate:

max
n

‖pn − χMp
n‖2 ≤ C(ν, u, p)

(

h2s + h2k +∆t2 +

NP
∑

i=M+1

σi

)

.(5.8)

Let eu and ep denote the error between the true velocity and pressure solution
and their POD approximations, respectively. For the error analysis we split the error
for the velocity and the pressure using the L2 projections into the spaces XR, QM :

en+1
u = un+1 − un+1

R = un+1 − PR
(

un+1
)

+ PR
(

un+1
)

− un+1
R = ηn+1 − ξn+1

R ,

en+1
p = pn+1 − pn+1

M = pn+1 − χM
(

pn+1
)

+ χM
(

pn+1
)

− pn+1
M = κn+1 − πn+1

M .

(5.9)

We will see in Theorem 5.11 that the convergence rate faces order reduction by
a power of ε−1 term appearing in the error bound. This occurs due to the term
(∇ · ηn+1, πn+1

M ) arising from the continuity equation. Due to the fact the AC-ROM
scheme proposed in this paper does not require the ROM velocity-pressure spaces to
satisfy the LBBh condition, this order reduction cannot be eliminated via the usual
Stokes projection.2 However, we will show in Theorem 5.11 that even if the basis does
not satisfy the LBBh condition this order reduction in the convergence rate will be
improved by a multiplicative constant α.

To this end, we consider the subspace

Xdiv
R := span{∇ · ϕi}Ri=1 ⊂ L2(Ω)(5.10)

and recall from [11] the strengthened Cauchy–Buniakowskii–Schwarz (CBS) inequality
commonly used in the analysis of multilevel methods [3, 11].

Lemma 5.8. Given a Hilbert space V and two finite-dimensional subspaces V1 ⊂ V
and V2 ⊂ V with trivial intersection

V1 ∩ V2 = {0},
there exists 0 ≤ α < 1 such that

|(v1, v2)| ≤ α‖v1‖‖v2‖ ∀v1 ∈ V1, v2 ∈ V2.

Considering Xdiv
R and QM , we are interested in computing the exact constant α

corresponding to these spaces. This is equivalent to finding the first principal angle
defined as

θ1 := min
v 6=0,ψ 6=0

{

arccos

( |(v, ψ)|
‖v‖‖ψ‖

)
∣

∣

∣

∣

v ∈ Xdiv
R , ψ ∈ QM

}

(5.11)

with 0<θ1 ≤ π
2 .

2The H1 projection into the discretely divergence-free subspace.
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The problem of computing angles between subspaces was introduced by Jordan
in 1875 [27] and studied by Friedrichs in 1937 [14]. Recently, principal angles were
used to improve the accuracy of reduced basis schemes for optimization problems in
[33]. They can be calculated using either QR factorization or SVD of the orthogonal
bases of the spaces in Lemma 5.8, as outlined in [48]. More efficient and stable
schemes for calculating principal angles were also developed in [28]. We note that
due to the relatively small size of the pressure and velocity reduced basis, the QR or
SVD approach is sufficient in this setting. This procedure will be briefly outlined in
section 6.

Using the strengthened CBS inequality, we get the following bound on the error
term arising from the continuity equation.

Lemma 5.9. Let un+1 = u(x, tn+1) be the exact solution of the NSE, and let
ηn+1 = un+1 −PR(u

n+1) denote the projection error. Defining α = cos(θ1), where θ1
is given in (5.11), the following bound holds:

∣

∣

(

∇ · ηn+1, ψ
)
∣

∣ ≤ α‖∇ · ηn+1‖‖ψ‖ ∀ψ ∈ QM .

Proof. Since un+1 is the exact solution to the NSE it follows that ∇ · un+1 = 0
and therefore (∇ · un+1, ψ) = 0 ∀ψ ∈ QM . This gives

∣

∣

(

∇ · ηn+1, ψ
)
∣

∣ =
∣

∣

(

∇ · un+1 −∇ · PR(un+1), ψ
)
∣

∣ =
∣

∣

(

∇ · PRun+1, ψ
)
∣

∣ ∀ψ ∈ QM .

It then follows from the fact that ∇ · PRun+1 ∈ Xdiv
R , Lemma 5.8, and ∇ · un+1 = 0,

∣

∣

(

∇ · PRun+1, ψ
)
∣

∣ ≤ α‖∇ · PRun+1‖‖ψ‖ = α‖∇ · ηn+1‖‖ψ‖ ∀ψ ∈ QM .

Combining this inequality with the previous equality the result follows.

