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Abstract—Many parallel scientific applications spend a signifi-
cant amount of time reading and writing data files. Collective I/O
operations allow to optimize the file access of a process group by
redistributing data across processes to match the data layout on
the file system. In most parallel I/O libraries, the implementation
of collective I/O operations is based on the two-phase I/O
algorithm, which consists of a communication phase and a file
access phase. This papers evaluates various design options for
overlapping two internal cycles of the two-phase I/O algorithm,
and explores using different data transfer primitives for the
shuffle phase, including non-blocking two-sided communication
and multiple versions of one-sided communication. The results
indicate that overlap algorithms incorporating asynchronous
I/O outperform overlapping approaches that only rely on non-
blocking communication. However, in the vast majority of the
testcases one-sided communication did not lead to performance
improvements over two-sided communication.

I. INTRODUCTION

Many scientific applications operate on data sets that span
hundreds of Gigabytes or even Terabytes in size. Yet, even
high end computing systems often lack the file I/O perfor-
mance required to manage these enormous amounts of data.
Consequently, many applications spend a significant amount
of time reading and writing input and output files.

The Message Passing Interface (MPI) [15] is the most
widely used parallel programming paradigm for large scale
parallel applications. MPI incorporates since version 2 of the
specification interfaces for parallel file I/O, often referred
to as MPI I/O. By extending the MPI concepts to file I/O
operations, multiple processes can simultaneously access the
same file to perform read and write operations. This shared-file
access pattern propagated by MPI I/O reduces the number of
files created by an application, but may result in sub-optimal
performance due to contention occurring on the file system
level, e.g. because of the file locking.

Furthermore, the data decomposition used by parallel appli-
cations often leads to a non-contiguous data layout on the file
system level from each individual processes perspective, which
will typically result in a large number of small I/O requests
and significant performance degradation of file I/O operations.
To resolve this problem, MPI I/O introduced the concept of
collective I/O operations. Collective I/O operations represent
a higher level abstraction of file I/O operations executed by a

group of processes, and allow for internal optimizations such
as rearranging data across processes to match the data layout
on the file system level, and merge individual I/O requests of
different processes into fewer and larger global requests.

The most widely used collaborative technique used within
collective I/O implementations is based on the two-phase I/O
algorithm [8]. This algorithm consists of a communication
phase (also referred to as the shuffle phase) and a file access
phase. A subset of the processes, the so-called aggregators,
are designated to perform the I/O operations in this algorithm.
In the shuffle phase, data is redistributed to the aggregators
by using inter-process communication, each aggregator being
in charge of a contiguous partition of data in the file. In the
file access phase, each aggregator issues the file I/O request
to perform the actual read and write operations. If the overall
data volume of the collective I/O operation exceeds certain
thresholds, the two-phase algorithm is executed internally
in multiple cycles in order to keep the additional memory
requirements on the aggregator processes within reasonable
limits. The shuffle phase is ultimately the reason for the per-
formance improvement of collective I/O operations compared
to individual I/O, as well as the main source for overhead in
this algorithm.

Researchers have developed numerous techniques to op-
timize the performance of the two-phase I/O algorithm. A
number of projects are focusing on overlapping multiple
internal cycles of the shuffle phase and the file access phase.
Sehrish et al.[18] and Tsujita et al. [24] applied this approach
by using asynchronous communication and multi-threading,
respectively. However, very little work has been done in
exploring what operations are being overlapped, and how the
shuffle phase is implemented.

The contribution of this paper is two-fold. First, we present
and evaluate various design options for overlapping two in-
ternal cycles of the two-phase I/O algorithm, using both, the
communication as well as the file access phase. Second, the
paper explores using different data transfer primitives for the
shuffle phase, such as non-blocking two-sided communication
(i.e. Isend/Irecv) and multiple versions of one-sided com-
munication (Put). In both instances, the focus of this work is
on collective write operations. Our results indicate that overlap



algorithms incorporating asynchronous I/O outperform over-
lapping approaches that only rely on non-blocking commu-
nication in most scenarios, and offer significant performance
benefits of up to 22% compared to two-phase I/O algorithm
not overlapping any internal operations. However, in the vast
majority of the testcases one-sided communication did not lead
to performance improvements over two-sided communication.

