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Irrigated agriculture contributes 40% of total global food pro-
duction. In the US High Plains, which produces more than 50
million tons per year of grain, as much as 90% of irrigation
originates from groundwater resources, including the Ogallala
aquifer. In parts of the High Plains, groundwater resources are
being depleted so rapidly that they are considered nonrenew-
able, compromising food security. When groundwater becomes
scarce, groundwater withdrawals peak, causing a subsequent
peak in crop production. Previous descriptions of finite natural
resource depletion have utilized the Hubbert curve. By cou-
pling the dynamics of groundwater pumping, recharge, and
crop production, Hubbert-like curves emerge, responding to the
linked variations in groundwater pumping and grain production.
On a state level, this approach predicted when groundwater
withdrawal and grain production peaked and the lag between
them. The lags increased with the adoption of efficient irriga-
tion practices and higher recharge rates. Results indicate that,
in Texas, withdrawals peaked in 1966, followed by a peak in
grain production 9 y later. After better irrigation technologies
were adopted, the lag increased to 15 y from 1997 to 2012.
In Kansas, where these technologies were employed concur-
rently with the rise of irrigated grain production, this lag was
predicted to be 24 y starting in 1994. In Nebraska, grain pro-
duction is projected to continue rising through 2050 because of
high recharge rates. While Texas and Nebraska had equal irri-
gated output in 1975, by 2050, it is projected that Nebraska
will have almost 10 times the groundwater-based production
of Texas.

crop production | groundwater | Hubbert curve | Ogallala aquifer |
peak water

Today, more than half of the world population lives in coun-
tries where aquifers are overpumped primarily for crop

irrigation (1, 2). This casts doubt on the ability to continue to
produce enough crops to sustain the burgeoning global popula-
tion and the increasing water intensities of their changing diets
(3, 4). Reliable projections of future harvests and groundwater
availability must ideally anticipate simultaneous water and food

shortages and provide a framework for assessing intervention
and mitigation options.

The High Plains Aquifer (HPA), which includes the Ogallala
aquifer, underlies eight states in the central United States and
supplies more than 3 billion US dollars worth of groundwater-
based production (2007 estimate; ref. 5). The northern HPA has
seen no significant decline in groundwater levels (6), yet many
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areas overlying the central and southern HPA are experienc-
ing groundwater withdrawal rates far exceeding their recharge
rates (6, 7). Given the large imbalance between withdrawals and
recharge, groundwater resources in the central and southern
HPA may be reasonably approximated as nonrenewable. Thus,
the HPA provides an experimental paragon for the differing
levels of interaction between groundwater withdrawals, ground-
water recharge, and crop production, the largest groundwater
user in the HPA (8).

Previous projections of the future of groundwater withdrawals
in the HPA were inspired by Hubbert’s (9) 1962 analysis of
US crude oil production. Hubbert foreshadowed the peak in
oil production that occurred in the mid-1970s (10), and, now,
the symmetric curve describing the rise, peak, and fall in oil
production is known as the “Hubbert curve.” The idea of fit-
ting nonrenewable resource use trends with a “Hubbert curve”
has since gained prominence (11, 12), and an analogy between
oil production and groundwater withdrawals was used to sug-
gest the inevitability of peak nonrenewable water withdrawal
(hereafter, peak water) as a parallel to peak oil (13). Hubbert-
like groundwater withdrawal patterns have been documented
in many regions around the world (e.g., numerous basins in
India, the North China Plains, California’s Central Valley) where
groundwater withdrawals are much higher than their recharge
(13). Moreover, forecasts of HPA groundwater extraction and
future availability have benefited from fitting measurements of
well water levels with the logistic function, the antiderivative of
the Hubbert curve (14, 15).

While the analogy between the Hubbert curve and groundwa-
ter depletion has received empirical support and some accep-
tance, a mechanistic explanation of why groundwater withdrawal
trends should follow the Hubbert curve, a curve symmetric
about its peak, remains lacking. Additionally, for reliable pro-
jections, it is necessary to accommodate exogenous variables
driving groundwater pumping in a unified framework, espe-
cially crop production and groundwater recharge, because,
if their interaction causes delays and hysteretic phase–space
loops, then relations between these two variables will be
missed (16).

