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Sandpile dynamics are considered on graphs constructed from periodic
plane and space tilings by assigning a growing piece of the tiling either torus
or open boundary conditions. A general method of obtaining the Green’s
function of the tiling is given, and a total variation cut-off phenomenon is
demonstrated under general conditions. It is shown that the boundary condi-
tion does not affect the mixing time for planar tilings. In a companion pa-
per, computational methods are used to demonstrate that an open boundary
condition alters the mixing time for the D4 lattice in dimension 4, while an
asymptotic evaluation shows that it does not change the asymptotic mixing
time for the cubic lattice Zd for all sufficiently large d.
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1. Introduction. The abelian sandpile model is an important model of self organized
criticality, which has been studied extensively in the statistical physics literature since it was
introduced by Bak, Tang and Wiesenfeld [2], see, e.g. [8], [9], [3], [30], [18], [6], [24], [29],
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[19], [31], [23], [10], [13], [28], [14], [21], [26]. Sandpile dynamics on a finite connected
graph G “ pV,Eq may be described as follows. In the model, a node s P V is designated
sink. Each non-sink vertex v is assigned a non-negative number σpvq of chips. If at some
point σpvq ě degpvq the vertex can topple, passing one chip to each neighbor; if a chip falls
on the sink it is lost from the model. A configuration σ is called stable if σpvq ă degpvq for
all v P V ztsu. The dynamics in the model occur in discrete time steps, in which a chip is
added to the model at a uniform random vertex, then all legal topplings occur until the model
reaches a stable state.

In [16] sandpile dynamics are studied on the torus pZ{mZq2 and the asymptotic total vari-
ation mixing time is determined with a cut-off phenomenon as mÑ8. This article extends
the techniques of [16] to treat sandpiles on a growing piece of an arbitrary periodic plane or
space tiling of arbitrary dimension, again determining the asymptotic total variation mixing
time and proving a cut-off phenomenon. A second purpose of the article is to study the effect
of the boundary condition on the mixing time, and a class of tilings are considered with an
open boundary in which the chips fall off the boundary and are lost from the model. In this
case, also, a cut-off phenomenon is demonstrated in the total variation mixing time and in
two dimensions it is shown that the asymptotic mixing time is the same for the periodic and
open boundary conditions, resolving a problem raised in [16]. We stress that the methods
developed here extend those of [16], and it will be useful to read the papers together.

In a companion paper [17] computations are performed of the spectral gap and ‘boundary
spectral parameters’ associated to eigenfunctions which are harmonic modulo 1 and concen-
trated near boundaries of a specified dimension in several specific examples including the
triangular and honeycomb tilings in dimension 2 and the face centered cubic sphere packing
in dimension 3. By determining these parameters for a specific set of bounding hyperplanes
of the D4 lattice in dimension 4 it is demonstrated that the total variation mixing with an
open boundary is controlled by a statistic concentrated near the 3 dimensional boundary, and
is thus different from the periodic boundary mixing time asymptotically. It is also proved that
for all d sufficiently large, the asymptotic mixing time on the cubic lattice Zd is the same for
periodic and open boundary conditions determined by hyperplanes parallel to the coordinate
axes, but that the optimization problem controlling the spectral gap does not determine the
asymptotic mixing time.

1.1. Precise statement of results.

1.1.1. Convergence of probability measures. The results presented consider convergence
of probability measures in the total variation metric. This is already a strong notion of con-
vergence, and in fact similar results hold also in L2. Recall that the total variation distance
between two probability measures µ and ν on a measure space pX ,Bq is

(1) }µ´ ν}TVpX q “ sup
APB

|µpAq ´ νpAq|.

Given a finite graphG, the set of recurrent sandpiles on the graph form an abelian group [12].
A random walk driven by a probability measure µ on a group has distribution at step n given
by µ˚n where µ˚1 “ µ and µ˚n “ µ ˚ µ˚pn´1q is the group convolution. Given a measure
µ driving sandpile dynamics on the group of recurrent sandpile states G pGq with uniform
measure UG , the total variation mixing time is

(2) tmix “min

"

k :
›

›

›
µ˚k ´UG pGq

›

›

›

TVpG pGqq
ă

1

e

*

.
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sink

FIG 1. The square lattice configuration with periodic boundary condition and a single sink.

Given a sequence of graphs Gn the sandpile dynamics is said to satisfy the cut-off phe-
nomenon in total variation if, for each εą 0,

›

›

›
µ˚rp1´εqtmixs ´UG pGnq

›

›

›

TVpG pGnqq
Ñ 1,

›

›

›
µ˚tp1`εqtmixu ´UG pGnq

›

›

›

TVpG pGnqq
Ñ 0

as nÑ8.

1.1.2. Periodic tiling graphs. To describe the tilings and graphs we consider more pre-
cisely, let M be a non-singular dˆ d matrix, and let Λ“M ¨ Zd be a d-dimensional lattice.
A (periodic) space tiling T is a connected graph embedded in Rd with straight line edges
which is Λ-periodic, has finitely many vertices in a fundamental domain for Rd{Λ, and has
bounded degree. Suppose without loss of generality that 0 is a vertex in T . Given an integer
mě 1, two types of graphs are considered.

(1) (Torus boundary condition) The graph Tm “ T {mΛ consists of md fundamental do-
mains with opposite faces identified. By convention, 0 is designated sink.

In treating graphs with open boundary condition, further symmetry on the tiling T is
assumed. In two dimensions, assume that there are vectors v1, ..., vk in which T has trans-
lational symmetry, and lines `1, ..., `k, k ě 2, `i “ tx P R2 : xx, viy “ 0u such that T has
reflection symmetry in the family of lines

(3) F “ tnvi ` `i : 1ď iď k,n P Zu.
In this case, let R be an open, bounded, connected, convex region cut out by some of the
lines, and assume further that R2 is tiled by the reflections of R in the family of lines and
that any sequence of reflections which maps R to itself is the identity map. Examples of such
families of lines are the lines in the square, triangular, and tetrakis square tilings.

In dě 3 dimensions, impose the further constraint that, after an orthogonal transformation
and dilation T is Zd periodic and has reflection symmetry in the family F of coordinate
hyperplanes Hi,j

(4) Hi,j “ tx PRd : xi “ ju, 1ď iď d, j P Z.
After the transformation, R “ p0,1qd.

The open boundary graphs are constructed as follows.
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FIG 2. The square, triangular and tetrakis square lattices are examples of tilings with reflecting families of lines
such that the quotient by the reflection group is a bounded convex region of the plane.

(2) (Open boundary condition) If the following condition holds
Condition A. No edge of T crosses a face of R

then a graph Tm is obtained by identifying all vertices of T X pm ¨Rqc and designating
this ‘boundary’ vertex the sink.

Note that, although many planar tilings lack lines of reflection symmetry, all of those
planar tilings considered by [21] are of the type considered, and all but the Fisher tiling
satisfy Condition A, see the examples in Figure 3 in which the reflecting lines are in red, and
the vertices on the boundary are sinks.

The D4 lattice in dimension four is another example which satisfies Condition A with
the appropriate choice of reflecting hyperplanes. The D4 lattice has vertices Z4 Y Z4 `

p1
2 ,

1
2 ,

1
2 ,

1
2q and 24 nearest neighbors of 0

(5) U4 “ t˘e1,˘e2,˘e3,˘e4u Y

"

1

2
pε1, ε2, ε3, ε4q, εi P t˘1u

*

,

which have unit Euclidean length. The elements of the D4 lattice are frequently identified
with the ‘Hurwitz quaternion algebra’ in which U4 is the group of units. Let

v1 “ p1,1,0,0q, v2 “ p1,´1,0,0q, v3 “ p0,0,1,1q, v4 “ p0,0,1,´1q,

and define hyperplanes

Pj “ tx PR4 : xx, vjy “ 0u

and family of hyperplanes

(6) FD4 “ tnvj `Pj : j P t1,2,3,4u, n P Zu.

LEMMA 1. The D4 lattice has reflection symmetry in the family of hyperplanes FD4.
After a rotation and scaling, D4 together with this family satisfy Condition A.

PROOF. Since D4 is a lattice, which is invariant under permuting the coordinates, it suf-
fices to prove the reflection symmetry property for P1. Given x PD4, its reflection in P1 is
x1 “ x´ xx, v1yv1. Since xx, v1y P Z, the claim holds.

Since the vectors v1, v2, v3, v4 are orthogonal and of equal length, after a rotation and
scaling the planes in FD4 coincide with the coordinate hyperplanes.

To prove that Condition A is satisfied, it suffices by symmetry to prove that there are
not edges crossing P1. Suppose for contradiction that x and y are connected, so that }x´
y}2 “ 1, and that the line segment connecting x “ px1, x2, x3, x4q and y “ py1, y2, y3, y4q

crosses P1, say at z “ pz1, z2, z3, z4q. It follows that z1 ` z2 “ 0. Assume without loss of
generality that x1 ` x2 ą 0 and y1 ` y2 ă 0. Since the sum of these coordinates is integer
valued, x1` x2 ě 1 and y1` y2 ď´1. Thus px1` x2q ´ py1` y2q ě 2 so }x´ y}2 ě

?
2, a

contradiction.
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FIG 3. The triangular, hex and square lattice configurations with open boundary condition.

1.1.3. Spectral factors. The results concerning sandpile dynamics are proved by study-
ing the spectrum of the sandpile transition kernel. Denote ∆ the graph Laplacian ∆fpvq “
degpvqfpvq ´

ř

pv,wqPE fpwq. Given a function f on T , say that f is harmonic modulo 1 if
∆f ” 0 mod 1 and denote

(7) H pT q “ tf : T ÑR,∆f ” 0 mod 1u

and H 2pT q “H pT q X `2pT q. Define, also, the function classes

C0pT q “ tf : T Ñ Z : f P `1pT qu,

C1pT q “

#

f PC0pT q :
ÿ

tPT

fptq “ 0

+

,

C2pT q “

#

f PC1pT q :
ÿ

tPT

fptqE rYt,Tts “ 0

+

,

where Yt,Tt denotes random walk started at t and stopped when it reaches the period lattice.
In the case of a torus boundary condition, define the spectral parameter

(8) γ “ inf

#

ÿ

xPT

1´ cosp2πξxq : ξ PH 2pT q,∆ξ PC1pT q, ξ ı 0 mod 1

+

.

In two dimensions, let L denote the set of lines which make up a segment of the boundary
of R and let C be the set of pairs of lines from L which intersect at a corner of the boundary
of R. Write an affine line a PL as a“ nv` ` where v PR2 and ` is the perpendicular line.
Let Qa be the half plane with boundary passing through 0 whose translate to a contains R. A
pair of affine lines pa1, a2q P C have `1 and `2 that split T into four quadrants. Let Qpa1,a2q

be the quadrant whose translate contains R. Given a PL , let H 2
a pT q be those functions

ξ PH 2pT q which are anti-symmetric in `, similarly given pa1, a2q P C , let H 2
pa1,a2q

pT q be
those functions in H pT q which are anti-symmetric in `1 and `2. Define spectral parameters

γ0 “ inf
ξPH 2pT q
ξı0 mod 1

ÿ

xPT

1´ cosp2πξxq,

γ1 “ inf
aPL

inf
ξPH 2

a pT q
ξı0 mod 1

ÿ

xPQa

1´ cosp2πξxq,

γ2 “ inf
pa1,a2qPC

inf
ξPH 2

pa1,a2q
pT q

ξı0 mod 1

ÿ

xPQpa1,a2q

1´ cosp2πξxq.
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In the case of d ě 3, assume that a rotation and dilation have been performed so that
reflecting hyperplanes are given by Hi,j as above. Given a set S Ă t1,2, ..., du let SS be
the group generated by reflections in tHi,0 : i P Su, and let H 2

S pT q denote those H 2pT q
functions which are anti-symmetric in Hi,0 for all i P S, identified with functions on T {SS .
Again, for 0ď iď d define the spectral parameters

(9) γi “ inf
SĂt1,2,...,du

|S|“i

inf
ξPH 2

S pT q
ξı0 mod 1

ÿ

xPT {SS

1´ cosp2πξxq.

Note that the definition of γ0 differs from that of γ in that the inf requires only that ∆ξ P
C0pT q, not C1pT q. In dimension dě 2 define the jth spectral factor

(10) Γj “
d´ j

γj

and Γ“maxj Γj .

1.1.4. Statement of results. The following theorem determines the spectral gap of sand-
pile dynamics for plane and space tiling graphs asymptotically.

THEOREM 2. Given a tiling T , as mÑ8, the spectral gap of the transition kernel of
sandpile dynamics on Tm satisfies

(11) gapTm “ p1` op1qq
γ

|Tm|
.

If T has a family of reflection symmetries F and satisfies Condition A, then the spectral gap
of the transition kernel of sandpile dynamics on Tm satisfies

(12) gapTm “ p1` op1qq
minpγj : j ě 0q

|Tm|
.

The following theorem demonstrates a cut-off phenomenon in sandpile dynamics on gen-
eral tiling graphs with either a torus or open boundary condition. Whereas the mixing of
sandpiles with torus boundary condition is controlled by the spectral gap, when there is an
open boundary condition, the mixing time is controlled by the spectral factor Γ.

THEOREM 3. For a fixed tiling T in Rd, sandpiles started from a recurrent state on Tm
have asymptotic total variation mixing time

(13) tmixpTmq „
Γ0

2
|Tm| logm

with a cut-off phenomenon as mÑ8.
If the tiling T has a family of reflection symmetries F and satisfies Condition A then

sandpile dynamics started from a recurrent configuration on Tm have total variation mixing
time

(14) tmixpTmq „
Γ

2
|Tm| logm

with a cut-off phenomenon as mÑ8.

Motivated by Theorem 3, if Γ “ Γ0 say that the bulk or top dimensional behavior con-
trols the total variation mixing time, and otherwise that the boundary behavior controls the
total variation mixing time. The proof of Theorem 3 will in fact generate a statistic which
randomizes at the mixing time, and this statistic is either distributed throughout the graph, or
concentrated near the boundary of the dimension controlling the spectral factor.
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COROLLARY 4. All plane tilings satisfying the Open boundary condition and Condition
A have total variation mixing time controlled by the bulk behavior.

PROOF. It suffices that Γ1 ď Γ0. Indeed, the fact that only half of the nodes are summed
over in γ1 is canceled by the ratio 2

2´1 of dimensions, and the anti-symmetry condition im-
poses an extra constraint on the harmonic modulo 1 function in the inf, so that 1

2γ0 ď γ1.

In particular, Corollary 4 implies that asymptotic mixing time of sandpile dynamics on the
square grid with open and periodic boundary condition are the same to top order, answering
a question raised in [16].

In [17] the above theorems are supplemented by explicit verifications of spectral gaps for
several tilings. The plane tilings considered are the triangular (tri) and honeycomb (hex)
tilings, along with the triangular face centered cubic tiling (fcc) in 3 dimensions, which is the
lattice tiling generated by vectors

(15) v1 “ p1,0,0q, v2 “

ˆ

1

2
,

?
3

2
,0

˙

, v3 “

˜

1

2
,

1

2
?

3
,

c

2

3

¸

with nearest neighbor edges. All of the spectral parameters are obtained for the D4 lattice in
dimension 4 for a specific set of bounding hyperplanes. The results of [17] are summarized
in the following theorem.

THEOREM 5. The triangular, honeycomb, and face centered cubic tilings have periodic
boundary spectral parameters1

γtri “ 1.69416p6q,

γhex “ 5.977657p7q,

γfcc “ 0.3623p9q.

The spectral parameters of the D4 lattice with reflection planes FD4 and open boundary
condition are (ϑ denotes a parameter bounded by 1 in size)

γD4,0 “ 0.075554` ϑ0.00024,

γD4,1 “ 0.0440957` ϑ0.00017,

γD4,2 “ 0.0389569` ϑ0.00013,

γD4,3 “ 0.036873324` ϑ0.00012,

γD4,4 “ 0.0357604` ϑ0.00011.

The spectral factors are given by

ΓD4,0 “ 52.9428` ϑ0.17,

ΓD4,1 “ 68.03486` ϑ0.27,

ΓD4,2 “ 51.3393` ϑ0.17,

ΓD4,3 “ 27.1201` ϑ0.084.

1The digit in parenthesis indicates the last significant digit.
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Since ΓD4,1 ą ΓD4,0, a particular consequence of Theorem 5 is that the total variation mix-
ing time of the dynamics on the D4 lattice is dominated by the three dimensional boundary
behavior.

In [17] the cubic lattices Zd with coordinate hyperplanes are also treated asymptotically.

THEOREM 6. As dÑ8, the spectral parameter of the Zd lattice with periodic boundary
condition is

(16) γZd “
π2

d2

ˆ

1`
1

2d
`O

`

d´2
˘

˙

and the parameters with open boundary condition are

(17) γZd,j “
π2

2d2

ˆ

1`
3

2d
`Oj

`

d´2
˘

˙

and, uniformly in j,

(18) γZd,j ě
π2

2d2 ` d
.

For each fixed j,

(19) Γj “
2d3 ´ p2j ` 3qd2 `Ojpdq

π2
.

In particular, for all d sufficiently large, the total variation mixing time on Zd is dominated
by the bulk behavior and Γ“ 2d3

π2

`

1´ 3
2d `O

`

d´2
˘˘

.

For all sufficiently large d, γZd ą γZd,0, with γZd,0 achieved by a configuration ξ with ∆ξ P

C0pT qzC1pT q. Hence the lattice Zd with periodic boundary condition gives an example of
a tiling for which γ ‰ γ0, that is, the spectral gap and mixing times are controlled by different
limiting eigenfunctions.

An important object in this work is the Green’s function of a tiling T started from a
node v P T , denoted gvpxq, which satisfies ∆gvpxq “ δvpxq. Given a function η on T of
bounded support, define the convolution g ˚η “ gη “

ř

vPT ηpvqgv . Theorem 26 of Section 4
gives a general explicit method for obtaining a frequency space representation of the Green’s
function, which is useful in applications, see [17]. The following theorem is proved in Section
4.

THEOREM 7. Let T be a periodic plane or space tiling in Rd, d ě 2, and let η be a
function on T of bounded support. Then gη P `2pT q if and only if η P CρpT q where ρ“ 2
if d“ 2, ρ“ 1 if d“ 3,4 and ρ“ 0 if dě 5. In particular,

(20) H 2pT q “ tgη : η PCρpT qu

and if ξ PH 2pT q then ξ “ g ˚ p∆ξq.

The functions gη are extremal functions for the spectral parameter optimization problems.
The fact that the Green’s function itself just fails to be in `2pT q in dimension 4 motivated the
calculation of the D4 example in which the 3 dimensional boundary dominates the mixing
time.
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1.2. Discussion of method. The results build on the recent work of the the first author,
Jerison and Levine [16], which determined the asymptotic mixing time and obtained a cut-off
phenomenon for sandpile dynamics on the torus pZ{mZq2 as mÑ8.

Since the sandpile group of a graph with sink s is isomorphic to G “ ZV ztsu{∆1ZV ztsu
where ∆1 is the reduced graph Laplacian obtained by omitting the row and column corre-
sponding to the sink, the dual group is isomorphic to Ĝ “ p∆1q´1ZV ztsu{ZV ztsu. Thus ∆1

provides a natural mapping from Ĝ Ñ G . A map in the reverse direction may be constructed
via convolution with the graph Green’s function. The necessary theory and analytic proper-
ties needed to study the Green’s function on a periodic or open piece of a plane or space tiling
is developed here, using a stopped random walk on the graph and is obtained by combining
a local limit theorem for the random walk in time domain with a frequency domain represen-
tation. Since a tiling lacks the abelian group structure of a lattice, compared to the previous
work, the determination of the Green’s function in the tiling as opposed to lattice case is more
involved. It is reduced to the lattice case by stopping a random walk on the tiling when it hits
the period lattice, and using the resulting stopped measure to determine the Green’s function
restricted to the lattice. An explicit formula for the Fourier transform of the Green’s function
restricted to the lattice is given in Theorem 26.

The use of Green’s function estimates on discrete structures is in keeping with a major
trend in statistical physics in which Green’s function analysis is used to obtained refined and
asymptotic results, see the work of Chatterjee [4] on the Schrödinger equation on discrete
tori, the work of Dembo, Ding, Miller and Peres [7] on lamplighters on tori, and the author’s
recent work with Chu [5] on the asymptotic mixing time of the 15-puzzle. We expect that
there may be further applications of these methods, for instance to domino tilings, and in
extending results on tori to periodic tilings.

As in [16], van der Corput’s method from the theory of exponential sums is used to reduce
the determination of the maximum spectral factor to a finite check, and to prove an approxi-
mate spectral disjointness for frequencies ξ P Ĝ for which ν “∆1ξ is separated into a small
number of separated clusters.