Remark 5.10. This lemma gives us a better bound on the term arising from the
continuity equation. We will see in the ensuing analysis that if the α term is sufficiently
small it will overcome the convergence penalty from not using an inf-sup stable basis.
The calculation of the constant is based on the size of the ROM velocity and pressure
basis. Therefore if R and M are O(10) the constant can be calculated efficiently as
outlined in section 6. This is in contrast with the finite element setting where the
basis can be O(105) or greater and the constant cannot be computed.

We are now ready to state an error estimate for (3.3), which will show that it
converges to the true solution of the NSE up to discretization and the ROM projection
error. The bound will be large due to the term exp

(

CT
ν3

)

appearing on the right-hand
side. This is a standard result for the NSE due to the fact that any true solution could
be unstable and therefore will diverge exponentially fast. Under a stability assumption
on the true solution, such as the one made in [20], errors bounds not involving this
term can be obtained. Additionally, assuming stronger regularity conditions than
those in Assumption 2.1, the bound in Theorem 5.11 can be improved further; see,
e.g., Theorem 7.78 of [26].

We also note that the linearly implicit method we consider is frequently used
because it does not require a nonlinear iterative solver, shares the unconditional energy
stability of the fully implicit method, and maintains first order accuracy. The stability
and analysis for the fully implicit method mirror the analysis of the linearly implicit
method presented herein. The main difference is that the linearly implicit method
inherits one extra consistency error term due to the treatment of the nonlinearity (see
Chapter 7 of [26].
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Theorem 5.11. Consider AC-ROM (3.3) and the partition 0 = t0 < t1 < · · · <
tN = T used in section 3. Recall α, the value dependent upon the first principal angle
from Lemma 5.9, eu and ep, the error between the ROM approximations and the true
velocity and pressure, respectively, and η, ξR, κ, πm, the terms arising from splitting
the error in (5.9). Let C be a constant which may depend on f, u, p, Cb∗ , Cstab, and ν
but is independent of h,∆t, R,M, λi, σi, and ǫ. Under the regularity conditions made
in Assumption 2.1, with ∆t, ν, ε ≤ 1, it then holds that

∥

∥eN+1
u

∥

∥

2
+ ǫ
∥

∥eN+1
p

∥

∥

2
+
ν

2
‖∇eu‖22,2 ≤ C

{

(1 + |||SR|||2)(h2s + h2k +∆t2) +

NV
∑

i=R+1

λi

+

NP
∑

i=M+1

σi +

NV
∑

i=R+1

λi‖∇ϕi‖2 + exp

(

CT

ν3

)

(

∥

∥ξ0R
∥

∥

2
+ ǫ
∥

∥π0
M

∥

∥

2
+∆tν

∥

∥∇ξ0R
∥

∥

2
+ ε

+

(

∆t1/2

ν3/2
+ α2ǫ−1 +

1

ν

)

(

(1 + |||SR|||2)(h2s + h2k +∆t2) +

NV
∑

i=R+1

λi‖∇ϕi‖2
)

+
∆t2

ν
+

1

ν

NP
∑

i=M+1

σi

)}

.

Proof. The weak solution of the NSE satisfies
(

un+1 − un

∆t
, ϕ

)

+ b∗
(

un+1, un+1, ϕ
)

+ ν
(

∇un+1,∇ϕ
)

(5.12)

−
(

pn+1,∇ · ϕ
)

=
(

fn+1, ϕ
)

+ τu
(

un+1;ϕ
)

,

ε

(

pn+1 − pn

∆t
, ψ

)

+
(

∇ · un+1, ψ
)

= τp
(

pn+1;ψ
)

,(5.13)

where

τu
(

un+1;ϕ
)

=

(

un+1 − un

∆t
− ut

(

tn+1
)

, ϕ

)

,

τp
(

pn+1;ψ
)

=

(

ε

∆t

∫ tn+1

tn
pt(t)dt, ψ

)

.

(5.14)

Now subtracting (3.3a) from (5.12) and (3.3b) from (5.13) we have
(

ξn+1
R − ξnR

∆t
, ϕ

)

+ ν(∇ξn+1
R ,∇ϕ)−

(

πn+1
M ,∇ · ϕ

)

(5.15)

=

(

ηn+1 − ηn

∆t
, ϕ

)

+ ν
(

∇ηn+1,∇ϕ
)

−
(

κn+1,∇ · ϕ
)

+ b∗
(

un+1, un+1, ϕ
)

− b∗
(

unR, u
n+1
R , ϕ

)

− τu
(

un+1;ϕ
)

and

ε

(

πn+1
M − πnM

∆t
, ψ

)