To mathematically explain the emergence of peak grain pro-
duction, or peak grain, and its links to peak water, a dynami-
cal system was formulated where groundwater availability and
crop production are dynamic variables and are subject to
groundwater recharge. This approach was applied to ground-
water use and crop production on the HPA of Texas, Kansas,
and Nebraska. Lags between peak water and peak grain and
the asymmetric trends of groundwater withdrawal and crop
production about their peaks were projected and related to
aquifer lifespan. The approach additionally offers a perspec-
tive on what technological disruptions, such as the introduc-
tion of low-energy precision application (LEPA) irrigation in
Texas, mean in the context of peak water and peak grain.
The model projections also offer an outlook on water avail-
ability and crop production on the HPA through 2050. While
the model formulation is sufficiently general and transferable to
other regions, frequent records of groundwater pumping and irri-
gated crop area and production make the HPA both ideal and
pragmatic for exploring such a “coarse-grained” or large-scale
approach.

Theory and Application to the HPA
The proposed dynamical system strikes a balance between the
mathematical tractability of the feedbacks present in many
groundwater-dependent irrigation systems and the number of
parameters or coefficients needed to describe the groundwater–
grain production system. The model has three state variables:
planted groundwater-irrigated area (A, hectares), accessible
groundwater volume for irrigation (W , cubic kilometers), and

annual rate of grain production by weight (C , tons per year). The
accessible volume is the volume deemed economically viable for
wells to tap into where they exist. The model describes the state
of the groundwater–grain production compartments and their
interaction as

dW
dt

=−k1 C W +RAHPA + k4
dA
dt

, [1]

dC
dt

= k2 C W − k3 C = k2

(
W − k3

k2

)
C , [2]

where A, W , and C are functions of time t , and the four param-
eters k1, k2, k3, and k4 are positive constants (Table 1). In Eq. 1,
the first term is the rate of groundwater withdrawal, the second
term is the aquifer recharge rate (where aquifer recharge is the
product of a time-averaged, area-normalized rate R with the area
of the HPA underlying the region of interest AHPA), and the third
term is the increase in accessible groundwater when the irriga-
tion area increases and new wells are installed. In Eq. 2, the first
term encodes the increase in annual crop production balanced
by the second term that sets a limit on C growth.

The first terms in Eqs. 1 and 2 drive expected and necessary
endogenous feedbacks on W and C . Higher water withdrawal
rates (k1 C W ; cubic kilometers per year) and a faster crop pro-
duction (C ) are caused by a large preexisting W when wells
are first drilled and maintained by an elevated C long after
irrigated agriculture started expanding, an elevated C that gen-
erates economic returns. The economic returns due to high C are
reinvested into acquiring efficient water applicators and imple-
menting techniques that increase the economic value of each unit
volume of water, including applying fertilizers and pesticides,
thereby incentivizing further pumping. In contrast, deeper water
levels (lower W ) increase pumping costs. These costs dampen
groundwater withdrawal rates and reduce the value of marginal
increases in crop production. This symmetry between the effects
of high W , low C and high C , low W on groundwater pumping
and annual crop production explains why the realistic feedbacks
emerge from multiplying those terms.

On their own, the first terms on the right-hand side of Eqs.
1 and 2 produce a linear relation between W and C trends (i.e.,
dW /dC =−k1/k2). The remaining three processes generate the
boom–bust cycles and delays between W and C .

The first exogenous process is the groundwater recharge rate
RAHPA, a process with significant spatial gradients and one
that is subject to temporal variations where surface water–
groundwater interactions are significant. Recharge ranges from
7.9 mm/y in the southern HPA to 18 mm/y in the central HPA
and up to 64 mm/y in the northern HPA (17). These esti-
mates of R include both direct infiltration following precipitation
and focused recharge from streams and ephemeral lakes. While
the approach includes latitudinal gradients, it does not con-
sider longitudinal gradients in R, a simplification that is most