1.3. Historical review. Sandpile dynamics on a finite piece of the square lattice were
first considered by Bak, Tang and Wiesenfeld [2] in a study of self-organized criticality, see
also Dhar [8], where an arbitrary graph is considered. In [23] driven dynamics on the square
grid with open boundary are considered and a picture is given of the identity element in the
sandpile group. In [32] numerical studies are made of sandpile statistics on a square grid with
open boundary, but the statistics are measured at a point prior to the mixing time in Theorem
3.

Sandpiles have been studied on a large number of different graph geometries. The hex
tiling is considered in [1], the graph of the dihedral group Dn is considered in [6], the Husimi
lattice is studied in [27]. A cut-off phenomenon for sandpiles on the complete graph is demon-
strated in [20], which is also a useful reference for the underlying theory of abelian sandpiles.
A cut-off is also proved for sandpiles on the square tiling with periodic boundary in [16], ex-
tended here to arbitrary periodic plane or space tilings with open or periodic boundary. These
are all of the cases for which a cut-off is known. Several sandpile statistics are calculated for
two dimensional tilings in [21], which was the original motivation for this project.

The effect of the boundary condition on sandpile behavior has been studied extensively,
although this is the first treatment of the spectral gap and mixing time. See [3], [18], [19],
[29] and [1] for height probabilities and correlation functions. In [16] the asymptotic mixing
time and a cut-off phenomenon were proved for sandpile dynamics on the rectangular grid
with periodic boundary condition. Theorem 3 generalizes this result to sandpile dynamics
on an arbitrary plane or space tiling. In [16] it was conjectured that a cut-off phenomenon
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also exists on the square grid with open boundary condition, which is proved here, and in
Corollary 4 it is demonstrated that the asymptotic mixing time is the same as for the periodic
boundary case. Theorem 5 gives an example in 4 dimensions in which the two mixing times
are asymptotically unequal.

In [15] a random walk is studied with generators given by the powers of 2 in Z{pZ and
a similar treatment of the boundary occurs where multiples of the largest power of 2 wrap
around p. In that case, the boundary does not influence the leading order asymptotic mixing
time.

Organization. This paper is organized as follows. Section 4 develops the Green’s func-
tion of a periodic plane or space tiling, and the corresponding Green’s function on finite
quotients of the tiling, including the necessary decay estimates. These decay estimates are
proved in the Appendix. Section 3 recalls background information regarding the sandpile
group and its dual group, and gives convenient representations for the frequencies in the dual
group. Section 5 proves the exponential sum estimates needed to control the spectrum of the
transition kernel of the sandpile chain. Putting these estimates together, the cut-off results are
proved in Section 6.

2. Notation and conventions. The additive character on R{Z is written epxq “ e2πix.
Write, also, cpxq “ cos 2πx and spxq “ sin 2πx. For real x, }x}R{Z denotes the distance to
the nearest integer, while for x P Rd, }x}Rd{Zd denotes the Euclidean distance to the nearest
lattice point in Zd.

We use the notations A ! B and A “ OpBq to mean that there is a constant 0 ă C ă8
such that |A| ă CB, and A — B to mean A ! B ! A. A subscript such as A !R B, A “
ORpBq means that the constant C depends on R. The notation A “ opBq means that A{B
tends to zero as the relevant parameter tends to infinity.

Given a graph G“ pV,Eq and vertices v,w P V , the degree of v is degpvq and the number
of edges from v to w is degpv,wq. The notation dpv,wq indicates the graph distance from v
to w, which is the length of the shortest path from v to w. The graph Laplacian ∆ operates
on functions on G by

(21) ∆fpvq “ degpvqfpvq ´
ÿ

pv,wqPE

fpwq.

The notation δvpwq indicates a point mass at v, which takes value 1 if v “ w and 0 other-
wise. The Green’s function started at v on an infinite graph G is a function gvpwq such that
∆gvpwq “ δvpwq. If the graph is finite, ∆pgv1 ´ gv2qpwq “ δv1pwq ´ δv2pwq. Convolution of
the Green’s function g with a function η of finite support in V with sum of values 0 is defined
by

(22) g ˚ η “
ÿ

vPV

ηpvqgv.

Thus, on a finite graph, ∆g ˚ η “ η if the sum of the values of η is 0. The notation gη for g ˚ η
is also used. When G is a finite graph and a node s has been designated sink, the reduced
Laplacian ∆1 is obtained from ∆ by removing the row and column corresponding to the sink.

A random walk on G proceeds in discrete time steps. At a given time step, each edge from
a given node v is chosen with equal probability as a transition. The transition kernel of this
random walk is

(23) P pv,wq “
degpv,wq

degpvq
.
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Let Yv,n indicate the walk started at random or deterministic node v and at random or de-
terministic step n. A stopping time adapted to the random walk Yv,n is a random variable N
taking values in t1,2, ...u Y t8u, such that for each deterministic n, the event tN “ nu is
measurable in the σ-algebra generated by the first n steps of the walk. An important stopping
time in this work is the time Tv which is the first positive step when random walk started
from v PT reaches the lattice Λ. We sometimes also consider stopping times which stop at
time 0 if v P Λ. When this is the case it is clearly indicated.

A sandpile on a graph G is a map σ :GÑ Zě0. The map σfull “ deg´1 is the full sand-
pile. The set of stable sandpiles is denoted

(24) S pGq “ tσ :GÑ Zě0 : σ ď σfullu.

The set of recurrent states form the sandpile group and are denoted G pGq. Its dual group is
Ĝ .

A function f on G is harmonic if ∆f “ 0, and harmonic modulo 1 if ∆f ” 0 mod 1. Let

(25) H pGq “ tf :GÑR,∆f ” 0 mod 1u.

Throughout, T denotes a plane or space tiling, which is periodic in a lattice Λ. The pe-
riodic graph T {mΛ is denoted Tm, while Tm indicates the open boundary graph obtained
from a family of reflecting hyperplanes mF . The notation gTm and gTm indicate the Green’s
functions on Tm or Tm. R indicates an open convex region (fundamental domain) cut out by
the family F , and whose reflections in F tile the plane or space. Tm may be identified with
the intersection of mR with T , together with an added point identified with the boundary.
Functions on Tm are identified with functions on T , which are reflection anti-symmetric in
each hyperplane of mF .

The ball BRpxq ĂT is defined to be

(26) BRpxq “ ty PT : dpx, yq ďRu

where dpx, yq is the graph distance. Since |T {Λ| ă 8, for x P Λ, dp0, xq — }x}, and
#tBRp0qu — R

d as RÑ8. In Tm, BR,Tmpxq is defined via the quotient distance, treating
points which are equivalent modulo mΛ as identified. On Tm, BR,Tmpxq is defined via the
quotient distance in which points which are equivalent under mF reflections are identified.

2.1. Function spaces. In handling the analysis on a periodic tiling, a key tool is the ‘har-
monic measure’ on the period lattice Λ obtained by stopping simple random walk started on
the tiling when it reaches the lattice. Let Yv,n be random walk started from v in T and let

(27) Tv “mintně 1 : Yv,n P Λu

be the stopping time for simple random walk started at v in T and stopped at the first positive
time that it returns to Λ. For v R Λ, let

(28) %v „ Yv,Tv

be the probability distribution of Yv,Tv on Λ, while for v P Λ, let %v “ δv be the distribution
of a point mass at v. Let % have the distribution of Y0,T0

which is the distribution of the first
return to Λ started at 0.

The following lemma is used to justify convergence when working with the corresponding
stopping times and harmonic measures.

LEMMA 8. There is a constant c ą 0 such that, as nÑ8, for all v P T , ProbpTv ą
nq ! e´cn. The measure %v satisfies %vptx : dpx, vq ą Nuq ! e´cN as N Ñ8. Similarly,
%ptx : dpx,0q ą Nuq ! e´cN as N Ñ8. The implied constants depend at most upon the
tilings T .
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PROOF. The second statement follows from the first, since Tv bounds dpYv,Tv , vq. To
prove the first, note that Tv is the same stopping time as the first positive time reaching 0
on the finite state Markov chain given by random walk on T {Λ. The conclusion follows,
since, given any state on T {Λ, there is a bounded number k such that the walk has a positive
probability of returning to 0 from the state after k steps.

Given a finite, possibly signed measure η on T , define

(29) %η “
ÿ

vPT

ηpvq%v.

Define function classes on T by

C0pT q “ tf : T Ñ Z, }f}1 ă8u ,

C1pT q “

#

f PC0pT q,
ÿ

xPT

fpxq “ 0

+

,

C2pT q “

#

f PC1pT q,
ÿ

xPT

fpxqErYx,Txs “ 0

+

.

Hence C0pT q is the set of integer functions of finite support, C1pT q is those functions of
sum 0, and C2pT q are those C1pT q functions with zero moment.

Given a set S ĂT , say that f P CρpSq if, viewed as a function on T with support in S,
f PCρpT q.

Although the definition of C2pT q depends on the lattice Λ, it is invariant under translating
T as the following lemma shows.

LEMMA 9. Suppose f P C2pT q. For any t P T zΛ let T tv denote the stopping time of
random walk started at v and stopped at the first positive time that it reaches t`Λ. Then

(30)
ÿ

xPT

fpxqErYx,T txs “ 0.

PROOF. Let T̃ tv be the stopping time of random walk started from v and stopped at the
first time greater than Tv at which the walk reaches t`Λ. Note that, by conditioning on the
first visit to Λ,

ÿ

xPT

fpxqErYx,T̃ tx
s

“
ÿ

wPΛ

˜

ÿ

xPT

fpxqProbpYx,Tx “wq

¸

ÿ

vPt`Λ

v ¨ProbpYw,T tw “ vq

“

˜

ÿ

wPΛ

ÿ

xPT

fpxqProbpYx,Tx “wq

¸

ˆ

˜

w`
ÿ

vPt`Λ

pv´wqProbpY0,T t0 “ pv´wqq

¸

“ 0.

The last equality holds, since

(31)
ÿ

vPt`Λ

pv´wqProbpY0,T t0 “ pv´wqq
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is a constant independent of w and
ÿ

wPΛ

ÿ

xPT

fpxqProbpYx,Tx “wq “
ÿ

xPT

fpxq “ 0,

ÿ

wPΛ

ÿ

xPT

fpxqProbpYx,Tx “wqw “
ÿ

xPT

fpxqE rYx,Txs “ 0.

The equality E
”

Yx,T̃ tx

ı

“ E
“

Yx,T tx
‰

holds since random walk started from a node t and
stopped at the first time it reaches a node in Λ ` t has mean t. To check this, let t “
v0, v1, v2, ..., vn “ x` t be a path from t to x` t P Λ` t such that vi R Λ` t for 1ď iď n´1.
Let e1, e2, ..., en be edges with ei connecting vi´1 and vi. The probability of following
e1, e2, ..., en in succession is

śn´1
j“0

1
deg vj

. The probability of following that path in reverse is
śn
j“1

1
deg vj

. Since deg v0 “ deg vn by Λ-periodicity, running the path in reverse has the same
probability. This is also true of the path translated by ´x, which proves the claim regarding
expectation.

Given λ in the lattice Λ, the translation operator τλ acts on functions f on T or on Λ by

(32) τλfpxq “ fpx´ λq.

Given f PC0pT q, the function

(33) fTm “
ÿ

λPΛ

τmλf

is mΛ periodic. The classes Cρ are extended to Tm and Tm as follows. Say f P CρpTmq
if there is a function f0 P C

ρpT q such that f “ f0,Tm . Given a family of hyperplanes F “

tnvi `Hiu
d
i“1 where vi is orthogonal to Hi, let Λ be the lattice generated by t2viudi“1. Any

function f having reflection anti-symmetry in F is Λ periodic. Say that f PCρpTmq if f has
reflection anti-symmetry in m ¨F and if there is a function f0 PC

ρpT q such that f “ f0,Tm .
Given f P `1pΛq and h P `8pT q,

(34) f ˚ hpxq “
ÿ

yPΛ

fpyqhpx´ yq.

Similarly, given f P `1pΛ{mΛq and h P `8pT {mΛq,

(35) f ˚ hpxq “
ÿ

yPΛ{mΛ

fpyqhpx´ yq.

In dimension d, identify Λ with Zd by choice of basis and let ei be the ith standard basis
vector. Discrete differentiation in the ei direction is defined by

(36) Deifpxq “Difpxq “ fpx` eiq ´ fpxq.

Given a vector a PNd, define the differential operator

(37) Dafpxq “Da1

1 ¨ ¨ ¨D
ad
d fpxq.

The discrete derivatives can be expressed as convolution operators. Let

(38) δipxq “

$

&

%

´1 x“ 0
1 x“´ei
0 otherwise

.

Thus Daf “ δ˚a1

1 ˚ ¨ ¨ ¨ ˚ δ˚add ˚ f .
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Given functions f1, ..., fn on Λ, define their Z-linear span

(39) xf1, ..., fny “ spanZtτxf1, ..., τxfn : x P Λu.

On the lattice Λ,

C0pΛq “ x1px“ 0qy “ tf : ΛÑ Z, }f}1 ă8u,

C1pΛq “ xδi : 1ď iď dy,

C2pΛq “ xδi ˚ δj : 1ď iď j ď dy.

See [16] for a proof of these characterizations.
Given f P `1pΛq, its Fourier transform is

(40) f̂pxq “
ÿ

nPΛ

fpnqep´n ¨ xq.

On Λ{mΛ, the discrete Fourier transform is

(41) f̂pxq “
ÿ

nPΛ{mΛ

fpnqe
´

´
n ¨ x

m

¯

.

2.2. Results from classical analysis. The sandpile chain is studied in frequency space,
and the techniques combine methods which are probabilistic and from the theory of distri-
bution modulo 1. Several techniques from the classical theory of exponential sums are used,
including van der Corput’s inequality [34].

THEOREM 10 (van der Corput’s Lemma). Let H be a positive integer. Then for any
complex numbers y1, y2, ..., yN ,

(42)

ˇ

ˇ

ˇ

ˇ

ˇ

N
ÿ

n“1

yn

ˇ

ˇ

ˇ

ˇ

ˇ

2

ď
N `H

H ` 1

N
ÿ

n“1

|yn|
2 `

2pN `Hq

H ` 1

H
ÿ

h“1

ˆ

1´
h

H ` 1

˙

ˇ

ˇ

ˇ

ˇ

ˇ

N´h
ÿ

n“1

yn`hyn

ˇ

ˇ

ˇ

ˇ

ˇ

.

The following basic estimate for the sum of a linear phase is also used.

LEMMA 11. Let 0ı α PR{Z and let N ě 1. Then

(43)

ˇ

ˇ

ˇ

ˇ

ˇ

N
ÿ

j“1

epαjq

ˇ

ˇ

ˇ

ˇ

ˇ

!min
´

N, }α}´1
R{Z

¯

.

PROOF. This follows on summing the geometric series.

Chernoff’s inequality is used to control the tail of sums of independent variables, see [35].

LEMMA 12 (Chernoff’s inequality). Let X1,X2, ...,Xn be i.i.d. random variables satis-
fying |Xi ´ErXis| ď 1 for all i. Set X :“X1 ` ¨ ¨ ¨ `Xn and let σ :“

a

VarpXq. For any
λą 0,

(44) Prob pX ´ErXs ě λσq ďmax
´

e´
λ2

4 , e
´λσ

2

¯

.

The following variant of Chernoff’s inequality applies to unbounded random variables
with exponentially decaying tails.
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LEMMA 13. Let X1,X2, ...,Xn be i.i.d. non-negative random variables of variance σ2,
σ ą 0, satisfying the tail bound, for some cą 0 and for all Z ą 0, ProbpX1 ą Zq ! e

´cZ .
Let X “X1 `X2 ` ¨ ¨ ¨ `Xn. Then for any λą 1, for c1 “

?
cσ
2 ,

(45) Prob
`

|X ´ErXs| ě λσ
?
n
˘

! e´
λ2

16 ` ne´c1λ
1
2 n

1
4 .

PROOF. Let Z be a parameter, Z " n
1

4 . Let X 1i be Xi conditioned on Xi ď Z . Let µ1 “
ErX 1is. Let X2i “Xi ¨1pXi ď Zq`µ

1 ¨1pXi ą Zq and X2 “X21 `X
2
2 `¨ ¨ ¨`X

2
n. We have

ErXi ¨ 1pXi ě Zqs “ ´

ż 8

Z
xdProbpXi ě xq

“ ZProbpXi ě Zq `

ż 8

Z
ProbpXi ě xqdx

! Ze´cZ `

ż 8

Z
e´cxdxď

ˆ

Z `
1

c

˙

e´cZ .

Thus, for some c1 ą 0, ErX2s “ErXs `Opne´c
1Zq. Also,

VarpXiq “ErpXi ´ErXisq
2s

ěErpXi ´ErXisq
21pXi ď Zqs

ěErpXi ´ µ
1q21pXi ď Zqs

“VarpX2i q.

Since |X2i | ď Z , for all n sufficiently large, applying Chernoff’s inequality,

Probp|X ´ErXs| ą λσ
?
nq ď

n
ÿ

i“1

ProbpX2i ‰Xiq

`Prob

ˆ

|X2 ´ErX2s| ą
λ

2
σ
?
n

˙

! ne´cZ ` 2 max
´

e´
λ2

16 , e´
λσ
?
n

4Z

¯

.

To optimize the exponents, choose Z2 “
λσ
?
n

4c to obtain the claim.

The local limit theorem for sums of lattice random variables is used in the argument. As
discrete derivatives are needed, a self-contained proof is given. This is similar to the treatment
in [22], but the claim here extends further into the tail of the distribution. The proof is given
in the Appendix.

THEOREM 14 (Local limit theorem). Let µ be a probability measure on Zd, satisfying
the following conditions

1. (Lazy) µp0q ą 0
2. (Symmetric) µpnq “ µp´nq
3. (Generic) supppµq generates Zd. There is a constant k ą 0 such that µ˚k assigns positive

measure to each standard basis vector.
4. (Exponential tails) There is a constant cą 0 such that, for all r ě 1,

(46) µp|n| ą rq ! e´cr.
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Let Covpµq “ σ2 where σ is a positive definite symmetric matrix. For all a P Nd there is
a polynomial Qapx1, ..., xdq, depending on µ, of degree at most ai in xi such that, for all
N ě 1, and all n P Zd,

δ˚a1

1 ˚δ˚a2

2 ˚ ¨ ¨ ¨ ˚ δ˚add ˚ µ˚N pnq “

exp

ˆ

´
|σ´1pn`

a

2 q|
2

2N

˙

N
d`|a|

2

ˆ

˜

Qa

ˆ

n` a
2?

N

˙

`O

˜

1

N

ˆ

1`
}n}
?
N

˙|a|`4
¸¸

`Oε

´

exp
´

´N
3

8
´ε
¯¯

.

In the case of the gradient convolution operator ∇“

¨

˚

˝

δ1
...
δd

˛

‹

‚

,

∇µ˚N pnq “ ´σ
´2n

N

exp
´

´
}σ´1n}2

2N

¯

p2πq
d

2N
d

2 detσ

`O

¨

˝

exp
´

´
}σ´1n}2

2N

¯

N
d`2

2

ˆ

1`
}n}
?
N

˙5
˛

‚`Oε

´

exp
´

´N
3

8
´ε
¯¯

.

3. The sandpile group and dual group. The reader is referred to Section 2 of [20],
which gives a clear discussion of the sandpile group of a simple connected finite graph. The
arguments given there go through with only slight changes to handle graphs with multiple
edges, which are used to handle the case of a sink at the boundary.

Let G“ pV,Eq be a graph which is connected, with possibly multiple edges but no loops.
Let s P V be the sink. A sandpile on G is a map σ : V ztsu Ñ Zě0. The sandpile is stable if
σpvq ă degpvq for all v P V ztsu. If σ is unstable, so that for some v P V ztsu, σpvq ě degpvq,
the sandpile at v can topple to σ1 which has

σ1pvq “ σpvq ´ degpvq,

for w P V ztsu such that pv,wq PE,

σ1pwq “ σpwq ` degpv,wq

where degpv,wq is the number of edges between v and w in E, and

σ1pwq “ σpwq

otherwise.
Topplings commute, and a vertex’s height does not decrease unless it topples, hence given

a sandpile σ there is a unique stable sandpile σo which can be obtained from σ by repeated
toppling. Let

(47) S pGq “ tσ : V ztsuÑ Zě0, σ ď deg´1u.