The remainder of the paper is organized as follows. Sec-
tion II presents the most relevant related work in this domain.
In section III, we detail the design and implementation of
the different overlap methodologies and data transfer prim-
itives. Performance evaluation is presented and analyzed in
section IV. Finally, we present our conclusion in section V.

II. RELATED WORK

Parallel I/O represents a wide area of research, with collec-
tive I/O operations being one of the focal points. Collective
I/O operations represent a higher level abstraction of file
I/O operations executed by a group of processes, and allow
for internal optimizations such as rearranging data across
processes to match the data layout on the file system level,
and merge individual I/O requests of different processes into
fewer and larger global requests.

The ability of processes to coordinate file I/O requests is
generally considered to be the most relevant aspect for achiev-
ing good performance for I/O operations in parallel applica-
tions. The most widely used approach used for collective I/O
as of today is the two-phase I/O [8] algorithm. This algorithm
shuffles the data among the MPI processes to match the data
layout in the file and performs the actual read/write operation
on a subset of processes (so called aggregators). Two phase I/O
has been extended in a number of research projects to optimize
for various scenarios, including datatype I/O [21], view-based
collective I/O [3], resonance I/O [26], and dynamic segmen-
tation and static segmentation algorithms [4]. Liao et.al. [11]
analyzed various file domain partitioning methods for improv-
ing the performance of collective I/O operations. Most of these
algorithms tweak on how the shuffle and read/write operations
are performed, but use the same fundamental approach as
two-phase I/O uses. Numerous researchers [16], [14], [13]
have furthermore focused on collective buffering techniques to
improve the performance of collective I/O operations. Wang
at el. introduced internal pipeling to manage collective I/O
operations and limit the number of processes posting I/O
requests to a storage server [25].

Some researches focused on optimizing the implementation
of two-phase I/O by proposing a topology-aware solution for
data aggregation. Weifeng Liu et al. [12] utilized the Linear
Assignment Problem (LAP) to efficiently assign file domains
to aggregators. The new data distribution over the aggregators
reduces the total hop-bytes of collective I/O operation and thus
improving the performance.

Yuichi Tsujita et al. targeted different optimization tech-
niques in their paper[23] by aligning the aggregator data
to the striping access pattern and enhance it with a round
robin algorithm for data distribution over multiple aggregators

within a same node in order to alleviate the data transfer
contention.

As part of their work on View-based I/O, Blas et al. [3]
also reported on improved collective I/O performance by using
read-ahead for collective read operations, and use multiple
threads to perform these operations in the background, ef-
fectively overlapping the read operations with other ongoing
operations.

The work most closely related to this paper has been
performed by Sehrish et al. [18]. The authors proposed an
overlapping scheme similar to one of our proposed models,
implementing the operations using non-blocking point-to-point
operations. This paper did however not consider what part
of the collective I/O operations can be overlapped, nor have
they explored using different data transfer primitives. Simi-
larly, Tsujita et al. [24] applied a similar approach by using
asynchronous multi-threading.

One-sided communication has been used in numerous stud-
ies to optimize communication in parallel applications [2], [7].
In collective I/O, the current ROMIO [22] implementation of
the two-phase algorithm supports a one-sided communication
version of the shuffle phase in which they used passive-target
synchronization. Tessier et al.[20], proposed an algorithm
in which they used double-buffering and one-sided commu-
nication. However, their method included only active-target
synchronization.

III. DESIGN AND IMPLEMENTATION

In the following, we introduce first four different design op-
tions for overlapping two internal cycles of the two-phase I/O
algorithm, focusing on collective write operations. Second, we
explore using different data transfer primitives for the shuffle
phase, including non-blocking two-sided communication and
multiple versions of one-sided communication.