Table 1. Parameter values for the models shown in Fig. 1

Texas, Texas,
Nebraska Kansas pre-LEPA post-LEPA Units

k1 8.6e-9 6.2e-9 7.2e-9 5.5e-9 tons−1

k2 5.6e-4 3.3e-4 2.9e-4 3.2e-4 km−3 y−1

k3 — 0.020 0.075 0.046 y−1

k4 0.96 7.4 — — cm
W0 90 33 430 310 km3

C0 2.3e6 4.2e6 3.0e6 3.3e6 tons y−1

The initial values W0 and C0 are taken at year 1955 for Texas (pre-LEPA)
and Nebraska, 1972 for Kansas, and 1986 for Texas (post-LEPA). Hyphens
denote unused parameters for the given state (see Materials and Methods).
The e’a’ notation denotes the order of magnitude, that is, 10a.
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significant for Nebraska where R increases quasi-monotonically
eastward (18), and it does not consider temporal variations in R
or feedbacks from groundwater pumping onto R. In Nebraska,
where groundwater and surface water resources are connected,
groundwater-based irrigation is initially derived from groundwa-
ter storage but, later, more from stream capture that amelio-
rates groundwater level declines over time (19, 20). This work
also neglects regulatory aspects of water management such as
the Republican River compact between Colorado, Kansas, and
Nebraska (21) that results in Nebraska pumping groundwater for
river discharge to meet the compact requirements.

The second exogenous process is groundwater-irrigated area
expansion k4dA/dt (where the equation governing A is provided
in Materials and Methods). Increases in A signify new wells being
drilled. This association relies on long-range water transport not
being economically viable, an association that means that all
pumped groundwater is used locally for C production. The area
was kept constant in Texas because irrigated agriculture area
expansion ceased in the mid-1960s. In Kansas, the irrigated area
continued expanding until the early 1990s. The irrigated area is
still increasing in Nebraska, and the area equation projects it to
plateau at about 25% of the 16.2 million hectares of the state
overlying the HPA by 2050 (SI Appendix, Fig. S1) and correctly
leaves out Nebraska’s large nonirrigable lands such as the Sand
Hills (18).

The additional endogenous process is the k3 C term that sets a
condition on whether W promotes increases or decreases in the
rate of crop production and specifies peak grain at W = k3/k2.
The rate of change of C , however, is set by the value of C
itself (Eq. 2). This process ensures that, as water levels decline,
irrigated area reaches full capacity, and crop yields stagnate,
the marginal value of additional pumping to increase dC/dt is
reduced.

The mathematical structure of the proposed model resem-
bles a Lotka–Volterra or predator–prey interaction (22, 23)
where annual crop production acts as a predator on groundwater
resources that have two external sources: R and k4 dA/dt . The
model also resembles coupled chemical reactions metaphorically
labeled as “autocatalytic” because the loss term in the “water
reaction” acts as a gain in the “crop reaction.” Despite the num-
ber of processes modeled in this approach, fitting this model
requires, at most, one additional coefficient compared to hav-
ing two independent Hubbert curves for crop production and
water level time series (Table 1; equation in legend of Fig. 1).
Moreover, the model focuses on groundwater withdrawals rather
than groundwater depletion. This allows the model to describe
conditions where groundwater depletion is negligible, such as
in the northern HPA where much of the pumped groundwa-
ter comes from stream capture (24). Finally, by keeping k1,
k2, k3, and k4 constant, processes meriting independent con-
sideration were omitted for parsimony but without loss of
generality.

Findings
Kansas saw a rapid increase in irrigated crop area starting from
the early 1970s reaching a steady state in the 1980s at 1.2 mil-
lion hectares (SI Appendix, Fig. S2). This increase drove a rise
in groundwater withdrawal that then ceased when peak water
occurred in the 1990s, followed by a rapid decline (Fig. 1A and
SI Appendix, Fig. S3). Despite this decline, irrigated crop pro-
duction still increased, albeit at a reduced rate in recent years.
During this time, due to a yield advantage of 4 tons/ha over its
nonirrigated counterpart (12.3 tons/ha versus 8.2 tons/ha) (25,
26), irrigated corn area doubled (283,000 ha to 567,000 ha) while
winter wheat decreased to a third (364,000 ha to 121,000 ha)
and sorghum decreased dramatically (324,000 ha to 40,000 ha)
(27). Because irrigated corn has higher yield than irrigated
wheat (7.4 tons/ha) and irrigated sorghum (9.9 tons/ha), the
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Fig. 1. Model fitting and forecasts for (A) Kansas, (B) Texas, and (C)
Nebraska. For each state, there is a fit for groundwater withdrawal for
irrigation (blue) and another for groundwater-irrigated crop production
(red). Inset shows the Hubbert curve (orange) for US crude oil produc-
tion data (gray). The mathematical form of a symmetric Hubbert curve is

y(t) = ymax

[
e−ω(t−τ ) + eω(t−τ )