The set S pGq becomes an additive monoid under the law σ‘ ηpvq “ pσ` ηqopvq, in which
the heights are added and then the sandpile is stabilized.
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Sandpile dynamics on S pGq are given by letting µ be the probability measure

(48) µ“
1

|V |

¨

˝δid `
ÿ

vPV ztsu

δv

˛

‚

in which id is the identity element of the sandpile group, and δv is the Kronecker delta
function at v. Given an initial probability distribution ν on S pGq, the distribution at step n
of the dynamics is µ˚n ˚ ν where µ˚n is the n-fold repeated convolution.

Since the full state σfullpvq “ degpvq ´ 1 has a positive probability of being reached from
any given state in a bounded number of steps, σfull is recurrent for the dynamics, and hence
the recurrent states are those reachable from σfull. Let ∆1 denote the reduced graph Laplacian,
which is obtained from the graph Laplacian

(49) ∆fpvq “
ÿ

pv,wqPE

fpvq ´ fpwq

by omitting the row and column corresponding to the sink. The recurrent states form an
abelian group G pGq – ZV ztsu{∆1ZV ztsu, see [20] for a proof. Since ∆1 is a symmetric matrix,
the dual lattice to ∆1ZV ztsu is p∆1q´1ZV ztsu and hence the dual group is isomorphic to

(50) Ĝ pGq – p∆1q´1ZV ztsu{ZV ztsu.

Given ξ P Ĝ and g P G , viewed as functions on V ztsu, the pairing is ξpgq “ ξ ¨ g PR{Z.
In this article, attention is limited to the random walk µ˚n restricted to the group G of

recurrent states. This is the long term behavior, and in any case, in [16] it is shown that on the
torus pZ{mZq2, the random walk started from any stable state is absorbed into G pGq with
probability 1´ op1q in a lower order number of steps than the mixing time; the proof given
there could be adapted to this situation as well.

Since the random walk considered is a random walk on an abelian group, in terms of the
mixing behavior there is no loss in assuming that the walk is started at the identity. Also,
the transition kernel is diagonalized by the Fourier transform, that is, the characters, for ξ P
Ĝ , χξpgq “ e2πiξpgq are eigenfunctions for the transition kernel, and the eigenvalues are the
Fourier coefficients

(51) µ̂pξq “
1

|V |

¨

˝1`
ÿ

vPV ztsu

epξvq

˛

‚.

Since the Fourier transform has the usual property of carrying convolution to pointwise mul-
tiplication, Cauchy-Schwarz and Plancherel give the following lemma, see [12].

LEMMA 15 (Upper bound lemma). Let UG denote the uniform measure on the sandpile
group G pGq. For ně 1,

(52) }µ˚n ´UG }TVpG q ď
1

2
}µ˚n ´UG }2 “

1

2

¨

˝

ÿ

ξPĜ zt0u

|µ̂pξq|2n

˛

‚

1

2

.

Several further representations of the dual group Ĝ pGq are useful.

LEMMA 16. The group Ĝ may be identified with the restriction to V ztsu of functions
ξ : V ÑR{Z such that ξpsq “ 0 and ∆ξ ” 0 mod 1.
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PROOF. Given ξ P Ĝ , extend ξ to a function ξ0 on V by defining ξ0psq “ 0. For v ‰ s,
∆ξ0pvq “ ∆1ξpvq. Since ∆ξ0 is mean 0 on V , it follows that ∆ξ0psq ” 0 mod 1, also, so
each element of Ĝ can be recovered this way.

Conversely, given such a ξ, for v P V ztsu, ∆ξpvq “∆1ξ|V ztsu so the claim follows from
the structure of the dual group.

Abusing notation, given any function ξ : V ÑR, define µ̂pξq “ 1
|V |

ř

vPV epξvq.

LEMMA 17. Let ξ : V Ñ R{Z be such that ξpsq “ 0 and ∆ξ ” 0 mod 1. Let ν “ ∆ξ
and ξ “ g ˚ ν where g is a Green’s function of the graph. Then ξ ´ ξ is a constant, and in
particular,

(53) |µ̂pξq| “
ˇ

ˇµ̂pξq
ˇ

ˇ .

PROOF. Note that the image of ∆ has sum 0 on V , so ν “∆ξ has mean 0. Hence ∆pξq “
ν and ∆pξ´ ξq “ 0. The conclusion thus holds, since the kernel of ∆ is the space of constant
functions.

Note that, since the image of ∆ are functions of mean 0, treated as a function on V ,
ν “∆ξ has mean 0, and hence for ξ ‰ 0, }ν}1 ě 2. This accounts for the difference between
γ and γ0 in the optimization program describing the spectral gap for periodic tilings, since a
positive mass in the prevector ν must be balanced by a negative mass at the sink so that the
extremal function is C1. This phenomenon does not occur in the case of open boundary since
the negative mass at the sink may be distributed across the boundary.

The above representation is useful in considering sandpiles on periodic tilings, where ξ
may be understood to be a harmonic modulo 1 function on T which is mΛ periodic and
vanishes at the periodic images of the sink. In the case of an open boundary, another repre-
sentation is more useful.

LEMMA 18. Let mě 1. Let G“Tm be the graph associated to a tiling T with reflec-
tion symmetry in a family of hyperplanes F and fundamental region R. Identify Tmztsu

with T Xm ¨R. Given ξ P Ĝ pTmq, there is a unique function ξ0 : T Ñ R which is har-
monic modulo 1, has reflection anti-symmetry in each hyperplane in m ¨F , and such that
ξ0|T Xm¨R “ ξ.

PROOF. Since any sequence of reflections in m ¨ F which maps m ¨ R onto itself is
the identity, it follows that there is a unique extension ξ0 of ξ, thought of as a function
on T Xm ¨R to a function which is reflection anti-symmetric in m ¨F . Such a function
necessarily vanishes on the vertices of T which lie on a hyperplane from m ¨F . Since ξ0

vanishes on the boundary of m ¨R, ∆ξ0 and ∆1ξ agree on the interior m ¨R. By reflection
anti-symmetry, ∆ξ0 vanishes on m ¨F XT . Thus ξ0 is harmonic modulo 1.

Given ξ P Ĝ , the choice of ξ is only determined modulo 1. As in [16] it is useful for
ordering purposes to make a preferred choice of the representation. Let

(54) Cpξq “
1

2π
argpµ̂pξqq P

„

´
1

2
,
1

2

˙

.

Let ξ1 be defined by choosing, for x P V ztsu,

(55) ξ1x ” ξx mod 1, ξ1x P

ˆ

Cpξq ´
1

2
,Cpξq `

1

2



.

Define the distinguished prevector of ξ, νpξq “∆1ξ1.
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LEMMA 19. Let ξ P Ĝ with distinguished prevector ν. The Fourier coefficient µ̂pξq sat-
isfies

(56) 1´ |µ̂pξq| "
}ν}22
|V |

ě
}ν}1
|V |

.

PROOF. The last inequality is true, since ν is integer valued.
Treat ξ as defined on V by setting ξpsq “ 0 and define ξ˚ “ ξ ´Cpξq. Since

(57) |µ̂pξq| “
1

|V |

ÿ

vPV

epξ˚v q “
1

|V |

ÿ

vPV

cpξ˚v q

is real, and since }ξ˚}8 ď 1
2 , it follows from 1´ cpxq ě 8x2 for |x| ď 1

2 that

(58) 1´ |µ̂pξq| ě
8}ξ˚}22
|V |

.

Since }∆}2Ñ2 is bounded,

(59)
}ν}22
|V |

“
}∆ξ˚|V ztsu}

2
2

|V |
!
}ξ˚}22
|V |

! 1´ |µ̂pξq| .

4. The Green’s function of a tiling. This section constructs the Green’s function of a
periodic tiling and records some of its analytic properties, which are proved in the Appendix.
For the potential theory of random walks, see [33]. Special cases are worked out in [21].

Let T Ă Rd be a tiling which is Λ-periodic for a lattice Λ, |T {Λ| ă 8. Assume 0 P T .
Given v,x PT , a Green’s function gvpxq, which satisfies

(60) ∆gvpxq “ δvpxq,

may be obtained iteratively by imposing the mean value property

(61) gvpxq “C `
1

deg v

¨

˝δvpxq `
ÿ

pv,wqPE

gwpxq

˛

‚.

Let P be the transition kernel of random walk on T , and Pn the transition kernel of n
steps of the random walk, thus Pnpv,wq is the probability of transitioning from v to w in n
steps. Equation (61) may be written

(62) gvpxq “C `
δvpxq

deg v
`

ÿ

wPV

P 1pv,wqgwpxq.

Iterating, for any ně 1,

(63) gvpxq “C `
n
ÿ

j“0

P jpv,xq

degx
`

ÿ

wPV

Pn`1pv,wqgwpxq.

In dimension 2 it is common to regularize this by setting

(64) gvpxq “
8
ÿ

n“0

ˆ

Pnpv,xq

degx
´
Pnpv, vq

deg v

˙

.
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In dimensions dě 3 it is customary to set C “ 0 above, and

(65) gvpxq “
8
ÿ

n“0

Pnpv,xq

degx
.

Assuming the sums converge, which is justified shortly,

(66) ∆gvpxq “ P
0pv,xq `

8
ÿ

n“0

¨

˝Pn`1pv,xq ´
ÿ

pw,xqPE

Pnpv,wq

degw

˛

‚

and each summand vanishes, while P 0pv,xq “ δvpxq.
For computations, an alternative description of the Green’s function is more useful. Recall

that % is the measure on Λ of random walk started from 0 and stopped at the first positive
time T0 at which it reaches Λ.

LEMMA 20. The measure % is symmetric, that is %pxq “ %p´xq.

PROOF. Let 0 “ v0, v1, v2, ..., vn “ x be a path from 0 to x such that vi R Λ for 1 ď i ď
n´ 1. Let e1, e2, ..., en be edges with ei connecting vi´1 and vi. The probability of following
e1, e2, ..., en in succession is

śn´1
j“0

1
deg vj

. The probability of following that path in reverse
is
śn
j“1

1
deg vj

. Since deg v0 “ deg vn by Λ-periodicity, running the path in reverse has the
same probability. This is also true of the path translated by ´x. Summing over all paths that
lead to x proves that %pxq ď %p´xq. By symmetry, %pxq “ %p´xq.

LEMMA 21. In dimension 2, for x P Λ,

(67) g0pxq “
8
ÿ

n“0

Pnp0, xq

degx
´
Pnp0,0q

deg 0
“

8
ÿ

n“0

%˚npxq

degx
´
%˚np0q

deg 0

and both sums converge. If the dimension is ě 3, then

(68) g0pxq “
8
ÿ

n“0

Pnp0, xq

degx
“

8
ÿ

n“0

%˚npxq

degx

and both sums converge. Restricted to Λ, in dimension 2, g0pxq ! 1` logp2` }x}q and in
dimension dą 2, g0pxq !

1
p1`}x}qd´2 .

PROOF. We have %˚2p0q ą 0, since the measure % is symmetric. Let σ2 be the covariance
matrix. It follows that the local limit theorem, Theorem 14 applies to %˚2, see also [22]. This
implies the following bounds on the density of %˚npxq, for any Aą 0,

%˚npxq !

$

&

%

e´
}σ´1x}2

n

n
d
2

ně }x}2

plogp2`}x}qq2

OA
`

p1` }x}q´A
˘

nă }x}2

plogp2`}x}qq2

.

This justifies the convergence of the % sums for d ě 3 and also the bound on g0pxq as
xÑ8, since the sum is concentrated around n of order }x}2.

To treat the case d “ 2, notice that in defining the stopping time related to the measure
%, there is a positive probability that Y0,2 “ 0, so that if % has periodicity, the only possible
periodicity is 2. Again by the local limit theorem on R2, either %˚npxq ´ %˚np0q ! n´

3

2 or
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%˚npxq ´ %˚pn`1qp0q ! n´
3

2 as nÑ8, which again justifies the convergence. The bound on
g0 can be proved by noting that %˚np0q, %˚npxq ! 1

n so that

(69)
ÿ

n!}x}2

%˚npxq

degx
´
%˚np0q

deg 0
! logp2` }x}2q

while, since deg 0“ degx, for some cą 0,
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

n"}x}2

%˚npxq

degx
´
%˚np0q

deg 0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

!
1

deg 0

ÿ

n"}x}2

ˇ

ˇ

ˇ
e´

}σ´1x}2

n ´ 1
ˇ

ˇ

ˇ

n
`O

´

n´
3

2

¯

“Op1q.

The last line uses the leading order term of the local limit theorem, which is proportional to
the Gaussian density at the point in this range.

To show the equality of the P and % sums, given the random walk Y0,n let S0 “ 0ă S1 ă

S2 ă ... be the return times to Λ. Let α“ErS1s. The distribution of Y0,Sn is the same as that
of %˚n. Let T pnq be the least j such that Sj ą n. Since for x P Λ,

n
ÿ

j“0

P jp0, xq “E

«

n
ÿ

j“0

1pY0,Sj “ x^ Sj ď nq

ff

“

n

α
ÿ

j“0

%˚jpxq `O

¨

˚

˝

ÿ

|j´n

α |ďn
3
4

%˚jpxq

˛

‹

‚

`O
´

nProb
´ˇ

ˇ

ˇ
T pnq ´

n

α

ˇ

ˇ

ˇ
ą n

3

4

¯¯

.

The first error term tends to 0 as nÑ8 by the local limit theorem for %, since %˚jpxq !
j´

d

2 . To bound the second error term, write Sj “ T1 ` T2 ` ¨ ¨ ¨ ` Tj , where T1, ..., Tj are
independent copies of the random variable T0 which is the first return time to the lattice
Λ. These variables have exponentially decaying tails, and hence the variant of Chernoff’s
inequality in Lemma 13 with λ of order n

1

4 implies that, for some cą 0,

(70) Prob
´
ˇ

ˇ

ˇ
T pnq ´

n

α

ˇ

ˇ

ˇ
ą n

3

4

¯

! ne´cn
3
8 .

This shows that the second error term tends to 0 as nÑ8. Since both error terms tend to 0
as nÑ8, it is possible to replace the P sums with the % sums.

It is now possible to show that equations (64) and (65) converge and define Green’s func-
tions.

LEMMA 22. In dimension 2,

(71) g0pxq “
8
ÿ

n“0

Pnp0, xq

degx
´
Pnp0,0q

deg 0

and, in dimension at least 3,

(72) g0pxq “
8
ÿ

n“0

Pnp0, xq

degx
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converge for all x PT and are Green’s functions. The functions satisfy the bounds, in dimen-
sion 2,

(73) g0pxq ! 1` logp2` dp0, xqq

and in dimensions dě 3,

(74) g0pxq !
1

p1` dp0, xqqd´2
.

PROOF. We show the case dě 3, the case d“ 2 being similar.
Assume that x R Λ. Let Yx,0 “ x, Yx,1, Yx,2, ... be random walk on T started from x.

Since, for ně 1,

(75)
Pnp0, xq

degx
“

1

degx

ÿ

pw,xqPE

Pn´1p0,wq

degw
“E

„

Pn´1p0, Yx,1q

degYx,1



it follows that for the finite stopping time Tn “minpT,nq, which is the minimum of n and
the first time T that Y reaches Λ,

(76)
Pnp0, xq

degx
“E

„

Pn´Tnp0, Yx,Tnq

degYx,Tn



.

Since Tn has exponentially decaying tail, two exceptional cases may be excluded.

• (Case 1) If nď 2` dp0, xq2, for any Aą 0, there is a constant C1 “C1pAq ą 0 such that

Prob
`

Tn ěC1rlog2p2` dp0, xq
2qs

˘

ď
1

dp0, xqA
.

• (Case 2) If ną 2` dp0, xq2, for any Aą 0, there is a constant C2 “C2pAq ą 0 such that

Prob pTn ěC2rlog2 nsq ď n´A.

Choosing an A sufficiently large, the sum in n of the probabilities of Case 1 or 2 is
O
´

1
p1`dp0,xqqd´2

¯

.
Let En be the event that neither Case 1 nor 2 holds. Conditional on En, it suffices to

assume ně
a

2` dp0, xq, since Pnp0, ¨q is supported in a ball of radius ď n about 0. Thus,
on En, Tn ă n so Yx,Tn P Λ.

Denote pYx,T |T “ jq the conditional distribution of Yx,T conditioned on the event that
T “ j. Splitting into dyadic ranges,

ÿ

2kě
?

2`dp0,xq

ÿ

2k´1ănď2k

E

„

Pn´Tnp0, Yx,Tnq

degx
1En



ď
ÿ

2kě
?

2`dp0,xq

ÿ

2k´1ănď2k

ˆ

C1rlog2p2`dp0,xq
2qs_C2k

ÿ

j“1

ProbpT “ jqE

„

Pn´jp0, pYx,T |T “ jqq

degx



.

Arguing as in the previous lemma, let ErS1s “ α be the expected return time to Λ, and
S0 “ 0ă S1 ă S2 ă ... be the return times to Λ, with T pjq the number of returns to time j.
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We obtain the bound

ÿ

2kě
?

2`dp0,xq

C1rlog2p2`dp0,xq
2qs_C2k

ÿ

j“1

ProbpT “ jq

ˆ

#

ÿ

2k´2

α
ănď 2k`1

α

E

„

ρ˚nppYx,T |T “ jqq

degx



`O

ˆ

2kProb

ˆ

T p2k´1 ´ jq ď
2k´2

α
_ T p2kq ą

2k`1

α

˙˙

+

.

Choosing λ of order 2
k

2 in Lemma 13, the error term is O
´

22ke´c2
k
2

¯

. Summed in k this is
negligible compared to the main term. For j in the stated range, ρ˚npYx,T |T “ jq satisfies,
for some cą 0, and all Aą 0,

(77) ρ˚npYx,T |T “ jq !

$

&

%

OA

´

1
dp0,xqA

¯

nď dp0,xq2

plogp2`dp0,xqqq2

e´
cdp0,xq2

n

n
d
2

ną dp0,xq2

plogp2`dp0,xqqq2

.

This follows from the local limit theorem for ρ˚n. Since

(78)
ÿ

ną dp0,xq2

plogp2`dp0,xqqq2

e´
cdp0,xq2

n

n
d

2

!
1

p1` dp0, xqqd´2

and the contribution of smaller n is negligible by taking A sufficiently large, the claimed
bound holds.

When v R Λ, it follows from the Laplace equation that

(79) g0pvq “
1

deg v

ÿ

pv,wqPE

g0pwq.

LEMMA 23. Given a Green’s function g0 started from zero on T , satisfying, for x PT ,
g0pxq ! logp2` dp0, xqq, the Green’s function can be recovered from its values on Λ by, for
v PT zΛ, g0pvq “Erg0pYv,Tvqs.

PROOF. By iterating the mean value property (79), for the stopping time Tn “minpTv, nq,

(80) g0pvq “Erg0pYv,Tnqs.

Meanwhile, Erg0pYv,Tvq1pTv ď nqs converges as nÑ8, since g0 grows at most logarith-
mically on the lattice Λ and Tv has exponentially decaying tails. Both limits are equal to
Erg0pYv,Tvqs by the growth assumption on g0.

Finally, to obtain the Green’s function in general, for v R Λ iterate the identity

(81) gvpxq “
δvpxq

deg v
`

1

deg v

ÿ

pv,wqPE

gwpxq.
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LEMMA 24. For v RΛ, a Green’s function gvpxq is given by

(82) gvpxq “
1

degx
E

«

Tv´1
ÿ

j“0

1pYv,j “ xq

ff

`E
“

gYv,Tv pxq
‰

.

In particular, for x P Λ, gvpxq “ g0 ˚ %vpxq.

PROOF. Convergence of the two expectations is guaranteed by the exponential decay of
the tail of Tv and by the growth bound of the Green’s function. From the definition of the
Green’s function on the lattice Λ, ∆E

“

gYv,Tv pxq
‰

“ProbpYv,Tv “ xq. Meanwhile,

∆

˜

1

degx
E

«

Tv´1
ÿ

j“0

1pYv,j “ xq

ff¸

(83)

“E

«

Tv´1
ÿ

j“0

1pYv,j “ xq

ff

´
ÿ

px,yqPE

1

deg y
E

«

Tv´1
ÿ

j“0

1pYv,j “ yq

ff

“E

«

Tv´1
ÿ

j“0

1pYv,j “ xq

ff

´E

«

Tv
ÿ

j“1

1pYv,j “ xq

ff

“ δvpxq ´ProbpYv,Tv “ xq.

Adding these two contributions completes the proof of the first claim.
To prove the second, note that for x P Λ, E

”

řTv´1
j“0 1pYv,j “ xq

ı

“ 0, and thus, the claim
follows since Yv,Tv has the distribution of %v .

LEMMA 25. For any η PC0pT q, for all x PΛ,

(84) gηpxq “ g0 ˚ %ηpxq.

