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ABSTRACT

The concept of Internet of Things (IoT) has changed the way we live
by integrating commodity devices with cyberspace to automate our
everyday tasks. Nowadays, IoT devices in the home environment
are becoming ubiquitous with seamless connectivity and diverse
application domains. Modern IoT devices have adopted a many-
to-many connectivity model to enhance user experience and de-
vice functionalities compared to early IoT devices with standalone
device setup and limited functionalities. However, the continu-
ous connection between devices and cyberspace has introduced
new cyber attacks targeting IoT devices and networks. Due to the
resource-constrained nature of IoT devices as well as the opacity
of the IoT framework, traditional intrusion detection systems can-
not be applied here. In this paper, we introduce Sentinel, a novel
intrusion detection system that uses kernel-level information to
detect malicious attacks. Specifically, Sentinel collects low-level
system information (CPU usage, RAM usage, total load, available
swap, etc.) of each IoT device in a network and learns the pattern
of device behavior to differentiate between benign and malicious
events. We evaluated the efficacy and performance of Sentinel in
different IoT platforms with multiple devices and settings. We also
measured the performance of Sentinel against five types of real-life
attacks. Our evaluation shows that Sentinel can detect different
attacks to IoT devices and networks with high accuracy (over 95%)
and secure the devices in different IoT platforms and configurations.
Also, Sentinel achieves minimum overhead in power consumption,
ensuring high compatibility in resource-constraint IoT devices.
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1 INTRODUCTION

Internet of Things (IoT) is a new technology domain that has been
steadily increasing in popularity in the past decade. It is today a
multi-billion dollar industry and has penetrated in different ap-
plication domains. The most commonly encountered use of IoT
is in smart homes, where IoT devices (such as light bulbs, cam-
eras, or door locks) are installed and connected to provide a way
of automating daily tasks and overseeing the state of the home
environment [9, 10]. Another main application of IoT is industrial
environment monitoring, where wireless sensors are deployed to
provide real-time feedback of the state of a production line or ware-
house [42, 56]. A more recently emerging application domain is
healthcare, where patient care and monitoring machines are con-
nected to provide a centralized and more accessible view of their
current condition [34, 35].

Over the past decade, security issues have been frequently found
in the majority of IoT devices and frameworks. Attacks specialized
against IoT devices have been developed and deployed massively
in recent years [10, 48]. The most notable one is the Mirai botnet,
which was first detected in late 2016, infected more than half a
million devices in a span of a few months, and used this network
to launch a series of DDoS attacks. This includes the largest one
to date, with a throughput of 623 Mbps [5]. These security issues
are mostly due to economics; as IoT devices have to be relatively
cheap to be competitive, manufacturers and application developers
often forgo good security practices as a way to keep costs down.
Furthermore, as the IoT market is fast-moving, with new products
announced every month, a short time-to-market is often crucial for
manufacturers, causing security concerns to be delegated to low-
priority or even post-launch items. Although intrusion detection
for standard networks is a mature field, it is still developing for IoT
devices and networks due to devices having different constraints
such as low computing power, meshed and ad-hoc structure, or lim-
ited battery capacity. These properties require the use of intrusion
detection methods that do not incur an overhead in processing and
power usage. Since traditional intrusion detection methods rely
heavily on local pre-processing work, they are not applicable to IoT
systems [8].

Indeed, IoT framework implementations are too opaque and high-
level to provide a useful level of insight into the low-level state of
the devices that obstruct the integration of traditional intrusion
detection systems. The IoT frameworks abstract away the hard-
ware’s specifics by presenting a simple software interface layered
on top of an embedded platform, to which the user is not granted
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direct access. This lack of visibility inside the devices is a key ad-
vantage for adversaries, allowing them to hide their actions among
the high-level traffic and evade traditional intrusion detection sys-
tems (IDSs). Moreover, most state-of-the-art IoT intrusion detection
systems rely on protocol-specific network information which are
only effective for specific IoT platforms. [11, 27, 37, 50]. Hence, a
protocol-agnostic platform-independent intrusion detection system
is needed, which can utilize low-level system information to detect
malicious attacks in an IoT network.

To address these emerging threats and shortcomings of existing
intrusion detection systems, we present Sentinel, a robust intrusion
detection system that leverages low-level system information to
detect network attacks in the IoT framework. Sentinel is a protocol-
agnostic IDS and is built upon the observation that low-level data
obtained by accessing IoT devices’ OSes contain specific patterns
for different benign device behavior that can be used to detect mali-
cious behavior. Rather than replacing existing security mechanisms,
Sentinel introduces a new data aggregation layer to collect system
and process-level data (e.g., RAM usage, CPU usage, load, runnig
processes, etc.) from the user-space of every IoT device for a low
performance cost and a scalable fashion. Sentinel extracts data
by installing a Linux Kernel Module on each device, retrieves the
latest values of the queried metrics from the kernel using a polling
application, and stores PostgreSQL database allowing both local
and concurrent access. Sentinel observes the change patterns of the
system-level information for different device actions and trains ma-
chine learning-based detection techniques to distinguish between
benign and malicious device behavior. In Sentinel, the framework
utilizes several Machine Learning-based detection techniques to
detect malicious attacks including Naive Bayes, Decision Tree, Lo-
gistic Regression, and Random Forest classifiers. To test the efficacy,
we implemented Sentinel in two different IoT platforms (Home
Assistant andWebThings) and collected data from nine different IoT
devices. Furthermore, we considered different IoT configurations
and ML model parameters to evaluate the performance of Sentinel
against five different threats. Our extensive evaluation shows that
Sentinel can achieve high accuracy and F-score (over 96%) in de-
tecting threats in an IoT network. Additionally, Sentinel achieves
minimum overhead in terms of power consumption indicating effi-
ciency in real-life deployment in IoT devices and networks.
Contributions: Our main contributions are noted as follows.
• We introduce Sentinel, a real-time low-level system monitoring
framework for IoT devices that can efficiently collect system and
process-level data to detect malicious attacks.
• We designed Sentinel as a platform and protocol-agnostic in-
trusion detection that can support different IoT frameworks and
configurations. Sentinel allows easy integration of new devices by
customizing the IoT kernel automatically from the centralized hub.
• We tested Sentinel against five different threats to IoT networks
and achieved high accuracy and F-score (over 96%). Our evaluation
also indicates that Sentinel introduces low overhead in IoT devices
and hubs making it suitable for real-life deployment.

Organization: The rest of the paper is organized as follows: In
Section 2, we present the background information and provide an
overview of existing threats and solutions to IoT networks. Then, we
discuss the problem scope and threat model in Section 3. Section 4
details Sentinel’s architecture and Section 5 details the implemen-
tation of Sentinel in real-life IoT platforms. In Section 6, we test the
efficacy of Sentinel in detecting different attacks in IoT networks.

Section 7 discusses the benefits of Sentinel and outlines future
research directions. Finally, Section 8 concludes the paper.

2 BACKGROUND AND RELATEDWORK

In this section, we first discuss the components of the IoT framework
to explain the design approach of Sentinel. We also discuss the
related works by outlining threats to the IoT environment and
shortcomings of existing intrusion detection systems available for
IoT platforms and devices.

2.1 IoT Framework

An IoT framework is a set of systems that connect and establish
communication between multiple devices and a centralized access
point while providing a unified user interface. All IoT frameworks
typically consist of the same core elements:
(1) A hub, which is a device located at the center of the network,
in charge of maintaining and controlling a list of connected nodes.
(2) A device API that allows smart things manufacturers to expose
their functionalities in a way that can be used by the hub.
(3) A user interface, usually in the form of a smartphone app or
a web-app.This interface allows the user to see the state of their
devices, control them, add new ones, and create rules to automate
their behavior.