]−1
, where ymax , ω, and τ are three param-

eters determined from data fitting. In B, Texas saw a shift in trends in the
second half of the 1980s due to technological and energy price disruptions
(see Findings). The preshift trends and postshift trends are fitted indepen-
dently, and the change in model parameter values is shown in Table 1. The
shaded regions around the fits represent 90% confidence bands as a result
of parameter fitting uncertainty. All fits have an adjusted r-square value of
0.98. See Materials and Methods and SI Appendix for data processing infor-
mation and sources. ∗: For Nebraska and pre-1975 Texas, groundwater use
for irrigation data were used.

total rate of irrigated crop production by weight continued to
rise (Fig. 1A) (26). Grain production trends are projected to
decline starting in 2018, thus lagging the decline in groundwater
withdrawal by 24 y.

In Texas, increasing pumping costs (28) and ever-decreasing
groundwater levels (6, 18) led to a steep decline in groundwa-
ter extraction starting in 1966. Peak crop production followed
in 1975—a 9-y gap. However, the widespread adoption of sprin-
klers starting in the mid-1960s, especially LEPA (SI Appendix,
Fig. S4), caused a rebound in the rate of water extraction and
crop production, because energy costs decreased and profit

Mrad et al. PNAS | October 20, 2020 | vol. 117 | no. 42 | 26147

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2008383117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2008383117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2008383117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2008383117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2008383117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2008383117/-/DCSupplemental


margins increased (Fig. 1B and SI Appendix, Fig. S3). This
rebound gradually “gained steam” starting in the early 1980s.

Even though advanced sprinkler adoption was concurrent
in the three states, it caused a “disruption” to the dynamical
systems model only in Texas. A technological innovation that
significantly alters an existing trend is dubbed a disruption (29).
Sprinkler adoption in Texas in the early 1980s reversed the
groundwater withdrawal and crop production collapse into an
expansion. To account for such a disruption with the current
approach, the model is refit with the postdisruption trends. While
revising the four model parameters to be time dependent is
possible, a “hard threshold” or an abrupt change in parameter
values may be justified in some circumstances (see Materials and
Methods).

The model parameters were refitted with the new trends pre-
and post-1985, the year in which the sprinkler adoption rate was
half its value today (SI Appendix, Fig. S4). Only k3 saw a reduc-
tion with 90% confidence (–44%), while k1 and k2 did not change
significantly (Table 1). This is a result of the structure of Eq. 2
wherein the W at which the annual crop production peaks is
determined by parameter k3. A smaller k3 indicates that a given
available amount of water (W ) can support greater crop produc-
tion owing to increased irrigation efficiency (Eq. 2). The new fit
explained the occurrence of a second peak water that occurred
in 1997 and a second peak grain in 2012—a 15-y lag (Fig. 2).

The effect of a future innovation on groundwater withdrawals
and crop production depends on the adoption time and its
impact on crop yield, water use efficiency, and economic returns.
Even though the timing and impact of future enhancements and
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G
ro

u
n

d
w

a
te

r 
w

it
h

d
ra

w
a

l r
a

ti
o

C
ro

p
 p

ro
d

u
ct

io
n

 r
a

ti
o

Years since peak water

Fig. 2. Lags between peak water and peak grain and asymmetries about
the peaks. (Top) Trends in groundwater extraction for the three states
normalized by their respective peak values. (Bottom) Normalized crop pro-
duction rates by peak crop production values. For Nebraska, peak crop
production is the last production data point (2018). The abscissa is shifted in
time such that peak water occurs at t = 0 for all three states.

innovations are difficult to predict, a sensitivity analysis of Texas
groundwater pumping and crop production in 2050 to reductions
in k3 is possible (SI Appendix, Fig. S5). A 50% reduction in k3 by
2025 would instigate a third peak grain, but it still would not be
sufficient for crop production in 2050 to match its second peak.
Generally, the model results in linear decreases in crop produc-
tion in 2050 with later innovation adoption times (SI Appendix,
Fig. S5). Strikingly, groundwater withdrawal magnitudes in 2050
are almost insensitive to k3 reductions. This insensitivity is due
to low recharge and high depletion even as early as 2015; some
regions of Texas have seen their water levels decline by as much
as 50 m (6).