+
(

∇ · ξn+1
R , ψ

)

(5.16)

= ε

(

κn+1 − κn

∆t
, ψ

)

+
(

∇ · ηn+1, ψ
)

− τp
(

pn+1;ψ
)

.
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Setting ϕ = 2∆tξn+1
R and ψ = 2∆tπn+1

M , we use the fact that (η
n+1−ηn

∆t , ξn+1
R ) = 0 and

(κ
n+1−κn

∆t , πn+1
M ) = 0 by the definition of the L2 projection. Adding (5.15) to (5.16)

and using the polarization identity yields

(

‖ξn+1
R ‖2 + ǫ‖πn+1

M ‖2
)

−
(

‖ξnR‖2 + ǫ‖πnM‖2
)

+ ‖ξn+1
R − ξnR‖2

(5.17)

+ ǫ‖πn+1
M − πnM‖2+2∆tν‖∇ξn+1

R ‖2 = 2∆tν
(

∇ηn+1,∇ξn+1
R

)

−2∆t
(

κn+1,∇ · ξn+1
R

)

+ 2∆t
(

∇ · ηn+1, πn+1
M

)

+ 2∆tb∗
(

un+1, un+1, ξn+1
R

)

− 2∆tb∗
(

unR, u
n+1
R , ξn+1

R

)

− 2∆tτu
(

un+1; ξn+1
R

)

− 2∆tτp
(

pn+1;πn+1
M

)

.

By Cauchy–Schwarz and Young’s inequality we bound the first two terms on the
right-hand side of (5.17):

2∆tν
(

∇ηn+1,∇ξn+1
R

)

≤ ∆tν

δ1
‖∇ηn+1‖2 + δ1∆tν‖∇ξn+1

R ‖2

−2∆t
(

κn+1,∇ · ξn+1
R

)

≤ ∆t

νδ2
‖κn+1‖2 + δ2∆tν‖∇ξn+1

R ‖2.
(5.18)

For the third term on the right of (5.17), adding and subtracting 2∆t(∇ · ηn+1, πnM )
and applying Young’s inequality and Lemma 5.9 yield

2∆t
(

∇ · ηn+1, πn+1
M

)

= 2∆t
((

∇ · ηn+1, πn+1
M − πnM

)

+
(

∇ · ηn+1, πnM
))

≤ 2∆tα‖∇ηn+1‖‖πn+1
M − πnM‖+ 2∆tα‖∇ · ηn+1‖‖πnM‖

≤ α2∆t2

δ3ǫ
‖∇ηn+1‖2 + δ3ǫ‖πn+1

M − πnM‖2 + ∆tα2

ǫδ4
‖∇ηn+1‖2 + δ4ǫ∆t‖πnM‖2

=
α2(δ4∆t

2 + δ3∆t)

ǫδ3δ4
‖∇ηn+1‖2 + δ3ǫ‖πn+1

M − πnM‖2 + δ4ǫ∆t‖πnM‖2.

Next, for the nonlinear terms we add and subtract b∗
(

unR, u
n+1, ξn+1

R

)

and

b∗
(

un, un+1, ξn+1
R

)

. This yields, by skew-symmetry,

2∆tb∗
(

un+1, un+1, ξn+1
R

)

− 2∆tb∗
(

unR, u
n+1
R , ξn+1

R

)

= 2∆tb∗
(

un+1−un, un+1, ξn+1
R

)

+ 2∆tb∗
(

unR, e
n+1
u , ξn+1

R

)

+ 2∆tb∗
(

enu, u
n+1, ξn+1

R

)

= 2∆tb∗
(

un+1−un, un+1, ξn+1
R

)

− 2∆tb∗
(

ξnR, u
n+1, ξn+1

R

)

+ 2∆tb∗
(

ηn, un+1, ξn+1
R

)

+ 2∆tb∗
(

unR, η
n+1, ξn+1

R

)

.

The nonlinear terms are now bounded using the Sobolev embedding theorem,
Young’s inequality, (2.2), and (2.3):

2∆tb∗
(

un+1 − un, un+1, ξn+1
R

)

≤ C∆t2

δ5ν

∥

∥∇un+1
∥

∥

2 ‖∇ut‖2L2(tn,tn+1;L2(Ω))

+ δ5∆tν
∥

∥∇ξn+1
R

∥

∥

2
,(5.19)

2∆tb∗(unR, η
n+1, ξn+1

R ) ≤ C∆t

δ6ν
‖∇unR‖‖unR‖‖∇ηn+1‖2 + δ6∆tν‖∇ξn+1

R ‖2,(5.20)

2∆tb∗(ηn, un+1, ξn+1
R ) ≤ C∆t

δ7ν
‖∇un+1‖2‖∇ηn‖2 + δ7∆tν‖∇ξn+1

R ‖2,(5.21)
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−2∆tb∗(ξnR, u
n+1, ξn+1

R ) ≤ C∆t

δ28δ9ν
3
‖∇un+1‖4‖ξnR‖2 + δ8∆tν‖∇ξn+1

R ‖2(5.22)

+ δ9∆tν‖∇ξnR‖2.

