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Abstract Neural inflammation immediately follows the onset of ischemic
stroke. During this process, microglial cells can be activated into two different
phenotypes: the M1 phenotype, which can worsen brain injury by producing
pro-inflammatory cytokines; or the M2 phenotype, which can aid in long term
recovery by producing anti-inflammatory cytokines. In this study, we formu-
late a nonlinear system of differential equations to model the activation of
microglia post-ischemic stroke, which includes bidirectional switching between
the microglia phenotypes, as well as the interactions between these cells and
the cytokines that they produce. Further, we explore neuroprotectant-based
modeling strategies to suppress the activation of the detrimental M1 pheno-
type, while promoting activation of the beneficial M2 phenotype. Through use
of global sensitivity techniques, we analyze the effects of the model parameters
on the ratio of M1 to M2 microglia and the total number of activated microglial
cells in the system over time. Results demonstrate the significance of bidirec-
tional microglia phenotype switching on the ratio of M1 to M2 microglia, in
both the absence and presence of neuroprotectant terms. Simulations further
suggest that early inhibition of M1 activation and support of M2 activation
leads to a decreased minimum ratio of M1 to M2 microglia and allows for a
larger number of M2 than M1 cells for a longer time period.
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1 Introduction

Stroke is the second leading cause of death worldwide and the fifth leading
cause of death in the United States, as well as a leading cause of disability
(Johnson et al., 2016; Singh, 2019; American Stroke Association, 2020; Centers
for Disease Control and Prevention, 2020). Ischemic strokes account for 87%
of all strokes and are caused by a blockage in a blood vessel due to thrombosis
or embolism, resulting in oxygen deprivation of the brain (American Stroke
Association, 2020). During an ischemic stroke, cell death and damage occur
in the affected brain area called the infarcted core (Newton and Lytton, 2016;
Taylor and Sansing, 2013; Yenari et al., 2010). Immediately following the onset
of ischemia, the body naturally responds with inflammation, which can both
worsen brain injury and help in long term recovery.

The goal of this study is to develop a mathematical model of the neu-
roinflammatory process during ischemic stroke to analyze both the beneficial
and detrimental effects of inflammation. In particular, we introduce a new
coupled system of nonlinear differential equations to model the dynamic inter-
actions between microglia and cytokines, two of the main components involved
in neuroinflammation following stroke onset. Neuroinflammation begins with
the activation of microglia, a type of neuroglia residing in the central ner-
vous system (Anderson et al., 2015; Hu et al., 2012; Orihuela et al., 2016;
Russo et al., 2010; Taylor and Sansing, 2013; Yenari et al., 2010). This ac-
tivation peaks around two to three days after stroke and persists for several
weeks (Lee et al., 2014; Guruswamy and ElAli, 2017). Microglia maintain
homeostasis of the brain by continuously monitoring their surrounding envi-
ronment and responding to pathological signals released by neighboring brain
cells (Byrne et al., 2014; Yenari et al., 2010; Boche et al., 2013). Based on
their type, activated microglia produce either anti-inflammatory cytokines or
pro-inflammatory cytokines, thereby causing both beneficial and detrimental
effects on the brain post-ischemia.

Microglia activation is characterized by two phenotypes: M1 and M2. The
M1 phenotype (classical activation) is characterized by the secretion of pro-
inflammatory cytokines, which can exacerbate the inflammatory response and
lead to further brain damage. Pro-inflammatory cytokines include tumor necro-
sis factor alpha (TNF-α), interleukin 1 beta (IL-1β), nitric oxide, interleukin
6 (IL-6), and interleukin 12 (IL-12) (Taylor and Sansing, 2013; Orihuela et al.,
2016; Hu et al., 2015; Tang and Le, 2016; Hao and Friedman, 2016; Nakagawa
and Chiba, 2014; Cherry et al., 2014; Shao et al., 2013). Microglia can also
be activated into the M2 phenotype (alternative activiation) and perform cru-
cial roles in limiting inflammation by releasing anti-inflammatory cytokines,
including interleukin 4 (IL-4), interleukin 10 (IL-10), and transforming growth
factor beta (TGF-β) (Taylor and Sansing, 2013; Orihuela et al., 2016; Tang
and Le, 2016; Hao and Friedman, 2016; Nakagawa and Chiba, 2014; Ledeboer
et al., 2000; Liu et al., 2016; Hu et al., 2015; Shao et al., 2013).

M2 microglia have been shown to dominate at the early stages of inflamma-
tion, whereas M1 microglia activate more slowly and then become the domi-
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nant phenotype for the remainder of the neuroinflammatory process (Hu et al.,
2012). Classical and alternative microglia activation is positively influenced by
the presence of pro-inflammatory cytokines and anti-inflammatory cytokines,
respectively (Orihuela et al., 2016; Shao et al., 2013; Nakagawa and Chiba,
2014; Vaughan et al., 2018; Liu et al., 2016). Experimental studies have shown
that anti-inflammatory cytokines inhibit microglia activation to the M1 phe-
notype and, on the other hand, pro-inflammatory cytokines inhibit microglia
activation to the M2 phenotype (Shao et al., 2013; Orihuela et al., 2016; Hu
et al., 2015; Taylor and Sansing, 2013; Tang and Le, 2016). Further, experi-
mental studies have also shown that microglia may switch phenotypes from
M1 to M2 and vice versa (Zhao et al., 2017; Hu et al., 2015; Tanaka et al.,
2015; Orihuela et al., 2016; Qin et al., 2019; Nakagawa and Chiba, 2014; Gu-
ruswamy and ElAli, 2017). The switching from the M2 to M1 phenotype has
been cited as an area in need of further research (Boche et al., 2013). Math-
ematical models for applications other than ischemic stroke have considered
interactions between microglia phenotypes but have not included the possibil-
ity of switching from the M2 to the M1 phenotype (Hao and Friedman, 2016;
Wang et al., 2012; Vaughan et al., 2018).

The concentrations of pro-inflammatory and anti-inflammatory cytokines
in the system have also been shown to influence cytokine production (Ori-
huela et al., 2016; Tang and Le, 2016; Hu et al., 2015). More specifically,
the production of pro-inflammatory cytokines is positively influenced by the
presence of pro-inflammatory cytokines and inhibited by the presence of anti-
inflammatory cytokines. Similarly, anti-inflammatory cytokine production is
supported by the presence of anti-inflammatory cytokines and suppressed by
the presence of pro-inflammatory cytokines. Previous mathematical models of
neuroinflammation have included terms accounting for cytokine production
influenced by the current cytokine concentrations (Vaughan et al., 2018; Shao
et al., 2013; Anderson et al., 2015).

In this study, we develop a four-compartment model of microglia and
cytokine interaction, which includes both the M1 and M2 phenotypes, pro-
inflammatory and anti-inflammatory cytokines, and bidirectional phenotype
switching between M1 and M2 microglia. Previous mathematical models study-
ing intracellular processes of ischemic stroke inflammation have included terms
representing general microglia activation, leukocytes, astrocytes, and neurons
(Russo et al., 2010; Dronne et al., 2006; Orlowski et al., 2011; Newton and
Lytton, 2016; Rayz et al., 2008; Lelekov-Boissard et al., 2009). However, these
models do not consider the two microglia phenotypes or phenotype switching,
which we include in this work to analyze both the beneficial and deleterious
effects of microglia activation post ischemic stroke. We also study specifically
the effects of M2 to M1 phenotype switching, which may lead to increased cell
damage by bolstered production of pro-inflammatory substances in the brain.