Nebraska, the most northern of the three states, has the largest
surface area overlying the HPA, the highest recharge rate, and
the largest volume of saturated aquifer material underneath it
(6, 15). Although its harvested irrigated area steadily increased
(dA/dt > 0; SI Appendix, Fig. S2), the rate of groundwater irri-
gation use reached a quasi-steady state around year 2000 at
about 10 km3 y−1 (Fig. 1C). This decreasing water extraction
rate per unit area is likely driven by widespread LEPA adop-
tion around the end of the 1980s (28, 30, 31). No peak grain
occurrence is projected before 2050, as A and C are expected
to continue increasing beyond 2050. A projected 8% increase in
R for Nebraska due to climate change (17) further supports this
prediction.

The increasing asymmetry in groundwater use about peak
water and the lag between peak water and peak grain are most
apparent in Fig. 2. There is a positive latitudinal gradient in
asymmetries and lags. Pre-LEPA Texas, post-LEPA Texas, and
Kansas observed 9-y, 15-y, and 24-y lags, respectively. Further-
more, compared to the other states, the two Texas “booms”
followed by “busts” resemble the Hubbert curve the most (com-
pare Fig. 1 B and Inset). This analysis suggests that lower
recharge rates and more-aggressive pumping (with respect to
available resources) manifest themselves as smaller lags between
peak water and peak grain and more-symmetric withdrawal and
production trends.

Peak groundwater use for pre-LEPA Texas was at such a high
and unsustainable value (13 km3 y−1 in 1965; Fig. 1B) that it was
halved by 2018 and is projected to decrease to about 90% of peak
value by 2050. The peak Texas groundwater withdrawal rate is
30% higher than the sustained withdrawal rate of Nebraska, even
though it possesses about half of Nebraska’s surface area over-
lying the HPA, a sixth of its saturated aquifer volume, a lower
recharge rate, and lower specific yield of the underlying aquifer
material (6, 17, 32). This underscores how groundwater use his-
tory contributes to a severe collapse in groundwater extraction,
twice in Texas (SI Appendix, Table S1). These projections would
deviate from future trends if another unpredictable disruption
occurs in the HPA (29).

The proposed approach was used to assess increases in aquifer
lifespan due to groundwater withdrawal reduction programs
such as the Local Enhanced Management Area program in
Kansas (SI Appendix, Supplementary Text) (33). The dynamical
systems approach can also be extended to explore groundwater
withdrawal–crop production systems worldwide. For example,
groundwater in the alluvial aquifer systems of northwestern India
is an indispensable source of both drinking and agricultural
water for some of India’s most agriculturally productive land.
Intense extraction of this resource has posed challenges on water
quantity but also quality; high salinity and concentrations of flu-
oride, nitrate, and uranium are widespread in this aquifer (34,
35). Because the recycling of groundwater through irrigation
increases the concentrations of these contaminants, a new feed-
back term in Eq. 1 can be introduced to capture such effects
on crop production. Other withdrawal–agriculture systems are
driven not by local or global food demand but by government
stimulation programs, as in Saudi Arabia (36). Such a system
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requires these government incentives to be parameterized as new
source terms for either W , C , or both.

Conclusions
Irrigated agricultural production in the US High Plains has
pursued growth beyond sustainable limits set by groundwater
resources and their recharge (2). Delays in introducing adequate
responses to approaching these limits, through enforcement
of policies (37) and extensive water use reporting (21), have
resulted in unsustainable rates of groundwater use causing the
phenomenon of peak water followed by peak grain. The pro-
posed approach has shown that the consequence of these peaks
is an eventual collapse in withdrawal and production trends.
It has also revealed that the lag between the peaks and the
asymmetry of the trends increase as the historical magnitude of
groundwater withdrawals is more commensurate with recharge
and available resources. On the HPA, coarser soils in the Sand
Hills (increasing recharge) (18) and surface water capture (19)
have endowed Nebraska with a long aquifer lifespan, whereas, in
Texas, aggressive use of this resource has twice resulted in rapid
crashes following peak water and peak grain within only four
decades.

