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Abstract

Current textual question answering (QA) mod-
els achieve strong performance on in-domain
test sets, but often do so by fitting surface-
level patterns, so they fail to generalize to out-
of-distribution settings. To make a more ro-
bust and understandable QA system, we model
question answering as an alignment problem.
We decompose both the question and context
into smaller units based on off-the-shelf se-
mantic representations (here, semantic roles),
and align the question to a subgraph of the
context in order to find the answer. We for-
mulate our model as a structured SVM, with
alignment scores computed via BERT, and we
can train end-to-end despite using beam search
for approximate inference. Our use of ex-
plicit alignments allows us to explore a set
of constraints with which we can prohibit cer-
tain types of bad model behavior arising in
cross-domain settings. Furthermore, by inves-
tigating differences in scores across different
potential answers, we can seek to understand
what particular aspects of the input lead the
model to choose the answer without relying on
post-hoc explanation techniques. We train our
model on SQuAD v1.1 and test it on several
adversarial and out-of-domain datasets. The
results show that our model is more robust than
the standard BERT QA model, and constraints
derived from alignment scores allow us to ef-
fectively trade off coverage and accuracy.

1 Introduction

Current text-based question answering models
learned end-to-end often rely on spurious patterns
between the question and context rather than learn-
ing the desired behavior. They may ignore the
question entirely (Kaushik and Lipton, 2018), fo-
cus primarily on the answer type (Mudrakarta et al.,
2018), or otherwise bypass the “intended” mode
of reasoning for the task (Chen and Durrett, 2019;
Niven and Kao, 2019). Thus, these models are
not robust to adversarial attacks (Jia and Liang,

  What day was Super Bowl 50 played on?

The game was played on February 7, 2016 …

Super Bowl 50 was an American football game to determine the champion …

Adversarial sentence

Sentence with correct answer

Question

The Champ Bowl was played on the day of August 18, 1991

Figure 1: A typical example on adversarial SQuAD. By
breaking the question and context down into smaller
units, we can expose the incorrect entity match and
use explicit constraints to fix it. The solid lines denote
edges from SRL and coreference, and the dotted lines
denote the possible alignments between the arguments
(desired in red, actual in black).

2017; Iyyer et al., 2018; Wallace et al., 2019): they
can be fooled by surface-level distractor answers
that follow the spurious patterns. Methods like ad-
versarial training (Miyato et al., 2016; Wang and
Bansal, 2018; Lee et al., 2019; Yang et al., 2019),
data augmentation (Welbl et al., 2020), and poste-
rior regularization (Pereyra et al., 2016; Zhou et al.,
2019) have been proposed to improve robustness.
However, these techniques often optimize for a cer-
tain type of error. We want models that can adapt to
new types of adversarial examples and work under
other distribution shifts, such as on questions from
different text domains (Fisch et al., 2019).

In this paper, we explore a model for text-based
question answering through sub-part alignment.
The core idea behind our method is that if every
aspect of the question is well supported by the an-
swer context, then the answer produced should be
trustable (Lewis and Fan, 2018); if not, we suspect
that the model is making an incorrect prediction.
The sub-parts we use are predicates and arguments
from Semantic Role Labeling (Palmer et al., 2005),
which we found to be a good semantic represen-
tation for the types of questions we studied. We
then view the question answering procedure as a
constrained graph alignment problem (Sachan and
Xing, 2016), where the nodes represent the predi-



cates and arguments and the edges are formed by
relations between them (e.g. predicate-argument
relations and coreference relations). Our goal is to
align each node in the question to a counterpart in
the context, respecting some loose constraints, and
in the end the context node aligned to the wh-span
should ideally contain the answer. Then we can use
a standard QA model to extract the answer.

Figure 1 shows an adversarial example of
SQuAD (Jia and Liang, 2017) where a standard
BERT QA model predicts the wrong answer August
18, 1991. In order to choose the adversarial answer,
our model must explicitly align Super Bowl 50 to
Champ Bowl. Even if the model still makes this
mistake, this error is now exposed directly, making
it easier to interpret and subsequently patch.

In our alignment model, each pair of aligned
nodes is scored using BERT (Devlin et al., 2019).
These alignment scores are then plugged into a
beam search inference procedure to perform the
constrained graph alignment. This structured align-
ment model can be trained as a structured support
vector machine (SSVM) to minimize alignment
error with heuristically-derived oracle alignments.
The alignment scores are computed in a black-box
way, so these individual decisions aren’t easily ex-
plainable (Jain and Wallace, 2019); however, the
score of an answer is directly a sum of the score
of each aligned piece, making this structured pre-
diction phase of the model faithful by construc-
tion (Jain et al., 2020). Critically, this allows us
to understand what parts of the alignment are re-
sponsible for a prediction, and if needed, constrain
the behavior of the alignment to correct certain
types of errors. We view this interpretability and
extensibility with constraints as one of the principal
advantages of our model.