Figure 1: Architecture of an IoT framework

This architecture is presented in Figure 1. In an IoT environment,
it is common for the nodes (devices and sensors) to have limited
computation power and energy capacity. As these devices are very
specialized, they are designed just to fit their power requirements,
often leaving very little room for additional software. This implies
that any additional added security feature must be as minimal as
possible and offload some work to a sturdier machine, be it the hub
or a dedicated device.

2.2 Intrusion Detection Systems in IoT

Intrusion detection is a domain of computer security dedicated to
monitoring a system for any malicious behavior. Intrusion Detec-
tion Systems (IDS) exist to cover different systems and are generally
separated into two architectures. Network-based IDS (NIDS) moni-
tor the state of an entire network in search of malicious agents by
gathering network-level metrics and processing them at a central
location. NIDS can be implemented in the IoT hub [23] or in the
cloud [4] to minimize resource overhead at the device level while
monitoring the IoT network. Host-based IDS (HIDS) run on a spe-
cific host and search for malware operating inside of it through
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the use of system-level and process-level information [51]. As IoT
devices are usually resource-constrained devices (low processing
and power capacity), NIDS is more prevalent in IoT environments
because of centralized and cloud implementation capability.

There are three approaches an IDS can use to detect malicious
behavior in an IoT environment. Signature-based detection can
be performed by comparing the collected data pattern to a list of
known malicious signatures of known threats. While very efficient,
this type of detector is powerless against zero-day attacks [25].
Anomaly-based detection takes a different path by building an
internal representation of the system compared to an expected
baseline state. This baseline has to be learned by the system through
the observation of known benign behavior. Any discrepancy can
then be detected and handled. However, this method is more prone
to false positives, as it relies heavily on a statistical approach to the
detection [28].

The third intrusion detection logic is specification-based. Similar
to anomaly-based detection, the system possesses a set of baseline
and threshold values compared to the current situation. While the
previous method infers these values from observation, they are
manually defined by a human expert in this method. This allows
the system to start acting immediately after being turned on, as
it does not require any training. Further, the false positive rate is
usually lower compared to anomaly-based detection. However, the
need for human intervention makes this system poorly scalable,
as any change made to the infrastructure will force the rules to be
updated [28].

All three approaches rely on the same base principle: collecting
actionable data from which decisions are made. However, due to
their heterogeneous nature, IoT systems seldom present a standard-
ized access method to this crucial information.

2.3 IoT Network Attacks

In recent years, several attacks in IoT networks and devices have
been reported by the research community and developers. IoT at-
tacks are usually sorted into three different categories: node-level,
network-level, and application-level attacks [3].

2.3.1 Node-level. These attacks focus on targeting a single device.
Due to their low-power nature, IoT devices are very vulnerable to
DoS (Denial of Service) attacks. This class of attacks is character-
ized by an attacker rendering a device unresponsive. This is often
achieved by flooding it with requests to saturate its CPU [54]. For
battery-powered devices, this can also be done through a “battery-
draining” attack, where the attacker sends a constant flow of re-
quests to the device. This prevents it from entering sleep mode,
which exhausts its battery at a much higher rate than normal, and
causes the device to shut down once it is depleted [22, 52].

Physical attacks take a different path to node-disruption. In this
instance, the attacker needs to have physical access to the device to
compromise it, but the resulting attacks are much harder to detect.
A common type of physical attack is RFID tampering, where the
adversary leverages common vulnerabilities in the RFID protocol
to disrupt the network [29].

2.3.2 Network-level. Network-level attacks correspond to attacks
having an influence on the IoT network as a whole. The most often
encountered attacks of this type are routing attacks, which use
various methods to manipulate the network flow to the adversary’s

advantage. These attacks only work in meshed networks, where
every device can be responsible for routing packets to their destina-
tion. The simplest routing attack is the black hole attack, where a
compromised node will advertise itself as the optimal route to every
other node and drop every packet received, effectively stopping
communications in the network. A grey hole attack operates in the
same way but only drops a fraction of received traffic [53].

Another class of network-level attacks, encountered both in tra-
ditional networks and in IoT networks, is passive listening attacks.
In this scenario, the attacker, having taken over a device, uses it to
eavesdrop on the network traffic to gather insufficiently protected
sensitive information [1]. This data gathering can also be achieved
by exploiting network side-channels, such as packet timings or
channel bands.

2.3.3 Application-level. Finally, application-level attacks are de-
signed to disrupt or take down a specific application running on
a node (so-called “edge computing” nodes). This can be achieved
in many different ways, depending on the application running on
the node. For instance, a node can be tricked into downloading
a malicious file from the Internet, allowing an attacker to take it
over [19]. Another way of targeting an application is by running
a Man-in-the-Middle attack. This is done by spoofing a service,
the device needs to connect to and using this connection to sniff
sensitive information [49]. As these attacks are very dependent on
the actual application running on the device, our work does not
focus on them.

2.4 Related Work

The idea of collecting low-level host data for intrusion detection
purposes is not new. Garfinkel & Rosenblum [16] proposed an
IDS architecture relying on this very idea by running the host’s
application in a virtual machine and exposing low-level information
about the application to a local IDS. Such an architecture provides
isolation between the potentially compromised host application
and the IDS while still giving access to a fine-granularity level
of detail. Forrest et al. [15] showed that observing sequences of
privileged syscalls made by an application could be used to detect
certain classes of attacks reliably. However, it seems that so far, no
similar approach has been made for IoT environments.

Many works focused on building IoT intrusion detection systems,
most of them based on a network-level approach. SVELTE is an IDS
focused on 6LoWPAN networks, developed by Raza et al. [37]. This
system aims to detect routing attacks, build a map of the meshed
network during a learning phase, and then monitor network flow
for any behavior not matching this mapping. INTI [11] is another
6LoWPAN IDS that detects attacks by having the nodes first cate-
gorize themselves in clusters based on their proximity. Packet flow
monitoring is then performed at every node and used to calculate
a level of trust for each one. When a node’s trust dips too low, it is
considered compromised and is eliminated from its cluster. Kalis,
proposed by Midi et al. [27] is a more general-purpose IoT IDS.
The core idea is: while most attacks can be detected reliably by
an existing IDS, there are no IDS that can identify all attacks on
its own. The system learns the specifics of the network (device
type, network layout) and uses this knowledge to select the IDS
that makes sense in this scenario. Moustafa et al. [31] presented an
NIDS for IoT based on statistical flow features. From a given net-
work features dataset, a subset is picked based on the features with
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the lowest cross-correlation (i.e. the features the most independent
from every other). These features are then passed on to a set of three
different machine learning models, which each determine whether
the traffic observed is malicious or benign. Their decisions are used
in a weighted vote to arrive at a final decision. Anthi et al. proposed
a NIDS that monitors the packets in the IoT networks to learn the
benign device behavior and detect any malicious packet that could
lead to a potential network attack [4]. In a recent work, Sikder et al.
developed a context-aware intrusion detection framework AEGIS,
which observes the user activities in an IoT environment to detect
malicious behavior and apps [45, 47]. However, AEGIS only con-
siders malicious behavior generated from malware/malicious apps
installed in the IoT devices and cannot detect network-level attacks.
Several prior works also focused on mitigating Mirai Botnet using
network-specific defense strategies [14, 21]. Gopal et al. suggested
application whitelisting in an IoT node using program hashes to
mitigate the spread of Mirai bot [17]. Al-Qerem et al. proposed
a network-based detection method of Mirai botnet using random
forest algorithm and features extracted from network packets [2].
Kumar et al. presented a network filtering approach to mitigate
DDoS attacks initiated by Mirai [24]. However, no platform and
protocol-independent solutions are proposed in prior works that
efficiently address different malicious intents of Mirai botnet in the
IoT environment.