A. Overlap Algorithms

In the original implementation of the two-phase I/O al-
gorithm, all processes have to send their local data to the
aggregators via inter-process communication. Each aggregator
holds data from multiple processes in a temporary buffer.
During the file access phase, the aggregators issue I/O requests
to the file system to write the content of the temporary buffer
onto disk. The next shuffle phase cannot be initiated until the
temporary buffer is completely flushed and ready to receive
the next chunks of data. These two phases are carried out in
multiple cycles until the entire data is written.

In the overlapped two-phase I/O, the temporary buffer is
divided into two separate sub-buffers such that the size of
each one would be equal to the half of the buffer size in the
original implementation. By doing so, we can run different
operations in each sub-buffer, hence overlap the shuffle phase
and the I/O phase.

Two different operations are performed in each sub-buffer:
1) Inter-process communication (send/receive operations), and
2) I/O operations. Both operations might be called using either



blocking or non-blocking implementations. The use of non-
blocking functions over two collective sub-buffers is the main
key to perform overlapping. However, there are multiple ways
to implement the overlapping technique depending on the
choice of the asynchronous functions and the phases that will
be overlapped. Hence, we propose four different approaches.

In the following, we describe the various overlap algorithms.
A brief note on the terminology used: whenever an algorithm
utilizes a non-blocking or asynchronous code section, we
use the the postfixes _init and _wait to indicate the
start and the end of the non-blocking section, while code
sections not having these postfixes indicate blocking imple-
mentations. Hence, shuffle and write represent blocking
versions of the shuffle and I/O phase respectively, while e.g.
shuffle_init and shuffle_wait indicate the start and
the completion of the non-blocking version of the shuffle
operation.

1) Communication Overlap: In this first approach, non-
blocking send/receive operations are being used while main-
taining a blocking version of the write operation. Algorithm 1
provides a high level overview of this approach. A shuffle
phase is initiated on the first sub-buffer p1 (shuffle_init)
before the start of the internal cycles. In each cycle, a shuffle
phase is started, followed by a wait operation of the previous
shuffle operation (shuffle_wait). The completion of the
first shuffle operation means that all required data has been
received in the sub-buffer and the buffer is ready to be
written. While a write operation is ongoing, the other shuffle
operation continues running in the background. Since the I/O
operation is synchronous, the next cycle cannot be started
until the file I/O phase is completed on the aggregator. Then,
pointers representing the two sub-buffers are being swapped
(swap_buffer_pointers), ensuring that buffer used in
the last cycle in the shuffle operation is being used in the
write step next, and vice versa.

Algorithm 1 Communication Overlap
Require: tempbuf1, tempbuf2, NumberOfCycles

1: p1 ← tempbuf1
2: p2 ← tempbuf2
3: shuffle_init (p1)
4: for i=1 to NumberOfCycles do
5: shuffle_init (p2)
6: shuffle_wait (p1)
7: write (p1)
8: swap_buffer_pointers (p1, p2)
9: end for

10: shuffle_wait (p1)
11: write (p1)

Some notes on the nomenclature used in this and all
subsequent algorithms: function names ending with _init
represent a code section that initiates communication and/or
file I/O operations and will not block during execution, while
functions ending with _wait represent code sections en-
forcing the completion of previously initiated operations. A

function without either of those endings represent a blocking
code section, which could however be implemented using a
sequence of initiation and completion, but doesn’t necessarily
have to.

Non-blocking shuffle operations can be implemented using
non-blocking point-to-point data transfer operations in MPI,
such as MPI_Isend and MPI_Irecv, and MPI_Wait for
the completion. An important performance consideration for
this code version will however be the ability of the MPI
library to make progress after initiating the communication
operations. MPI libraries provide progress for pending non-
blocking data transfer operations either when invoking an MPI
function, or more recently also through a specific progress
thread [10].