Mathematical models of neuroinflammation have included the two mi-
croglia phenotypes for applications other than stroke, including traumatic
brain injury (TBI), amyotrophic lateral sclerosis (ALS), hemorrhagic shock,
and Alzheimer’s disease (Vaughan et al., 2018; Shao et al., 2013; Hao and Fried-
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man, 2016). The models for TBI in Vaughan et al. (2018) and for Alzheimer’s
disease in Hao and Friedman (2016) include switching from M1 to M2 but do
not include switching from the M2 to the M1 phenotype. The model for ALS
presented in Shao et al. (2013) includes bidirectional switching between mi-
croglia phenotypes; however, to the authors’ knowledge, there are no current
models of neuroinflammation during ischemic stroke which include bidirec-
tional microglia phenotype switching. Further studies have explored the in-
teractions between cytokines in general neural inflammation (Anderson et al.,
2015; Torres et al., 2009) but have not included the interactions of microglia
producing these substances. Multiple studies have also explored inflammation
with macrophages, which behave in a similar manner to microglia, in applica-
tions such as myocardial infarction (Malek et al., 2015; Wang et al., 2012).

Despite the widespread impact of ischemic stroke, there are currently only
two clinical treatment strategies for clot removal. Tissue plasminogen activator
(tPA)-induced thrombolysis is the only FDA-approved medication to restore
blood flow in the brain following ischemia. During this treatment, tPA is in-
travenously administered to break up the clot within the blood vessel that
is causing the ischemic stroke. This strategy is limited to a small subset of
stroke patients due to its short treatment window (Guruswamy and ElAli,
2017; Kent et al., 2006; Piebalgs et al., 2018; Gu et al., 2019; Minnerup et al.,
2012). An alternative to thrombolysis drug treatment is thrombectomy, a sur-
gical procedure during which a clot retrieval device is used to mechanically
remove the blood clot causing the ischemic stroke. Mathematical models for
both thrombolysis drug treatment and thrombectomy have been developed,
including: compartment models to evaluate the effects of tPA dose on the
effectiveness of treatment (Piebalgs et al., 2018; Gu et al., 2019); predictive
models to identify subsets of patients who would be eligible for thrombolysis
(Kent et al., 2006); and a model of clot removal for mechanical thrombectomy
(Romero et al., 2011). Both of these treatment strategies increase the risk for
hemorrhage post ischemic stroke (Motto et al., 1999; Shoamanesh et al., 2013;
Neuberger et al., 2019).

A potential new therapeutic strategy may be to target the distinct mi-
croglia phenotypes and promote M2 activation while simultaneously suppress-
ing M1 activation (Lee et al., 2014; Guruswamy and ElAli, 2017; Ginsberg,
2008; Zhao et al., 2017; Yenari et al., 2010). Recent experimental studies have
explored the use of neuroprotective substances such as BHDPC, curcumin,
miR-124, salidroside (SLDS), glycine, and celastrol to achieve this aim. An in
vitro study showed that BHDPC, a novel neuroprotectant, was able to promote
M2 phenotype polarization (Li et al., 2018). In a follow-up study, BHDPC was
shown to reduce the amount of M1 microglial cells and enhance the amount
of M2 microglia in middle cerebral artery occlusion-induced ischemic brain in
mice after treatment with the drug (Li et al., 2019). Curcumin was shown to
promote M2 microglia activation and inhibit pro-inflammatory responses both
in vitro and in vivo in mice (Liu et al., 2017). Injection with the microRNA
miR-124 was shown to decrease of ratio of M1 to M2 microglia in a mouse
model (Taj et al., 2016). Intravenous SLDS injection decreased M1 microglial
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cells and increased M2 microglial cells post ischemic stroke in a mouse model
(Liu et al., 2018). The amino acid glycine was shown to promote M2 microglial
cells in vitro and in vivo in Sprague-Dawley rats (Liu et al., 2019). Celastrol
was shown to decrease pro-inflammatory cytokines using rodent models (Jiang
et al., 2018).

Inspired by neuroprotectant strategies, we further modify the model pro-
posed in this work to include time-varying terms aiding in the activation of
M2 microglia and inhibiting the activation of M1 microglia. We analyze the
effects of these neuroprotectant-based terms on the total number of activated
microglia in the system, with specific interest in the ratio of M1 to M2 mi-
croglia, for different simulated treatment onset times. Further, by employing
global sensitivity techniques, we analyze the effects of the model parameters
on the ratio of M1 to M2 cells and the total activated microglia in both the
absence and presence of the neuroprotectant terms. Results emphasize the
significance of the microglia phenotype switching rates with respect to model
sensitivity when considering the ratio of M1 to M2 microglia, while the num-
ber of resting microglia and the microglia activation and mortality rates are
more significant when considering the total activated microglia.

The paper is organized as follows. Section 2 describes the coupled system
of nonlinear differential equations derived to model the interactions between
the two microglia phenotypes and the pro- and anti-inflammatory cytokines.
Section 3 reviews two global sensitivity analysis techniques, Morris elemen-
tary effects and the Sobol method, and provides numerical results when these
techniques are applied to the model derived in Section 2. Section 4 details the
neuroprotectant-based terms added to the model to suppress M1 microglia
production and bolster M2 microglia production. This section also provides
computational simulations of the modified model when the neuroprotectant
onset times are varied and sensitivity analysis of the modified model. Section
5 features a discussion of the results and future work, and Section 6 gives a
summary and conclusions of this work.

2 Model Description

In this section we derive a simplified model of neural inflammation post-
ischemic stroke, focusing on the interaction between the M1 and M2 microglia
phenotypes and pro- and anti-inflammatory cytokines. We assume a constant
source of resting microglia, which activates into the M1 or M2 phenotypes im-
mediately following the onset of ischemic stroke. This activation is assumed to
occur at a constant rate, influenced by the cytokine concentrations. Bidirec-
tional switching can occur between the M1 and M2 microglia phenotypes. Pro-
inflammatory (P ) and anti-inflammatory (A) cytokines are produced by the
M1 and M2 microglia, respectively, further influenced by the current concen-
trations of cytokines. Figure 1 gives a schematic representation of the model.
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2.1 Microglia

The equations describing the change in M1 and M2 microglial cells are as
follows:

dM1

dt
= a · kM1 ·H(P ) · Ĥ(A)︸ ︷︷ ︸

M1 activation

− sM1→M2 ·H(A) ·M1︸ ︷︷ ︸
M1 to M2 switching

+ sM2→M1 ·H(P ) ·M2︸ ︷︷ ︸
M2 to M1 switching

− µM1 ·M1︸ ︷︷ ︸
M1 mortality

(1)

dM2

dt
= a · kM2 ·H(A) · Ĥ(P )︸ ︷︷ ︸

M2 activation

+ sM1→M2 ·H(A) ·M1︸ ︷︷ ︸
M1 to M2 switching

− sM2→M1 ·H(P ) ·M2︸ ︷︷ ︸
M2 to M1 switching

− µM2 ·M2︸ ︷︷ ︸
M2 mortality

(2)