In the future, technological innovations (28) and adoption of
high-yield, low water use crops with reduced irrigation require-
ments (26) would actively alleviate aquifer depletion. Current
groundwater withdrawal trends and future climate conditions
affecting groundwater recharge rates (7, 17) and crop yields (38)
may force southern High Plains croplands to revert to dryland
agriculture and allow the northern High Plains to balance out
the deficits in overall crop production. However, groundwater
quality concerns might arise, as intense production and fertilizer
use are increasing nitrate concentrations, especially in regions of
high recharge (39). Environmental concerns surrounding surface
freshwater resources, such as the extirpation of fish assemblages
(24), may further hamper groundwater-sourced irrigation in the
northern High Plains through adjudication.

Finally, the proposed dynamical system was successful in
considering multiple processes and disentangling their effects
on long-term groundwater withdrawal and crop production on
the HPA. The general patterns of withdrawal and production
that are elucidated here apply to any aquifer, whether pump-
ing for crop production outweighs or balances groundwater
recharge. It is also possible to represent additional drivers such as
groundwater quality and economic incentives. Thus, the frame-
work adopted herein is transferable to groundwater-irrigated
agriculture systems worldwide toward promoting sustainable
groundwater management.

Materials and Methods
Data sourcing and processing are detailed in this section and are
complemented by a flowchart (SI Appendix, Fig. S6).

Groundwater Data. Data on annual Kansas groundwater withdrawal for
irrigation were compiled from an online database curated by the Kansas
Geological Survey (40). For Texas, annual post-1974 groundwater with-
drawal estimates are available through the Texas Water Development Board
(TWDB). Pre-1974 Texas and Nebraska lack long-term groundwater with-
drawal reporting or estimation. In this case, the US Geological Survey (USGS)
Water Data for the Nation (WDN) was used, in which estimates were
updated every 5 y (30). The USGS water data are for the entire states. For
Texas, to estimate water use for the region of interest (see specific counties
below), the whole state’s groundwater use was multiplied by 80%. This fac-
tor was obtained using the mean of the ratios of Texas HPA groundwater
withdrawals to the whole state’s withdrawals after 1975 (30, 41). Volumes
were all converted to cubic kilometers. While losses occur when water is
conveyed from pumping source to destination, this contribution is small and
does not affect the conclusions.

Crop Data. Nebraska, Kansas, and Texas irrigated crop production and
planted or harvested irrigated area data were obtained from census and

survey reports from the National Agricultural Statistics Service of the US
Department of Agriculture (25). When both a survey estimate and a
census value exist for the same data item in the same year, the cen-
sus value is used. Planted irrigated area data for the crops of interest
were used to capture the drilling of new wells in previously untapped
regions of the HPA. Because Nebraskan yearly planted irrigated area
data were insufficient before the mid-1980s, harvested irrigated area data
were used. Even though harvested area is smaller than planted area,
this discrepancy has no effect on the conclusions, as planted and har-
vested areas increase at roughly the same rate (dA/dt in Eq. 1). The
recharge area in Eq. 1 (AHPA) is the total area of the HPA underlying each
state (32).

For all three regions, corn for grain, sorghum, and winter wheat
data were used for crop production. Additionally, grain soybean was
used for Kansas and Nebraska, and cotton was used for Texas.
Weights were converted from bushels and bales to metric tons. Coun-
ties included in the Texas High Plains are the components of the
TWDB Groundwater Management Areas 1 and 2 (42). Kansas High
Plains counties are Cheyenne, Clark, Comanche, Decatur, Edwards, Finney,
Ford, Gove, Graham, Grant, Gray, Greeley, Hamilton, Harvey, Haskell,
Hodgeman, Kearny, Kingman, Kiowa, Lane, Logan, McPherson, Meade,
Morton, Norton, Pawnee, Pratt, Rawlins, Reno, Scott, Sedgwick, Seward,
Sheridan, Sherman, Stafford, Stanton, Stevens, Thomas, Wallace, and
Wichita counties.

Model Calibration. The “ParametricNDSolveValue” function of Mathemat-
ica (43) was used to define the parametric differential equation presented
in Theory and Application to the HPA. Numerical integration was performed
with the implicit backward differentiation formulas. Using the “Nonlin-
earModelFit” function, least-squares curve fitting was performed with the
“Levenberg–Marquardt” method. The target was to achieve the highest
possible adjusted coefficient of determination (r squared) that takes into
account the number of parameters. Mean prediction band values at a 90%
confidence level were obtained for the fits. The mean prediction band val-
ues accounted for errors in parameter estimates. These band values were
then interpolated with a cubic spline to obtain the bands shown in Fig. 1.