Dealing with the consistency terms, by Taylor’s theorem, the Poincaré inequality, and
Young’s inequality we have

−2∆tτu
(

un+1; ξn+1
R

)

≤ 2∆t

∥

∥

∥

∥

un+1 − un

∆t
− ut(t

n+1)

∥

∥

∥

∥

‖ξn+1
R ‖

≤ C∆t2

νδ10
‖utt‖2L2(tn,tn+1;L2) + ν∆tδ10‖∇ξn+1

R ‖2,
(5.23)

and, by adding and subtracting 2∆tτp(p
n+1;πnM ), we have

−2∆tτp
(

pn+1;πn+1
M

)

≤ Cǫ∆t

δ11
‖pt‖2L2(tn,tn+1;L2(Ω)) +

ǫ∆t

δ12
‖pt‖2∞(5.24)

+ δ11ǫ
∥

∥πn+1
M − πnM

∥

∥

2
+ δ12ǫ∆t ‖πnM‖2 .

Letting δ1 = δ2 = δ5 = δ6 = δ7 = δ8 = δ10 = 1
14 , δ3 = δ11 = 1

4 , δ4 = δ12 = δ9 = 1
2 and

rearranging/combining terms we have

(

‖ξn+1
R ‖2 + ǫ‖πn+1

M ‖2
)

−
(

‖ξnR‖2 + ǫ‖πnM‖2
)

+ ‖ξn+1
R − ξnR‖2

+
ǫ

2
‖πn+1

M − πnM‖2 + ν∆t

2
‖∇ξn+1

R ‖2 + ν∆t

2

(

‖∇ξn+1
R ‖2 − ‖∇ξnR‖2

)

≤ ǫ∆t ‖πnM‖2

+ C∆tν‖∇ηn+1‖2 + C∆tα2

ǫ
‖∇ηn+1‖2 + C∆t2

ν

∥

∥∇un+1
∥

∥ ‖∇ut‖2L2(tn,tn+1;L2(Ω))

+
C∆t

ν
‖κn+1‖2 + C∆t2α2

ǫ
‖∇ηn+1‖2 + C∆t

ν
‖unR‖‖∇unR‖‖∇ηn+1‖2

+
C∆t

ν
‖∇un+1‖2‖∇ηn‖2 + C∆t

ν3
‖∇un+1‖4‖ξnR‖2 +

C∆t2

ν
‖utt‖2L2(tn,tn+1;L2)

+ Cǫ∆t ‖pt‖2L2(tn,tn+1;L2(Ω)) + Cǫ∆t ‖pt‖2∞ .

We note by Theorem 4.1 and the Cauchy–Schwarz inequality that it follows that

∆t

N
∑

n=0

‖unR‖‖∇unR‖‖∇ηn+1‖2 ≤ max
n=0,...,N

‖unR‖∆t
N
∑

n=0

‖∇unR‖‖∇ηn+1‖2

≤ max
n=0,...,N

‖unR‖
(

∆t

N
∑

n=0

‖∇unR‖2
)

1
2
(

∆t

N
∑

n=0

‖∇ηn+1‖4
)

1
2

≤ Cstab
ν1/2

(

∆t

N
∑

n=0

‖∇ηn+1‖4
)

1
2

.

(5.25)

By Assumption 2.1, dropping unneeded terms on the left-hand side, combining all
inequalities, taking a maximum C over all constants, and summing from n = 0 to N
yield
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∥

∥ξN+1
R

∥

∥

2
+ ǫ
∥

∥πN+1
M

∥

∥

2
+
ν

2
‖∇ξR‖22,2

≤
∥

∥ξ0R
∥

∥

2
+ ǫ
∥

∥π0
M

∥

∥

2
+∆tν

∥

∥∇ξ0R
∥

∥

2
+
C∆t

ν3

N
∑

n=0

(

‖ξnR‖
2
+ ǫ ‖πnM‖2

)

+ C

[(

1

ν
+ (α2 + α2∆t)ε−1

)

‖∇η‖22,2 +
1

ν
‖κ‖22,2 +

∆t

ν

N
∑

n=0

‖unR‖‖∇unR‖‖∇ηn+1‖2 + ∆t2

ν
‖utt‖2L2(0,T ;L2(Ω))

+
∆t2

ν
‖∇ut‖2L2(0,T ;L2(Ω)) + ε∆t ‖pt‖2L2(0,T ;L2(Ω)) + ε ‖pt‖2∞

]

.