Fig. 1 Schematic representation of microglia activation. After the onset of stroke, resting
microglia are activated into the M1 or M2 phenotype. Activation to the M1 phenotype
is positively influenced by the presence of pro-inflammatory cytokines (P ) and negatively
influenced by anti-inflammatory cytokines (A); vice versa for the M2 activation. M1 mi-
croglia release detrimental pro-inflammatory cytokines, and this production is positively
influenced by the concentration of pro-inflammatory cytokines and negatively influenced by
the concentration of anti-inflammatory cytokines. Conversely, M2 microglia produce bene-
ficial anti-inflammatory cytokines, and this production is positively influenced by the con-
centration of anti-inflammatory cytokines and negatively influenced by the concentration of
pro-inflammatory cytokines. Activated microglia may switch between the M1 and M2 phe-
notypes, with the M1 to M2 switching being positively influenced by the anti-inflammatory
cytokines and the M2 to M1 switching being positively influenced by the concentration of
pro-inflammatory cytokines.
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where a is the number of resting microglia, sM1→M2 and sM2→M1 are con-
stant parameters for microglia phenotype switching, and kM1, kM2, µM1, and
µM2 are constant parameters for the activation and natural mortality of the
microglial cells, respectively. The Hill functions H and Ĥ of the cytokines are
of the form

H(x) =
xnx

xnx +Knx
x

(3)

and

Ĥ(x) =
KNx

x

KNx
x + xNx

(4)

where x is taken to be either P or A (representing the pro-inflammatory or
anti-inflammatory cytokines, respectively), nx and Nx are constant exponents
which control the steepness of the curves, and Kx is the half maximal concen-
tration of the respective cytokine. Note that H(x) has the form of an increas-
ing sigmoidal curve, whereas Ĥ(x) is a decreasing sigmoidal curve. Similar Hill
functions have been used in previous modeling of cytokines and cells (Ander-
son et al., 2015; Vaughan et al., 2018; Wang et al., 2012; Hao and Friedman,
2016; Shao et al., 2013; Malek et al., 2015). The following subsections detail
the model terms for microglia activation and phenotype switching. Table 1
lists the descriptions, units, and nominal values of the corresponding model
parameters.

Microglia activation

Following the onset of ischemic stroke, resting microglia can become polarized
to the M1 and M2 phenotypes (Orihuela et al., 2016; Taylor and Sansing, 2013;
Tang and Le, 2016; Nakagawa and Chiba, 2014; Shao et al., 2013). We assume
that the resting microglia become activated to each phenotype at a rate that is
influenced by the presence of cytokines. Activation of the microglia to the M1
phenotype is positively influenced by the concentration of pro-inflammatory
cytokines (Orihuela et al., 2016; Shao et al., 2013; Nakagawa and Chiba, 2014;
Vaughan et al., 2018; Wang et al., 2012) and negatively influenced by the con-
centration of anti-inflammatory cytokines (Vaughan et al., 2018; Nakagawa
and Chiba, 2014). We use the Hill function H(P ) to represent the saturating
promotion of M1 microglia by the pro-inflammatory cytokines (Byrne et al.,
2014; Kleiner et al., 2013). Likewise, we use the Hill function Ĥ(A) to represent
the saturating inhibition of M1 microglia by the anti-inflammatory cytokines.
Similar terms are used to represent the saturating promotion of M2 microglia
by anti-inflammatory cytokines (Orihuela et al., 2016; Vaughan et al., 2018;
Shao et al., 2013; Nakagawa and Chiba, 2014; Liu et al., 2016) and the sat-
urating inhibition of M2 microglia by the pro-inflammatory cytokines (Tang
and Le, 2016).
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Microglia phenotype switching

There is evidence that microglia may switch phenotypes once activated; how-
ever, the switching from the M2 to M1 phenotype has been cited as an area
for further research (Boche et al., 2013). The proposed model includes bidirec-
tional switching, so that we may analyze the effects of all possible interactions.
To this end, we assume that once activated, microglia may switch from the M1
phenotype to the M2 phenotype (Hu et al., 2015; Shao et al., 2013; Tanaka
et al., 2015; Vaughan et al., 2018; Nakagawa and Chiba, 2014; Cherry et al.,
2014; Boche et al., 2013; Guruswamy and ElAli, 2017; Qin et al., 2019; Ori-
huela et al., 2016; Zhao et al., 2017) and from the M2 phenotype to the M1
phenotype (Orihuela et al., 2016; Hu et al., 2015; Tanaka et al., 2015; Nak-
agawa and Chiba, 2014; Guruswamy and ElAli, 2017; Qin et al., 2019; Zhao
et al., 2017). Since switching from M1 to M2 is positivity influenced by the
anti-inflammatory cytokines (Hu et al., 2015; Shao et al., 2013), we multiply
this term by the Hill function H(A). Likewise, since switching from M2 to M1
is positively influenced by the pro-inflammatory cytokines (Orihuela et al.,
2016; Hu et al., 2015; Tanaka et al., 2015), we multiply the corresponding
term by H(P ).

2.2 Cytokines

The equations describing the concentration changes of pro-inflammatory (P )
and anti-inflammatory (A) cytokines are as follows:

dP

dt
= kP ·M1 ·H(P ) · Ĥ(A)︸ ︷︷ ︸

pro-inflammatory cytokine production

− µP · P︸ ︷︷ ︸
natural decay

(5)

dA

dt
= kA ·M2 ·H(A) · Ĥ(P )︸ ︷︷ ︸

anti-inflammatory cytokine production

− µA ·A︸ ︷︷ ︸
natural decay

(6)

where kP , kA, µP , and µA are constant parameters related to the produc-
tion and decay of pro-inflammatory and anti-inflammatory cytokines. The Hill
functions H and Ĥ take the same form as in (3) and (4), respectively. The fol-
lowing subsection details the model terms relating to cytokine production, and
Table 1 lists the relevant parameter descriptions, units, and nominal values.

Cytokine production

We assume that pro-inflammatory cytokines are produced by M1 cells at
a rate kP , anti-inflammatory cytokines are produced by M2 cells at a rate
kA, and their production is influenced by the presence of both the pro- and
anti-inflammatory cytokines in the system (Orihuela et al., 2016; Hu et al.,
2015; Taylor and Sansing, 2013; Tang and Le, 2016; Hao and Friedman, 2016;
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Shao et al., 2013; Nakagawa and Chiba, 2014). In particular, the concentra-
tion of pro-inflammatory cytokines supports additional pro-inflammatory cy-
tokines production and suppresses the production of anti-inflammatory cy-
tokines (Shao et al., 2013; Orihuela et al., 2016; Hu et al., 2015; Taylor and
Sansing, 2013; Tang and Le, 2016), which we model through the use of the
Hill functions H(P ) in (5) and Ĥ(P ) in (6). Further, the presence of anti-
inflammatory cytokines encourages more anti-inflammatory cytokines to be
produced and suppresses the production of pro-inflammatory cytokines (Shao
et al., 2013; Orihuela et al., 2016; Hu et al., 2015; Taylor and Sansing, 2013;
Tang and Le, 2016), which we model through the terms H(A) in (6) and Ĥ(A)
in (5). The Hill functions account for the saturating effects of these interactions
(Byrne et al., 2014; Kleiner et al., 2013).