PROOF. Since %v has been defined to be a point mass at v when v P Λ, the previous
Lemma demonstrates that for all v PT and all x P Λ, gvpxq “ g0 ˚ %vpxq. It thus follows that
if η is a function of bounded support on T , then, for x PT ,

(85) gηpxq “ g0 ˚ %ηpxq.

The following theorem demonstrates that the above methods may be used to obtain an
explicit formula for the Green’s function of a periodic tiling, which is useful in practical
calculations. Let T ĂRd be a tiling with period lattice Λ identified with Zd after a linear map
and suppose 0 P T . Split Rd into unit cubes by identifying py1, ..., ydq with pty1u, ..., tyduq.
Let zi “ ep´xiq be Fourier variables, i“ 1,2, ..., d, and assign each directed edge e“ pu, vq
of T a weight we which is the product of all zi such that the floor of the ith coordinate of v
is greater than the floor of the ith coordinate of u, divided by the product of all zj such that
the opposite is true. Choose a system of representatives 0 “ v0, v1, ..., vm for T {Λ, and let
Q be the pm` 1q ˆ pm` 1q matrix with

(86) Qpi, jq “
ÿ

v”vj mod Λ
e“pvi,vqPE

we
deg vi

.
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Thus, when z ” 1, Q is the transition matrix of simple random walk on T {Λ. Let c0 be
the column of Q corresponding to v0, and r0 the row corresponding to 0, and let Q1 be the
mˆm minor obtained by deleting c0 and r0, and similarly let c10, r

1
0 be obtained by deleting

the p0,0q entry.

THEOREM 26. The characteristic function of % is

%̂pxq “
ÿ

λPZd
%pλqep´x ¨ λq

“Q0,0pzq ` r
1
0pzqpI ´Q

1pzqq´1c10pzq

and the Fourier transform of g0 restricted to Λ is given by

(87) pdeg 0qĝ0pxq “
1

1´ pQ0,0pzq ` r10pzqpI ´Q
1pzqq´1c10pzqq

.

PROOF. The stopped random walk either transitions directly from 0 to another point in Λ
with partial characteristic function given by Q0,0pzq, or transitions from 0 to another state,
makes ně 0 moves between states not in Λ and then returns to Λ. Given a probability mea-
sure ν on T , define

ν̂pxq “ rν̂0, ..., ν̂ms

ν̂j “
ÿ

y”vj mod Λ

νpyqz
ty1u

1 ¨ ¨ ¨z
tydu

d .

By the periodicity, the change in pty1u, ..., tyduq in each transition, and the corresponding
chances of a transition depend only on the current state v mod Λ, and the changes are ad-
ditive, hence, given a probability ν on T , with transition in T given by P ¨ ν, the mixture
after one transition satisfies zP ¨ ν “ ν̂Q. Conditioning on n, the number of steps before a
transition back into Λ,

(88) %̂pxq “Q0,0pzq ` r
1
0pzqpI `Q

1pzq `Q1pzq2 ` ¨ ¨ ¨ qc10pzq.

The justification of the geometric series formula
ř8
n“0pQ

1pzqqn “ pI ´ Q1pzqq´1 is that
pointwise, Q1pzqn is bounded by Q1p1qn, which tends to 0 with n, since the random walk
has a positive probability of returning to Λ in boundedly many steps from any state.

Since, restricted to Λ, g0pxq “
1

deg 0

`
ř8
n“0 %

˚npxq ´ %˚np0q
˘

in dimension 2, or in di-
mension at least 3, g0pxq “

1
deg 0

ř8
n“0 %

˚npxq, the Fourier transform of g0 is given by, for
x‰ 0,

(89) pdeg 0qĝ0pxq “
8
ÿ

n“0

%̂pxqn,

with the caveat that in dimension 2, the Green’s function can be considered as dual to func-
tions of bounded support and sum 0. The formula for the Green’s function’s characteristic
function follows from applying the geometric series formula to the characteristic function of
%.

PROOF OF THEOREM 7. Identify Λ with Zd. We show that the conditions are necessary
and sufficient for gη to be in `2pΛq. This suffices for the theorem, since the condition of
being in CρpT q is invariant under translation so that the same conditions are necessary and
sufficient for gη to be in `2pt`Λq for any t PT {Λ.
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Since on Λ, gη “ g0 ˚ %η , gη has Fourier transform

(90) ĝηpξq “
1

deg 0

%̂ηpξq

1´ %̂pξq
.

Since supp% generates Λ, %̂pξq ‰ 1 if ξ ‰ 0, and hence 1
1´%̂pξq is bounded outside neighbor-

hoods of 0. Thus, by Parseval, it suffices to consider the behavior on a neighborhood of 0. By
Taylor expansion, using that % has exponentially decaying tails,

1´ %̂pξq “
ÿ

n

%pnqp1´ e´2πin¨ξq “ 2π2ξtσ2ξ `Op}ξ}3q

where we have used that the first moment of % vanishes, since % is symmetric.
By Parseval, for δ ą 0,

}gη}
2
2 “

1

pdeg 0q2

ż

Rd{Zd

|%̂ηpξq|
2

|1´ %̂pξq|2
dξ

“Op1q `
1

pdeg 0q2

ż

}ξ}ăδ

|%̂ηpξq|
2

4π4pξtσ2ξq2 `Op}ξ}5q
dξ.

Since %η has exponentially decaying tails, it follows that %̂ηpξq is equal to its Taylor expansion
at 0, which is necessarily bounded. The constant term is the total mass, the linear term is given
by the first moment. Switching to polar coordinates gains a factor of rd´1 against the factor
of — r´4 from the definite quadratic form in the denominator. Thus, in dimension 2, it is
necessary and sufficient for gη to be in `2 that %̂η vanish to degree 2, in dimension 3,4 that
it vanish to degree 1, and in higher dimensions, that it is bounded. This gives the condition
claimed.

To prove the characterisation of H 2pT q, let ξ P H 2pT q and let ν “ ∆ξ. Since ∆ :
`2pT q Ñ `2pT q is bounded, }ν}2 ă8 and hence ν has finite support. It follows that gν is
well-defined as a function on T , and ∆pξ´gνq “ 0. If pξ´gνqpxqÑ 0 as dp0, xqÑ8, then
by the maximum modulus principle ξ´gν “ 0. This applies unless d“ 2 and ν RC1pT q. To
rule out the remaining case, let y P Λ and let τy denote translation by y. Since ν ´ τyν is at
least C1pT q, g ˚pν´τyνq tends to 0 at infinity, and hence, for any y, ξ´τyξ “ g ˚pν´τyνq.
Since ν R C1pT q, g ˚ ν is unbounded, and hence g ˚ pν ´ τyνq can take arbitrarily large
values. But ξ ´ τyξ is bounded, a contradiction. Hence, ξ PH 2pT q implies ξ “ g ˚ p∆ξq
and ∆ξ PCρpT q.

4.1. The Green’s function of periodic and reflected tilings. Let T ĂRd be a tiling, which
is periodic with period Λ. A mean zero Green’s function started from 0 may be defined on
T {mΛ as follows. On Λ{mΛ define %Tmpxq “ %px`mΛq and

(91) g0,Tmpxq “
1

degp0q

8
ÿ

n“0

ˆ

%˚nTmpxq ´
1

md

˙

.

This may be extended to all of T {mΛ by the formula,

(92) g0,Tmpvq “Erg0,TmpYv,Tvqs.

This is still mean 0, since for any v,

(93)
ÿ

λPΛ{mΛ

g0,Tmpv` λq “
ÿ

λPΛ{mΛ

Erg0,TmpYv,Tv ` λqs “ 0

by the Λ translation invariance.
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As above, the Green’s function started from an arbitrary point v is obtained by

(94) gv,Tmpxq “ ´cv `
1

degx
E

«

Tv´1
ÿ

j“0

1 pYv,j “ xq

ff

`E
“

gYv,Tv ,Tmpxq
‰

,

where the constant cv is chosen to make the Green’s function mean 0. Since Tv has exponen-
tially decaying tail and gYv,Tv is mean 0, cv “O

`

1
md

˘

.

LEMMA 27. The Green’s function satisfies

(95) ∆gv,Tmpxq “ δvpxq ´
1

md
δpx P Λq.

PROOF. If v RΛ,

(96) ∆g0,Tmpvq “ pdeg vqg0,Tmpvq ´
ÿ

pv,wqPE

g0,Tmpwq “ 0

since the sum over w corresponds to taking one step in the random walk Yv .
When x P Λ, by splitting off the n“ 0 term in the sum defining g0,Tm ,

∆g0,Tmpxq “ δ0pxq ´
1

md
`

8
ÿ

n“1

ˆ

ρ˚nTmpxq ´
1

md

˙

´
ÿ

px,yqPE

g0,Tmpyq

“ δ0pxq ´
1

md
`

8
ÿ

n“1

ˆ

ρ˚nTmpxq ´
1

md

˙

´ degp0qE

»

–

1

degx

¨

˝

ÿ

px,yqPE,yRΛ

g0,TmpYy,Tyq `
ÿ

px,yqPE,yRΛ

g0,Tmpyq

˛

‚

fi

fl

“ δ0pxq ´
1

md
`

8
ÿ

n“1

ˆ

ρ˚nTmpxq ´
1

md

˙

´ degp0qE rg0,TmpYx,Txqs .

Since Yx,Tx has the distribution of δx ˚ %Tm , and since %Tm is symmetric the sum and the
expectation cancel, leaving δ0pxq ´

1
md .

The values of gx,Tm for x P Λ are obtained by translation invariance.
To check the property at v R Λ,

∆gv,Tmpxq “ ´∆cv `E

«

Tv´1
ÿ

j“0

1pYv,j “ xq

ff

´
ÿ

px,yqPE

1

deg y
E

«

Tv´1
ÿ

j“0

1pYv,j “ yq

ff

`Er∆gYv,Tv ,Tmpxqs

“E

«

Tv´1
ÿ

j“0

1pYv,j “ xq

ff

´E

«

Tv
ÿ

j“1

1pYv,j “ xq

ff

`ProbpYv,Tv “ xq ´
1

md
δpx P Λq

“ δvpxq ´
1

md
δpx P Λq.
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It follows that gTm has the property that

(97) ∆pgv1,Tmpxq ´ gv2,Tmpxqq “ δv1pxq ´ δv2pxq.

Given an integer valued function η on T {mΛ, define

(98) gη,Tm “ gTm ˚ ηpxq “
ÿ

vPT {mΛ

ηpvqgv,Tmpxq.

Abusing notation, given η PC0pT q, define gη,Tm “ gTm ˚ ηTm .
Given a tiling T with reflection symmetry in family of hyperplanes

(99) F “ tnvi `Hi : n P Z,Hi “ tx : xx, viy “ 0uu

which its edges do not cross, the tiling is periodic with period lattice Λ generated by t2vi :
i “ 1,2, ..., du. A Green’s function for Tm with reflection symmetry in mF is obtained by
letting g̃ be a Green’s function for T {mΛ, and then imposing reflection anti-symmetry by
forming an alternating sum over reflections in a bounded number of hyperplanes.

4.2. Derivative estimates. The following results are needed regarding discrete deriva-
tives of the Green’s function on T {mΛ, and are proved in the Appendix.

LEMMA 28. Let T be a tiling of Rd which is Λ– Zd periodic. Let η be of class CρpT q
for some 0 ď ρ ď 2. Let Da be a discrete differential operator on the lattice Λ and assume
that |a| ` ρ` d´ 2ą 0. For x P Λ, for mě 1,

(100) Dagη,Tmpxq !
1

1` }x}
|a|`ρ`d´2
pZ{mZqd

.

Note that, although Lemma 28 applies to x P Λ, by Lemma 9 the property of being Cρ is
invariant under translating T , and hence the same estimate holds for arbitrary x P T up to
changing the norm by Op1q.

LEMMA 29. Let T be a tiling of Rd with period lattice Λ identified with Zd via a choice
of basis. Set σ2 “Covp%q. Let η be of class C1pT q, and let %η be the signed measure on
Λ obtained by stopping simple random walk on T started from η when it reaches Λ. Let %η

have mean v. For mě 1, for n PΛ, 1ď }n} !
´

m2

logm

¯
d´1

2d ,

(101) gη,Tmpnq “
Γ
`

d
2

˘

vtσ´2n

degp0qπ
d

2 }σ´1n}d detσ
`O

ˆ

1

}σ´1n}d

˙

.

If dě 3 and η RC1pT q has total mass C ,

(102) gη,Tmpnq “
CΓ

`

d
2 ´ 1

˘

2 degp0qπ
d

2 }σ´1n}d´2 detσ
`O

ˆ

1

}σ´1n}d´1

˙

.

As in the previous lemma, gη may be recovered on all of T {mΛ by translating T to
translate the period lattice.

LEMMA 30. Let dě 2 and let a PNd. If |a| ` d
2 ą 2 then for each fixed n, v PT ,

(103) Dagv,TmpnqÑDagvpnq

as mÑ8.
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5. Spectral estimates. This section collects together the spectral gap and spectral dis-
jointness estimates needed to prove Theorem 3 by estimating the relevant exponential sums
in the Fourier coefficient µ̂pξq. When the prevector ν is sparse, the argument decomposes
ν “

ř

j νj into localized separated components. The important observation in the argument
is that, while convolution with the Green’s function is not local, at a distance away from
the support of the function it varies smoothly. This allows decomposing ξ “ ξi ` ξe into
an internal component which arises from convolving with the localized νj near the point of
evaluation plus an external smoothly varying ξe which is obtained by convolving with the
distant components. In estimating the exponential sums µ̂pξq “ Erepξxqs, the behaviors of
the internal components ξi are classified according to the small localized prevector νj while
the external component is handled using techniques such as Taylor expansion and van der
Corput’s inequality for estimating the exponential sum of a smoothly varying function.

The argument in the case of periodic boundary is organized as follows. First it is shown
in Lemma 35 that if the prevector component νj does not have the sufficient regularity, then
the exponential sum that arises nearby has more cancellation than the extremal case. Next
in Lemma 36 it is proved that there are prevectors νj that achieve an extreme minimum
amount of cancellation, which is determined in the variational description of the spectral
factors. Following this, in Lemma 38 it is shown that the cancellation from various prevector
components is at least additive without the presence of an external field, and finally in Lemma
39 it is shown that there is at least as much cancellation in the presence of an external field.
The case of open boundary follows a similar organization, but treats separately prevector
components that are localized near a boundary of a given codimension.

The main object of interest in this section is the amount of cancellation in exponential
sums. Let G“ Tm or Tm, and let S ĂG, ξ :GÑR. Define the savings of ξ on S to be

(104) savpξ;Sq :“ |S| ´

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

xPS

epξxq

ˇ

ˇ

ˇ

ˇ

ˇ

,

and, for S “G, the total savings

(105) savpξq :“ |G| ´

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

xPG

epξxq

ˇ

ˇ

ˇ

ˇ

ˇ

.

If S1, S2 Ă Tm are disjoint, then by the triangle inequality,

(106) savpξ;S1 Y S2q ě savpξ;S1q ` savpξ;S2q.

We have

(107) 1´ |µ̂pξq| “
savpξq

|G|
.

The spectral gap is given by

(108) gapm “ min
0‰ξPĜm

savpξq

|G|
.

Set

(109) ρ“

$

&

%

2 d“ 2
1 d“ 3,4
0 dě 5

,

and β “ d´ 2` ρ,

(110) β “

$

&

%

2 d“ 2,3
3 d“ 4
d´ 2 dě 5

.
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By Lemma 51 from the Appendix, if ν PCρpT q and ξ “ g ˚ ν then for y ‰ 0,

(111) |ξy| !
1

dp0, yqβ
,

and hence ξ P `2pT q.
Let BRp0q “ tx PT : dpx,0q ďRu and define

(112) C pB,Rq :“ tν PCρpBRp0qq : }ν}1 ďBu.

We record the following exponential sum and savings estimates to be used throughout the
section. The first Lemma reduces savings estimates to estimating cosine sums.

LEMMA 31. Let S Ă Tm or Tm and assume, for some 0ă δ, εă 1,

ÿ

xPS

p1´ cpξxqq ď δ|S|,

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

xPS

spξxq

ˇ

ˇ

ˇ

ˇ

ˇ

ď ε|S|.

Then
ˇ

ˇ

ˇ

ˇ

ˇ

savpξ;Sq ´
ÿ

xPS

p1´ cpξxqq

ˇ

ˇ

ˇ

ˇ

ˇ

ď
ε2|S|

2p1´ δq
.

PROOF. Since
ř

xPS cpξxq ě p1´ δq|S|,
ˇ

ˇ

ˇ

ˇ

ˇ

savpξ;Sq ´

˜

ÿ

xPS

1´ cpξxq

¸ˇ

ˇ

ˇ

ˇ

ˇ

“

g

f

f

e

˜

ÿ

xPS

cpξxq

¸2

`

˜

ÿ

xPS

spξxq

¸2

´
ÿ

xPS

cpξxq

“
p
ř

xPS spξxqq
2

b

p
ř

xPS cpξxqq
2
` p

ř

xPS spξxqq
2
`
ř

xPS cpξxq
ď

ε2|S|

2p1´ δq
.

The following estimates for exponential sums are used.

LEMMA 32. Let 1 ď R ă m be parameters, let G “ Tm or Tm and let ξ : GÑ R.
Suppose that there is an x PG and C ą 0 such that, for all x‰ y PG,

|ξpyq| ď
C

dpx, yqβ
.

The following estimates hold.

1.
ř

dpx,yqąRp1´ cpξyqq !C
2R´2β`d.

2.
ř

yPGp1´ cpξyqq !C
2.

3.
ř

dpx,yqďR |spξyq| !

"

C logR d“ 2
CRd´β dě 3

.

4. If
ř

yPG ξy “ 0 then
ˇ

ˇ

ˇ

ř

yPG spξyq
ˇ

ˇ

ˇ
!C3.

The implicit constants depend on T .
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PROOF. We have |BRpxq| ! Rd. Bound |1 ´ cpξyq| ď 2π2ξ2
y . The first estimate can be

obtained by estimating
ÿ

dpx,yqąR

p1´ cpξyqq !
ÿ

2kąR

ÿ

2k´1ădpx,yqď2k

C2

p1` dpx, yqq2β

!C2
ÿ

2kąR

2kpd´2βq !
C2

R2β´d
.

The second item follows from the first. For the third, bound |spξyq| ď 2π|ξy| and argue as
above. For (4), Taylor expand sin to degree 3 and use that the sum of the linear term vanishes.

5.1. Periodic case. Recall that for ξ : T ÑR,

(113) fpξq :“
ÿ

xPT

p1´ cpξxqq.

Define

(114) I :“ t∆w :w PC0pT qu ĂC2pT q.

LEMMA 33. The spectral parameter γ has characterization, in dimension 2,

γ “ inftfpg ˚ νq : ν PC2pT qzI u,

and in dimension at least 3,

γ “ inftfpg ˚ νq : ν PC1pT qzI u.

The parameter γ0 has characterization,

γ0 “ inftfpg ˚ νq : ν PCρpT qzI u.

PROOF. Recall the definitions,

γ “ inf

#

ÿ

xPT

1´ cosp2πξxq : ξ PH 2pT q,∆ξ PC1pT q, ξ ı 0 mod 1

+

,

γ0 “ inf

#

ÿ

xPT

1´ cosp2πξxq : ξ PH 2pT q, ξ ı 0 mod 1

+

.

First consider the case of γ0. If ν P CρpT qzI then ∆pg ˚ νq “ ν P CρpT q so ξ “ g ˚ ν is
harmonic modulo 1 and in `2pT q. This demonstrates ξ ı 0 mod 1, since otherwise ξ has
finite support so that ν “∆ξ PI . Thus

γ0 ď inftfpg ˚ νq : ν PCρpT qzI u.

To prove the reverse inequality, suppose ξ PH 2pT q, ξ ı 0 mod 1. Let ν “∆ξ. By Theorem
7, ξ “ g ˚ ν, ν P CρpT q and since ξ is not integer valued, ν R I . This proves the reverse
inequality.

The case of γ is essentially the same, except that in dimensions at least 5, there is the
further restriction that ν “∆ξ PC1pT q.
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PROPOSITION 34. Fix B,R1 ą 0. For any ν P C pB,R1q and m ą 2R1, let ξpmq “
ξpmqpνq be the frequency in Ĝm corresponding to ν, namely

(115) ξpmqx “ pgTm ˚ νqpxq ´ pgTm ˚ νqp0q

and let ξ “ ξpνq “ g ˚ ν. Then

(116) savpξpmqqÑ fpξq as mÑ8.