Differences from existing works. Compared to these prior
works, Sentinel offers a platform-agnostic intrusion detection sys-
tem. The main differences between Sentinel and existing solutions
(although they are useful) can be articulated as follows. (1) While
most of the prior works focus on network packets to detect attacks,
Sentinel considers system and process-level information to detect
IoT network attacks. (2) Sentinel does not rely on network pro-
tocols, which makes it suitable as a protocol-independent IDS. (3)
Sentinel offers both local and remote/cloud-implemented detec-
tion methods, which can minimize the overhead significantly in
resource-constraint IoT devices. (4) Sentinel only considers sys-
tem and process-level information to learn benign device behavior,
which does not rely on user-defined configurations and installed
apps. (5) Sentinel does not store or utilize any user-related infor-
mation that ensures user privacy in an IoT network.

3 PROBLEM SCOPE AND THREAT MODEL

In this section, we introduce the problem scope and articulate the
threat model considered in Sentinel

We assume an IoT home environment (smart home environment)
with several devices and sensors connected via a centralized hub.
We assume that the attacker has access to the network and can run
arbitrary code on any compromised node. Further, the attacker can
take over the IoT application itself to make it run arbitrary code.
However, we assume that the attacker does not have privileged
access, nor can they disrupt the kernel, as it would then be trivial
to replace the kernel module with a malicious one that would only
report fake information. Regarding the hub, we assume that the
attacker does not have any access to the component of Sentinel
running on it and cannot alter its behavior nor kill it. We make no
assumption regarding the attacker’s capability to get access to the
information exposed by Sentinel.

Based on the above-mentioned assumptions, the attacker can
have a wide array of goals - (1) use the corrupted device to reach

other connected device to perform a DDoS attack, (2) generate
fake outbound packets to exfiltrate the IoT server/hub, (3) keep the
compromised nodes always alive by sending false ping messages
periodically to drain the battery, (4) generate a large amount of
inbound traffic to make the compromised node unavailable, (5)
create packet drop intentionally to disregard any user command
or benign device operation. The detailed implementation of these
attacks is given in Section 5.4.

4 SENTINEL FRAMEWORK

Sentinel is a novel framework designed to detect node-level and
network-level attacks on the IoT environment. The purpose of
Sentinel is to serve as a data aggregation platform and train an ML-
based IDS using collected system-level information. By providing
an IoT framework-agnostic system, it relieves IDS designers from
the burden of adapting their methods to the low-level specifics of
the network. As IoT is a fundamentally constrained domain, both
in computation power and power consumption, Sentinel aims to be
as lightweight as possible on the network nodes by offloading most
of the heavy work to the hub, a centralized, higher power device.

Sentinel is built upon a Linux Kernel Module running on every
IoT device in the monitored network ( 1 in Figure 2), and providing
various low-level metrics to the userspace. Each of these devices
then runs a data sampling application 2 that periodically collects
these metrics and sends them over to the IoT hub. In the hub, a
data collection component 3 , receives and stores this data, and
forwards it through an API, to allow an ML-based IDS 4 to use
this information.

While the idea of running some part of Sentinel on every device
in an IoT network is a reminder of a host-based Intrusion Detection
System (HIDS), due to the constraints inherent to the IoT devices,
we cannot afford to perform any detection work locally. Instead,
we centralize all the data at the hub and run an IDS either there
or in the cloud, making our architecture more closely related to a
network-based IDS (NIDS).

Figure 2: Sentinel framework.

4.1 Kernel Module

The Sentinel Kernel Module (SKM) is in charge of exposing useful
low-level metrics to userspace in amachine-friendly and centralized
location (e.g., a hub in centralized IoT architecture). The intrusion
detection system can then access this data to train the ML model
and detect malicious attacks in real-time.

The SKM is a Linux Kernel Module installed on every node
that needs to be monitored. The main motivation for choosing a
Linux-powered platform is the wide adaptation of Linux OS in IoT
devices and open-source functionalities [12]. Currently, Linux has
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the highest market share with 43% of all IoT gateways and nodes
using different versions of Linux as OS [20]. However, the Sentinel
kernel module can be easily implemented in other open-source
IoT operating systems (e.g., Contiki, TinyOS, RIOT OS, etc.). For
the consumer IoT platforms such as Samsung SmartThings, SKM
can be installed as an external app that can access system-level
information via IoT hub. Once installed, SKM creates a set of entries
in the sysfs filesystem, each corresponding to a metric, with its
contents mappable to a standard C type. Whenever a file is read,
the SKM is informed and fetches the wanted value directly from the
relevant kernel data structure. sysfs is a RAM-based filesystem,
introduced in the Linux Kernel as a replacement for the legacy
profcs. It provides a file-based view of the kernel data-structures
by giving developers an easy interface to export kobjects. Each
file in sysfs corresponds to a single item (e.g. the temperature of a
device). These files can be either read-only (if it would not make
sense to write to them) or can allow writing to configure the device
they relate to [30].

We chose to use a kernel module for two main reasons. First,
a kernel module introduces a lower performance overhead than
a userspace application, as the transition between userspace and
kernel space does not provoke a context switch. Second, a kernel
module needs less computing power to perform its task than a
regular application, as all the data it needs already exists in the
kernel memory and simply needs to be read.Meanwhile, a userspace
application would have to parse the output of specific commands or
kernel files. SKM uses sysfs as this filesystem is considered to be
the standard way to expose kernel information to userspace [26].

The implementation of the SKM allows any user on the device
to access the exposed data raising privacy concerns as the data
consist of sensitive information such as RAM usage, CPU usage,
power consumption, etc. One way to remediate this issue would be
only to allow certain users to access it, limiting access to only the
monitoring application. Another route would be to encrypt the data
inside the SKM so only the hub could interpret it after receiving
it. This would provide end-to-end confidentiality of the data at the
expense of higher computation cost on the node.

The metrics exposed by the SKM are available in Table 1. In
addition to the system-level parameters made available by the SKM,
we also allow exposing information about an arbitrary process.
The target process can be dynamically changed at any time. The
process-level values we collect and make available are presented
in Table 1. We choose to expose these specific metrics as they
are easy to find in the kernel and do not require any complex
computation to be obtained, allowing us to keep the performance
hit of the SKM minimal. Further, these metrics have been proved
to provide actionable information for intrusion detection, as seen
in the related work [4]. Adding new metrics to be reported by
the SKM is straightforward. It only requires adding a new sysfs
entry in the module source code and writing a function that fetches
the corresponding data from a relevant kernel object. Hence, SKM
allows easy customization and adaptability for new configurations
of IoT environments and devices.

4.2 Polling Application and Data Sampling

With the data exposed by the SKM, Sentinel can collect it from
the node’s userspace using the polling application. The polling
application ( 2 in Figure 2) periodically reads all the data available
and forwards it to the hub.

Type Metric Unit

System-level

Number of logical CPUs N/A
Frequency of each CPU kHz

Total, free, and available RAM kB
Total, free, and available swap kB
Number of running processes N/A
1, 5, and 15 minutes loads N/A

Process-level

Current physical memory used kB
Current virtual memory used kB
High-water physical memory kB
High-water virtual memory kB

Number of file descriptors open N/A
Table 1: Metrics exposed by Sentinel.

The communication between the nodes and the hub is done via
a Message Queue Telemetry Transport (MQTT) layer, a publisher-
subscriber protocol commonly found in home IoT networks [38].
In an MQTT system, clients can publish and subscribe to topics
(e.g. living_room/thermostat). Anymessage published on a topic
will be relayed to its subscribers. In our implementation, the entire
MQTT traffic is secured with SSL certificates, both for the server
and the clients. This ensures that the reported data is not sent to
an attacker masquerading as the broker and prevents an attacker
from injecting malicious values.