2) Writes Overlap: This algorithm represents the counter-
part to the Communication-Overlap version discussed above,
using however blocking shuffle steps and asynchronous write
operations. Asynchronous write operations can be imple-
mented for example using the aio_write() functionality (
and although slightly beyond the scope of this paper, it should
be noted however that quality of the support for this function is
dependent on the file system used for the file I/O operations).
Within the scope of this paper, the assumption is that using
MPI_File_iwrite will provide the method best suited on
the given file system.

Algorithm 2 Write Overlap
Require: tempbuf1, tempbuf2, NumberOfCycles

1: p1 ← tempbuf1
2: p2 ← tempbuf2
3: shuffle (p1)
4: write_init (p1)
5: for i=1 to NumberOfCycles do
6: shuffle (p2)
7: write_init (p2)
8: write_wait (p1)
9: swap_buffer_pointers (p1, p2)

10: end for
11: write_wait (p2)

Whether the Communication or the Write Overlap algorithm
is expected to lead to better performance depends on multiple
factors, most notably: i) costs of the shuffle phase vs. the file
I/O phase and ii) whether the MPI library or the Operating
System is better at ensuring progress of communication oper-
ations or I/O requests in the background. In our experience,
the file I/O phase is on most clusters more expensive than the
shuffle phase. Furthermore, since aio_write operations are
often execute by an OS thread, progress of non-blocking write
operations will often be better than progress of communication
operations when not using a separate progress thread.

3) Write-Communication Overlap: The third approach uses
a non-blocking implementation of the write operation as
well as for the shuffle phase. In each cycle, the algorithm
initiation an asynchronous write operation on the first sub-



buffer followed by initiating a shuffle stage on the second
sub-buffer. Algorithm 2 shows this approach.

Algorithm 3 Write-Communication Overlap
Require: tempbuf1, tempbuf2, NumberOfCycles

1: p1 ← tempbuf1
2: p2 ← tempbuf2
3: shuffle (p1)
4: for i=1 to NumberOfCycles do
5: write_init (p1)
6: shuffle_init (p2)
7: wait_all (p1, p2)
8: swap_buffer_pointers (p1, p2)
9: end for

4) Write-Communication-2 Overlap: A slightly revised ver-
sion of the approach shown in algorithm 2 is given by avoiding
that the non-blocking shuffle and non-blocking write operation
finish approximately at the same time. Instead, this version
follows more closely a data-flow model, in that the completion
of any non-blocking operation is immediately followed by
posting the follow-up operation first. Unlike the other versions,
this algorithm handles two shuffles and two writes operations
in each iteration which correspond to 2 cycles.

Algorithm 4 Write-Communication-2 Overlap
Require: tempbuf1, tempbuf2, NumberOfCycles

1: p1 ← tempbuf1
2: p2 ← tempbuf2
3: shuffle (p1)
4: write_init (p1)
5: for i=1 to NumberOfCycles do
6: write_wait (p2)
7: shuffle_init (p2)
8: shuffle_wait (p1)
9: write_init (p1)

10: shuffle_wait (p2)
11: write_init (p1)
12: write_wait (p1)
13: shuffle_init (p1)
14: end for

B. Data Transfer Primitives

Whereas we focused in the previous section on identifying
the different possible algorithms to implement the overlapping
technique, we will discuss in this section two possible com-
munication models that can be used for the shuffle phase: Two
sided communication (send/receive) and one sided communi-
cation (Put/Get).

1) Two-sided Communication: The current implementa-
tions of the two-phase algorithm uses a two-sided commu-
nication model. During the shuffle phase, MPI processes send
the data from their local buffer to the corresponding ag-
gregator using non-blocking communication (MPI_Isend,
MPI_Irecv). Internally, MPI libraries typically use different

protocols for short and long messages, namely an eager and
a rendezvous protocol. For short message, the eager protocol
sends the data to the receiving process, independent of whether
the receiver is ready to receive the data item or not. If the
receiver has not yet posted the matching receive operation,
the data will be buffered in an unexpected message queue on
the receiver process. Consequently, a receive operation has
to check the unexpected message upon posting the operation,
which can be costly if the queue contains many messages.