PROOF. Let ξ˚ “ gTm ˚ ν. Since savpξ˚q “ savpξpmqq it suffices to show that savpξ˚q Ñ
fpξq as mÑ8. By Lemma 28, ξ˚pyq ! 1

dp0,yqβ , with an implicit constant depending on B
and R1. By Lemma 32,

ÿ

dp0,yqąR

p1´ cpξ˚y qq “OB,R1
pR´2β`dq,

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

yPTm

spξ˚y q

ˇ

ˇ

ˇ

ˇ

ˇ

“OB,R1
p1q

and hence by Lemma 31,

(117)

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

yPTm

cpξ˚y q ` ispξ
˚
y q

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

yPTm

cpξ˚y q

ˇ

ˇ

ˇ

ˇ

ˇ

`O

ˆ

1

md

˙

.

It follows that

savpξ˚q “OB,R1
pm´dq `

ÿ

yPTm

p1´ cpξ˚y qq

“OB,R1
pR´2β`dq `

ÿ

dp0,yqďR

p1´ cpξ˚y qq.

LettingmÑ8 for fixedR obtains ξ˚y Ñ ξy . Then lettingRÑ8 obtains limmÑ8 savpξ˚q “
fpξq.

On T , ξ “ g ˚ ν P `2pT q if and only if ν P CρpT q. The following lemma gives a local
version of this statement by showing that if a local part of ν is not in Cρ, subject to some
technical conditions, there is arbitrarily large savings near the local piece.

LEMMA 35. For all A,B,R1 ą 0 there exists an R2pA,B,R1q ą 2R1 such that if m is
sufficiently large, then for any x P Tm and any ν P ZTm satisfying the following conditions:

1. }ν}1 ďB
2. ν|BR1 pxq

RCρpTmq
3. dpx, suppν|BR1

pxqcq ą 2R2

it holds

(118) savpgTm ˚ ν;BR2
pxqq ěA.

Thus, if ν has mean zero, then the corresponding frequency ξ P Ĝm satisfies savpξ;BR2
pxqq ě

A.

PROOF. It suffices to show that savpgTm ˚ ν;BR2
pxq XΛq ěA, which simplifies the esti-

mates.
Assume that the dimension is at most 4, since otherwise ν PCρpTmq. The proof is similar

to the proof of Lemma 22 from [16], so only the necessary modifications are indicated.
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As there, let ξ “ ξi ` ξe with

(119) νi :“ ν|BR1 pxq
, νe :“ ν|BR1 pxq

c

and

ξi :“ gTm ˚ ν
i, ξe :“ gTm ˚ ν

e(120)

and treat R2 as a parameter which can be taken arbitrarily large, but fixed. Let R be a second
parameter depending on R2 such that Rd`1

Rd´1
2

Ñ 0 as R2 Ñ8. By the estimate |∇gηpyq| !
1

}y}d´1 from Lemma 28, it follows that for }y} ďR, ξex`y “ ξ
e
x `O

´

BR
Rd´1

2

¯

. Thus,

(121)

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

}y}ďR

epξx`yq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“O

˜

BRd`1

Rd´1
2

¸

`

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

}y}ďR

epξix`yq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

.

Thus it suffices to prove that as RÑ8,

(122) #ty : }y} ďRu ´

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

}y}ďR

epξix`yq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Ñ8.

First consider the case d“ 2. If νi RC1pTmq, then ∇gη may be viewed as the convolution
of g with a function in C1 but not C2. By the asymptotic for such functions in Lemma 29,
|ξix`je1 ´ ξ

i
x| Ñ8 while |ξix`pj`1qe1

´ ξix`je1 | Ñ 0 as jÑ8, and hence

(123) R´

ˇ

ˇ

ˇ

ˇ

ˇ

R
ÿ

j“1

epξix`je1 ´ ξ
i
xq

ˇ

ˇ

ˇ

ˇ

ˇ

Ñ8

as RÑ8, so that the claim holds by choosing R sufficiently large. Suppose instead that
νi PC1pTmqzC2pTmq. By Lemma 29, if %η has mean v0 ‰ 0, for x‰ 0,

(124) gηpxq “
vt0σ

´2x

degp0qπ}σ´1x}2 detσ
`O

ˆ

1

1` }σ´1x}2

˙

.

It follows that there are 0ď θ1 ă θ2 ď 2π such that if θ1 ď argpyq ď θ2, then |ξix`y| —
1
}y} . It

follows that
ÿ

}y}ďR

p1´ cpξix`yqq — logR,
ÿ

}y}ďR

|spξix`yq| !R.

Thus, by Lemma 31,

(125) #ty : }y} ďRu ´

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

}y}ďR

epξix`yq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

— logR.

In the case that d ě 3, assume that νi P C0pTmqzC1pTmq. Apply Lemma 29 to find that
for η of mass C with support in a bounded neighborhood of 0,

gηpnq “
CΓ

`

d
2 ´ 1

˘

2 degp0qπ
d

2 }σ´1n}d´2 detσ
`O

ˆ

1

}σ´1n}d´1

˙

.(126)

It follows that for }n} " 1,

(127) |gηpnq| —
1

}n}d´2
.
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In the case d“ 3, sum in a dimension 2 plane to find
ÿ

}y}ďR,y3“0

1´ cpξix`yq — logR,
ÿ

}y}ďR,y3“0

|spξix`yq| !R

so that

(128) #ty : }y} ďRu ´

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

}y}ďR

epξix`yq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

" logR.

In the case d“ 4,
ÿ

}y}ďR

1´ cpξix`yq — logR,
ÿ

}y}ďR

|spξix`yq| !R
2.

Thus, by Lemma 31,

(129) #ty : }y} ďRu ´

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

}y}ďR

epξix`yq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

— logR.

LEMMA 36. For all B,R1 ą 0 and α ă 1, there exists R2pα,B,R1q ą 2R1 such that
if m is sufficiently large, then for any x P Tm and any ν P ZTm satisfying the following
conditions:

1. }ν}1 ďB
2. ν|BR1

pxq PC
ρpTmq

3. d
´

x, suppν|BR1 pxq
c

¯

ą 2R2

the bound holds

(130) savpgTm ˚ ν;BR2
pxqq ě α savpξ˚q; ξ˚ “ gTm ˚ ν|BR1

pxq.

PROOF. The proof is essentially the same as for Lemma 23 of [16], but is included here for
completeness. First it is shown that there is δ “ δpB,R1q ą 0 such that for sufficiently large
m, if savpξ˚q ă δ then savpξ˚q “ 0. After making a translation in Λ, savpξ˚q “ savpgTm ˚ν

1q

for some ν 1 P C pB,R1q. Let

(131) γ1 “mintfpg ˚ ν 1q : ν 1 P C pB,R1qzI u ą 0.

By Proposition 34, for all sufficiently large m,

(132)
ˇ

ˇsavpgTm ˚ ν
1q ´ fpg ˚ ν 1q

ˇ

ˇă
γ1

2

for all ν 1 P C pB,R1q. Thus, if ν 1 P C pB,R1qzI , then savpξ˚q ą γ1

2 . Since savpgTm ˚ν
1q “ 0

if ν 1 PI , it follows that the claim holds with δ “ γ1

2 .
Now set ε“ εpα,B,R1q “ p1´ αqδ ą 0. It suffices to show that

(133) savpgTm ˚ ν;BR2
pxqq ą savpξ˚q ´ ε

which implies the lemma, since the claim is trivial if savpξ˚q “ 0, while otherwise savpξ˚q ě
δ so that savpξ˚q ´ εě α savpξ˚q. It suffices to show that if R is fixed, but sufficiently large,
that

(134) savpξ˚;BRpxqq ą savpξ˚q ´
ε

2
,
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since the difference between savpgTm ˚ν;BRpxqq and savpξ˚;BRpxqqmay be made arbitrar-
ily small by taking R2 sufficiently large.

By the decay estimates for the Green’s function in Lemma 28, for y ‰ x,

(135)
ˇ

ˇξ˚y
ˇ

ˇ!
1

dpx, yqβ
.

Thus, by Lemmas 31 and 32,

(136)

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

dpx,yqďR

p1´ cpξ˚y qq ´ savpξ˚;BRpxqq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

!

$

’

’

&

’

’

%

plogRq2

R2 d“ 2
1
R d“ 3
1
R2 d“ 4

1
Rd´4 dě 5

.

Since

(137) savpξ˚q “ |Tm| ´

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

zPTm

epξ˚z q

ˇ

ˇ

ˇ

ˇ

ˇ

ď
ÿ

zPTm

p1´ cpξ˚z qq

and by Lemma 32,

(138)
ÿ

dpx,yqąR

p1´ cpξ˚y qq !R
d´2β,

the claim follows by letting RÑ8.

PROPOSITION 37. The spectral constant γ is positive, and there exist constantsB0,R0 ą

0 such that

1. For sufficiently large m, if γ “ γ0 any ξ P Ĝm that achieves the spectral gap, savpξq “
|Tm|gapm, has a prevector ν which is a translate of some ν 1 P C pB0,R0q Ă C

ρpTmq. If
γ0 ă γ then the support of ν is contained in at most two such neighborhoods.

2. For any ν PCρpT q satisfying fpg ˚νq ă 3
2γ0, there exists ν 1 P C pB0,R0q ĂC

ρpT q such
that a translate of ν 1 differs from ν by an element of I . In particular, fpg ˚νq “ fpg ˚ν 1q.

PROOF. This closely follows the proof of Proposition 20 from [16]. The first step in this
proof finds a constant B0 such that:

(I) For sufficiently large m, if ξpmq P Ĝm achieves savpξpmqq “ |Tm|gapm then its distin-
guished prevector νpmq must satisfy

›

›νpmq
›

›

1
ďB0.

(II) If ν PCρpT q satisfies fpg ˚ νq ď 3
2γ0` 1, then ν differs by an element of I from some

ν̃ PCρpT q with }ν̃}1 ďB0.

To prove (I), fix ν 1 PCρpT qzI . ChooseB1,R1 large enough so that ν 1 P C pB1,R1q. For each
m sufficiently large let νm be a translation of ν 1 and ξpmq the corresponding element of Ĝm.
By Proposition 34,

(139) sav
´

ξpmq
¯

Ñ fpg ˚ ν 1q “: γ1 as mÑ8,

and therefore savpξpmqq ă γ1 ` 1 for sufficiently large m.
Let ξ P Ĝm achieve the spectral gap, and let ν be the distinguished prevector of ξ. By

Lemma 19,

(140) }ν}1 ! sav pξq ă γ1 ` 1.

This proves (I).
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To prove (II), let ν PCρpT q, let ξ “ g ˚ν. Since ν PCρpT q, ξ P `2pT q. There is a version
ξ̃ : T Ñ

“

´1
2 ,

1
2

˘

, ξ̃ ” ξ mod 1 such that ∆ξ̃ “ ν ´∆w which differs from ν by ∆w PI .
Because ν̃ is integer valued and ∆ is bounded `2 Ñ `2,

(141) }ν̃}1 ď }ν̃}
2
2 “ }∆ξ̃}

2
2 ! }ξ̃}

2
2 “

ÿ

xPT

|ξ̃x|
2 !

ÿ

xPT

p1´ cpξ̃xqq.

An upper bound on fpg ˚ νq thus implies and upper bound on }ν̃}1.
The covering process described in Proposition 20 of [16] takes as input a vector ν P ZT

or ν P ZTm with }ν}1 ď B0 and returns a set X 1 and radia R1pxq,R2pxq satisfying the
conditions of Lemma 35 or Lemma 36, and such that

(142) suppν Ă
ď

xPX 1

BR1pxqpxq, d
´

x, suppν|BR1pxq
pxqc

¯

ą 2R2pxq

for each x PX 1 and the balls tBR2pxqpxquxPX 1 are pairwise disjoint. Let X 2 “ tx PX 1 :
ν|BR1pxqpxq

R I u. The conditions on A in Lemma 35 and on α in Lemma 36 are set such
that A ą 3

2γ0 ` 1 and α is arbitrarily close to 1. Given x PX 2, let upxq “ ν|BR1pxq
pxq. If

upxq RCρ then savpξq ě 3
2γ0 ` 1. Also, if |X 2| ě 2 the savings from g ˚ upx1q together with

g ˚ upx2q is approximately twice the savings from an individual component. Thus the savings
is minimized by a ν with |X 2| “ 1. This reduces the search for the minimizing prevector
in the inf defining γ0 to a finite check, which proves that γ0 ą 0. Since the inf defining γ
is further restricted by ∆ξ P C1pT q, γ ą 0. Note that γ ď 2γ0 since if ν achieves γ0 and
νy “ ν ´ τyν PC

1pT q and ξy “ g ˚ pνyq satisfies limdp0,yqÑ8 savpξyq “ 2γ0 as yÑ8.
To prove item (2) of the Proposition, let ν be a function on T . Let upxq “ ν|BR1pxq

pxq.
Given x P X 2, if upxq R Cρ then savpξq ě 3

2γ0 ` 1. Also, if |X 2| ě 2 the savings from
g ˚ upx1q together with g ˚ upx2q is approximately twice the savings from an individual com-
ponent. Thus |X 2| “ 1 and upxq PCρpT q, so that the difference between upxq and ν is in I .
Since the savings is translation invariant, the claim holds. This suffices for (2).

To prove (1), let ν P CρpT q satisfy ξ “ g ˚ ν achieves γ0. If ν P C1pT q, so that γ “ γ0,
let ξm be the corresponding element of Ĝm. As mÑ8, savpξmq Ñ fpξq “ γ0. If ξ0 P Gm
achieves the spectral gap, perform the clustering algorithm on ν0 “∆ξ0. If |X 2| ą 1 then the
total savings is at least roughly double the savings of the cluster with the least savings. Since
this is asymptotically as large as γ0, we obtain a contradiction. If ν RC1pT q, for any fixed y,
νy “ ν ´ τyν P C1pT q and ξy “ gTm ˚ νy has savpξyq Ñ fpξyq as mÑ8. Letting yÑ8

obtains a minimal savings which is asymptotically at most twice γ0 as ξ ranges in Ĝmzt0u.
Arguing as before, we conclude that the optimal prevector has at most two clusters.

The following lemma is the analogue of Lemma 24 of [16].

LEMMA 38. Let k ě 1 be fixed, and let ν1, ..., νk P C
ρpTmq be bounded functions of

bounded support which are R-separated, in the sense that their supports have pairwise dis-
tance at least R. Set ν “

řk
i“1 νi. As RÑ8,

(143) 1´ |µ̂pξpνqq| “O

ˆ

logR

R2β´dmd

˙

`

k
ÿ

i“1

p1´ |µ̂pξpνiqq|q .

The implicit constant depends upon k and the bounds for the functions and their supports.

PROOF. Set ξ “ gTm ˚ ν and ξi “ gTm ˚ νi, so that |µ̂pξpνqq| “ |µ̂pξq| and |µ̂pξpνiqq| “
|µ̂pξiq|. Choose xi P suppνi for each i and let R1 “ tpR ´ 1q{2u, so that the balls BR1pxiq
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are disjoint. By Lemma 28,

(144) |ξipyq| !
1

dpxi, yqβ
.

By Lemma 32,

(145)
ÿ

dpxi,yqąR1

1´ c pξipyqq !R
d´2β,

ÿ

yPTm

spξipyqq “Op1q.

It follows that

(146) 1´
ˇ

ˇµ̂
`

ξi
˘
ˇ

ˇ“
1

|Tm|
ÿ

dpxi,yqďR1

`

1´ c
`

ξipyq
˘˘

`O

ˆ

1

R2β´dmd

˙

.

If dpxi, yq ďR1, then ξpyq “ ξipyq `OpR´βq, so that

(147) c
`

ξpyq
˘

“ c
`

ξipyq
˘

`O

˜

ˇ

ˇs
`

ξipyq
˘
ˇ

ˇ

Rβ

¸

`OpR´2βq.

By Lemma 32,

(148)
ÿ

dpxi,yqďR1

ˇ

ˇs
`

ξipyq
˘ˇ

ˇ!

$

&

%

logR d“ 2
R d“ 3,4
R2 dě 5

.

Thus

(149) 1´
ˇ

ˇµ̂
`

ξi
˘
ˇ

ˇ“
1

|Tm|
ÿ

dpxi,yqďR1

`

1´ c
`

ξy
˘˘

`O

ˆ

logR

R2β´dmd

˙

.

For z R
Ťk
i“1BR1pxiq, let ri “ dpxi, zq, so that

(150)
ˇ

ˇξpzq
ˇ

ˇ“O

˜

1

rβ1
` ¨ ¨ ¨ `

1

rβk

¸

.

It follows that

(151)
ÿ

zR
Ťk
i“1BR1 pxiq

`

1´ c
`

ξpzq
˘˘

“O

ˆ

1

R2β´d

˙

,

and thus

(152)
k
ÿ

i“1

`

1´
ˇ

ˇµ̂
`

ξi
˘ˇ

ˇ

˘

“O

ˆ

logR

R2β´dmd

˙

`
1

|Tm|
ÿ

zPTm

`

1´ c
`

ξpzq
˘˘

.

We have Repµ̂pξqq " 1. Meanwhile, by Taylor expanding sin to degree 3,

(153) Im
`

µ̂
`

ξ
˘˘

“
1

|Tm|
ÿ

zPTm

s
`

ξpzq
˘

“O

ˆ

1

md

˙

.

It follows that

(154)
k
ÿ

i“1

`

1´
ˇ

ˇµ̂
`

ξi
˘
ˇ

ˇ

˘

“O

ˆ

logR

R2β´dmd

˙

` 1´ |µ̂pξq| .
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For larger frequencies ξ, for which ν “ ∆ξ has larger `1 norm, a clustering is used on
the prevector ν. Given a radius R, say two points xo, xt P suppν are R-path connected if
there exist points xo “ x0, x1, ..., xn “ xt in suppν such that for all 0ď iă n, dpxi, xi`1q ă

R. Given ν, let C “ C pνq be the R-path connected components in suppν. Say that ν is
R-reduced if for all C P C , ν|C R I . The R-reduction of ν is the prevector ν 1 which is
equivalent to ν and omits any clusters C such that ν|C PI . Evidently, ν and ν 1 generate the
same frequency ξ P Ĝm and each norm of ν 1 is no larger than the norm of ν.

Denote nbdpCq the distance R neighborhood of the set C .

LEMMA 39. Let B ě 1 be a fixed parameter. There is a function ηpB,Rq tending to 0 as
RÑ8 such that for all m sufficiently large, if ν P ZTm satisfies the following conditions:

1. ν is R-reduced
2. }ν}L8 “Op1q, with a constant that depends only on T
3. ν has an R-cluster C for which }ν|C}1 ďB

then

(155) savpgTm ˚ ν; nbdpCqq ě γ0 ´ op1q ´ ηpB,Rq,

with op1q tending to 0 as mÑ8.

PROOF. Decompose the phase function ξ “ gTm ˚ ν into an internal and external compo-
nent, ξ “ ξi ` ξe, where

(156) ξi :“ gTm ˚ ν|C , ξe :“ gTm ˚ ν|Cc .

Let Q “T {Λ. The argument sums over each of the individual classes in Q so that discrete
derivatives may be applied in Λ. The first observation is that, in a fixed class q P Q, the
external phase ξe may be well approximated in the cluster nbdpCq by a polynomial of degree
at most 2. Note that for x P nbdpCq, any y P supppνqzC satisfies dpx, yq ą R

2 . By the bound
in Lemma 28, for |a| “ 3,

|Daξex| “

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

yPCc

νpyqDagy,Tmpxq

ˇ

ˇ

ˇ

ˇ

ˇ

ď }ν}8
ÿ

yPBRpxqc

|Dagy,Tmpxq|

!
ÿ

dpx,yqěR

1

dpx, yqd`1

!

ż 8

R

dr

r2
!

1

R
.

The proof now proceeds essentially as in Lemma 25 of [16]. Let R1,R2,R3 be parameters
which tend to 8 with R and satisfy R1 ăR2 ăR3 ăR, and

(157) R1 Ñ8,
R2

R4
1

Ñ8,
R3

R1R2
2

Ñ8,
R

R2
1R

2
3

" 1, as RÑ8.

First, for each x P C , choose a representative q for each class in Q with dpq,xq “Op1q and
assume that for all λ P Λ such that }λ}1 ďR1,

(158)
›

›ξeq ´ ξ
e
q`λ

›

›

R{Z ă
1

Rd`1
1

.
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The clustering process of Proposition 20 of [16] obtains a cover

(159) suppν Ă
ğ

xPX 1

BR̃1pxq
pxq

and such that, for each x PX 1 there are radii 2R̃1pxq ă R̃2pxq such that

(160) d
´

x, suppν|BR̃1pxq
pxqc

¯

ą 2R̃2pxq, x PX 1,

and the balls tBR̃2pxq
pxquxPX 1 are disjoint, and meet the conditions of either Lemma 35 or

36; in addition, we require that the balls are sufficiently large to accommodate a further fixed
parameter R1 ď R̃2pxq satisfying the conditions below. The radii R̃2 are uniformly bounded
by some R0, with a bound depending only on B. By taking R sufficiently large assume that
R0 is arbitrarily small compared to R1.