Therefore, by a discrete Gronwall inequality, inequality (5.25), and again taking a
maximum constant we have

∥

∥ξN+1
R

∥

∥

2
+ ǫ
∥

∥πN+1
M

∥

∥

2
+
ν

2
‖∇ξR‖22,2

≤ C exp

(

CT

ν3

)(

∥

∥ξ0R
∥

∥

2
+ ǫ
∥

∥π0
M

∥

∥

2
+∆tν

∥

∥∇ξ0R
∥

∥

2

+

(

1

ν
+ α2ε−1

)

‖∇η‖22,2 +
1

ν
‖κ‖22,2 +

∆t2

ν
‖utt‖2L2(0,T ;L2(Ω))

+
∆t2

ν
‖∇ut‖2L2(0,T ;L2(Ω)) +

∆t1/2

ν3/2

(

N
∑

n=0

‖∇ηn+1‖4
)

1
2

+ ε∆t ‖pt‖2L2(0,T ;L2(Ω)) + ε ‖pt‖2∞
)

.

By the triangle inequality we have ‖en+1
u ‖2 ≤ 2(‖ηn+1‖2 + ‖ξn+1

R ‖2), as well as
‖en+1
p ‖2 ≤ 2(‖κn+1‖2 + ‖πn+1

M ‖2). Applying this and taking a maximum among
constants we then have
∥

∥eN+1
u

∥

∥

2
+ ǫ
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∥

∥

2
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ν

2
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∥
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∥
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∥

∥

2
+
ν

2
‖∇η‖22,2

+ C exp

(

CT

ν3

)

(

∥

∥ξ0R
∥

∥

2
+ ǫ
∥

∥π0
M

∥

∥

2
+∆tν

∥

∥∇ξ0R
∥

∥

2
+

(

1

ν
+ α2ε−1

)

‖∇η‖22,2

+
1

ν
‖κ‖22,2 +

∆t2

ν
‖utt‖2L2(0,T ;L2(Ω)) +

∆t2

ν
‖∇ut‖2L2(0,T ;L2(Ω))

+
∆t1/2

ν3/2

(

N
∑

n=0

‖∇ηn+1‖4
)

1
2

+ ε∆t ‖pt‖2L2(0,T ;L2(Ω)) + ε ‖pt‖2∞

)

.

Applying the estimates from Assumption 5.7, using the regularity from Assumption
2.1, and rearranging terms, the result follows.

Remark 5.12. We see in Theorem 5.11 whether the convergence rate is nega-
tively impacted by ε−1 depends upon the constant α. The full term which arises is
α2ε−1 ‖∇η‖22,2. As the number of basis functions R grows we expect the term ‖∇η‖22,2
to be sufficiently small such that the term α2ε−1 ‖∇η‖22,2 will not become the dom-
inant error term in Theorem 5.11. Therefore we are interested in the regime where
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the number of basis functions R is small and the term α2ε−1 dominates. In practice
R will generally be taken relatively small, so this case is of particular interest. It
will hold that if α2 << ε, then the convergence degradation caused by ε−1 will be
alleviated.

In order for the term α2 to be small enough to overcome the term ε−1 the angle
between Xdiv

R and QM must be close to π
2 . If the POD modes had been constructed

using discretely divergence-free velocity data, then it would hold that α = 0, since
the space Xdiv

R would be orthogonal to QM by construction. However, this is not true
for the case analyzed in Theorem 5.11 where the basis is constructed using an AC
scheme. In this situation it does not generally hold that α2 is smaller than ε−1. It
will, however, be shown in the numerical experiments in section 6 that this may hold
for small values of R.

6. Numerical experiments. In this section, we perform a numerical inves-
tigation of the new AC-ROM algorithm (3.3). First, we show that the AC-ROM
algorithm yields accurate velocity and pressure approximations without enforcing the
LBB condition or requiring weakly divergence-free snapshots. Then, we illustrate
numerically the theoretical scalings proved in Theorem 5.11. In particular, we show
that the AC-ROM algorithm yields first order scalings with respect to the time step,
∆t. All computations are done using the FEniCS software suite [32], and all meshes
generated via the built in meshing package mshr.