As MQTT is almost ubiquitous in home IoT environments, hav-
ing Sentinel piggyback on it helps reduce the need for extra soft-
ware installation and maintenance. It also provides a scalable plat-
form, allowing an arbitrary number of nodes to send their informa-
tion to the hub.

The device polling rate plays a vital role in detecting malicious
events in IoT networks as it allows the detection module to un-
derstand the network’s overall status. Setting this rate too high
can cause an overabundance of data at the hub and cause high
CPU use on the nodes. On the other hand, setting it too low may
cause an attack to be missed or detected later than it could have
been. To mitigate the variable polling rate, the polling application
of Sentinel offers a way to a fortiori change the polling rate to
allow an IDS to implement some drill-down policies. For instance,
the polling rate can be set to a low value in standard conditions and
increased whenever suspicious behavior is detected. Sentinel offers
both specified and dynamic polling rates in its design. For dynamic
polling rate, the low value is chosen based on the training dataset.
Sentinel learns the pattern of benign and malicious behavior from
the training dataset and identifies minimum possible polling rate
to detect attacks with high accuracy.

4.3 Data Collection Module

Once the nodes’ data is sent to the MQTT broker via the polling
application, the hub needs to notify the broker it wants to receive
it. As an IoT network needs to be flexible to allow for devices
being frequently added and removed, the data collection application
dynamically detects data coming from unknown nodes and can
handle nodes reconnecting.

Upon receiving a data record from a node over the MQTT con-
nection, the hub unpacks it and inserts it into a local PostgreSQL
database instance. We choose to use a PostgreSQL database as it
provides a reliable, production-tested data storage solution. This
database also provides an open interface for remote connections.
The use of a PostgreSQL database was dictated by the need for
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a data access method providing concurrent access, as well as re-
mote access. This allows the intrusion detection module to access
and perform real-time monitoring while the data collection appli-
cation is still collecting more measurements. PostgreSQL being
an industry-tested framework, also helps the stability of Sentinel.
Hence, Sentinel provides a user-customization option to change
and configure the IoT network based on user needs. Sentinel also
uses a python library based on SQLAlchemy to specify the data
format stored in the database. This library presents an API for easy
data retrieval and manipulation, and new custom functions can be
designed to fit a user’s needs. Having the database instance run
locally is convenient as it provides faster access time. However, this
causes the hub to be a centralized point of failure, as the loss of
the device will cause all the stored data to be lost. For this reason,
the data aggregation component is able to use a remote database
instead, at the expense of performance.

4.4 Intrusion Detection Module

The intrusion detection module of Sentinel receives the data by
accessing the PostgreSQL database. To provide flexible security
options and minimize the overhead, Sentinel offers both local detec-
tion module and remote detection module for real-time monitoring.
For the analytical model, we utilize different machine learning-
based detection techniques to differentiate between benign and
malicious events in an IoT environment. The main advantage of
using machine learning-based techniques is that they are easy to
implement in resource-limited devices such as IoT devices [44].
Also, ML-based detection techniques can be trained before imple-
menting in a real-life environment that offers fast detection. For
Sentinel, we consider five different ML-based detection techniques.
Naive Bayes: Naive Bayes model is a widely used probabilistic
classifier that uses Bayes’ method to determine independent rela-
tion between features [43]. In Sentinel, the Naive Bayes classifier
observes the change of each individual feature in the devices to
calculate an event’s probability in the IoT environment. In the test-
ing mode, the classifier checks for the presence of a set of specific
features and determine the nature of the event (benign/malicious).
Rule-based Learning: In rule-based ML, a set of relational rules
are identified between features of the IoT devices [18]. These rules
are used to build a single prediction model to determine whether
the current status of the IoT environment is benign or malicious.
For Sentinel, we used the PART algorithm for rule-based learning.
Regression Model: Regression model implemented in Sentinel
builds a prediction model by observing the changes to the depen-
dent variables (benign/malicious state) due to the changes in in-
dependent variables (kernel-level features). We use the logistic
regression (LR) model in Sentinel, which is commonly used in
IDSs [55].
Neural Network: In neural network-based intrusion detection,
the relationship between features is compared with the biological
neurons, and a relationship map is created based on the effect of
variable features in the overall system. As the device features in
an IoT environment are non-linear in nature, we chose multi-layer
perception (MP) algorithm, which can achieve high accuracy in
non-linear dataset [36].
Tree-based classifiers: Tree-based classifiers operate by travers-
ing a binary tree built during a training phase [57]. Starting at the
root of the tree, each node corresponds to a comparison of a spe-
cific value of the datapoint. Based on the result of this comparison,

one of the two branches of the node is taken, and the operation is
repeated until it reaches a leaf node. This leaf node corresponds
to the class the sample is predicted to belong to. For Sentinel, we
considered three different tree-based classifiers (decision tree (DT),
random forest (RF), and logistic model tree (LMT)) to compare the
outcome of our proposed IDS.

The intrusion detection module collects the data from the data-
base, trains the ML model, and learns the benign device behavior
in an IoT network. In the testing phase, the collected data is com-
pared with the benign instances and the intrusion detection module
pushes a notification to the user interface via the hub in case of a
malicious event.

5 SENTINEL IMPLEMENTATION

We developed Sentinel as a centralized intrusion detection system
for the IoT environment. To implement and test the effectiveness
of Sentinel, we chose two different IoT platforms - Home Assistant
and WebThings. In the following subsections, we provide details of
Sentinel’s implementation steps in real-life IoT platforms and ex-
plain howwe orchestrate IoT device behavior during data recording
sessions. We also discuss our attack implementation and malicious
data collection approaches.

5.1 Testbed Environment

To assess the real-world usefulness of Sentinel, we install Sentinel
on two different IoT networks, each of them running a different IoT
framework and with a similar device architecture. The two frame-
works considered are Home Assistant and WebThings. We only
chose open-source hubs as it allows us to customize and implement
Sentinel through MQTT broker. Several popular IoT framework
such as Samsung SmartThings and Amazon Alexa also offers hub-
centric IoT architecture. Though these platforms offer user-defined
app development using web IDE, they only offer pre-approved
commercial hubs that are closed-source by nature. Hence, it is not
possible to install arbitrary kernel modules or software. However, as
the commercial hubs run on Linux, we believe it would be possible
for Sentinel to be integrated by their manufacturers.

Home Assistant is an open-source framework, providing inte-
gration with most commercial IoT devices. A strong emphasis is
put on user freedom, allowing them to create their own devices
and guaranteeing fully local processing. This framework’s hub can
be installed on any main OS and provides extensive configuration.
Connecting a device to the hub is done by creating an “integration”,
which defines what interactions are possible with the device, and
how the hub can perform them. As creating an integration is a com-
plex task, a common way for enthusiasts to create their own devices
is to use the pre-existing MQTT integration. This integration allows
the user to define a new device (e.g. a new light) by simply listing
its MQTT topic, as well as its capabilities. The only work to be done
is then to write the client-side handler that reacts to the MQTT
messages coming from the hub and sends back acknowledgments.

WebThings is Mozilla’s open-source implementation of the Web
of Things (WoT), an initiative aiming to standardize IoT. As with
Home Assistant, this framework focuses on giving users the tools
they need to configure and control their networks as they want. The
WebThings Gateway (WebThings name for a hub) can be run on
any Linux machine and provides a local data-processing application.
Adding a device to the network simply is as simple as implementing

58



Sentinel: A Robust Intrusion Detection System for IoT Networks Using Kernel-Level System Information IoTDI ’21, May 18–21, 2021, Charlottesvle, VA, USA

a few API endpoints and running a web-server on the device. The
Gateway then automatically detects and connects to the server. The
user only has to program the device to perform its work when a
callback function is called.