MPI libraries utilize a rendezvous protocol for long mes-
sages, which requires a hand-shake between sender and re-
ceiver process. This ensure that large messages will not end
up in the unexpected message queue of the receiver processes,
limiting the additional memory requirement on that processes.
However, the rendezvous protocol prevents a sender from
continuing execution until the receiver process is ready to
receive the data. For the MPI library and network interconnect
used in the evaluation section IV (Open MPI master using
UCX 1.6.1 on an InfiniBand network), the rendezvous protocol
is used for messages starting from 512 KBytes in size.

In collective I/O operations, a large number of processes are
communicating with a few aggregator processes. Since aggre-
gator processes have significantly higher workload than non-
aggregators – due to the file I/O access operations that they
have to perform –, two-sided communication will typically
result in many entries in the unexpected message queue of an
aggregator, or, if the messages are too large, the rendezvous
protocol will enforce that non-aggregators will have to ’slow
down’ to the speed of the aggregator processes.

2) One-sided Communication: One sided communication,
also known as Remote Memory Access (RMA), is a commu-
nication model added to the MPI specification starting from
version 2. This model does not impose a synchronization of
sender and receiver during communication: only one process is
required for the data transfer, by either Put-ting or Get-ting
data from the remote process. Even though the target process
does not contribute to the communication operation in itself,
it has to define and expose a region of its main memory for
the operation, a so-called window.

One-sided communication is often considered faster and
more light-weight compared to two-sided communication, due
to the fact that there is no message matching required on the
receiver side, and there is no unexpected message queue that
needs to be parsed for every receive operation.

Within the scope of this work, which focuses on overlapping
internal cycles of the two-phase collective I/O operation, we
allocate two separate windows analogous to the two collective
sub-buffers, using MPI_Win_allocate, the size of the
windows being the size of the sub-buffers for aggregators and
zero for non-aggregators.

One-sided operations also include methods that allow a
process to control when to grant access to a memory window,
or more generally speaking, a synchronization method between
the processes. MPI provides two synchronization models:
active-target and passive-target synchronization. Implementa-
tions have been developed for both methods.



a) Active-target RMA: Active-target RMA is a collective
synchronization model. The simplest version of this synchro-
nization method requires a call to MPI_Win_fence to start
and end an exposure epoch. When closing an exposure epoch,
the standard requires that all outstanding RMA operations on
that window have completed.

In our implementation, an MPI_Win_fence function is
used at the start of the shuffle_init operation, and a
second one whenever we need to ensure the completion of
the data transfer. This provides both, the origin and target
processes (the aggregators), the information required to con-
tinue the next step and/or cycle in the algorithm. However,
MPI_Win_fence is known to be an expensive operation.

b) Passive-target RMA: Passive-target RMA provides
more flexibility than active-target RMA, since the target pro-
cess is not directly involved in the synchronization opera-
tion itself. In this model, the origin process has to acquire
a lock on the remote window of the target process using
MPI_Win_lock, execute its RMA operations, and release
the lock using MPI_Win_unlock. The completion of the
RMA operation is guaranteed for that particular window in the
origin side. However, the target process does not know when
the data transfer operation to his local buffer has finished.

There are two challenges using this model in the two-
phase I/O algorithm. First, the MPI specification offers a
choice between two lock types: MPI_LOCK_SHARED or
MPI_LOCK_EXCLUSIVE. The second option only allows
one process to write into a window at a time, which will
serialize the shuffle phase and thus harm the performance.
MPI_LOCK_SHARED allows concurrent access to a window,
and is usually used for read operations. However, since we can
guarantee that different process will not overwrite each others
data during the shuffle phase, we decided to use this version
in our code.