6.1. Problem setting. For the numerical experiments we consider the two-
dimensional flow between offset cylinders used in [17, 25]. The domain is a disk with
a smaller off-center disc inside. Let r1 = 1, r2 = 0.1, c1 = 1/2, and c2 = 0; then, the
domain is given by

Ω = {(x, y) : x2 + y2 ≤ r21 and (x− c1)
2 + (y − c2)

2 ≥ r22}.

The viscosity is ν = 1
100 and the body force is given by

f(x) =
(

−4y
(

1− x2 − y2
)

, 4x
(

1− x2 − y2
))

.

The L2-POD basis is computed from snapshots of the finite element discretization of
a backward Euler AC scheme.

Remark 6.1. We emphasize that since the snapshots are generated using an AC
scheme they will not be weakly divergence-free. This is clearly illustrated in Figure
6.1, where we plot the divergence of the velocity basis elements, ϕi. We note that
ROMs based on the pressure Poisson equation (i.e., ROMs in approach (II) in section
1) cannot be used when the snapshots are not weakly divergence-free.

For the offline calculation, the flow is initialized at rest (u0h ≡ 0 and p0h ≡ 0). We
discretized in space via the P 2-P 1 Taylor–Hood element pair. The spaces Xh and Qh
had 114,224 and 14,421 degrees of freedom, respectively. We took ∆t = 2.5e− 4 and
ε = 1e − 6. The mesh is shown in Figure 6.2. The no-slip, no-penetration boundary
conditions are imposed on both cylinders. The flow developed into an almost periodic
flow after t = 12. Velocity and pressure snapshots were taken for every t ∈ [12, 16].
The resulting singular values are shown in Figure 6.3. The POD modes corresponding
to the six largest singular values for velocity (resp., pressure) are shown in Figure 6.4
(resp., Figure 6.5).

Remark 6.2. We emphasize that the new AC-ROM can use the same number of
velocity and pressure basis functions, i.e., R = M in (3.3). Thus, we expect that
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Fig. 6.1. ∇ · ϕi(x) with i from 1 (top left) to 6 (bottom right).

Fig. 6.2. Spatial mesh for the finite element approximation.
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Fig. 6.3. Singular values of the first 50 modes for pressure and velocity.

the ROM LBB condition (1.3) is not satisfied. This shows that the new AC-ROM
avoids the ROM LBB condition, which is generally prohibitively expensive for the
RBM methods in approach (I) of section 1 when those are used in realistic flows (see,
e.g., sections 4.2.2 and 4.2.3 in [5]).

The force due to drag is the force exerted by the smaller cylinder against the main
flow, which is counterclockwise. We calculated this as the line integral of the stress
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Fig. 6.4. Magnitude of velocity basis, |ϕi(x)|, with i from 1 (top left) to 6 (bottom right). Red
indicates faster flow.

Fig. 6.5. ψi(x) with i from 1 (top left) to 6 (bottom right).

tensor around the smaller cylinder dotted with (0,−1). The force due to lift is the
line integral of the stress tensor around the smaller cylinder dotted with (1, 0).

With the stress tensor τ =
(

∇u+ (∇u)T
)

−pI, and Γsmall the boundary restricted
to the inner cylinder, these quantities are

force due to drag = −
∫

Γsmall

τds · e2,(6.1)

force due to lift =

∫

Γsmall

τds · e1.(6.2)

6.2. Lift, drag, and kinetic energy. We compare the kinetic energy, force
due to drag, and force due to lift of the ROM simulations with R = M = 3, 5, and 7
with the offline simulation in Figure 6.6. We construct the reduced basis from every
snapshot captured on the interval t ∈ [12, 16] and use the same ∆t of 2.5× 10−4 as in
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Fig. 6.6. Evolution of the energy, drag, and lift for AC-ROM with varying basis cardinality
compared to the benchmark.

the offline stage. R ≥ 7 appears sufficient to capture the kinetic energy, lift, and drag
accurately. Again, this is in spite of the fact that the LBB condition is not satisfied
due to using an equal number of pressure and velocity modes (see Remark 6.2).