Figure 3: Floor plan of the experimental testbed

5.2 IoT Network Layout

The network we simulate runs on a set of Raspberry Pi 4, each one
representing a different IoT device. At the center of the network is
the hub. Every other device runs an implementation of its role in
the used IoT framework, as well as Sentinel. To help visualize the
set of devices used in our testbed, Figure 3 illustrates an example
floor plan of a studio using all of them. The hardware we use to
simulate the devices are listed in Table 2.

Device type Hardware attached

Color light bulb WS2812 LED strip
Smoke detector Smoke sensor

Door lock Servo-motor
Smart TV N/A
Thermostat BMP280 sensor and power relay

Weather station BMP280 sensor
Presence detector PIR motion detector
Physical switch Double-throw switch

Outlet Power relay

Table 2: Types of devices present in the network

5.2.1 Home Assistant Implementation Details. In Home Assistant
platform, all the IoT devices are implemented with the default
MQTT component. Each device is essentially a Python application
that subscribes and publishes to the relevant MQTT topics. For
instance, a door lock will interact with the following topics:
• home/mqtt_lock/available: whether the device is connected
and available
• home/mqtt_lock/set: listen for commands coming from the hub
• home/mqtt_lock/state: publish its current state, used as an
acknowledgment for the hub

All the messages (both from the hub and the devices) are set to
be retained by the MQTT broker, so if any party restarts, it is able
to assess the current state of the system immediately and set its
internal representation accordingly. For instance, if a device stops
for any reason, when it restarts and connects to the broker, it will
be informed of the last command the hub sent it, and will be able
to act accordingly.

Figure 4: Sentinel instrumented for the experiments

5.2.2 WebThings Implementation Details. WebThings handles de-
vices differently from Home Assistant. While the latter needs to
have prior knowledge of the device type and already have a server-
side handler (called “component”), the former only needs the nodes
to create a simple web-server that exposes a predefined API. Once
the hub has been detected and connected to the node’s server, it can
learn the properties the devices possess (such as OnOffProperty,
ColorProperty, etc.). For a device to be recognized as a specific type
(e.g. a lamp), it needs to expose a specific set of properties [32].

For instance, a thermostat needs to implement the Temperature-
Property and TargetTemperatureProperty properties in order
to have the “Thermostat” capability. Additionally, the Heating-
CoolingProperty and ThermostatModeProperty properties will
also be part of the interface provided by the “Thermostat” capability.

5.3 Simulating the IoT Network

In order to generate the training dataset, we build a home IoT
network with standard devices, which we cycle through all the
possible combinations of logical states. This is done by enumerating
all these combinations in a text file, referred to as a “trace file”. This
trace is then fed to a scheduling engine that parses it, and executes
all the events founds inside. As Sentinel only considers system and
process-level data, the user schedule used in a real-life IoT daily
routine is irrelevant to the collected data. Instead, the main focus of
the training dataset to include any possible events that are logically
possible within the IoT network. Hence, we generate and record
every device’s behavior for every possible configuration it can
have. This gives us a clearly labeled set of data that an automated
detection system can use. For each combination of attack, device
state, and framework, we run each device for 20 minutes and record
its metrics with Sentinel. We only collected 20 minutes of traces
for attack scenarios for each device. We simulated the same attacks
multiple times with different targeted devices, resulting in more
than 100 minutes of traces for each attack scenario. For normal
operation, we collected 4 hours of devices traces from each device
which we used as benign events in machine learning model.

A complete overview of Sentinel instrumented for these experi-
ments is available in Figure 4. The devices used to represent the IoT
network in our experiments are Raspberry Pi 4 Model B, with 4GB
of RAM. All the Raspberry Pi use a custom Raspbian Lite image,
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created with the pi-gen tool [13]. The image consists of a Raspbian
Lite, to which we add Wi-Fi credentials, customize username and
password, enable SSH, and install all the tools that compose Sen-
tinel. Each Python application has a virtualenv created where all
the required packages are installed. The SKM is compiled, installed,
and set to load at boot time. The nodes are connected throughWi-Fi,
supported by a D-Link DIR-605L router running firmware v2.09.

5.4 Simulated Attacks

To evaluate how Sentinel can help detect IoT network attacks, we
need to observe the data it collects while running an attack, or at
least simulating the side effects of said attack. Here, we turn to
Mirai to identify the side effects of said attacks.

Mirai is the latest significant IoT botnet in history, having in-
fected hundreds of thousands of devices over a few months and
using them to launch large-scale DDoS attacks. Mirai infects devices
by using default or common login-password combinations. A Mirai
bot works by scanning for vulnerable machines. Once a vulnerable
machine is found, it is reported to the Mirai “C&C” server. The
C&C server then sends this information to a different server that
hosts an SQL database. Finally, it notifies a third server, the “loader”,
which exploits the vulnerability, sends the payload, and executes a
new instance of the bot[5]. The separation of C&C and loader is
done in order to prevent the botnet from being taken down if the
C&C is blocked. Furthermore, the loader is not referenced by IP
address but by the domain name in the bot executable, allowing for
a short downtime in case the C&C is targeted. The attacker only
has to spawn a new machine and update the DNS records to point
to it, restoring the connection to the entire botnet.

From the Mirai botnet attack, we can extract three main side ef-
fects of interest: the network scanning phase, the C&C connection,
and the new target reporting. We then focus on these three behav-
iors, which also happen to be common traits of IoT network attacks
in our evaluation. We decided to simulate Mirai’s side effects rather
than actually run it because the minute details of the attack are not
what Sentinel focuses on. Rather, we implemented these behaviors’
side effects, as would be seen on an infected device. Further, we
also implement the effects of a black/grey hole attack, as it is a
commonly encountered behavior in IoT network intrusions.
(1) Network Scan / Pivoting. A pivoting action consists of scan-
ning the newly reachable network with Nmap. To be as realistic as
possible, we do the same here: the attack ping device continuously
scans a server (attack 1).
(2) Exfiltration For this behavior, the side effects are somewhat
the inverse of the previous one: a large amount of outbound traffic
and no increase in inbound. We simulate this by sending large UDP
packets to a server that discards them (attack 2).
(3) C&CKeep-alive For the attacker to keep control of its infected
devices, they need to periodically exchange a heartbeat message to
confirm that it is still reachable and compromised. This is simulated
by periodically pinging a remote machine that responds with an
empty payload (attack 3).
(4) Black/Grey Hole Attack The side effect of such an attack is
a large amount of inbound network traffic and a small amount of
outbound traffic. This is simulated by having the device connect to
a server and the server sending a large message (≥1MB) in response
(attack 4). In addition, for a grey hole attack, a random amount of
received messages will be sent out to simulate the partial packet
drop created by the attack (attack 5).

6 EVALUATION

Our evaluation aims to test the efficacy of Sentinel in detecting
known IoT vulnerabilities and overhead in real-life IoT systems.
Here, we specifically focus on the following research questions:
RQ1 What is the performance of Sentinel in detecting different
attacks in IoT environment? (Sec 6.2)
RQ2 What is the impact of detection methods’ parameters on the
performance of Sentinel? (Sec. 6.3)
RQ3 What is the impact of IoT devices and platform configuration
on the performance of Sentinel? (Sec. 6.4)
RQ4 What is the impact of Sentinel in IoT devices in terms of
power consumption? (Sec. 6.5)

6.1 Evaluation Setup and Methodology

As explained in Section 5, we built an IoT environment consisting
of nine different types of devices and implemented Sentinel to col-
lect kernel-level data. We observed that several features (nb_cpus,
free_ram, total_ram, free_swap, total_swap, tracked_pid) re-
main constant regardless of device state and ongoing activity. Hence,
we performed a feature pruning process to remove constant features
from the collected data. We created a dataset for each node/device
and normalized each data point between 0 to 1 based on the min-
imum and maximum values. The only two exceptions are RAM
and swap usage, which are expressed as a percentage of total use.
The datasets created contain the samples recorded every second
over the time window of the experiment and are labeled if there is
an attack or not (binary classification), or which type of attack is
underway with a “no attack” type (multi-class classification).