Let x PX 1 and q PQ with dpx, qq “Op1q to find, for a parameter R1 ď R̃2pxq,

(161)

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

dpy,xqďR1,y”q mod Λ

epξiy ` ξ
e
yq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

dpy,xqďR1,y”q mod Λ

epξiyq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

`O

ˆ

1

R1

˙

.

Thus,
ÿ

dpy,xqďR1

epξiy ` ξ
e
yq “

ÿ

qPQ

epξeqq
ÿ

dpy,xqďR1,y”q mod Λ

epξiyq `O

ˆ

1

R1

˙

.

Let X 2 “ tx PX 1 : νBR̃1pxq
pxq RI u. Let ux “ ν|BR̃1pxq

pxq. If ux RCρpTmq then each sum

(162)
ÿ

dpy,xqďR1,y”q mod Λ

epξiyq

can be made to save an arbitrary constant by choosing R1 sufficiently large, which suffices to
complete the proof of the lemma, so assume ux PCρpTmq. Under this condition,

ÿ

dpy,xqďR1,y”q mod Λ

|spξiyq| !
1

Rβ´d

so that

savpξi;BR1pxq X q mod Λq “
ÿ

dpy,xqďR1,y”q mod Λ

1´ cpξiyq `O

ˆ

1

R12β´d

˙

.

In particular,
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

qPQ

epξeqq
ÿ

dpy,xqďR1,y”q mod Λ

epξiyq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď
ÿ

qPQ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

dpy,xqďR1,y”q mod Λ

epξiyq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

dpy,xqďR1

epξiyq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

`O

ˆ

1

R12β´d

˙

.

If there are two or more elements of X 2, appealing to Lemma 36 saves more than γ0 if m is
sufficiently large. If |X 1| “ 1 let ux PCρpTmqzI . This obtains

savpξi;BR1
pxqq “ savpgTm ˚ u

x;BR1
pxqq

“ savpgTm ˚ u
xq `O

˜

plogR1q
2

R2β´d
1

¸

.
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Since the support of ux is treated as bounded and for fixed ν P CρpT q, savpgTm ˚ νq Ñ
fpg ˚ νq as mÑ 8, savpgTm ˚ u

xq ě γ0 ´ op1q as mÑ 8. This again suffices for the
lemma.

The remainder of the proof is the same as the proof of Lemma 25 of [16], which handles
the case of a linear or quadratic external phase using van der Corput’s inequality to reduce to
the linear case, and then Lemma 11 to bound the sum of the linear phase.

5.2. Open boundary case. In the case of a reflected boundary let F be the family of
reflecting hyperplanes, and R the fundamental open region. The number of vertices is |Tm| “

1` |mR XT |. Consider ξ P Ĝm to be an mF -anti-symmetric function on T .
In two dimensions, define functionals

fpξq “
ÿ

xPT

1´ cpξxq

fapξq “
ÿ

xPQa

1´ cpξxq

fpa1,a2qpξq “
ÿ

xPQpa1,a2q

1´ cpξxq.

In dimension dě 3, for 0ď iď d, define the functional

(163) fSpξq “
ÿ

xPT {SS

1´ cpξxq.

The graph T {SS is given the quotient distance.
Let rm Ñ 8 with m a parameter, say rm “ logm. Let ν : Tm Ñ Z. Say ν is a co-

dimension j cluster if its support has distance at most rm to a boundary of co-dimension
j, but not any boundary of codimension ią j. Let

(164) Ĝm,j “ tξ P Ĝm : ∆ξ is a co-dim j clusteru.

Define the jth spectral gap to be

(165) gapm,j “ inf
ξPĜm,j

ξı0 mod 1

1´ |µ̂pξq| .

One way of constructing a j cluster begins with a set S of j hyperplanes and ν P C pB,R1q

with support contained in a single octant descibed by the hyperplanes. Impose reflection anti-
symmetry in the hyperplanes. For allm sufficiently large, translate ν to ν̃ within a fundamen-
tal domain R for T {mF by a vector parallel to the hyperplanes in S, such that supp ν̃ has
distance less than or equal to rm from those sides of R contained in S, and distance greater
than rm from all remaining sides. Form νm by imposing reflection anti-symmetry in mF .

In the following proposition, interpret S “H or S “ a or S “ pa1, a2q if the dimension is
2.

PROPOSITION 40. FixB,R1 ą 0, and let ν P C pB,R1q have reflection anti-symmetry in
a family S of j hyperplanes. For any mą 2R1, let νm be any j-cluster in Tm constructed as
above. Let ξpmq “ ξpmqpνq be the frequency in Ĝm corresponding to νm, and let ξ “ ξpνq “
g ˚ ν. Then

(166) savpξpmqqÑ fSpξq as mÑ8.
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PROOF. In this proof, identify Tm with m ¨R XT . Recall that functions which are re-
flection anti-symmetric in F are periodic in a lattice Λ, and that R has finite index in T {Λ.
Treated as a function on Tm “T {mΛ, νm may be considered as the sum of some bounded
number I of functions of bounded support

(167) νm “
I
ÿ

i“1

νm,i

one of whose support, say νm,1 intersects Tm and is a translate of ν. By the condition of
being a j cluster, the distance from the support of the next nearest component to Tm is at
least rm, since νm has distance at least rm from the corresponding reflecting boundary. Thus,
ξpmq “

řI
i“1 gTm ˚ νm,i “

řI
i“1 ξ

pmq
i . Let xi P suppνm,i. By the decay estimate in Lemma

28,

(168) ξ
pmq
i pyq !

1

dpxi, yqβ
,

and thus, by Lemma 32,

(169)
ÿ

yPTm

|spξpmqpyqq| !

$

&

%

logm d“ 2
m d“ 3,4
m2 dě 5

.

Thus, by Lemma 31,

(170)

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

savpξpmqq ´
ÿ

yPTm

p1´ cpξpmqpyqqq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

!

$

’

’

&

’

’

%

plogmq2

m2 d“ 2
1
m d“ 3
1
m2 d“ 4

1
md´4 dě 5

.

For R a fixed parameter, which may be taken arbitrarily large, by Lemma 32,
ÿ

yPTm,dpy,x1qąR

1´ cpξpmqpyqq !Rd´2β.

Meanwhile, for dpy,x1q ďR,

(171) 1´ cpξpmqpyqq “ 1´ cpξ
pmq
1 pyqq ` op1q

with the error holding as mÑ8. Thus,

savpξpmqq “
ÿ

yPTm,dpy,x1qďR

p1´ cpξpmqpyqqq ` op1q `O
´

Rd´2β
¯

.

Letting mÑ8, ξpmq converges pointwise to a translated version of ξ, then letting RÑ8

obtains the claim.

LEMMA 41. For all A,B,R1 ą 0 there exists an R2pA,B,R1q ą 2R1 such that if m is
sufficiently large, then for any x PTm and any ν P ZTm satisfying the following conditions:

1. }ν}1 ďB
2. ν|BR1

pxq RC
ρpTmq and ν|BR1

pxq is a j-cluster
3. dpx, suppν|BR1

pxqcq ą 2R2

the bound holds

(172) savpg ˚ ν;BR2
pxqq ěA.

Thus, if ν has mean zero, then the corresponding frequency ξ P Ĝm satisfies savpξ;BR2
pxqq ě

A.
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PROOF. The proof is the same as of Lemma 35.

LEMMA 42. For all B,R1 ą 0 and α ă 1, there exists R2pα,B,R1q ą 2R1 such that
if m is sufficiently large, then for any x P Tm and any ν P ZTm satisfying the following
conditions:

1. }ν}1 ďB
2. ν|BR1

pxq PC
ρpTmq and ν|BR1

pxq is a j-cluster

3. d
´

x, suppν|BR1 pxq
c

¯

ą 2R2

the bound holds

(173) savpg ˚ ν;BR2
pxqq ě α savpξ˚q; ξ˚ “ g ˚ ν|BR1

pxq.

PROOF. The proof is the same as of Lemma 36.

PROPOSITION 43. The spectral parameters γj are positive. If j “ 0 or γj ă γj´1 then
there exist constants B0,R0 ą 0 such that

1. For sufficiently large m, any ξ P Ĝm,j that achieves the jth spectral gap, savpξq “ p1`
|Tm|qgapm,j , has a prevector ν PCρpTmq which is a translate of some ν 1 P C pB0,R0q Ă

CρpT q with reflection anti-symmetry in a family S of j hyperplanes.
2. For any ν P CρpT q which has reflection anti-symmetry in a family S of hyperplanes,
|S| “ j, and satisfying fSpg ˚ νq ă γj´1 or j “ 0, there exists ν 1 P C pB0,R0q Ă C

ρpT q
with reflection anti-symmetry in S such that a translate of ν 1 differs from ν by an element
of I . In particular, fSpg ˚ νq “ fSpg ˚ ν 1q.

If j ą 0 and γj “ γj´1 the above statements hold with the caveat that the prevector has
bounded `1 norm and bounded support, but that the support of the prevector may be arbi-
trarily far from 0.

PROOF. This is similar to the proof of Proposition 37. The first step in this proof finds a
constant B0 such that:

(I) For sufficiently large m, if ξpmq P Ĝm,j achieves savpξpmqq “ p1` |Tm|qgapm,j then its
distinguished prevector νpmq must satisfy

›

›νpmq
›

›

1
ďB0.

(II) If ν P CρpT q has reflection symmetry in a set S of hyperplanes, |S| “ j and satisfies
fSpg ˚ νq ď

3
2γj ` 1, then ν differs by an element of I from some ν̃ P CρpT q with

}ν̃}1 ďB0.

To prove (I), fix ν 1 PCρpT qzI with reflection anti-symmetry in a family S of hyperplanes.
Choose B1,R1 large enough so that ν 1 P C pB1,R1q. For each m sufficiently large let νm be
a translation of ν 1 along hyperplanes on the boundary of m ¨R and ξpmq the corresponding
element of Ĝm. By Proposition 40,

(174) sav
´

ξpmq
¯

Ñ fSpg ˚ ν
1q “ γ1 as mÑ8,

and therefore savpξpmqq ă γ1 ` 1 for sufficiently large m.
Let ξpmq P Ĝm,j achieve the jth spectral gap, and let νpmq be the distinguished prevector

of ξpmq. By Lemma 19,

(175)
›

›

›
νpmq

›

›

›

1
! sav

´

ξpmq
¯

ă γ1 ` 1.

This proves (I).
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To prove (II), let ν P CρpT q, and let ξ “ g ˚ ν. Since ν P CρpT q, ξ P `2pT q. There is
a version ξ̃ : T Ñ

“

´1
2 ,

1
2

˘

, ξ̃ ” ξ mod 1 such that ∆ξ̃ “ ν ´∆w which differs from ν by
∆w PI . Because ν̃ is integer valued and ∆ is bounded `2 Ñ `2,

(176) }ν̃}1 ď }ν̃}
2
2 “ }∆ξ̃}

2
2 ! }ξ̃}

2
2 “

ÿ

xPT

|ξ̃x|
2 !

ÿ

xPT

p1´ cpξ̃xqq.

An upper bound on fpg ˚ νq thus implies and upper bound on }ν̃}1.
The covering process described in Proposition 20 of [16] takes as input a vector ν P ZT

or ν P ZTm with }ν}1 ď B0 and returns a set X 1 and radia R1pxq,R2pxq satisfying the
conditions of Lemma 41 or Lemma 42 with Aą 3

2 maxj γj ` 1 and α arbitrarily close to 1,
and such that

(177) suppν Ă
ď

xPX 1

BR1pxqpxq, d
´

x, suppν|BR1pxq
pxqc

¯

ą 2R2pxq

for each x PX 1 and the balls tBR2pxqpxquxPX 1 are pairwise disjoint. Let X 2 “ tx PX 1 :
ν|BR1pxq

pxq RI u.
First consider item (2) of the Proposition, so that ν is a function on T which is anti-

symmetric in a set S of hyperplanes. Let upxq “ ν|BR1pxqpxq
treated as a function which is

anti-symmetric in S. Given x PX 2, if upxq R Cρ then savpξq ě 3
2γj ` 1. Also, if |X 2| ě 2

the savings from g ˚ upx1q together with g ˚ upx2q is approximately twice the savings from an
individual component. Thus it suffices to assume that |X 2| “ 1 and upxq PCρpT q.

If j ě 1, g ˚ upxq is in `2pT q. It follows that if τy indicates translation in a direction away
from a hyperplane of S, then

(178) lim inf
yÑ8

savpg ˚ pτyu
pxqqq ě γj´1.

Hence if γj ă γj´1 then the inf is achieved by a function with support in a bounded neigh-
borhood of 0. If j “ 0 then there are no reflecting hyperplanes, and the savings is translation
invariant, so that the claim still holds. This suffices for (2).

For (1), argue similarly, using that as mÑ8 the savings converges to fS .

LEMMA 44. Let k ě 1 be fixed, and let ν1, ..., νk be bounded functions of bounded sup-
port and such that νi P CρpTmq. Suppose the functions are R-separated, in the sense that
their supports have pairwise distance at least R. Set ν “

řk
j“1 νj . Then as RÑ8,

(179) 1´ |µ̂pξpνqq| “O

ˆ

logR

R2β´dmd

˙

`

k
ÿ

j“1

p1´ |µ̂pξpνjqq|q .

The implicit constant depends upon k and the bounds for the functions and their supports.

PROOF. Let νj “
řI
i“1 νj,i as a function on T {mΛ with νj,1 having support that inter-

sects Tm. Let xj,i P suppνj,i and ξ “ gTm ˚ν, ξj “ gTm ˚νj , ξj,i “ gTm ˚νj,i. LetR1 “
X

R´1
2

\

so that the balls BR1pxj,iq are pairwise disjoint.
By the decay estimate in Lemma 28,

(180) |ξj,ipyq| !
1

dpxj,i, yqβ
.

Thus, by Lemma 32,
ÿ

yPTm

ˇ

ˇs
`

ξjpyq
˘ˇ

ˇ!md´β,
ÿ

yPTm

ˇ

ˇs
`

ξpyq
˘ˇ

ˇ!md´β.
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It follows from Lemma 31 that

savpξq “
ÿ

yPTm

`

1´ c
`

ξpyq
˘˘

`O

ˆ

1

m2β´d

˙

,

savpξiq “
ÿ

yPTm

`

1´ c
`

ξipyq
˘˘

`O

ˆ

1

m2β´d

˙

.

If dpxj,i, yq ďR1, then ξpyq “ ξj,ipyq `OpR´βq, so that

(181) c
`

ξpyq
˘

“ c
`

ξj,ipyq
˘

`O

˜

ˇ

ˇs
`

ξj,ipyq
˘ˇ

ˇ

Rβ

¸

`OpR´2βq.

By Lemma 32,

(182)
ÿ

dpxj,i,yqďR1

ˇ

ˇs
`

ξj,ipyq
˘ˇ

ˇ!

$

&

%

logR d“ 2
R d“ 3,4
R2 dě 5

.

Meanwhile,
´

řI
i“1 ξj,ipyq

¯2
ď I

řI
i“1 ξj,ipyq

2. Thus

(183)
ÿ

yPTm,dpy,xj,1qąR1

1´ c
`

ξjpyq
˘

!
1

R2β´d
.

It follows that

(184) 1´
ˇ

ˇµ̂
`

ξj
˘ˇ

ˇ“O

ˆ

logR

R2β´dmd

˙

`
1

1` |Tm|

ÿ

yPTm,dpy,xj,1qďR1

`

1´ c
`

ξpxj,1 ` yq
˘˘

.

Similarly,

(185)
ÿ

zPTm
zR

Ťk
j“1

Br1 pxj,1q

1´ c
`

ξpzq
˘

!
1

R2β´d
.

It follows

(186) 1´
ˇ

ˇµ̂
`

ξ
˘ˇ

ˇ“O

ˆ

logR

R2β´dmd

˙

`

k
ÿ

j“1

`

1´
ˇ

ˇµ̂
`

ξj
˘ˇ

ˇ

˘

.

For larger frequencies, the analogue of Lemma 39 in the case of an open boundary is as
follows.

LEMMA 45. Let B ě 1 be a fixed parameter. There is a function ηpB,Rq tending to 0 as
RÑ8 such that for all m sufficiently large, if ν P ZTm satisfies the following conditions:

1. ν is R-reduced
2. }ν}L8 “Op1q with a constant depending only on T
3. ν has an R-cluster C for which }ν|C}1 ďB and which is a j boundary cluster

then

(187) savpg ˚ ν; nbdpCqq ě p1` |Tm|qgapm,j ´ ηpB,Rq.
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PROOF. The proof is the same as the proof of Lemma 39.

PROOF OF THEOREM 2. When the boundary is open, let γ1 “minj γj and let j be min-
imal such that γj “ γ1. By the minimality, there are B0,R0 such that there is a vector
ν P C pB0,R0qwith reflection symmetry in a set S of hyperplanes, |S| “ j such that ξ “ g˚ν,
and γ1 “ fSpξq. By Proposition 40 it is possible to find a sequence ξpmq P Ĝm such that

(188) savpξpmqqÑ fSpξq

as mÑ8.
To complete the proof, it suffices to show that

(189) γ˚ “ lim inf
mÑ8

p1` |Tm|qgapm

satisfies γ˚ ě γ1. Let ξpmjq P Ĝmj
satisfy savpξpmjqq Ñ γ˚, and let νpmjq be the sequence

of prevectors, which may be assumed to satisfy }νpmjq}1 ď B0 and diam suppνpmjq ď R0.
Given R ą 0 let jR be maximal such that infinitely often suppνpmq has distance at most
R from jR boundary hyperplanes. Let j˚ “ supR jR, which is achieved for some R1. Let
rm Ñ8 sufficiently slowly so that only finitely many mj have νpmjq a boundary cluster
with more than j˚ boundaries. Take a subsequence mji for which νpmji

q is a j˚ boundary
cluster and has distance at most R1 from each of the j˚ boundaries. By Proposition 43, for
each mji there is a translation of νpmji

q to νmji
P C pB0,R0q Ă C

ρpT q with reflection anti-
symmetry in a family S of j˚ hyperplanes. By Proposition 40,

(190) savpξpmji
qq ´ fSpg ˚ ν

pmji
qqÑ 0

as iÑ8, which proves that γ˚ “ γ1.
In the case of a periodic boundary, let tνnun be a sequence of functions in C1pT q

with fpg ˚ νnq Ñ γ. For each fixed n, as m Ñ 8, savpgTm ˚ νnq Ñ fpg ˚ νnq so
lim sup |Tm|gapm ď γ. To prove the reverse direction, let ξmk

P Ĝmk
be a sequence such

that savpξmk
q Ñ lim inf |Tm|gapm. Let νmk

“∆ξmk
, which is integer valued and has sum

0, hence is in C1pTmq. Perform a clustering on νmk
. Arguing as in the proof of Proposition

37, conclude that after eliminating clusters in I , there are at most two non-empty clusters
in νmk

for all k sufficiently large. Since the clusters are of bounded size, after passing to a
subsequence we may assume that, up to translation, the two clusters are the same for all k
sufficiently large. In the limit, the savings from the neighborhood of each cluster tends to at
least γ0 ´ oRp1q as kÑ8. It follows that if there are two clusters, the lim inf is at least
2γ0 ě γ. If there is only one cluster, the function in the cluster is C1, and hence the liminf is
at least γ.

6. Mixing analysis. An L2 version of Theorem 3 is as follows.

THEOREM 46. For a fixed tiling T in Rd, let c0 “ γ´1
0 . Let m ě 2 and let tmix

m “
c0
2 |Tm| log |Tm|. For each fixed εą 0, sandpiles on Tm satisfy

lim
mÑ8

›

›

›
P rp1´εqtmix

m s
m δσfull

´URm

›

›

›

L2pdURm q
“8,

lim
mÑ8

›

›

›
P tp1`εqtmix

m u
m δσfull

´URm

›

›

›

L2pdURm q
“ 0.
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If the tiling T satisfies the reflection condition and condition A then set tmix
m “

Γ
2 |Tm| logm. For each fixed εą 0, sandpiles on Tm satisfy

lim
mÑ8

›

›

›
P rp1´εqtmix

m s
m δσfull

´URm

›

›

›

L2pdURm q
“8,

lim
mÑ8

›

›

›
P tp1`εqtmix

m u
m δσfull

´URm

›

›

›

L2pdURm q
“ 0.