6.3. Convergence tests. Next, to illustrate numerically the theoretical scalings
proved in Theorem 5.11, we show that the new AC-ROM algorithm yields first order
scalings with respect to the time step, ∆t. To test convergence, we consider the error
on the smaller interval t ∈ [12, 12.24]. We construct a new reduced basis from the
960 snapshots computed in this interval in the offline simulation. Then, using a fixed
number of basis elements, we compute the l2L2 error for ∆t ranging from 1.6e− 2 to
2.5e− 4, which was the stepsize from the offline simulation. The error is measured by
comparing the uR to the corresponding offline solution uh. The admissible stepsizes
satisfy ∆tonline = 2i∆toffline so that snapshot data exist to compute errors. The
relative l2L2 errors that are shown in Figure 6.7 verify the O(∆t) convergence proven
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Fig. 6.7. Both the pressure and velocity are first order convergent.
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Fig. 6.8. Adding more basis functions reduces the error.

in Theorem 5.11. We also verify that error reduces when adding more basis functions.
Again, for simplicity, we use an equal number of basis functions for velocity and
pressure. The convergence for increasing R (and M) values is shown in Figure 6.8.

We briefly outline the process of computing the first principal angle between
the spaces Xdiv

R and QM . Let {∇ · ϕorthi }Ri=1 denote the orthonormalized basis of
Xdiv
R (5.10). We consider the matrices Q = [ψ1, ψ2, . . . ψM ] and X = [∇ · ϕorth2 ,∇ ·

ϕorth2 , . . .∇ · ϕorthR ]. Multiplying these two matrices and taking the SVD gives

X⊤Q = UΣV.(6.3)

The first principal angle will then be given in terms of the first nonzero entry of Σ
by θ1 = arccos(σ1). We measured the influence of the principal angle between the
velocity and pressure POD basis using the method outlined above. The results are
shown in Figure 6.9. For small R values, α2 begins near 10−8 and seems to plateau
around 10−2 when adding more basis functions. This appears to match up with
our theoretical results and explains why we do not observe an order reduction in
our numerical investigation. Figure 6.10 shows the change of the inverse inequality

constant, i.e., |||S|||1/22 , with respect to the size of the velocity basis. While there is
no known universal scaling law [23, 45], for this test problem, the constant appears
to increase linearly with respect to R (which is precisely the scaling yielded by the
Fourier basis; see equation (3.10) in Remark 3.3 in [23]) until it reaches a plateau (see
Figure 5 in [23] for similar behavior).
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Fig. 6.9. Value of α2 for equal number of velocity and pressure basis functions on the left and
the corresponding inf-sup constant on the right.
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Fig. 6.10. The constant for the inverse inequality increases linearly with R until it plateaus.

6.4. Sensitivity analysis. In order to verify the robustness of the method, we
perform a sensitivity analysis on the online ε, which we denote by ε

ON
. Recall that

the offline solution, denoted uh, was captured with a value of ε = 10−6, so we are
interested in determining the range of ε

ON
that produces acceptable results. We

compare the following two methods:
(i) The AC-ROM (3.3), for varying values of εON against finite element based

artificial compression method (AC-FEM) (2.4), with fixed ε = 10−6.
(ii) The AC-ROM (3.3), for varying values of εON against a semi-implicit back-

ward Euler discretization of the NSE (noAC-FEM), which is given by (2.4)
with ε = 0.

For these comparisons the same time step ∆t, mesh, and Taylor–Hood finite element
pair are used for each scheme. We denote the noAC-FEM solution ũh. We take the
mean flow to be the time averaged solution over the interval [12, 16] and denote the
averaging operator by 〈·〉. The reduced basis from the whole interval [12, 16] is used
for these tests. For each online solution uR, we calculate two relative differences,

‖ 〈uR〉 − 〈uh〉 ‖
‖ 〈uh〉 ‖

and
‖ 〈uR〉 − 〈ũh〉 ‖

‖ 〈ũh〉 ‖
,

and we try different combinations of R,M . Figure 6.11 shows the relative differences
of the AC-ROM solution with different ε

ON
against the AC-FEM solution and the

noAC-FEM solution. As expected, the AC-ROM velocities are closer to the AC-FEM
velocities but still agree up to two significant digits with the noAC-FEM solution for
a large range of ε

ON
.

The AC-ROM mean flow error and the divergence are insensitive for values of
ε
ON

larger than 10−6, and as expected, the best AC-ROM error against the AC-
FEM solution is attained for ε

ON
= 10−6, which is the value for which the snapshots

are generated. For smaller values, the AC-ROM error begins to diverge, and the
divergence ‖∇ · ()‖ quickly shrinks (see Figure 6.12). This is a type of locking (see,
e.g., [8]) where better mass conservation is achieved at the expense of accuracy. By
penalizing divergence in the AC-ROM solution more than the AC-FEM solution,
the AC-ROM solution is forced into a smaller subspace to satisfy the divergence-free
constraint. For standard (e.g., finite element) discretizations, this behavior is observed
for similar methods such as grad-div stabilization when the solution is penalized into
a divergence-free subspace that does not have good approximation properties (see,
e.g., [8]).