2.3 Model Summary and Simulation Results

In summary, the proposed model describing the interactions between the M1
and M2 microglia phenotypes and pro-inflammatory and anti-inflammatory
cytokines comprises Equations (1), (2), (5), and (6). The complete system of
coupled nonlinear differential equations is given by

dM1

dt
= a · kM1 ·H(P ) · Ĥ(A)− sM1→M2 ·H(A) ·M1 + sM2→M1 ·H(P ) ·M2− µM1 ·M1

dM2

dt
= a · kM2 ·H(A) · Ĥ(P ) + sM1→M2 ·H(A) ·M1− sM2→M1 ·H(P ) ·M2− µM2 ·M2

dP

dt
= kP ·M1 ·H(P ) · Ĥ(A)− µP · P

dA

dt
= kA ·M2 ·H(A) · Ĥ(P )− µA ·A

(7)

with H and Ĥ defined as in (3) and (4), respectively.
Table 1 lists the index, description, nominal value, and unit for each pa-

rameter included in Model (7). Nominal parameter values were chosen to ob-
tain model outputs consistent with trends observed in experimental studies (Li
et al., 2018, 2019; Liu et al., 2017; Jiang et al., 2018; Taj et al., 2016; Liu et al.,
2018, 2019; Hu et al., 2012; Ferrarese et al., 1999). In particular, simulations
with nominal parameter values reflect significant increase in pro-inflammatory
cytokines after stroke onset, while anti-inflammatory cytokines increase less
drastically or hover around the same starting value (Li et al., 2018, 2019);
dominance of M2 microglia early in the inflammatory process, followed by an
eventual takeover of the M1 microglia (Hu et al., 2012); and increased levels
of both M1 and M2 microglia three days following ischemic stroke (Liu et al.,
2017, 2018; Li et al., 2019).

Numerical simulations were performed using MATLAB R© programming
language. Specifically, ode15s was utilized to compute the numerical solution
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Index Parameter Description Nominal Value Units

1 a Number of resting microglia 1000 cells

2 kM1 Activation rate of microglia to M1 0.44 1
hours

3 kM2 Activation rate of microglia to M2 0.65 1
hours

4 kP Production rate of P 0.01
pg/ml

hours·cells

5 kA Production rate of A 0.006
pg/ml

hours·cells

6 nP Hill coefficient for P in H(P ) 0.5 unitless

7 KP Half-maximal concentration of P 10 pg
ml

8 nA Hill coefficient for A in H(A) 0.5 unitless

9 KA Half-maximal concentration of A 10 pg
ml

10 sM1→M2 Rate of M1→M2 switch 0.2 1
hours

11 sM2→M1 Rate of M2→M1 switch 0.2 1
hours

12 µM1 Mortality rate of M1 0.1 1
hours

13 µM2 Mortality rate of M2 0.1 1
hours

14 µA Natural decay rate of A 0.1 1
hours

15 µP Natural decay rate of P 0.1 1
hours

16 NA Hill coefficient for A in Ĥ(A) 0.5 unitless

17 NP Hill coefficient for P in Ĥ(P ) 0.5 unitless

Table 1 Indices, descriptions, nominal values, and units of the constant parameters in
Model (7).

of Model (7) using the nominal parameters in Table 1 and the initial condi-
tions M1(0) = 100 cells, M2(0) = 100 cells, P (0) = 10 pg

ml , and A(0) = 10 pg
ml .

Figure 2 shows the resulting model output for the numbers of M1 and M2
microglia and the concentrations of pro-inflammatory and anti-inflammatory
cytokines, as well as the ratio of M1 to M2 cells (M1 : M2) and the total
number of activated microglia (M1 +M2), over a 72 hour time period.

Note in Figure 2 that the M2 phenotype dominates until around 17 hours.
After this time period, the ratio becomes greater than one, indicating that
there are more M1 microglia than M2 microglia. At 72 hours, the ratio of M1
to M2 microglia is approximately 1.34. The minimum ratio is approximately
0.7875 and occurs at 2.4 hours. We also observe that after a short time the
concentration of pro-inflammatory cytokines is significantly larger than that
of the anti-inflammatory cytokines. While not shown, note that when the
switching from M1 to M2 microglia is turned off, the M1 microglia dominate
from the beginning, and the M2 microglia and anti-inflammatory cytokines
approach zero. Similarly, when the switching from M2 to M1 is turned off, the
M2 microglia and anti-inflammatory cytokines dominate. Further, if the model
is run over a longer time interval, all model components eventually converge
to nonzero steady state values.
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(a) M1 microglia. (b) M2 microglia.

(c) Pro-inflammatory cytokine concentration. (d) Anti-inflammatory cytokine concentration.

(e) Ratio of M1 to M2 cells. (f) Total activated microglia.

Fig. 2 Numerical solution to the model in (7) over the time interval [0, 72] hours using
the parameter values in Table 1 and initial conditions M1(0) = 100 cells, M2(0) = 100
cells, P (0) = 10 pg

ml
, and A(0) = 10 pg

ml
. The plots in (a)-(d) depict the four model states,

while (e) and (f) show the ratio of M1 to M2 microglia and the total number of activated
microglia, respectively.

Appendix A provides individual ranges for the model parameters and initial
conditions over which Model (7) maintains the observed trends. We analyze
the global sensitivity of the model parameters in Section 3.

3 Sensitivity Analysis

Since the behavior of Model (7) is greatly influenced by the choice of values
for the 17 model parameters, we utilize sensitivity analysis techniques in or-
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der to study each parameter’s contribution to model output. In particular,
we apply two global sensitivity analysis techniques: the Morris method of ele-
mentary effects, and the Sobol method. Global sensitivity approaches aim to
quantify how uncertainty and variability in model output can be attributed
to uncertainties in the inputs. We summarize Morris elementary effects and
Sobol sensitivity analysis below, describing specifically the application to this
work; for more details on these methods, see Saltelli et al. (2004); Wentworth
et al. (2016); Smith (2013); Olsen et al. (2019); Wu et al. (2013).

For each method, consider the nonlinear input-output relation

y = f(q), q = [q1, . . . , q17] (8)

where y is a scalar response variable and each qi is a model parameter whose
index i (i = 1, . . . , 17) corresponds to the index listed in Table 1. Since we are
interested in how the parameters affect the number of activated microglia, in
particular the ratio of M1 to M2 microglia and the total activated microglia,
we consider the following two response variables:

f(q) =

∫ 72

0

M1(t; q)/M2(t; q)dt (9)

f(q) =

∫ 72

0

(M1(t; q) +M2(t; q))dt (10)

Parameters are admitted to vary over a specified space. In this study, each
parameter’s admissible space is taken to be the interval of 80− 120% around
the nominal value given in Table 1. In the methods that follow, we assume the
parameters are each initially scaled to lie in the interval [0, 1] for sampling,
then are rescaled to their admissible parameter space before computing the
sensitivity measures.