For the attack dataset, we simulated the behavior of the Mirai
botnet in the IoT environment and collected data for four different
types of attacks. We identified three main effects of Mirai botnet
(network scanning, C&C connection, new target reporting) and
simulated the behaviors in both WebThings and Home Assistant
platforms. We do acknowledge that the experiments used to simu-
late the Mirai botnet are artificial. Our main objective was to have
complete control over the experimental parameters and prevent
the need to run actual malware, with all the risks it could involve.
While each simulation does not represent a complete attack on
its own, they all embody a characteristic trait of the Mirai botnet.
Focusing on one side-effect at a time allows us to demonstrate that
all of them are susceptible to detection by an IDS based on our
framework. In reality, Mirai botnet can have evasive techniques
such as generating a lower amount of and smaller UDP packets and
sending very low-frequency heartbeat messages. However, Sentinel
can still detect these evasive techniques as Sentinel learns benign
behavior from the training dataset and correlates the subtle change
in network traffic-based kernel information. Hence, our simulated
attacks can successfully replicate the behavior of the Mirai botnet.

The collected data by Sentinel are used to train different ML
algorithms to detect attacks in the IoT environment. Here, we se-
lected four types of ML classifiers - Naive Bayes, rule-based learn-
ing (PART), regression model (logistic regression), neural network
(multi-layer perception), and decision tree (decision tree, random
forest, and logistic model tree). For our purposes, we trained the ML
models using stratified k-fold validation. In this training method,
the data is split into multiple subsets (called “folds”), while making
sure that each class is evenly represented across each set. Each
of the folds is then split randomly into an 80%/20% partition. We
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WebThings Home Assistant

ML

Algorithm

TPR FNR TNR FPR Acc. F-Score

Avg.

CT (s)

TPR FPR TNR FNR Acc. F-score Avg. CT (s)

Naive
Bayes 0.8 0.2 0.94 0.06 0.87 0.864 21.6 0.77 0.23 0.92 0.08 0.845 0.838 27

PART 0.85 0.15 0.94 0.06 0.895 0.892 24.5 0.75 0.25 0.88 0.12 0.815 0.809 34.6
LR 0.91 0.09 0.9 0.1 0.905 0.905 34 0.88 0.12 0.91 0.09 0.895 0.894 48
MP 0.89 0.11 0.95 0.05 0.92 0.919 68.5 0.86 0.14 0.94 0.06 0.9 0.898 81.7
DT 0.95 0.05 0.97 0.03 0.96 0.959 35.6 0.92 0.08 0.95 0.05 0.935 0.934 51.5
RF 0.95 0.05 0.98 0.02 0.965 0.964 87.9 0.91 0.09 0.97 0.03 0.94 0.939 94
LMT 0.94 0.06 0.92 0.08 0.93 0.92 102.5 0.92 0.08 0.95 0.02 0.93 0.929 112

Table 3: Performance of Sentinel in binary classification.

Decision Tree Random Forest

Attack 1 Attack 2 Attack 3 Attack 4 Attack 5 No Attack Attack 1 Attack 2 Attack 3 Attack 4 Attack 5 No Attack

Attack 1 98.76 0.17 0.02 0.00 0.00 1.06 98.51 0.42 0.05 0.00 0.00 1.02
Attack 2 0.167 96.13 0.74 0.20 0.11 2.65 0.27 97.42 0.63 0.17 0.11 1.40
Attack 3 0.00 0.00 96.19 0.35 0.02 3.33 0.00 0.00 96.84 0.47 0.02 2.67
Attack 4 0.00 0.17 0.48 96.56 0.15 2.65 0.00 0.17 0.89 96.71 0.15 2.08
Attack 5 0.02 0.00 0.04 0.07 97.46 2.41 0.00 0.00 0.14 0.15 97.03 2.69
No Attack 0.05 0.26 0.18 0.17 0.20 99.15 0.08 0.39 0.12 0.17 0.27 98.97

Table 4: Confusion matrix for WebThings multi-class classification.

Decision Tree Random Forest

Attack 1 Attack 2 Attack 3 Attack 4 Attack 5 No Attack Attack 1 Attack 2 Attack 3 Attack 4 Attack 5 No Attack

Attack 1 99.35 0.13 0.00 0.00 0.00 0.52 99.12 0.13 0.00 0.00 0.00 0.75
Attack 2 0.00 91.31 0.41 0.00 0.00 8.28 0.00 93.87 0.74 0.00 0.00 5.39
Attack 3 0.04 0.43 96.67 0.04 0.00 2.83 0.06 1.06 97.08 0.12 0.00 1.74
Attack 4 0.00 0.00 0.13 99.11 0.02 0.74 0.00 0.00 0.17 98.75 0.14 0.94
Attack 5 0.00 0.00 0.00 0.00 98.15 1.85 0.00 0.00 0.06 0.07 98.09 1.78
No Attack 0.04 1.36 0.15 0.06 0.09 98.31 0.09 0.87 0.16 0.08 0.12 98.68

Table 5: Confusion matrix for Home Assistant multi-class classification.

train the model on the first part, and evaluate it on the second. This
method of training is useful in proving that the results obtained
are not due to random chance and are consistent across multiple
independent training passes. Finally, to evaluate Sentinel, we con-
sidered seven performance metrics: True Positive Rate (TPR), False
Negative Rate (FNR), True Negative Rate (TNR), False Positive Rate
(FPR), Accuracy, F-score, and Average Computaiton Time (Avg. CT)

6.2 Detecting Attacks in IoT Environment

We built Sentinel as an ML-based IDS to detect different attacks
in IoT environment due to fast computing, easy implementation,
and high detection accuracy of machine learning algorithms. In
this section, we evaluate the performance of Sentinel using dif-
ferent machine learning algorithms against five different attacks.
For ML-based IDS, both supervised and unsupervised learning are
popular among the research community. We observe that kernel
level information in IoT devices are correlated and has a small
degree-of-change for benign and malicious activities. Also, mali-
cious activities in IoT system follow a specific pattern which can
be detected by supervised learning with high accuracy. Hence, we
chose supervised learning as the analytical model of Sentinel. We
consider two important criteria (1) performance using binary clas-
sification (2) performance using multi-class classification. For both
binary and multi-class classification, we selected seven different ML
algorithms. Our selected ML algorithms cover Naive Bayes, Rule-
based learning, Regression model, Neural Network, and tree-based
classifiers. These ML algorithms are widely used to build intrusion
detection system and are suggested by researchers and security
practitioners [36, 43].