The second issue concerns the target processes. On one
hand, aggregator processes need to know when all data-
transfer operations on a sub-buffer have finished in order to
initiate the I/O operations. On the other hand, the origin pro-
cesses must not execute any MPI_Put operation on any sub-
buffer before the aggregator has not finished writing its content
to file. To meet these two requirements, MPI_Barrier
synchronize had to be introduced to ensure correct semantics
of the operation.

IV. PERFORMANCE EVALUATION

In the following section we evaluate the different overlap
methodologies introduced in section III as well as the different
data transfer primitives described in section III-B.

For our tests we used two platforms: the crill cluster at
University of Houston, and the Ibex cluster at the KAUST
Supercomputing Laboratory.

On the crill cluster we used a partition consisting of 16
nodes with four 2.2 GHz 12-core AMD Opteron processor (48
cores per node, 768 cores total) and 64 GB memory per node.
The cluster uses a QDR InfiniBand network interconnect,
using UCX v 1.6.1 as the underlying communication library

for the MPI library. A BeeGFS parallel file system v7.0
distributed over all 16 nodes has been used for our tests, with
a stripe size of 1MB.

The ibex cluster is a heterogeneous cluster with different
families of AMD and Intel CPUs. In our tests we used the
Skylake CPU family partition consisting of 108 nodes with
2.6 GHz 40-core Intel Xeon Gold 6148 Processor and 376
GB memory per node. Similarly to crill, the cluster also uses
a QDR InfiniBand network interconnect using UCX v 1.6.1 as
the underlying communication library. The experiments were
performed under a BeeGFS filesystem consisting of 3.6 PB of
storage on which we set 16 storage targets and a stripe size
of 1MB.

All of the algorithms and versions described in the previous
sections have been implemented using the ompio [6] parallel
I/O framework in Open MPI [9], by modifying the existing
vulcan fcoll component. For all subsequent tests, the default
ompio parameters and settings have been used, e.g. a collective
buffer size of 32MB and the automatic runtime aggregator
selection algorithm [5].

In order to evaluate the different approaches, three different
benchmarks have been used.

1) IOR: The Interleaved or Random (IOR)[19] benchmark
is a synthetic parallel I/O benchmark used for testing
performance of parallel file systems using different
access patterns through different interfaces, e.g. POSIX
I/O and MPI-I/O. It has several high-level parameters
that can be used to define the I/O pattern (e.g. transfer
size, block size, and segment count). For our tests, we
mimicked a 1-D data distribution among processes by
setting the transfer size and the block size both to 1GB
and the segment count to 1. Tests have been executed for
10 different process counts between up to 704 processes,
creating files that range between 16 and 704 GB in size.

2) Tile I/O: MPI-TILE-IO[17] is a synthetic benchmark to
test parallel I/O operations on a two dimensional dense
dataset. In our measurements, the number of tiles is
set according to the number of processes ensuring that
each dimension is equal to the square root of number
of processes. Our tests used two different configuration:
a tile size of 256 bytes with 2048× 1024 elements per
process, and tile size of 1 MByte and 32× 16 elements
per process. The Tile I/O benchmark was executed for
process counts ranging from 16 to up to 729 processes.

3) Flash I/O: The FLASH I/O benchmark [1] suite is
an extracted I/O kernel from the FLASH application.
The benchmark is based on a lock-structured adaptive
mesh hydrodynamics code that solves fully compress-
ible, reactive hydrodynamic equations, developed mainly
for the study of nuclear flashes in astrophysics. The
benchmark produces a checkpoint file, a plotfile with
centered data, and a plotfile with corner data. We focus
in our study on the checkpoint file, since it is the largest
of three output files generated. Tests have been executed
for various configuration using between 16 and 704
processes.



For each benchmark test case, we run between 3 and 9
measurements using each of the previously described algo-
rithms and for each process count. For the summary statistics
as shown e.g. in table I, all measurements series were used.
When comparing individual data points (e.g. in fig. 1, we used
the minimum execution time across all measurements within
a series for that benchmark, process count and algorithm.