3.1 Morris Elementary Effects

The Morris method of elementary effects quantifies the effect of varying one
parameter at a time on a model output. The method begins by dividing the
interval [0, 1] into ` levels and generating an initial parameter vector q by
random sampling from these levels. In this work, we let ` = 100 and generate a
parameter vector of size 1×17. Each entry of the parameter vector is perturbed
one at a time by the increment

∆ =
`

2(`− 1)
(11)

thereby generating vectors of the form vi = q + ∆ei, where ei is the ith unit
vector and each vi differs from q only in the ith entry. To compute these sample
vectors, we follow the implementation described in Smith (2013). Parameters
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are rescaled to their admissible space, as noted above, and elementary effects
are computed by

di(q) =
f(q +∆ei)− f(q)

∆
(12)

for each i = 1, . . . , 17.
This process is repeated for r = 200 samples, and the absolute mean µ∗i

and variance σ2
i are computed via the formulas

µ∗i =
1

r

r∑
j=1

|dji | (13)

and

σ2
i =

1

r − 1

r∑
j=1

(dji − µi)
2, µi =

1

r

r∑
j=1

dji (14)

The absolute mean µ∗i in (13) provides an estimate of the absolute value of the
average of elementary effects over all samples. The variance σ2

i in (14) mea-
sures how far each elementary effect is from the mean. Since large variances
indicate dependence on neighboring input values, the variance gives an esti-
mate of the combined effects of the interactions of each parameter with other
parameters. In this work, we use the absolute mean µ∗i to rank the sensitivity
of the parameters.

3.2 Sobol Method

Sobol sensitivity analysis is a variance-based method which quantifies how
much of the variability in the model output can be attributed to each individual
parameter or parameter interactions. To implement the Sobol method in this
work, we follow the algorithm described in Smith (2013). Utilizing MATLAB’s
sobolset, we generate a quasi-random sample of size 50, 000 × 17. Half of
these samples form the rows of a matrix A, which has dimensions 25, 000× 17
(where 17 is the number of parameters), and the other half form the rows of a
matrix B, a nonidentical 25, 000×17 matrix. Seventeen additional 25, 000×17
matrices, denoted as C1, . . . , C17, are generated such that each Ci corresponds
to the parameter qi and has its ith row taken as the ith row of A and its
remaining 16 rows taken from B.

A scalar model output is generated for each row of the matrices A, B, and
Ci for all i by first running a forward simulation of the model with parameter
values set to the entries in the respective row and then computing the response
variable (8). This results in scalar response vectors of size 1× 25, 000 for each
matrix, denoted by yA, yB , and yCi , where

yA = f(A), yB = f(B), yCi = f(Ci) (15)

and the output function f is taken to be either (9) or (10), respectively.
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The first-order sensitivity indices, Si, and total-order sensitivity indices,
STi , are computed using the formulas

Si =
var[E(Y |qi)]

var(Y )
=

( 1
M · yA · y

T
Ci

)− f2
0

( 1
M · yA · y

T
A)− f2

0

(16)

and

STi = 1− var[E(Y |q∼i)]
var(Y )

= 1−
( 1
M · yB · y

T
Ci

)− f2
0

( 1
M · yA · y

T
A)− f2

0

(17)

respectively, where

f2
0 =

1

M

M∑
j=1

yjA ·
1

M

M∑
j=1

yjB (18)

and here M = 25, 000. The first-order sensitivity indices in (16) measure the
fractional contribution of a single parameter to the output variance, while
the total-order sensitivity indices in (17) measure the contribution of a single
parameter and this parameter’s interactions with the other parameters to the
output variance. We use the total-oder sensitivity indices STi to achieve an
overall sensitivity ranking of the parameters.

While we utilized quasi-random sampling to generate the samples for the
Sobol method in this work, we note that alternative sampling methods such as
Latin hypercube sampling (Wu et al., 2013) or sparse grid sampling (Buzzard,
2012) may help to reduce the number of sample points needed to adequately
cover the parameter space.

3.3 Parameter Sensitivity Rankings

Figure 3 shows the resulting parameter sensitivity rankings using both the
Morris and Sobol methods for the scalar responses given in (9) and (10). Pa-
rameters are ranked according to their Morris absolute means, µ∗i in (13), and
total-order Sobol sensitivity indices, STi in (17). Note that the sensitivity rank-
ings are consistent between methods but depend on the response considered.

As shown in Figure 3a, when considering the ratio of M1 to M2 microglia
in (9), the microglia phenotype switching rates sM2→M1 and sM1→M2 are the
most sensitive parameters with respect to both Morris and Sobol sensitivity
measures. These are followed by the half-maximal concentrations KA and KP

of the anti-inflammatory and pro-inflammatory cytokines, respectively. When
instead considering the total activated microglia in (10), Figure 3b shows that
most of the parameters have a total-order sensitivity index and an absolute
mean very close to 0. The most sensitive parameter for this response is the
number of resting microglia a, followed by the microglia activation rates kM1

and kM2 and the microglia mortality rates µM1 and µM2.
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(a) f(q) =
∫ 72
0 M1(t; q)/M2(t; q)dt (b) f(q) =

∫ 72
0 (M1(t; q) +M2(t; q))dt

Fig. 3 Total-order sensitivity index STi (blue dot) and absolute mean µ∗i (green x) for each
parameter qi in Model (7) with respect to the scalar response variable f(q). Parameters are
labeled using the indices i (i = 1, . . . , 17) listed in Table 1.

4 Modified Model for Neuroprotectant-Based Strategies

Promoting the activation of M2 microglia while simultaneously suppressing
M1 microglia activation has been cited as a possible neuroprotectant strategy
to aid during ischemic stroke (Lee et al., 2014; Guruswamy and ElAli, 2017;
Ginsberg, 2008; Zhao et al., 2017; Yenari et al., 2010) and has been the subject
of several recent experimental studies (Li et al., 2018, 2019; Liu et al., 2017;
Jiang et al., 2018; Li et al., 2012; Taj et al., 2016; Liu et al., 2018, 2019).
To simulate the effects of such neuroprotectant-based strategies on microglia
activation, we modify Model (7) to include time-varying terms to inhibit the
production of M1 microglia and bolster the production of M2 microglia cells.

In introducing these terms, we focus on analyzing the ratio of M1 to M2
microglia over a 72-hour window post stroke, which has been cited as an im-
portant time frame for treatment (Lee et al., 2014; Guruswamy and ElAli,
2017; Hu et al., 2015; Wang et al., 2007; Taj et al., 2016; Zhao et al., 2017;
Orihuela et al., 2016; Dyker and Lees, 1998). Once being administered at a
specified time during this window, we assume that the neuroprotectant will
have a saturating effect on the activation of M1 and M2 microglial cells for
24 hours, after which the effects will diminish and activation will return to
pre-treatment levels. We further assume that the neuroprotectant should be
administered within 15 hours post stroke in order to extend the early domi-
nance of the M2 phenotype over M1 seen in Model (7) for as long as possible
before the number of M1 cells again dominates.