The proof of the lower bound of both the total variation andL2 theorems uses the following
Lemma adapted from Diaconis and Shahshahani [11].

LEMMA 47. Let G be a finite abelian group, let µ be a probability measure on G and let
N ě 1. Let X Ă Ĝ zt0u. Suppose that the following inequalities hold for some parameters
0ă ε1, ε2 ă 1,

ÿ

ξPX

|µ̂pξq|N ě
|X |

1

2

ε1
(191)

ÿ

ξ1,ξ2PX

|µ̂pξ1 ´ ξ2q|
N
ď p1` ε22q

¨

˝

ÿ

ξPX

|µ̂pξq|N

˛

‚

2

.

Then

(192)
›

›µ˚N ´UG

›

›

TVpG q
ě 1´ 4ε21 ´ 4ε22.

PROOF. See Lemma 27 in [16].

PROOF OF THEOREM 3, LOWER BOUND. First consider the Tm case. Let ν P C pB0,R0q

be such that ξ “ g ˚ ν satisfies fpξq “ γ0. Let R ą R0 and let tν1
i u
M
i“1, tν2

i u
M
i“1 be two

collections of R-separated translates of ν with those translates ν1
i having distance "m from

those translates ν2
i for all i, j. Here M — md

Rd . Let νi,j “ ν1
i ´ ν

2
j . Let ξi,j “ g ˚ νi,j .

Let N “
Y

`

d
2 logm´ c

˘

|Tm| 1
γ0

]

. Let X “ tξi,ju
M
i,j“1. By Lemma 44,

(193) 1´ |µ̂pξi,jq| “
2γ0

|Tm|
`O

ˆ

logm

m2β

˙

,

so

(194) log |µ̂pξi,jq| “ ´
2γ0

|Tm|
`O

ˆ

logm

m2β

˙

,

and thus

(195) |µ̂pξi,jq|
N
“ e2cm´d

ˆ

1`O

ˆ

plogmq2

m2β´d

˙˙

.

It follows that the first condition of Lemma 47 holds with ε1 “O
`

Rde´2c
˘

.
If the supports of ν1

i1
and ν1

i2
have distance at least ρ, and the supports of ν2

j1
and ν2

j2
have

distance at least ρ,

(196) 1´ |µ̂pξi1,j1 ´ ξi2,j2q| “
4γ0

|Tm|
`O

ˆ

logρ

ρ2β´dmd

˙

,



SANDPILES 47

and, hence,

(197) |µ̂pξi1,j1 ´ ξi2,j2q|
N
“ e4cm

´2d`O
´

log ρ

ρ2β´d

¯

.

Meanwhile, if i1 “ i2 or j1 “ j2 but the other functions have support at distance at least ρ,
then

(198) 1´ |µ̂pξi1,j1 ´ ξi2,j2q| “
2γ0

|Tm|
`O

ˆ

logρ

ρ2β´dmd

˙

and hence

(199) |µ̂pξi1,j1 ´ ξi2,j2q|
N
“ e2cm

´d`O
´

log ρ

ρ2β´d

¯

.

In what follows, abbreviate dpν, ν 1q the distance between the supports of ν and ν 1. If R is
a large enough fixed constant, then

(200)
ÿ

1ďi1,i2,j1,j2ďM
minpdpν1

i1
,ν1
i2
q,dpν2

j1
,ν2
j2
qqăplogmq2

|µ̂pξi1,j1 ´ ξi2,j2q|
N
! e2cm

2d

R2d
` e4cO

´

m
3d

2

¯

.

This is the composite of three estimates.

1. The number of choices in which i1 “ i2 and j1 “ j2 is M2 ! m2d

R2d .
2. The contribution of terms with i1 “ i2 or j1 “ j2, but not both is bounded as follows. By

symmetry, assume i1 “ i2, which can be chosen in M ways. Choose j1 in M ways. Split
the sum over j2 into terms in which the distance between the supports of νj1 , νj2 are in
some dyadic interval. This obtains a bound, for R sufficiently large,

M2
ÿ

Rď2kă2m

ÿ

j2
2k´1ďdpνj1 ,νj2 qă2k

e2cm´d`Op
k

2kp2β´dq
q

! e2c m
d

R2d

ÿ

Rď2kă2m

2kd exp

ˆ

Cplogmqk

2kp2β´dq

˙

! e2cm
2d

R2d
.

3. When i1 ‰ i2 and j1 ‰ j2, but one of the two has distance at most plogmq2, assume by
symmetry that dpνj1 , νj2q ă plogmq2. Choose i1, i2, j1 in OpM3q ways, then bound the
sum over j2 by summing over dpνj1 , νj2q

!M3
ÿ

Ră2kď2plogmq2

ÿ

j2
2k´1ďdpνj1 ,νj2 qă2k

e4cm´2d`Op k

2kp2β´dq
q

! e4cm
3d

2 .

Meanwhile
ÿ

1ďi1,i2,j1,j2ďM
minpdpν1

i1
,ν1
i2
q,dpν2

j1
,ν2
j2
qqěplogmq2

|µ̂pξi1,j1 ´ ξi2,j2q|
N

“
ÿ

1ďi1,i2,j1,j2ďM
dpνi1 ,νi2 q,dpνj1 ,νj2 qěplogmq2

e4cm´2d

ˆ

1`O

ˆ

log logm

logm

˙˙

ďM4 |µ̂pξq|4N
ˆ

1`O

ˆ

log logm

logm

˙˙

.
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Therefore, since M4 |µ̂pξq|4N — e4c m2d

R4d ,
ÿ

1ďi1,i2,j1,j2ďM

|µ̂pξi1,j1 ´ ξi2,j2q|
N(201)

ďM4 |µ̂pξq|4N
ˆ

1`O

ˆ

log logm

logm
`
R2d

e2c
`

1

m
d

2

˙˙

,

and thus the second condition holds with ε2 “O
`

Rde´c
˘

.
In the case of an open boundary, let Γ“ Γj be maximized at the co-dimension j boundary.

Recall Γj “
d´j
γj

and hence, either j “ 0 or γj ă γj´1. In either case, there is a set S of j
hyperplanes and a vector ν P C pB0,R0q with reflection anti-symmetry in S such that γj “
fSpg ˚ νq.

Let, as above, R be a large constant, and let tνiuMi“1, M — md´j

Rd´j be R-spaced translates
of ν parallel to S, which are j-clusters in Tm. Let ξi “ gTm ˚ νi and X “ tξiu

M
i“1. By

Proposition 40, for each i, uniformly in m,

(202) savpξiq “ p1` op1qqγj

although, note that the savings may differ across X . Given 0ă εă 1
2 , let

(203) N “

Z

p1´ εq
d´ j

2γj
|Tm| logm

^

.

Hence,

(204) |µ̂pξiq|
N
“

mop1q

m
d´j

2
p1´εq

.

It follows that the condition on ε1 from Lemma 47 holds with

(205) ε1 “
1

m
d´j

2
ε`op1q

.

Meanwhile, for ρąR, if dpνi, νjq ą ρ,

(206) 1´ |µ̂pξi ´ ξjq| “ 1´ |µ̂pξiq| ` 1´ |µ̂pξjq| `O

ˆ

logρ

ρ2β´dmd

˙

.

Thus, arguing as before,

(207)
ÿ

1ďi,jďM
dpνi,νjqăplogmq2

|µ̂pξi ´ ξjq|
N
“O

ˆ

md´j

Rd´j

˙

`O
´

m
d´j

2

¯

.

The first error term is obtained by the diagonal i “ j which can be chosen in M ways. To
bound the remaining terms, choose i in M ways, then bound the sum over j by summing
over dyadic intervals of dpνi, νjq. For R sufficiently large this obtains a bound of

M
ÿ

Rď2kď2plogmq2

ÿ

j
2k´1ďdpνi,νjqă2k

mOp k

2kp2β´dq
q

mpd´jqp1´εq`op1q
!m

d´j

2 .

Meanwhile,
ÿ

1ďi,jďM
dpνi,νjqěplogmq2

|µ̂pξi ´ ξjq|
N

ď

˜

ÿ

1ďiďM

|µ̂pξiq|
N

¸2
ˆ

1`O

ˆ

log logm

logm

˙˙

.
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It follows that
ÿ

1ďi,jďM

|µ̂pξi ´ ξjq|
N

ď

˜

ÿ

1ďiďM

|µ̂pξiq|
N

¸2˜

1`O

˜

log logm

logm
`

mop1q

mpd´jqε

¸¸

.

Thus the condition on ε2 of Lemma 47 is satisfied with ε2 “O
´

log logm
logm

¯

.

PROOF OF THEOREM 46, LOWER BOUND. By Parseval,

(208)
›

›PNm δσfull
´URm

›

›

2

2
“

ÿ

0‰ξPĜm

|µ̂pξq|2N .

By Cauchy-Schwarz, the condition
ř

ξPX |µ̂pξq|N ě |X |
1
2

ε1
implies

(209)
ÿ

ξPX

|µ̂pξq|2N ě
1

ε21
.

The theorem thus follows from the previous lower bound.

6.1. Proof of upper bound. The upper bound in Theorem 3 is obtained from the upper
bound in Theorem 46 by applying Cauchy-Schwarz followed by Parseval.

Let R “ Rpεq be a parameter. In the case of Tm, let ξ P Ĝm, and let ν be its R-reduced
prevector. Perform a clustering on ν in which points xi, xt in its support are connected in
a cluster if there is a sequence of points xi “ x0, x1, ..., xn “ xt from the support such that
BRpxiq X BRpxi`1q ‰ H. Let N pV,Kq denote the number of R-reduced prevectors ν of
L1 mass V in K clusters. In the case of Tm, let rm be a radius tending slowly to infinity,
rm ď logm. Given a set S of bounding hyperplanes, say that a cluster C is of type S if S
is a maximal set of hyperplanes such that the cluster intersects the rm neighborhood of the
intersection of the planes in S. If there is more than one such maximal S, choose one to
which C belongs arbitrarily. Let N pV, tKSuq be the number of R-reduced prevectors ν of
L1 mass V with KS boundary clusters of type S.

LEMMA 48. The following upper bounds hold:

N pV,Kq ď exp
´

K logpmdq `OpV logRq
¯

N pV, tKSuq ď exp

˜

ÿ

S

KS log
´

md´|S|r|S|m

¯

`OpV logRq

¸

.

PROOF. The case of N pV, tKSuq is demonstrated, the other case being similar. The
number of points which have distance at most rm from the hyperplanes in a set S is
O
´

md´|S|r
|S|
m

¯

. For each of the KS clusters of type S, choose base points of the clusters
in, for some C ą 0,

O
´

exp
´

KS log
´

Cmd´|S|r|S|m

¯¯¯

ways. Given a string of length V , allocate the vertices to belong to the various clusters in
Op2|V |q ways by splitting the string at

ř

KS ´ 1 places. For each cluster of size k, choose
an unlabeled tree on k nodes in exppOpkqq ways, see [25] for the asymptotic count. Traverse
the tree from the root down, placing a vertex at distance OpRdq from its parent vertex. Now
assign the height of each vertex in Op1q ways. This obtains the claimed bound.
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PROOF OF THEOREM 46, UPPER BOUND. The open boundary case is demonstrated, the
periodic boundary case being easier.

Let N “
P

p1` εqΓ
2 p1` |Tm|q logm

T

. Write ΞpV, tKSuq for the collection of nonzero fre-
quencies ξ P Ĝm such that the R-reduced prevector of ξ has L1 norm V in tKSu R-clusters.
Thus, with K “ |KS | “

ř

SKS ,

(210)
›

›PNm δσfull
´URm

›

›

2

L2pdURm q
“

ÿ

KS ,|KS |ě1

ÿ

Vě|KS |

ÿ

ξPΞpV,tKSuq

|µ̂pξq|2N .

Let ΞpV,Kq “
Ť

|KS |“K
ΞpV, tKSuq. It follows from Lemma 19 that for some c ą 0, for

ξ P ΞpV,Kq,

(211) |µ̂pξq|2N ď expp´cV logmq.

Let Aą 0 be a fixed integer constant satisfying Acą 2d. Then,
ÿ

Kě1

ÿ

VěAK

ÿ

ξPΞpV,Kq

|µ̂pξq|2N(212)

ď
ÿ

Kě1

ÿ

VěAK

N pV,Kq expp´cV logmq

ď
ÿ

Kě1

ÿ

VěAK

exp
´

K logpmdq ´ V rc logm´OplogRqs
¯

.

If m is sufficiently large, the inner sum is bounded by ! expp´ cAK
2 logmq. Now choose A

large enough so that the sum over K is bounded by !m´1.
Let 0 ă δ ă 1 be a parameter and set B “ Aδ´1. Apply Lemma 45 to choose R “ Rpεq

such that the savings from a j boundary R cluster of size at most B is at least γj
`

1´ ε
2

˘

.
If ξ P ΞpV,KSq with V ă AK , then its R-reduced prevector has at least p1´ δqK clusters
of size at most B. Hence, with γ˚ “ maxj γj , γ˚ “ minj γj and δ1 “ γ˚

γ˚
δ assumed to be

sufficiently small,

(213) 1´ |µ̂pξq| ě p1´ δ1q
ÿ

S

KSγ|S|

1` |Tm|

´

1´
ε

2

¯

ě

`

1´ 5ε
6

˘

1` |Tm|

ÿ

S

KSγ|S|.

Thus, using Γě Γj “
d´j
γj

, and using p1´ xq ď e´x, for all ε sufficiently small,

|µ̂pξq|2N ď exp

˜

´p1` εq

ˆ

1´
5ε

6

˙

Γ
ÿ

S

KSγ|S| logm

¸

ď exp

˜

´p1` βqΓ
ÿ

S

KSγ|S| logm

¸

ď exp

ˆ

´p1` βq
ÿ

S,|S|ăd

KSpd´ |S|q logm

´ p1` βqKrdsΓγd logm

˙

where β “ βpεq ą 0.



SANDPILES 51

Thus the sum over V ăAK is bounded by, for some cą 0, and β ą 0 sufficiently small,
ÿ

|KS |ě1

ÿ

|KS |ďVăA|KS |

ÿ

ξPΞpV,Kq

|µ̂pξq|2N

ď
ÿ

|KS |ě1

ÿ

|KS |ďVăA|KS |

ˆN pV, tKSuq exp

¨

˝´p1` βq
ÿ

|S|ăd

KSpd´ |S|q logm´ cKrds logm

˛

‚

!
ÿ

|KS |ě1

ÿ

|KS |ďVăA|KS |

exp

ˆ

ÿ

S

pp´βKSpd´ |S|q logmq `KS |S| log rmq

´ cKrds logm`Op|K|q

˙

!m´
β

2 .

APPENDIX: GREEN FUNCTION ESTIMATES ON GENERAL TILINGS

The Green’s function estimates are based on the local limit theorem for probability mea-
sures with exponentially decaying tail on Zd in Theorem 14.

PROOF OF THEOREM 14. If }n}2 ě N
3

2
´ ε

2 apply Chernoff’s inequality. By Fourier in-
version,

δ˚a1

1 ˚ δ˚a2

2 ˚ ¨ ¨ ¨ ˚ δ˚add ˚ µ˚N pnq

“ p2iq|a|
ż

pR{Zqd
s
´x1

2

¯a1

¨ ¨ ¨s
´xd

2

¯ad
µ̂pxqNe

´

xt
´

n`
a

2

¯¯

dx.

By symmetry,

µ̂pxq “
ÿ

nPZd
µpnqcpn ¨ xq

“ 1´ 2π2
ÿ

nPZd
µpnq

`

|n ¨ x|2 `O
`

}n}4}x}4
˘˘

“ 1´ 2π2}σx}2 `Op}x}4q.

Since µp0q ą 0, and since µ˚k assigns positive measure to each standard basis vector, for
each δ ą 0 there is c1 ą 0 such that if }x}pR{Zqd ą δ then |µ̂pxq| ď 1´ c1. Combining this
observation with Taylor expansion about 0, it follows that there is c2 ą 0 such that |µ̂pxq| ď
1´ c2}x}

2
pR{Zqd . Using this, truncate to, for some c3 ą 0, }x}pR{Zqd ď c3N

´ 1

4 .
Write the remaining part of the integral as

p2iq|a|
ż

}x}ďc3N
´ 1

4

s
´x1

2

¯a1

¨ ¨ ¨s
´xd

2

¯ad

exp
´

´2π2N}σx}2 ` 2πixt
´

n`
a

2

¯

`O
`

N}x}4
˘

¯

dx.
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Write the main term in the exponentials as

´
1

2

˜

2π
?
Nσx´ i

σ´1
`

n` a
2

˘

?
N

¸t˜

2π
?
Nσx´ i

σ´1
`

n` a
2

˘

?
N

¸

´
1

2

›

›σ´1
`

n` a
2

˘›

›

2

N
.

Substitute

(214) y “ x´ i
σ´2

`

n` a
2

˘

2πN
.

Shift the integrals in the complex plane so that

(215) 2π
?
Nσ

˜

x´ i
σ´2

`

n` a
2

˘

2πN

¸

“ 2π
?
Nσy

becomes real. This introduces an integral on }Repxq} “ c3N
´ 1

4 on which } Impxq} ď

N´
1

4
´ ε

4 . Throughout this integral the integrand is bounded by expp´c4N
1

2 q so this con-
tributes an error term. On the shifted integral, write

exppOpN}x}4qq “ 1`OpN}x}4q “ 1`O

ˆ

N}Repxq}4 `
}n}4

N3

˙

.

Write, by Taylor expansion,

s
´x1

2

¯a1

¨ ¨ ¨s
´xd

2

¯ad
“ π|a|xa1

1 ¨ ¨ ¨x
ad
d

ˆ

1`O

ˆ

}Repxq}2 `
}n}2

N2

˙˙

.

Bound each term
ˇ

ˇ

ˇ
σ´2

`

n` a
2

˘

j

ˇ

ˇ

ˇ
! }n}. In integrating away this error, each factor of |xj |

contributes a term of order 1?
N

, which obtains a bound of

(216) ! exp

˜

´
1

2

›

›σ´1
`

n` a
2

˘
›

›

2

N

¸

1`
´

}n}
?
N

¯|a|`4

N
d`|a|`2

2

.

Note that the error of size }n}
2

N2 is bounded by 1
N `

}n}4

N3 .
Write the main term as

p2πiq|a| exp

˜

´
1

2

›

›σ´1
`

n` a
2

˘›

›

2

N

¸

ż

}y}ďc3N
´ 1

4

d
ź

j“1

¨

˝yj ` i

˜

σ´2
`

n` a
2

˘

2πN

¸

j

˛

‚

aj

exp
`

´2π2N}σy}2
˘

dy.

Extend the integral to Rd with negligible error, and substitute z “ 2π
?
Nσy to obtain

exp

ˆ

´1
2
}σ´1pn`

a

2 q}
2

N

˙

p2πqdN
d`|a|

2 detσ

ż

Rd
exp

ˆ

´
}z}2

2

˙ d
ź

j“1

¨

˝ipσ´1zqj ´

˜

σ´2
`

n` a
2

˘

?
N

¸

j

˛

‚

aj

dz.
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This produces the claimed main term. Note that only terms with even powers of z are
preserved by the integral, which proves the formula for the gradient.

Let η be a function of bounded support on T . Let %η be the signed measure on Λ obtained
by starting simple random walk from η and stopping it on the first non-negative step at which
it visits Λ.

LEMMA 49. Let T be a tiling in Rd and let η be an integer valued function on T . There
is a constant c“ cpηq ą 0 such that the following holds. If η PC0pT q then |%ηpxq| ! e´c}x}.

If η PC1pT q then there are functions f1, f2, ..., fd on Λ such that

%η “
d
ÿ

j“1

fj ˚ δj

and satisfying |fjpxq| ! e´c}x}.
If η PC2pT q then there are functions fi,j , 1ď iď j ď d on Λ such that

%η “
ÿ

1ďiďjďd

fi,j ˚ δi ˚ δj

and satisfying |fi,jpxq| ! e´c}x}.

PROOF. In the case that η PC0pT q, the exponential decay condition follows from the fact
that the stopped random walk has a distribution with exponentially decaying tails.