The area equation (see below) was first fitted with irrigated area planted
or harvested data, and a continuous function of A in time was obtained,
but only for Kansas and Nebraska, because irrigated crop area expansion
ceased around the beginning of the study time frame for Texas. Second,
irrigation groundwater pumpage or use data (k1 C W) and annual crop pro-
duction data (C) were used to simultaneously fit Eqs. 1 and 2. In cases such
as in Nebraska, where more data points exist for irrigated crop production
(yearly) compared to groundwater use (5-y intervals), the less frequent data
were weighted appropriately to balance out the simultaneous fitting. For
Texas, separate fits were performed between 1955 and 1988 and between
1988 and 2017. This is to capture energy price and technological disrup-
tions driven by the adoption of LEPA as detailed in Findings (see below; SI
Appendix, Fig. S4).

The Area Equation. The expansion of groundwater irrigation is captured by
the area equation dA/dt = r0 (1 − A/Af ). This process is terminated when
the final value for irrigated area Af is reached over a time scale set by
1/r0. It is fit independently from Eqs. 1 and 2, and it constrains future val-
ues of A to physically reasonable magnitudes and separates out externally
driven reductions in A (such as the late 1980s in Texas; SI Appendix, Fig. S1).
Because neither C nor W has a strong feedback on A here, it is treated as
an externally supplied time-dependent “forcing” in the dW(t)/dt budget.
Its dynamics are determined from independent data sources that do not use
either the C(t) or W(t) time series.

Surface Water–Groundwater Partitioning. Surface water irrigation consti-
tuted less than 2% of irrigated agricultural water in the Texas High Plains
from 1974 to 2017 (SI Appendix, Fig. S7C) (44) and less than 4% in the
Kansas High Plains from 1985 to 2015 (SI Appendix, Fig. S7B) (30). For these
regions, irrigated grain production is assumed to be fully groundwater irri-
gated. For Nebraska, surface water contributed a monotonically decreasing
proportion, from a maximum of 67% of irrigation water in 1955 to a mini-
mum of 11% of irrigation water in 2015 (SI Appendix, Fig. S7A). To exclude
surface water-irrigated crop production, data on the fraction of the irriga-
tion water from surface resources in Nebraska were used. Such data are
provided at a 5-y resolution through the USGS WDN dataset (30). These
5-y data were then linearly interpolated to achieve a yearly estimate of
surface water fraction of the total. Then, irrigated crop production was mul-
tiplied by the fraction of water from groundwater sources. The underlying
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argument for this method is that irrigated crop yields are invariant relative
to the source of water used.

Parameter k3 for Nebraska. Parameter k3 for Nebraska was set to zero in the
model runs, because it was deemed a redundant parameter in Nebraska’s
model fitting. The 90% CI for k3 in Nebraska’s case was [−0.004, 0.008].
Since the fitting was indifferent to the sign of k3, the term k3 C was omit-
ted from Nebraska’s set of equations. This means that future data points
are necessary to identify k3 for Nebraska because 1) water levels have not
changed significantly since the mid-19th century and 2) the crop production
trends have increased in a quasi-linear fashion up to today since 1970.

The Role of Model Parameters in Generating Asymmetry about the Peaks. In
the limit of k3 = 0 and negligible recharge (R = 0), and at an equilibrium
A = Af (meaning that water is now strictly a nonrenewable resource), the
dynamical systems model reduces to C(t) =−(k2/k1)W(t) + Ic, where Ic is an
integration constant that varies from state to state. Hence, onset of hys-
teretic patterns in the C−W phase space (SI Appendix, Fig. S8) and lags
between peak C and peak W can be attributed to the magnitudes of k3 and

R when A = Af . Because R is kept constant, only k3 explains the longer lags
observed from pre-LEPA to post-LEPA Texas.

Diffusion of New Technologies. Diffusion of new technologies in popula-
tions is routinely approximated by a logistic function (i.e., y(t) = ymax[1 +

(ymax/y50− 1)e−r(t−τ )]) characterized by the time scale 1/r (45). When this
time scale is short relative to the study duration, as is the case for sprin-
klers in Texas (8.3 y; SI Appendix, Fig. S4), the logistic function can be
approximated by a jump (no adoption to full adoption) centered at 50%
of maximum adoption rate.

Data Availability. All study data are included in the article and SI Appendix.
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