Based on these assumptions, we include the following two time-dependent
terms:

N1(t) =

{
b+ 1−b

1+eτ1(t−(t0+5)) if t ≤ 24 + t0

b+ 1−b
1+e−τ1(t−(t0+5)−38) if t > 24 + t0

(19)

which acts to inhibit M1 activation, and

N2(t) =

{
1 + L

1+e−τ2(t−(t0+5)) if t ≤ 24 + t0

1 + L
1+eτ2(t−(t0+5)−38) if t > 24 + t0

(20)



16 Sara Amato, Andrea Arnold

Index Parameter Description Nominal Value Units

18 b Minimum value of N1 0.3 unitless

19 τ1 Steepness of N1 1 unitless

20 τ2 Steepness of N2 1 unitless

21 L Maximum value of N2 0.8 unitless

22 t0 Time at which treatment is applied 0− 15 hours

Table 2 Indices, descriptions, nominal values, and units of the constant parameters in the
time-varying neuroprotectant terms N1(t) and N2(t) given in (19) and (20), respectively.
These terms appear in the modified model in (21).

which acts to promote M2 activation. Each term is a continuous piecewise
sigmoidal function, where L, b, τ1, and τ2 are constant parameters which con-
trol the shape of the respective sigmoid graphs, and t0 is the onset time of
simulated neuroprotectant-based treatment. Note that we account for a time
delay of 5 hours in each sigmoid curve reaching its respective point of steepest
decline or incline, assuming that a delay occurs between when the neuropro-
tectant is administered and when it has its strongest effect, and we shift the
curves when t > 24 + t0 by 38 hours in order to maintain continuity. These
terms enter Model (7) as multiplicative factors, with N1(t) multiplying the M1
activation term in (1) and N2(t) multiplying the M2 activation term in (2).
Corresponding parameter descriptions and nominal values are given in Table
2.

To inhibit the production of M1 microglial cells, N1(t) has the form of a
decreasing sigmoid curve until 24 hours after the onset of treatment, where
we assume that the effects of the neuroprotectant start to wear off. After 24
hours post-treatment, N1(t) becomes an increasing sigmoid curve until the
M1 activation returns to pre-treatment level. The constant parameter b is the
minimum value of N1(t) and represents how effective N1(t) is in suppressing
the activation of M1 cells. Note that if b = 0, N1(t) would completely turn
off the activation of resting microglia to the M1 phenotype. Figure 4a shows
N1(t) for onset times t0 = 0, 5, 10, and 15 hours.

Conversely, to bolster the production of M2 microglia cells, N2(t) has the
form of an increasing sigmoid curve until 24 hours after the onset of treatment,
at which point we assume that the effects start to wear off. After 24 hours
post-treatment, N2(t) transitions to a decreasing sigmoid curve until the M2
activation returns to pre-treatment level. The constant parameter L is the
maximum value of N2(t) and represents how effective N2(t) is in bolstering
the activation of M2 cells. Note that if L = 1,N2(t) would double the activation
of resting microglia to the M2 phenotype. Figure 4b plots N2(t) when t0 = 0,
5, 10, and 15 hours.
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4.1 Modified Model Summary and Simulation Results

In summary, the modified model for suppressing the activation of the M1 phe-
notype and bolstering the activation of M2 microglia phenotype is given by
the following system of equations:

dM1

dt
= N1(t) · a · kM1 ·H(P ) · Ĥ(A)− sM1→M2 ·H(A) ·M1 + sM2→M1 ·H(P ) ·M2− µM1 ·M1

dM2

dt
= N2(t) · a · kM2 ·H(A) · Ĥ(P ) + sM1→M2 ·H(A) ·M1− sM2→M1 ·H(P ) ·M2− µM2 ·M2

dP

dt
= kP ·M1 ·H(P ) · Ĥ(A)− µP · P

dA

dt
= kA ·M2 ·H(A) · Ĥ(P )− µA ·A

(21)

Figure 4 plots the neuroprotectant terms N1(t) and N2(t) over 72 hours
when the simulated treatment is administered at t0 = 0, 5, 10, and 15 hours,
along with the corresponding plots of M1 and M2 cells, the ratio of M1 to M2
microglia, and total activated microglia resulting from Model (21). Note that
in the presence of the neuroprotectant terms, the ratio of M1 to M2 microglia
remains under one until around 60 hours regardless of treatment onset time.
Applying the neuroprotectant terms right away (i.e., t0 = 0) results in the
lowest ratio of M1 to M2 microglia. This minimum occurs at 11.5 hours and
is about 0.5, indicating that, at this time, there are around twice as many M2
microglial cells as there are M1. After this minimum is achieved, the ratio of
microglial cells increases and ends at 72 hours with the highest ratio of all the
onset times considered. For the other onset times shown, a slightly different
behavior is observed: The ratios increase prior to treatment onset and then
decrease less drastically and level off. Ratios then increase and, by the end of
the 72 hour period, all end up around one on an upward trend.

While not shown here, we note that onset times past the 15 hour mark
(i.e., t0 > 15) yield a similar behavior seen in Figure 4e when t0 = 5, 10, and
15 hours; however, the ratio of M1 to M2 microglial cells no longer stays under
one prior to the simulated treatment onset. Instead, the ratios when t0 > 15
increase prior to the onset time, reach a maximum ratio greater than one, and
then decrease and level off. When the effects of the neuroprotectant begin to
wear off, the ratios increase and end on an upward trend.

4.2 Sensitivity Analysis of Modified Model

We perform a similar sensitivity analysis on the modified model in (21), uti-
lizing both the Morris and Sobol methods described in Section 3 to quantify
how uncertainty and variability in model output can be attributed to uncer-
tainties in the inputs when adding in the neuroprotectant terms. As before,
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(a) M1 activation inhibitor. (b) M2 activation promoter.

(c) M1 microglia. (d) M2 microglia.

(e) Ratio of M1 to M2 cells. (f) Total activated microglia.

Fig. 4 Numerical solutions to the modified model in (21) over [0, 72] hours using the nominal
parameters values given in Tables 1 and 2 with t0 varying from 0 to 15 hours.

we consider as scalar response variables the ratio of the M1 to M2 microglia
as in (9) and the total activated microglia as in (10).

Figure 5 shows the resulting parameter sensitivity rankings from the Morris
elementary effects and Sobol sensitivity analysis when t0 = 0. Similar results
hold when t0 is varied across the admissible treatment time. In Figure 5a, when
considering the ratio of M1 to M2 microglia in (9), the switching rate of M2
to M1 microglia sM2→M1 stands out as being the most sensitive, followed by
the opposite switching rate sM1→M2 and half-maximal concentration KP of
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(a) f(q) =
∫ 72
0 M1(t; q)/M2(t; q)dt (b) f(q) =

∫ 72
0 (M1(t; q) +M2(t; q))dt

Fig. 5 Total-order sensitivity index STi (blue dot) and absolute mean µ∗i (green x) for each
parameter qi in Model (21) with respect to the scalar response variable f(q). Parameters
are labeled using the indices i (i = 1, . . . , 22) listed in Tables 1 and Table 2 with t0 = 0.

pro-inflammatory cytokines. The parameters relating to the neuroprotectant
terms (indexed 18-22) are much less sensitive in comparison.

In Figure 5b, when considering the total activated microglia in (10), the
number of resting microglia a remains the most sensitive parameter. The ac-
tivation rate kM2 of the M2 microglia becomes the second most sensitive pa-
rameter, followed by the natural mortality rate µM2. Note that out of the
neuroprotectant term parameters, the maximum value L of the N2(t) term
supporting M2 activation is the most sensitive.