A. Overlap Methodology

First, we evaluate the performance of the different overlap
algorithmss described in section III. For this, we ran the
benchmarks described above with all four overlap algorithms,
as well as a version of the two-phase collective I/O algorithm
that does not overlap shuffle and file I/O access phases at all.
Table I presents for each overlap algorithm the total number of
test runs in which the corresponding algorithm provided the
best performance, across all benchmarks, platforms, process
counts, and problem sizes.

The foremost conclusion of table I is that there is no clear
winner or best approach across all test cases and platforms.
In fact, even the version of the code not performing any
overlap between the shuffle and the file I/O phase – which
was originally only included to provide a base-line number –
lead in 59 out of the 352 test series executed as part of this
study with the lowest execution time, i.e. in approx. 16% of
the test cases. The results however also indicate, that in 251
out of the 352 test series (71%) an overlap algorithm that used
asynchronous write operations outperformed other approaches,
showing a clear overall benefit of using asynchronous file I/O
in the file access phase on both clusters.

Although the technical specifications of the clusters seem
very similar, the overall performance numbers obtained are
very different. First, despite of the fact that both clusters
use a QDR InfiniBand network interconnect, the maximum
bandwidth between two nodes on the Ibex cluster was higher
than on the crill cluster, due to the slightly older AMD
processors (Magny Cours) used on crill (approx. 3, 400 MB/s
vs. 2, 600 MB/s). Furthermore, the BeeGFS storage on Ibex
provided significantly higher write bandwidth compared to the
BeeGFS file system on crill. The parallel file system on crill
is based on using two additional hard drives in each of the 16
compute nodes, while Ibex uses a large scale parallel storage
system. However, the crill cluster has been used in a dedicated
mode for these measurements, resulting in significantly less
variance for the data obtained, while the Ibex cluster was
shared with other users during the tests, resulting in larger
performance variations.

Figure 1 shows the differences obtained with the two
clusters for the Tile I/O benchmark using 1M tile size for
256 and 576 processes.

The crill cluster shows no significant performance benefit
for using any overlap algorithm for 256 processes, and approx.
6% performance improvement by overlapping shuffle and I/O
phase for 576 processes. The Ibex cluster other hand showed
performance improvements in both cases, approx. 34% for 256
processes, and 17% for 576 processes. A detailed analysis

Fig. 1. Execution time of the Tile I/O benchmarks for 1M tile size using 256
and 576 processes.

of communication time and I/O time was performed using
the no-overlap version of the code, in order to get a break
down of how much time is spend in the shuffle vs. the file I/O
access phase. For the 576 process test case, the collective I/O
operation spends 93% of its time in file I/O access phase,
and only approx. 7% in I/O operation on the crill cluster,
while on Ibex it spends approx. 23% of the overall time in
communication, offering therefore a much larger window for
improvements. Thus, despite of the fact that nearly the entire
communication time could be hidden behind I/O operations
for this test case on crill, it resulted only in a limited 6%
performance improvement overall on this platform, and a
significantly larger improvement on Ibex.

This behavior is also confirmed by analyzing the average
improvement obtained with each overlap algorithm and bench-
mark case for the crill 2 and the Ibex cluster 3. The average
values shown in these graphs are determined by calculating
the relative improvement in the execution using an overlap
algorithm over the no overlap version, excluding however
data points in which no overlap was faster than the overlap
version (i.e. negative improvements). The values therefore
represent the average improvement per overlap algorithm and
benchmark if a performance improvement over the no overlap
version was observed.

The average improvement on the crill cluster was between
3.7% and 9.2%, with overlap algorithms using an asyn-
chronous write operation outperforming the communication
overlap version in all instances. The same holds for the Ibex
cluster, the average improvement was however higher, ranging
between 8.6% and up to 22.3%.