To prove the two remaining claims, given a radius R, let %η,R denote the measure %η re-
stricted to }x} ďR. Due to the exponentially decaying tails, the signed mass of this measure
is exponentially small in R, and if η is C2, the moment is exponentially small in R. Hence, it
follows that there is a bounded measure νη,R of unsigned mass exponentially small inR, such
that %1η,R “ %η,R ` νη,R is in C1pΛq when η PC1pT q, and similarly for C2. Write %1η,R as a
linear combination of translates of tδiu1ďiďd if η P C1pT q or tδi,ju1ďiďjďd of η P C2pT q.
Arrange this sum such that %1η,2R ´ %

1
η,R is the linear combination of translates with absolute

sum of coefficients Ope´c
1Rq, which is easily achieved in the case of C1pT q by balancing

each function value in the support with an opposing value at the origin, the total number of
δi needed to achieve this being OpRq. In the case of C2pT q, first write the difference of a
linear combination of translates of δi, then balance each δi with a corresponding term at the
origin, the number needed for a single one again being OpRq. The polynomial growth is now
dominated by the exponential decay of %1. Letting RÑ8 obtains the required decomposi-
tion.

Let T be a tiling, periodic with period Λ, which is identified with Zd via a choice of
basis. Assume 0 PT . Let % be the measure obtained by stopping the random walk started at
0 at its first return to Λ. Let % 1

2
“ 1

2p%` δ0q be the half-lazy version of %. Given mě 1, let
%Tmpxq “ %px`mΛq and % 1

2
,Tmpxq “ % 1

2
px`mΛq.

LEMMA 50. Let T be a tiling of Rd which is periodic in lattice Λ – Zd. The Green’s
function of T started from 0 is given on Λ by, in dimension d“ 2,

(217) g0pnq “
1

2 degp0q

8
ÿ

N“0

%˚N1
2

pnq ´ %˚N1
2

p0q,
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and in dimension dě 3 by

(218) g0pnq “
1

2 degp0q

8
ÿ

N“0

%˚N1
2

pnq.

For all m sufficiently large, on T {mΛ, when restricted to Λ{mΛ, the Green’s function is
given by

(219) g0,Tmpnq “
1

2 degp0q

8
ÿ

N“0

ˆ

%˚N1
2
,Tmpnq ´

1

md

˙

.

PROOF. This is very similar to the proof of Lemma 29 in [16]. Recall that, in dimension
2,

(220) g0pnq “
1

degp0q

8
ÿ

N“0

%˚N pnq ´ %˚N p0q,

and in dimension at least 3,

(221) g0pnq “
1

degp0q

8
ÿ

N“0

%˚N pnq.

Since, by definition, %˚2p0q ą 0, the measure %˚2 satisfies the conditions of the local limit
theorem above, see also [22]. Thus after taking consecutive odd and even terms together, the
sums converge absolutely.

Expanding by the binomial theorem, in the d“ 2 case,

1

2 degp0q

8
ÿ

N“0

´

%˚N1
2

pnq ´ %˚N1
2

p0q
¯

“
1

2 degp0q

8
ÿ

N“0

1

2N

˜

N
ÿ

k“0

ˆ

N

k

˙

´

%˚kpnq ´ %˚kp0q
¯

¸

“
1

2 degp0q

8
ÿ

k“0

´

%˚kpnq ´ %˚kp0q
¯

8
ÿ

N“k

ˆ

N

k

˙

2´N .

The inner sum evaluates to 2, from the identity
´

1
1´x

¯k
“
ř8
N“0

`

N`k
k

˘

xN , which proves
the first claim. The claim in dimensions dě 3 is similar.

To prove the identity on Λ{mΛ, expand both sides in characters of the group.

The following lemma gives decay estimates for the Green’s function on T .

LEMMA 51. Let T be a tiling in Rd with period lattice Λ, and let η be a function on T
of bounded support. Let gη “ g ˚ η. If η RC1pT q, for x P Λ,

gηpxq !

"

logp2` }x}q d“ 2
1

p1`}x}qd´2 dě 3
.

If Da “ δ˚a1

1 ˚ ... ˚ δ˚add is a discrete differential operator, η PCρpT q and }a} ` ρě 1, then

Dagηpxq !
1

p1` }x}qd`|a|`ρ´2
.
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PROOF. The claims are first proved for the Green’s function g0 started at 0. In this case,
the claims regarding the Green’s function itself were proved in Lemma 22. To prove the
claims regarding the discrete derivative, write

(222) Dag0pxq “
1

2 deg 0

8
ÿ

n“0

Da%˚N1
2

pxq.

For N ă }x}2

p1`logp2`}x}qq2 , Chernoff’s inequality implies that %˚N1
2

pxq “OApp1` }x}q
´Aq, so

that this part of the sum may be ignored. In the remaining part of the sum, the local limit
theorem obtains, for some cą 0,

Da%˚N1
2

pxq !
exp

´

´c }x}
2

N

¯

N
d`|a|

2

.

Summed in N , this obtains the bound claimed.
Now, given η, if η RC1pT q, write on Λ, g ˚ %η “ gη ,

gηpxq “
ÿ

yPΛ

%ηpyqg0px´ yq !
ÿ

yPΛ

e´c}y}|g0px´ yq|.

Due to the bound for g0, y may be truncated at }y} ! p1` logp2`}x}qq, from which the claim
follows. The proof in case of Cρ for ρ“ 1,2 is similar, by writing %η as a linear combination
of translates of first or second derivative operators.

The remaining lemmas obtain analogues of the decay estimates forDg on T in the setting
of the periodic case Tm. This is accomplished by a split space-frequency representation on
Tm in which small convolutions %˚N , which are localized in space, are treated in space
domain, and large values of %˚N are treated in frequency domain.

LEMMA 52. Let T be a tiling of Rd with periodic lattice Λ identified with Zd by a choice

of basis. Let σ2 “Covp%q. For mě 1 and for 1ď }x}pZ{mZqd !
´

m2

logm

¯
d´1

2d ,

(223) ∇g0,Tmpxq “ ´
Γ
`

d
2

˘

σ´2x

degp0qπ
d

2 }σ´1x}d detσ
`O

ˆ

1

}σ´1x}d

˙

.

PROOF. Let T “ Cm2

logm for a constant C ą 0. Let σ2
1

2

“Covpρ 1

2
q, so σ 1

2
“ 1?

2
σ. Let R“

2`
›

›

›
σ´1

1

2

x
›

›

›
. Then

∇g0,Tmpxq “
1

2 degp0q

ÿ

nPZd

ÿ

0ďNăT

¨

˚

˚

˚

˝

δ1

δ2
...
δd

˛

‹

‹

‹

‚

˚ %˚N1
2

px`mnq

`
1

2 degp0q

ÿ

TďN

¨

˚

˚

˚

˝

δ1

δ2
...
δd

˛

‹

‹

‹

‚

˚ %˚N1
2
,Tmpxq.
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In the first sum, by applying Chernoff’s inequality, those terms with n ‰ 0 contribute an
acceptable error term if C is sufficiently small. Similarly, discard those terms with N ! R2

logR
as an error term. Applying the local limit theorem, the first term has a main term,

(224)
1

2 degp0q

ÿ

R2

logR
!NďT

¨

˚

˚

˚

˚

˚

˚

˝

´

σ´2
1

2

x

p2πq
d

2 detσ 1

2

exp

¨

˝´

›

›

›

›

σ´1
1
2

x

›

›

›

›

2

2N

˛

‚

N
d

2
`1

˛

‹

‹

‹

‹

‹

‹

‚

.

The error is bounded by

(225) !OApR
´Aq `

ÿ

R2

logR
!NďT

exp

¨

˝´

›

›

›

›

σ´1
1
2

x

›

›

›

›

2

2N

˛

‚

N
d`2

2

¨

˝1`

›

›

›
σ´1

1

2

x
›

›

›

?
N

˛

‚!
1

›

›

›
σ´1

1

2

x
›

›

›

d
.

The sum may be replaced with an integral,

ˆ

1`O

ˆ

1

R

˙˙

1

2 degp0q

¨

˚

˝

´

σ´2
1

2

x

π
d

2

›

›

›
σ´1

1

2

x
›

›

›

d
detσ 1

2

˛

‹

‚

ż 2T

R2

c

logR

expp´1{rq

r
d

2

dr

r

“

ˆ

1`O

ˆ

1

R

˙˙

¨

˚

˝

´

Γ
`

d
2

˘

σ´2
1

2

x

2 degp0qπ
d

2

›

›

›
σ´1

1

2

x
›

›

›

d
detσ 1

2

˛

‹

‚

.

By Fourier inversion on the group pZ{mZqd, the tail of the sum is given by

1

2 degp0q

1

md

ÿ

0‰ξPpZ{mZqd

¨

˚

˚

˚

˝

e
´

ξ1
m

¯

´ 1

...
e
´

ξd
m

¯

´ 1

˛

‹

‹

‹

‚

´

1
2 `

1
2 %̂

´

ξ
m

¯¯T

1´ %̂
´

ξ
m

¯ e

ˆ

ξ ¨ x

m

˙

.

This is bounded in norm by, for some cą 0,

!
1

md

ÿ

0‰ξPpZ{mZqd

´

1´ c }ξ}
2

m2

¯T

}ξ}
m

!

ż

pR{Zqd

expp´cT }x}2q

}x}
dx

!

ż 8

0
expp´cTr2qrd´1dr

r
! T´

d´1

2 .

The claimed asymptotic holds, since T "R
2d

d´1 .

LEMMA 53. Let T be a tiling of Rd, dą 2 with periodic lattice Λ identified with Zd by

a choice of basis. Set σ2 “Covp%q. For mě 1 and for 1ď }x}pZ{mZqd !
´

m2

logm

¯
d´2

2pd´1q ,

(226) g0,Tmpxq “
Γ
`

d
2

˘

2 degp0qpπq
d

2 }σ´1x}d´2 detσ
`O

ˆ

1

}σ´1x}d´1

˙

.



SANDPILES 57

PROOF. Let T “ Cm2

logm for a constant C ą 0. Let σ2
1

2

“Covpρ 1

2
q, so that σ 1

2
“ 1?

2
σ. Let

R“ 2`
›

›

›
σ´1

1

2

x
›

›

›
. Write

g0pxq “
1

2 degp0q

ÿ

nPZd

ÿ

0ďNăT

%˚N1
2

px`mnq

`
1

2 degp0q

ÿ

TďN

%˚N1
2
,Tmpxq.

In the first sum, by applying Chernoff’s inequality, those terms with n ‰ 0 contribute an
acceptable error term if C is sufficiently small. Similarly, discard those terms with N !
R2

logR as an error term. Applying the local limit theorem, the first term becomes, with error
OApR

´Aq,

(227)
1

2 degp0q

ÿ

R2

logR
!NďT

¨

˚

˚

˚

˚

˚

˚

˝

exp

¨

˝´

›

›

›

›

σ´1
1
2

x

›

›

›

›

2

2N

˛

‚

p2πq
d

2 detσ 1

2
N

d

2

˛

‹

‹

‹

‹

‹

‹

‚

ˆ

1`O

ˆ

1

R

˙˙

.

With the same relative error the sum may be replaced with an integral,

ˆ

1`O

ˆ

1

R

˙˙

1

4 degp0q

¨

˚

˝

1

π
d

2

›

›

›
σ´1

1

2

x
›

›

›

d´2
detσ 1

2

˛

‹

‚

ż 2T

R2

c

logR

expp´1{xq

x
d

2
´1

dx

x

“

ˆ

1`O

ˆ

1

R

˙˙

¨

˚

˝

Γ
`

d
2 ´ 1

˘

4 degp0qπ
d

2

›

›

›
σ´1

1

2

x
›

›

›

d´2
detσ 1

2

˛

‹

‚

.

The main term can be obtained by using σ 1

2
“ 1?

2
σ. By Fourier inversion on the group

pZ{mZqd, the tail of the sum is given by

1

2 degp0q

1

md

ÿ

0‰ξPpZ{mZqd

´

1
2 `

1
2 %̂

´

ξ
m

¯¯T

1´ %̂
´

ξ
m

¯ e

ˆ

ξ ¨ x

m

˙

.

This is bounded in norm by, for some cą 0,

!
1

md

ÿ

0‰ξPpZ{mZqd

´

1´ c }ξ}
2

m2

¯T

´

}ξ}
m

¯2

!

ż

pR{Zqd

expp´cT }x}2q

}x}2
dx

!

ż 8

0
expp´cTr2qrd´2dr

r
! T´

d´2

2 .

The claimed asymptotic holds, since T "R
2pd´1q

d´2 .
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LEMMA 54. Keep the notation of the previous lemma. The discrete derivatives satisfy,
for any a PNd, |a| ě 1, and for all x P Λ,

(228) Dag0,Tmpxq !a
1

1` }x}
|a|`d´2
pZ{mZqd

.

PROOF. Assume that among the representatives of x mod mZd, }x} is minimal. Let R“
2`

›

›σ´1x
›

›

pZ{mZqd . Split the sum as

Dag0,Tmpxq “
1

2 degp0q

ÿ

nPZd

ÿ

0ďNăR2

δ˚a1

1 ˚ ¨ ¨ ¨ ˚ δ˚add %˚N1
2

px`mnq

`
1

2 degp0q

ÿ

NąR2

δ˚a1

1 ˚ ¨ ¨ ¨ ˚ δ˚add %˚N1
2
,Tmpxq.

In the first sum, use Chernoff’s inequality to discard those terms with N ! R2

logR , and those
terms with m2}n}2 "R2 logR.

By the local limit theorem, the first sum is bounded by

!
ÿ

R2

logR
!NďR2

ÿ

nPZd

exp
´

´
}σ´1px`mnq}2

2N

¯

N
d`|a|

2

ˆ

1`
}x`mn}
?
N

˙|a|

.

By the exponential decay, the sum over n is bounded by a constant times the n “ 0 term.
Meanwhile, the sum over those terms with n“ 0 is bounded by ! 1

1`}x}|a|`d´2 .
Expanding the tail of the sum in characters, and bounding the sum in absolute value, it is

bounded by

!
1

md

ÿ

0‰ξPpZ{mZqd

d
ź

j“1

ˇ

ˇ

ˇ

ˇ

1´ e

ˆ

ξj
m

˙ˇ

ˇ

ˇ

ˇ

aj

ˇ

ˇ

ˇ

ˇ

1`%̂p ξmq
2

ˇ

ˇ

ˇ

ˇ

R2

1´
ˇ

ˇ

ˇ
%̂
´

ξ
m

¯ˇ

ˇ

ˇ

!

ż

pR{Zqd

śd
j“1 |ξj |

aj

}ξ}2
expp´cR2}ξ}2qdξ

!

ż 8

0
e´cr

2R2

r|a|`d´2dr

r

!
1

R|a|`d´2
.

The remaining lemmas treat the convolution of the Green’s function with a measure η of
bounded support on the tiling T . Note that the estimates are stated for the argument in the
lattice Λ, but the regularity of η is invariant under translating T , which permits recovering
estimates for all t PT .

LEMMA (Lemma 28). Let T be a tiling of Rd which is Λ – Zd periodic. Let η be of
class CρpT q for some 0ď ρď 2. Let Da be a discrete differential operator on the lattice Λ
and assume that |a| ` ρ` d´ 2ą 0. For mě 1, for x P Λ,

(229) Dagη,Tmpxq !
1

1` }x}
|a|`ρ`d´2
pZ{mZqd

.



SANDPILES 59

PROOF. Assume without loss of generality that x P Λ satisfies }x} “ }x}pZ{mZqd , which
can be assumed to be larger than any fixed constant.

Let %η be the signed measure on T obtained by stopping random walk started from η at
the first time that it reaches Λ. Thus, for x P Λ{mΛ, gη,Tmpxq “ gTm ˚ %η .

In the case ρ“ 0, bound, using Lemma 54,

Dagη,Tmpxq “
ÿ

yPΛ

%ηpyqD
ag0,Tmpx´ yq

!
ÿ

yPΛ

e´c}y}
1

1` }x´ y}
d`|a|´2
pZ{mZq2

!
1

1` }x}
d`|a|´2
pZ{mZq2

.

The last estimate holds by splitting on }y} ! log }x}, and bounding the values of 1

1`}x´y}
d`|a|´2

pZ{mZq2

with larger }y} by a constant. In the case ρ“ 1, by Lemma 49 write %η “
řd
i“1 fi ˚ δi. Then

Dagη,Tmpxq “
d
ÿ

i“1

ÿ

yPΛ

fipyqD
aδi ˚ g0,Tmpx´ yq

!

d
ÿ

i“1

ÿ

yPΛ

e´c}y}
1

1` }x´ y}
d`|a|´1
pZ{mZq2

!
1

1` }x}
d`|a|´1
pZ{mZq2

.

In the case ρ“ 2, by Lemma 49 write %η “
ř

1ďiďjďd fi,j ˚ δi ˚ δj . Then

Dagη,Tmpxq “
ÿ

1ďiďjďd

ÿ

yPΛ

fi,jpyqD
aδi ˚ δj ˚ g0,Tmpx´ yq

!
ÿ

1ďiďjďd

ÿ

yPΛ

e´c}y}
1

1` }x´ y}
d`|a|
pZ{mZq2

!
1

1` }x}
d`|a|
pZ{mZq2

.

LEMMA (Lemma 29). Let T be a tiling of Rd with period lattice Λ identified with Zd
via a choice of basis. Let σ2 “Covp%q. Let η be of class C1pT q, and let %η be the signed
measure on Λ obtained by stopping simple random walk on T started from η when it reaches

Λ. Let %η have mean v. For n P Λ, 1ď }n} !
´

m2

logm

¯
d´1

2d ,

(230) gη,Tmpnq “
Γ
`

d
2

˘

vtσ´2n

degp0qπ
d

2 }σ´1n}d detσ
`O

ˆ

1

}σ´1n}d

˙

.

If dě 3 and η RC1pT q has total mass C ,

(231) gη,Tmpnq “
CΓ

`

d
2 ´ 1

˘

2 degp0qπ
d

2 }σ´1n}d´2 detσ
`O

ˆ

1

}σ´1n}d´1

˙

.
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PROOF. Let h“
řd
i“1 hiδi “´v

t ¨∇ be a sum of first derivative operators which has the
same mean as %η . The difference η´ h is C2, hence by the previous lemma

(232) gTm ˚ pη´ hqpnq !
1

}σ´1n}d
.

For the measure h, by Lemma 52,

(233) pgTm ˚ hqpnq “
Γ
`

d
2

˘

vtσ´2n

degp0qπ
d

2 }σ´1n}d detσ
`O

ˆ

1

}σ´1n}d

˙

.

The second claim follows similarly, by choosing h to be a point mass at 0 with value equal
to the sum of the values of η. Apply Lemma 53 to the difference gTm ˚ pη´ hq.

LEMMA (Lemma 30). Let dě 2 and let a PNd. If |a| ` d
2 ą 2 then for each fixed n, v P

T ,

(234) Dagv,TmpnqÑDagvpnq

as mÑ8.

PROOF. As a function on Λ, the Fourier transform of Dag0,

(235) zDag0pxq “

śd
j“1pepxjq ´ 1qaj

pdegp0qqp1´ %̂pxqq
.

On Λ{mΛ, the discrete Fourier transform is obtained by taking points which are 1
m times a

vector in Zd. By inverse Fourier transform

(236) Dag0,Tmpnq “
1

md

ÿ

0‰xPpZ{mZqd

zDag0

´ x

m

¯

e
´n ¨ x

m

¯

.

Note that the summand can be unbounded near 0, but is integrable, and the sum avoids 0.
Letting mÑ8 obtains the integral

(237) Dag0pnq “

ż

pR{Zqd
zDag0pxqe pn ¨ xqdx.

When n R Λ, use that Dag0pnq is a mixture of nearby lattice values, and that the mixture
decays exponentially. Since Dag0pn

1q also decays as }n1}Ñ8, the claim follows.
By translation invariance, the argument for v “ 0 handles also the case of v P Λ. When

v R Λ, write

gv,Tmpxq “ ´cv `
1

degx
E

«

Tv´1
ÿ

j“0

1 pYv,j “ xq

ff

`E
“

gYv,Tv ,Tmpxq
‰

.

Since Tv has distribution which decays exponentially, as mÑ8 there is a probability ex-
ponentially small in m that Yv,n, 1ď nď Tv exits

`

´m
2 ,

m
2

‰d, so up to exponentially small
error, the value of

(238)
1

degx
E

«

Tv´1
ÿ

j“0

1 pYv,j “ xq

ff

is the same whether interpretted on T or on Tm. Also, cv Ñ 0 as mÑ8 so this may be
discarded as an error term. The probability that Yv,Tv leaves a fixed ball about 0 tends to 0 as
the radius tends to infinity, and by the derivative condition, the Green’s function is bounded.
Hence the convergence of

(239) E
“

gYv,Tv ,Tmpxq
‰

ÑE
“

gYv,Tv pxq
‰

holds from the convergence of the Green’s function on fixed balls about 0.
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