5 Discussion

In this work, we develop a system of four coupled nonlinear differential equa-
tions describing the dynamics of activated microglia and cytokines during
ischemic stroke. In particular, this model considers the switching of acti-
vated microglia between the M1 and M2 phenotypes (in both directions) and
lumped compartments representing pro-inflammatory and anti-inflammatory
cytokines. Inspired by possible neuroprotectant strategies, additional time-
dependent terms are included to aid in the activation of beneficial M2 microglia
and inhibit the activation of detrimental M1 microglia.

Simulations using nominal parameter values show that the model captures
experimentally observed behavior of M1 and M2 microglial cells and cytokines
post ischemic stroke. Numerical results further emphasize the importance of
bidirectional switching between microglia phenotypes, in particular when con-
sidering the ratio of M1 to M2 microglia. Global sensitivity analysis results
indicate that the parameters relating to phenotype switching in both directions
are the two most influential parameters in the absence of terms to suppress
M1 microglia and bolster M2 microglia. In the presence of these terms, the
switching from M2 to M1 stands out as being the most sensitive parame-
ter. These results indicate that the rate of switching between phenotypes in
both directions is influential on the overall ratio of M1 to M2 microglia in the
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system. Appendix B further explores the effects of the phenotype switching
parameters on the ratio of M1 to M2 cells.

By including terms to suppress the activation of M1 microglia and bolster
the activation of M2 microglia, the model results in similar ratios of M1 to M2
microglia as observed in experimental studies for neuroprotectants. In partic-
ular, in numerical simulations using nominal parameter values, the modified
model with neuroprotectant-inspired terms maintains a ratio of M1 to M2 cells
below one for around 62 to 68 hours depending on the onset time. This is a sig-
nificant extension of M2 cell dominance over results using the baseline model
– in the absence of neuroprotectant-based terms, the ratio remained under one
for only the first 17 hours. Further, early onset time of the neuroprotectant
terms leads to a decreased minimum ratio of M1 to M2 microglia, which sug-
gests possible early reduction in the detrimental effects of neuroinflammation
by maintaining a larger amount of M2 cells for a longer time period.

When considering the total amount of activated microglia in the system,
global sensitivity results intuitively show that model parameters relating to
the M1 and M2 microglial cells are the most sensitive. These include the
number of resting microglia and the activation and mortality rates of the M1
and M2 cells, while model sensitivity with respect to phenotype switching and
cytokine production is negligible. Similar results are seen in both the absence
and presence of the neuroprotectant terms, however the parameters relating
to M2 become more sensitive than those for M1 when neuroprotective terms
are included.

When instead considering the ratio of M1 to M2 microglia, parameters in-
volving phenotype switching and cytokines arise as being the most sensitive. In
particular, in the absence of the neuroprotectant terms, parameters relating to
the half-maximal concentrations of anti-inflammatory and pro-inflammatory
cytokines follow the switching parameters as the most sensitive, while the num-
ber of resting microglia is the least sensitive. Similar sensitivity rankings hold
in the presence of the neuroprotectant terms, while the parameters relating to
the neuroprotectant-inspired functions are notably some of the least sensitive
parameters.

Since neuroprotectant strategies aim to decrease the ratio of M1 to M2
microglial cells while not necessarily altering the total number of activated
microglia, it is of interest to further study model terms and parameters re-
lating to the switching between microglia phenotypes, as well as those relat-
ing to cytokines. The proposed model can be extended to include separate
compartments to account for interactions between microglia and specific pro-
inflammatory cytokines (e.g., TNF-α) and anti-inflammatory cytokines (e.g.,
IL-4, IL-10).

Future work will be performed to estimate model parameters based on ex-
perimental data measuring the ratio of M1 to M2 microglia in the absence
and presence of neuroprotectant treatment, including the use of time-varying
parameter estimation techniques to estimate the N1(t) and N2(t) terms for
specific neuroprotectants without assuming the piecewise sigmoidal forms.
Further, compartments for additional intracellular components (including neu-
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rons, astrocytes, and macrophages) will be included to study their interactions
with the microglial cells and effects on the ratio of M1 to M2 microglia. Addi-
tional terms may be included to model existing thrombolysis drug treatment
and explore computational simulation of combination strategies with tPA and
novel neuroprotectants.

6 Conclusion

Neural inflammation is a natural response following the onset of ischemic
stroke, propagated by the activation of microglia. Resting microglia can be-
come classically activated into the M1 phenotype and produce detrimental
substances or alternatively activated into the M2 phenotype and produce ben-
eficial substances. In this study, we formulate a nonlinear system of differ-
ential equations to model the interactions between the two microglia pheno-
types and the cytokines that each phenotype produces during inflammatory
response. Additionally, we include terms suppressing the activation of M1 mi-
croglia and bolstering the production of M2 microglia to simulate possible
neuroprotectant strategies. Model simulations and global sensitivity analysis
results highlight the significance of bidirectional microglia phenotype switch-
ing on the ratio of M1 to M2 microglia, in both the absence and presence of
neuroprotectant-inspired terms. Simulation results further demonstrate that
early onset of terms to inhibit M1 activation and support M2 activation leads
to a decreased minimum ratio of M1 to M2 microglia and allows the M2 mi-
croglia to dominate the number of M1 microglia for a longer time window.
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Appendix A Local Parameter and Initial Condition Ranges
Maintaining Observed Trends Without Treatment

We perform a local, one-at-a-time analysis to determine individual ranges for
the parameters and initial conditions over which Model (7) maintains the
observed trends without terms simulating treatment. More specifically, we
perturb each parameter individually while holding the others constant (fixed
to their nominal values in Table 1). Table A.1 lists the resulting ranges for
each parameter over which it may be individually varied while maintaining
the qualitative trends observed in the model output, assuming baseline ini-
tial conditions of M1(0) = 100 cells, M2(0) = 100 cells, P (0) = 10 pg

ml , and
A(0) = 10 pg

ml . The qualitative trends maintained over these parameter ranges
are a clear increase in pro-inflammatory cytokines after stroke onset, with anti-
inflammatory cytokines remaining similar to starting level; early dominance
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Parameter Local Range

a 800 – 1500

kM1 0.3 – 0.6

kM2 0.6 – 0.9

kP 0.008 – 0.01

kA 0.006 – 0.007

nP 0.3 – 0.6

KP 9 – 12

nA 0 – 1

KA 8 – 11

sM1→M2 0.18 – 0.24

sM2→M1 0.17 – 0.22

µM1 0.05 – 0.15

µM2 0.07 – 0.13

µA 0.09 – 0.11

µP 0.08 – 0.12

NA 0 – 1

NP 0.35 – 0.6

Table A.1 Local ranges for the parameters in Model (7). Varying each parameter individu-
ally over the range given, while fixing all other parameters to their nominal values in Table 1
and using baseline initial conditions of M1(0) = 100 cells, M2(0) = 100 cells, P (0) = 10 pg

ml
,

and A(0) = 10 pg
ml

, maintains the specified qualitative trends observed in the model output.

of M2 microglia, with eventual takeover of M1 microglia; and increased levels
of both M1 and M2 microglia over three days post ischemic stroke.