The AC-ROM error against the noAC-FEM mean pressure is not good, but this
may be due to a poor pressure solution from the noAC-FEM formulation. Since
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Fig. 6.11. For both the noAC-FEM and AC-FEM mean flows, the AC-ROM mean flow error is
insensitive for ε

ON
larger than the offline ε = 10−6, which is shown at the vertical dotted line. The

error is minimized when the online ε
ON

equals the offline ε and then increases for smaller values.
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Fig. 6.12. Mean error in the divergence for varying values of ε, R, and M .

pressure enforces mass conservation, it is reasonable to expect that the large errors
in ∇ · u in the weakly incompressible solution (displayed in Figure 6.12) will produce
large errors in the pressure.

7. Conclusions and outlook. In this paper, we propose an AC-ROM for the
numerical simulation of fluid flows. The new AC-ROM provides approximations for
both the velocity and the pressure. Compared to the current ROMs that generate
pressure approximations, the new AC-ROM has two main advantages: (i) it does
not require the fulfillment of the inf-sup/LBB condition, which can be prohibitively
expensive in current ROMs [7], and (ii) it does not require weakly divergence-free
snapshots, which allows it to work with snapshots generated with, e.g., AC, penalty,
or projection methods.

In section 4, we prove the unconditional stability of the finite element discretiza-
tion of the new AC-ROM. In section 5, we prove an error estimate for the AC-ROM.
In particular, we show that that it is possible to overcome the ∆t−1 order degradation
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due to lack of inf-sup stability if the angle between the divergence of the velocity space
and pressure space is sufficiently small.

In section 6, we perform a numerical investigation of the new AC-ROM for a
two-dimensional flow between two offset cylinders. To generate the snapshots, we
use the AC method. Thus, the snapshots used in the AC-ROM construction are not
weakly divergence-free, which is illustrated in Figure 6.1. We also show that the
velocity and pressure spaces of the new AC-ROM do not satisfy the LBB condition
(see Figure 6.9, right). In the numerical investigation of the new AC-ROM, we first
show that the AC-ROM yields results that are close to the full order model results.
Specifically, in Figure 6.6, we show that it provides energy, drag force, and lift force
approximations that are close to the direct numerical simulation results. Next, to
illustrate numerically the theoretical scalings proved in section 5, we show that the
new AC-ROM algorithm yields first order scalings with respect to the time step.
Finally, in Figure 6.9, we show that the constant multiplying the ∆t−1 term in the
error estimate is extremely small. This may explain why we do not observe an order
reduction in our numerical investigation.

One future research direction will be a further study of the principal angle and its
impact on the convergence of the AC-ROM scheme. We will also investigate whether
it plays a role in other popular schemes such as penalty methods. Another research
direction that we plan to pursue is improved numerical stabilization of ROMs whose
velocity-pressure ROM spaces do not satisfy the inf-sup/LBB condition. Finally, we
plan to study the impact of different projection schemes [9] on AC, projection, and
penalty methods in a ROM setting.

Acknowledgments. We thank the three reviewers for their comments and sug-
gestions that have improved the manuscript.

REFERENCES
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[4] M. Azäıez, T. Chacón Rebollo, and S. Rubino, Streamline Derivative Projection-Based
POD-ROM for Convection-Dominated Flows. Part I : Numerical Analysis, arXiv e-prints,
2017, arXiv:1711.09780.

[5] F. Ballarin, A. Manzoni, A. Quarteroni, and G. Rozza, Supremizer stabilization of POD–
Galerkin approximation of parametrized steady incompressible Navier–Stokes equations,
Internat. J. Numer. Methods Engng., 102 (2015), pp. 1136–1161.

[6] M. Bergmann, C. H. Bruneau, and A. Iollo, Enablers for robust POD models, J. Comput.
Phys., 228 (2009), pp. 516–538.

[7] A. Caiazzo, T. Iliescu, V. John, and S. Schyschlowa, A numerical investigation of velocity-
pressure reduced order models for incompressible flows, J. Comput. Phys., 259 (2014),
pp. 598–616.

[8] M. A. Case, V. J. Ervin, A. Linke, and L. G. Rebholz, A connection between Scott–Vogelius
and grad-div stabilized Taylor–Hood FE approximations of the Navier–Stokes equations,
SIAM J. Numer. Anal., 49 (2011), pp. 1461–1481, https://doi.org/10.1137/100794250.
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