B. Data Transfer Primitives

In the second part of the evaluation, we focus on the
data transfer primitives used by the two-phase I/O imple-
mentation. As discussed in section III-B, different imple-
mentations of the shuffle step have been developed based
on the Write-Communication-2 overlap algorithm, using non-
blocking two-sided communication, one-sided communica-
tion using MPI_Put and MPI_Win_fence for synchro-



TABLE I
NUMBER OF RUNS AN OVERLAP ALGORITHM RESULTED IN BEST PERFORMANCE

Benchmark No Comm Write Write-Comm Write-Comm 2
Overlap Overlap Overlap Overlap Overlap

IOR 21 11 32 28 15
Tile I/O 256 17 13 18 31 26
Tile I/O 1M 10 6 18 20 17

Flash I/O 11 12 11 16 19
Total: 59 42 79 95 77

Fig. 2. Average relative performance improvement on the crill cluster for
each overlap algorithm and benchmark.

Fig. 3. Average relative performance improvement on the ibex cluster for
each overlap algorithm and benchmark.

nization, and one-sided communication using MPI_Put and
MPI_Win_lock/unlock. Tests have been executed on the
crill as well as the Ibex cluster using the IOR, and the Tile
I/O benchmarks for both 256 and 1M tile sizes.

Fig. 4 summarizes the results of the analysis. The graph
shows for each benchmark test case the number of times a par-
ticular implementation resulted in the best performance over-
all. The results indicate that in the overwhelming number of
test-cases (75%) two-sided data communication resulted in the
best performance, and outperformed either of the two versions
using one-sided communication. The results where consistent
across both clusters. Ultimately, the synchronization costs
introduced by the MPI_Win_fence and/or MPI_Barrier
required for the one-sided operations to ensure correct output

data out-weight the performance benefits of an MPI_Put
operation over Isend/Irecv communication.

Fig. 4. Summary statistics comparing the number of times each of the three
different data transfer primitives resulted in the best performance for each
benchmark.

The only notable deviation of the general trend is for
the Tile I/O benchmark when using the small 256 Byte
tiles. In this scenario, the one-sided communication using
MPI_Win_fence for synchronization achieved in approx.
37% of the test cases the best performance. On average, the
performance gain over two-sided communication was approx.
27% on crill, and 30% on the Ibex cluster in these scenarios.
It will require some further analysis to fully understand
reasons for the difference in the performance behavior between
this benchmark case and the IOR respectivel the Tile I/O
benchmark for 1MB tile sizes. It should be noted however
that both of the other two benchmarks operate on significantly
larger, contiguous memory regions than the Tile I/O 256
benchmark does, which contains many, smaller, dis-contiguous
data elements.

There was furthermore another interesting trend in this
analysis. The benefits of using one-sided communication in-
creased for larger process counts on the crill cluster. Only one
measurement series out of 80 test cases showed benefits when
using one-sided communication for tests using less than 256
processes on crill. For tests using 256 processes or more, 35
out of 84 test cases lead better performance when using one-
sided communication over the two-sided counterpart.

V. CONCLUSIONS

In this paper, we presented and evaluated various design
options for overlapping two internal cycles of the two-phase



I/O algorithm. The paper further explored using different data
transfer primitives for the shuffle phase, namely non-blocking
two-sided communication, one-sided communication using
active-target synchronization, and one-sided communication
using passive-target synchronization. Our results indicate that
overlap algorithms incorporating asynchronous I/O operations
outperform overlapping approaches that only rely on non-
blocking communication, and offer significant performance
benefits of up to 22% compared to two-phase I/O algorithm
not overlapping any internal operations. In the vast majority
of the testcases however, using one-sided communication for
the shuffle step did not lead to performance improvements
compared to two-sided communication.

This work can be extended in multiple directions. Similar
tests to the ones presented in this paper can be performed
with more benchmarks, larger process counts, using different
network interconnects, and parallel file systems. Some prelim-
inary tests performed by the authors for example on a Lustre
parallel file system showed very different results compared
to the ones obtained on the BeeGFS file systems used in
this study, due to significant performance problems of the
aio_write operations on Lustre.
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