Similarly, Table A.2 gives ranges for each initial condition over which it
may be individually varied while maintaining the qualitative trends observed
in the model output, assuming that the model parameters are fixed to their
nominal values in Table 1 and the remaining initial conditions are fixed to their
baseline values. Further, Figure A.1 shows how the ratio of M1 to M2 microglia
is affected when individually varying the initial conditions of Model (7) over
larger ranges, while holding the others fixed at their baseline values. Note that
while not much difference is observed beyond the first few hours when varying
the initial values of M1 and M2, the initial levels of pro-inflammatory and
anti-inflammatory cytokines have a more clear effect: When P (0) is large, as
with P (0) = 20 pg

ml in Figure A.1c, the ratio of M1 to M2 microglia does not
go below 1, indicating there are always more detrimental M1 than beneficial
M2 microglia in the system. Similar results hold when A(0) is too small, as
seen in particular when A(0) = 1 pg

ml in Figure A.1d.
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Initial Condition Local Range

M1(0) 0 – 100

M2(0) 100 – 1000

P (0) 1 – 19

A(0) 5 – 20

Table A.2 Local ranges for the initial conditions in Model (7). Varying each initial con-
dition individually over the range given, while fixing the parameters to their nominal val-
ues in Table 1 and other initial conditions to their baseline values of M1(0) = 100 cells,
M2(0) = 100 cells, P (0) = 10 pg

ml
, and A(0) = 10 pg

ml
, maintains the specified qualitative

trends observed in the model output.

(a) Varying M1(0) without treatment. (b) Varying M2(0) without treatment.

(c) Varying P (0) without treatment. (d) Varying A(0) without treatment.

Fig. A.1 Ratios of M1 to M2 microglial cells (M1 : M2) when varying each initial condition
in Model (7) individually, while fixing the parameters to their nominal values in Table 1 and
the remaining initial conditions to their baseline values of M1(0) = 100 cells, M2(0) = 100
cells, P (0) = 10 pg

ml
, and A(0) = 10 pg

ml
.

Appendix B Effects of Microglia Phenotype Switching With and
Without Treatment

The global sensitivity results presented in Figures 3 and 5 highlight the signif-
icant influence of the parameters relating to bidirectional switching between
microglia phenotypes on the corresponding model output, in particular when
considering the ratio of M1 to M2 microglia. Here, we further analyze the ef-
fects of varying the values of these phenotype switching parameters (namely,
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sM1→M2 and sM2→M1) on Model (7) and Model (21), respectively, thereby
simulating situations both with and without treatment. Figure B.1 shows how
the ratio of M1 to M2 cells changes when varying the phenotype switching
parameters between 0 and 1 for each model, highlighting values at which the
behavior of the ratio changes.

In Figure B.1a, we see that when sM1→M2 = 0 without treatment, there is
an initial decrease of the ratio such that M2 is dominant for a short amount of
time, after which the ratio grows in an exponential fashion. Similar behavior
occurs for values of sM1→M2 between 0 and 0.05. When sM1→M2 = 0.05 and
up to 0.1, the ratio initially decreases and M2 dominates for a short amount
of time, then begins to increase somewhat linearly. When sM1→M2 = 0.1, the
ratio shows an initial decrease below 1 followed by an increase and eventual
leveling off at a value above 1. Similar behavior occurs for values of sM1→M2

between 0.1 and 0.25. When sM1→M2 = 0.25, the ratio begins under 1 and
decreases slightly before increasing and leveling off at a value below 1. This
behavior holds for values of sM1→M2 up to around 0.33. When sM1→M2 = 0.33,
the ratio begins under 1 and decreases slightly with no increase before leveling
off at a value below 1. For values of sM1→M2 between 0.33 and 1, the ratio
has an initial decrease and then gradually decreases for the full 72 hours, with
the ratio remaining below 1.

Figure B.1b shows that when sM2→M1 = 0 without treatment, the ratio of
M1 to M2 cells starts below 1 and decreases for the full time period, ending
at a value below 1. This behavior occurs for values of sM2→M1 up until 0.12.
At this value, the ratio has an initial decrease and then levels off around 15
hours at a value below 1. For values of sM2→M1 between 0.12 and 0.16, the
ratio decreases initially and then increases, ending at a value below 1 after
72 hours. Between 0.16 and 0.6, the ratio has an initial decrease and then
increases gradually, ending at a value above 1. For values of sM2→M1 larger
than 0.6 and up until 0.8, the ratio begins at 1 and increases before moving to
a more gradual linear-like increase. For sM2→M1 between 0.8 and 1, the ratio
begins at 1 and increases in a linear manner, with a more significant increase
over time.

In Figure B.1c, we observe that when sM1→M2 = 0 with treatment applied,
the ratio has a short decrease for about 1 hour, followed by an increase that
rises above 1 around 2.5 hours. After this, there is another short decrease until
around 10 hours. The ratio then increases gradually until about the 45 hour
mark, at which point the increase becomes more significant. A similar behavior
is observed for values of sM1→M2 up until 0.01. When sM1→M2 = 0.01, we see
a short initial decrease, followed by an increase; however, the ratio will not go
above 1 in this increase. This is followed by a decrease until around 10 hours.
After this time, the ratio increases gradually and again begins to increase more
significantly around 45 hours. Similar behavior occurs for sM1→M2 values up
until 0.05. At this value, we observe a short decrease (about 1 hour), followed
by a small increase with the ratio not going above 1. A decrease in the ratio
occurs around 5 hours and persists until about 10 hours. After this, the ratio
increases gradually until around the 45 hour mark, where it then begins to
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increase with a steeper incline. This trend continues for values of sM1→M2 up
until around 0.22. When sM1→M2 = 0.22, the ratio decreases gradually and
levels off until around 45 hours, after which it increases but ends at a value
below 1. Similar behavior occurs for values of this parameter up until 0.5. When
sM1→M2 = 0.5, the ratio decreases until around the 45-hour mark, at which
point the ratio increases slightly until around 50 hours where it then levels off
at a value below 1. A similar trend occurs up until and at sM1→M2 = 1.

Figure B.1d shows that when sM2→M1 = 0 with treatment, the ratio of M1
to M2 cells begins below 1 and decreases until around 45 hours. The ratio then
increases slightly and levels off at a value under 1. Similar behavior occurs for
values up until sM2→M1 = 0.1. When sM2→M1 = 0.1, the ratio decreases until
around 45 hours, after which it increases slightly for the rest of the 72 hours
and ends at a value under 1. This trend persists for values of sM2→M1 up until
0.2. When sM2→M1 = 0.2, the ratio decreases gradually and then increases
until around the 45-hour mark, at which point it has a sharper increase and
then increases more gradually, ending at a value above 1. This occurs for values
up until sM2→M1 = 0.3. When sM2→M1 = 0.3 and up until 0.7, there is a short
decrease in the ratio (for about 1 hour), followed by an increase until around
4 hours and another decrease until around 10 hours. Then the ratio increases
until the 45-hour mark, at which point there is a sharper increase for the
remaining time. When sM2→M1 = 0.7, the ratio does not go below 1 for the
full 72 hours. Instead it increases gradually until around 45 hours, when we
see a steeper incline. A similar trend occurs for values up until sM2→M1 = 1,
with the ratio increasing more steeply at the end as sM2→M1 approaches 1.
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