Binary classification: In binary classification, our main goal is to
determine whether the state of the IoT environment is benign or
malicious. Here, the state of the IoT environment represents the
overall status of all the installed IoT devices. We tested the per-
formance of Sentinel in two different IoT platforms - WebThings
and Home Assistant. Table 3 presents the overall performance of
Sentinel in different binary ML classifiers. We can observe that Sen-
tinel achieves the highest accuracy and F-score of 96.5% and 96.4%,
respectively, using the Random Forest classifier in the WebThings
platform. However, the computation time for RF is 87.9s, which
higher than the other classifiers. Compared to the RF classifier, the
decision tree achieves similar accuracy (96%) with a low compu-
tation time of 35.6s. RF classifier also outperforms other ML algo-
rithms in the Home Assistant platform with accuracy and F-score of
94% and 93.9%, respectively. In Home Assistant platform, the deci-
sion tree also achieves the accuracy and F-score of 93.5% and 93.4%
with lower computation time (51.5s) than the RF classifier. Among
other classifiers, LMT, MP, and LR achieve accuracy and F-score
over 89% in both WebThings and Home Assistant platforms. We
can also observe that Naive Bayes and PART can achieve accuracy
and F-score over 81% and 80%, respectively, with lower compu-
tation time than other ML algorithms. In summary, Sentinel can
achieve high accuracy and F-score (over 94% and 93%, respectively)
in detecting different attacks using tree-based classifiers.
Multi-class classification: In multi-class classification, Sentinel aims
to detect specific attack in an IoT environment. Here, we considered
decision tree and random forest classifiers as Sentinel achieves high
accuracy in binary classification using these ML algorithms. Table 4
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Figure 5: Impact of model parameter in Sentinel: (a) tree depth vs accuracy using decision tree, (b) number of tree vs accuracy

using random forest, and (c) number of tree vs computation time using random forest.

and 5 presents the performance of Sentinel using a multi-class
classification in WebThings and Home Assistant platform, respec-
tively. We can observe that Sentinel can detect different attacks
in the IoT environment with high accuracy (average of 97% using
DT and RF) in the WebThings platform. From the confusion ma-
trix presented in Table 4, it is evident that Sentinel reports low
false positive and negative cases (less than 4% FPR and FNR) in
multi-class classification compared to binary classification. Table 5
also shows the high accuracy of Sentinel in the Home Assistant
platform in multi-class classification. Here, the average accuracy
of Sentinel is over 96% in both decision trees and random forest
classifiers. We can also observe that in both WebThings and Home
Assistant platform Sentinel achieves the highest accuracy in de-
tecting network scan/pivoting actions (Attack 1) while the lowest
accuracy is achieved in detecting exfiltration behavior (attack 2).
In summary, Sentinel achieves better performance in multi-class
classification than binary classification.

6.3 Impact of Model Parameters

In this sub-section, we test the efficacy of Sentinel in different
model parameters. As we built Sentinel as a ML-based intrusion
detection framework, model parameters (e.g., tree-depth, number of
layers in neural network, etc.) have impact in accurately detecting
attacks in IoT environment. Here, we selected random forest and
decision tree classifiers as detection methods for Sentinel. To deter-
mine the best value for the depth of the Decision Trees, we trained
multiple models: one per possible depth value (between one and
the total number of metrics), and one with no depth limit. Figure 5a
shows the accuracy of Sentinel in Home Assistant and WebThings
platforms with different decision tree depths. Here, one can ob-
serve that the accuracy of Sentinel increases with the number of
tree depths. For WebThings platforms, accuracy converges after a
depth of 14. However, in the Home Assistant platform, The highest
accuracy is achieved with no depth limit (near 97% accuracy). For
random forest classifiers, the accuracy of Sentinel also increases
with the number of trees (Figure 5b). However, the computation
time increases significantly with the number of trees in random
forest classifiers. Figure 5c shows that the accuracy of Sentinel
becomes steady (96.5%) after eight trees in random forest classifiers
with an average computation time of 102s. However, random for-
est achieves the highest accuracy of 96.83% with 12 trees, which
increases the computation time to 163s. Here, the improvement
in accuracy is insignificant compared to the computation time. In
short, Sentinel can perform with high steady accuracy without
increasing the computation time significantly.

6.4 Impact of IoT Platform Configurations

To evaluate the performance of Sentinel in different IoT configura-
tions, we considered variable sampling rate and processing capacity
of the IoT devices. Here, we considered the decision tree model as it
achieves high accuracy in both binary and multi-class classification
with low computation time.
Impact of sampling period: In order to characterize how the
accuracy of Sentinel is impacted by its sampling period, we run two
data collection runs. The first one has a polling rate of one second,
and each state is held for one minute. The second is done with a
period of ten seconds and a state duration of ten minutes. These
configurations provide us with the same amount of measurements
in both sets, guaranteeing that any difference found is not caused
by the variability of the training dataset sizes. The results of this
experiment are presented in Figure 6a.
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Figure 6: Detection Accuracy for (a) different polling rate (1s

and 10s), (b) different computation power (1 and 4 cores).

When the polling rate is decreased to ten seconds, the detector accu-
racy decreases by 5.6 percentage points. While the more extended
sampling period comes with a potentially increased reaction time
to an attack, Sentinel comes with a drill-down capacity, allowing
dynamically changing individual devices’ polling rate. It is then
possible to design a logic that temporarily decreases the sampling
period if suspicious behavior is noticed.
Impact of processing capacity. The Raspberry Pi 4, which was
used to represent an IoT device, is significantly more powerful than
the average IoT device, which is usually a single-purpose, single-
core device. The Raspberry Pi 4 has a 1.5GHz four-core CPU, which
could have an effect on Sentinel. To evaluate how this impacts
its performance, we perform a complete experiment (collecting
training and test data) while disabling three of the four cores of
each node. The data is gathered with one second between each
sample and one minute per state. We then train a new Decision
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Tree on this dataset and compare its precision to the four core
dataset. The results of this experiment are available in Figure 6b.
With a core count reduced to one per device, the attack detection
accuracy is decreased by 2.8 percentage points. This difference
comes from the fact that, as the device now has to share a single
core for all its processes, some metrics are not as insightful as with
four cores. For instance, the cpu_load metric that records the one-
minute CPU load of the device now has an increased value outside
of an attack.When an attack occurs, its increase is consequently less
noticeable. However, it is to be noted that the detector performance
was not degraded to useless a level by this change. In summary,
Sentinel can effectively run on a low core-count IoT device.

6.5 Power Consumption Analysis

One major constraint for IoT devices is power use. Some devices
are designed to be battery-powered and be able to last for months or
years on their supply. To inspect how Sentinel can impact the battery
life expectancy of these devices, we perform a power consumption
analysis. This is done by running the device handler on a Raspberry
Pi with and without Sentinel, in different logical states and with
various reporting periods. The power draw is measured at the outlet
with a wattmeter in which only the Pi is plugged in. The results
of the experiment are available in Figure 7. For a reporting period
of one second, Sentinel causes an increase of power use of about
10%, which will definitely impact the lifetime of a battery-powered
device. However, as the polling frequency decreases, the power
consumption overhead incurred decreases too. As such, for ten
seconds reporting delay, the overhead dips below 1%. This means
it is possible to find a trade-off between battery life and enhanced
device security by varying the sampling rate.
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Figure 7: Power overhead caused by Sentinel for various

polling periods, expressed as absolute and relative values

One interesting observation is that power overhead is higher in in-
active devices for some cases. Most IoT devices switch to sleepmode
in order to save power in inactive phases. This certainly improves
the performance of IoT devices in terms of resource consumption.
However, for collecting kernel-level data, Sentinel changes the
device state from sleep mode, spiking power consumption. This
results in high power overhead in inactive devices in certain cases.
Sentinel can minimize this overhead by simply correlating running
processes with devices to invoke a high polling rate.

6.6 Effect of Dynamic Polling Rate

As mentioned earlier, the performance of Sentinel depends on the
polling rate of SKM. This introduces an accuracy-overhead trade-
off in Sentinel. From Section 6.4 and 6.5, we observe that accuracy

and power consumption are proportional for different polling rates.
While higher sampling frequency provides high accuracy, it intro-
duces high power consumption in IoT systems. To mitigate this
trade-off, Sentinel introduces a dynamic polling rate where sam-
pling frequency automatically adjusted based on detected malicious
state. At initial stage, Sentinel sets low sampling frequency (polling
rate 10s) and switches to high sampling frequency (polling rate
1s) after detecting a malicious event. Figure 8 reports accuracy
and power consumption of fixed and dynamic polling rate. We
can observe that while a fixed polling rate of 1s provides over 95%
accuracy, it introduces additional 438 mW power consumption as
overhead. Compared to this dynamic polling rate (from 10s to 1s
transition) ensures over 93% accuracy with only 110 mW power
consumption as overhead. In summary, the dynamic polling rate
introduced by Sentinel can effectively detect malicious events in
IoT platforms with high accuracy and low overhead.

Figure 8: Fixed polling vs dynamic polling in Sentinel

7 DISCUSSION

This section illustrates the benefits of Sentinel in real-life deploy-
ment and how deploying Sentinel in a smart home can help differ-
ent groups of consumers using several use scenarios and discuss
different benefits of Sentinel.

7.1 Benefits of SENTINEL

Data-centric IoT applications. Sentinel proposes an IDS that
includes a polling application to collect kernel-level information.
Hence, Sentinel can be implemented as a lightweight framework-
agnostic data-collection system as well as an IDS. Also, Sentinel can
be used as a system monitoring framework for large IoT networks
such as industrial IoT systems [39].
User-customized Apps. Sentinel implements an SQL database
to collect and store data from the IoT devices. This provides a
well-known low-level API to allow any user to create their own
data access functions without relying on the methods provided by
Sentinel. Hence, users can use the implemented database to build
customized apps.
Easy deployability in real-life. IoT environment such as smart
home varies in platforms, installed devices, and apps. As the IoT
environment depends on users’ needs and choices, a centralized IDS
like Sentinel needs to be easily scalable for different configurations.
Adapting Sentinel for a new set of devices may require new features
to be added to detect malicious device behavior efficiently. This can
be done relatively easily by editing the source code of SKM. Further,
as sysfs is passive (i.e. the SKM only does some work when a file
is read), there is no issue with adding more features than required,
as the data polling application can simply ignore the unused ones.
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Device independent. As the iteration of Sentinel depends on
every device running Linux and being able to communicate over
MQTT, it does not faithfully represent the totality of the IoT devices
available currently. However, we do not believe this to be an issue
in real-life deployment for multiple reasons:
• Any IoT device that does not run Linux will most likely run a very
limited firmware, making it irrelevant to the attacks considered in
this paper.
• Sentinel could be modified to work not only with MQTT but
also with other non-WiFi-based IoT protocols (e.g., Zigbee, BLE).
Hence, Sentinel can be easily deployed in IoT environments irre-
spective of operating system and communication protocols.
Inherent privacy features. The MQTT component of Sentinel
relies on server-side and client-side certificates in order to pro-
vide adequate security properties to ensure data privacy. For the
purposes of our experiments, the certificates were manually gen-
erated and distributed, for the sake of convenience. However, in a
real-world environment, where the IoT network would need more
flexibility, the certificate distribution can be performed through
a centralized authority [7]. As Sentinel collects sensitive device
information to detect malicious attacks to the IoT devices and net-
work, the inherent MQTT security component ensures complete
user privacy.
Fault detection in the IoT environment. Fault detection is an
active domain of IoT research, focusing more on safety, where in-
trusion detection focuses on security. However, both domains share
features, as faults can have similar side effects as network intrusions.
For instance, a device getting stuck in an infinite loop can resem-
ble a sleep deprivation attack. As Sentinel collects and observes
system-level features to detect malicious attacks, the collected data
can be utilized to build an effective fault detection system for the
IoT environment.
Data security.Our MQTT setup allows any device with the proper
credentials to publish and subscribe to any topic, potentially al-
lowing an attacker to obtain sensitive information by corrupting
a node. Most MQTT brokers provide an access control List fea-
ture, through which read/write access to topics can be restricted.
However, this ACL is static and needs to be edited whenever a new
device joins, as it will need its own set of topics to publish [46].
Also, the Sentinel kernel module transmits system-level informa-
tion from IoT nodes to monitor and detect malicious activities from
the centralized hub. This opens up the possibility of passive attacks
such as eavesdropping or device fingerprinting which can result
in sensitive information leakage [6, 40]. A potential alternative to
this unwieldy method could be to add an end-to-end encryption
layer on the data by encrypting it in the SKM and decrypting it
at the hub. This would prevent any possibility of eavesdropping
but would require designing a key agreement method between the
kernel module and the hub.
Centralized IDS.We built Sentinel as a centralized IDS to address
the resource-constraint problem in IoT platforms. In an IoT envi-
ronment, several devices may connect with each other to perform
various user-defined tasks. Installing standalone IDS for each device
is costly in terms of resources (computation power, memory, etc.) as
IoT devices are usually resource-constraint devices by nature. Also,
most of the consumer IoT platforms (e.g., Samsung SmartThings,
Amazon Alexa, WebThings, etc.) offer hub-centric design where IoT
devices are connected to a centralized hub. Hence, it is easier and
practical to deploy Sentinel as a centralized IDS in a real-life IoT

environment. The Sentinel kernel module can also be implemented
in each IoT node to collect data which ensures intrusion detection
for single device failure. Additionally, Sentinel can be implemented
as a cloud-based service to avoid any attacks targeting IoT hub.

7.2 Future Work

Falsified IoT data. Our threat model assumes that the adversary
does not have privileged access to the nodes, and as such cannot
falsify the data reported by the SKM. However, it could be inter-
esting to investigate if an attacker with root access forcing the
node to misreport the system information could impact the de-
tection abilities. In particular, when a device changes state, the
attacker would have to adapt its falsification to remain covert. At
first glance, this is not trivial, as it requires the knowledge of how
the device should behave in every scenario. However, using adver-
sarial machine learning, it is possible to mimic the device behavior
to evade ML-based IDS [33, 41]. In future, we will study the effect
of adversarial ML on Sentinel and analyze mitigation strategies.
Real-life IoT device behavior. As stated previously, Sentinel can
be considered as an automated intrusion detection solution as well
as a data-gathering tool that can be leveraged by a centralized
monitoring system for the IoT environment. In order to be improved,
Sentinel could provide a larger variety of data, which would allow
it to be tailored to fit a specific scenario, where some metrics are
more relevant than others. However, in order to determine which
metrics could benefit from being added to the monitoring capacities
of Sentinel, some feedback from actual field experience would be
required. Hence, one future research direction can be the empirical
study of heterogeneous IoT devices to expand the feature space of
Sentinel to improve real-life deployment performance.

8 CONCLUSION

Wide utilization of IoT devices in different application domains
have attracted the attackers to target IoT devices and platforms.
Due to resource-constraint and opaque implementation, traditional
security frameworks fail to detect attacks specific to IoT devices.
Also, the lack of security measures from the vendors exacerbates
the situation. In this paper, we presented Sentinel, a novel platform
and protocol-agnostic intrusion detection system for IoT devices
and networks. Sentinel collects low-level system and process-level
information by accessing the IoT kernel and learning benign device
behavior to detect IoT network attacks. Sentinel utilized different
machine learning-based detection techniques to distinguish benign
and malicious device behavior. We evaluated Sentinel in different
IoT platforms and achieved high accuracy and F-score (over 96%)
against different IoT attacks. Moreover, Sentinel introduces low
overhead, making it suitable for real-life IoT devices. In future work,
we will expand our framework by considering new IoT attacks as
well as implementing on commercial IoT devices.
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