We train our model on the SQuAD-1.1
dataset (Rajpurkar et al., 2016) and evaluate on
SQuAD Adversarial (Jia and Liang, 2017), Univer-
sal Triggers on SQuAD (Wallace et al., 2019), and
several out-of-domain datasets from MRQA (Fisch
et al., 2019). Our framework allows us to incor-
porate natural constraints on alignment scores to
improve zero-shot performance under these distri-
bution shifts, as well as explore coverage-accuracy
tradeoffs in these settings. Finally, our model’s
alignments serve as “explanations” for its predic-
tion, allowing us to ask why certain predictions are
made over others and examine scores for hypothet-
ical other answers the model could give.
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Question:  What day was Super Bowl 50 played on?             

Context: Super Bowl 50 was an American football game to determine the 
champion of the National Football League (NFL) for the 2015 season … 
The game was played on February 7, 2016 …

coref

nested 
structure

ARG0ARG1

ARG0

ARG1ARG-TMP

ARG1

ARG-TMP

Figure 2: Example of our question-passage graph.
Edges come from SRL, coreference (Super Bowl 50—
the game), and postprocessing of predicates nested in-
side arguments (was—determine). The oracle align-
ment (Section 3.4) is shown with dotted lines. Blue
nodes are predicates and orange ones are arguments.

2 QA as Graph Alignment

Our approach critically relies on the ability to de-
compose questions and answers into a graph over
text spans. Our model can in principle work for a
range of syntactic and semantic structures, includ-
ing dependency parsing, SRL (Palmer et al., 2005),
and AMR (Banarescu et al., 2013). We use SRL
in this work and augment it with coreference links,
due to the high performance and flexibility of cur-
rent SRL systems (Peters et al., 2018). Throughout
this work, we use the BERT-based SRL system
from Shi and Lin (2019) and the SpanBERT-based
coreference system from Joshi et al. (2020).

An example graph we construct is shown in Fig-
ure 2. Both the question and context are repre-
sented as graphs where the nodes consist of pred-
icates and arguments. Edges are undirected and
connect each predicate and its corresponding ar-
guments. Since SRL only captures the predicate-
argument relations within one sentence, we add
coreference edges as well: if two arguments are in
the same coreference cluster, we add an edge be-
tween them. Finally, in certain cases involving ver-
bal or clausal arguments, there might exist nested
structures where an argument to one predicate con-
tains a separate predicate-argument structure. In
this case, we remove the larger argument and add
an edge directly between the two predicates. This
is shown by the edge from was to determine (la-
beled as nested structure) in Figure 2). Breaking
down such large arguments helps avoid ambiguity
during alignment.

Aligning questions and contexts has proven



useful for question answering in previous
work (Sachan et al., 2015; Sachan and Xing, 2016;
Khashabi et al., 2018). Our framework differs from
theirs in that it incorporates a much stronger align-
ment model (BERT), allowing us to relax the align-
ment constraints and build a more flexible, higher-
coverage model.

Alignment Constraints Once we have the con-
structed graph, we can align each node in the ques-
tion to its counterpart in the context graph. In this
work, we control the alignment behavior by plac-
ing explicit constraints on this process. We place
a locality constraint on the alignment: adjacent
pairs of question nodes must align no more than
k nodes apart in the context. k = 1 means we
are aligning the question to a connected sub-graph
in the context, k = ∞ means we can align to a
node anywhere in a connected component in the
context graph. In our experiments, we set k = 3.
In the following sections, we will discuss more
constraints. Altogether, these constraints define a
set A of possible alignments.

3 Graph Alignment Model

3.1 Model

Let T represent the text of the context and ques-
tion concatenated together. Assume a decomposed
question graph Q with nodes q1, q2, . . . , qm rep-
resented by vectors q1,q2, . . . ,qm, and a decom-
posed context C with nodes c1, . . . , cn represented
by vectors c1, . . . , cn. Let a = (a1, . . . , am) be
an alignment of question nodes to context nodes,
where ai ∈ {1, . . . , n} indicates the alignment
of the ith question node. Each question node is
aligned to exactly one context node, and multiple
question nodes can align to the same context node.

We frame question answering as a maximiza-
tion of an alignment scoring function over possi-
ble alignments: maxa∈A f(a,Q,C,T). In this
paper, we simply choose f to be the sum over
the scores of all alignment pairs f(a,Q,C,T) =∑︁n

i=1 S(qi, cai ,T), where S(q, c,T) denotes the
alignment score between a question node q and
a context node c. This function relies on BERT
(Devlin et al., 2019) to compute embeddings of
the question and context nodes and will be de-
scribed more precisely in what follows. We will
train this model as a structured support vector ma-
chine (SSVM), described in Section 3.2.
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Self-attentive  
Pooling

Figure 3: Alignment scoring. Here the alignment score
is computed by the dot product between span represen-
tations of question and context nodes. The final align-
ment score (not shown) is the sum of these edge scores.

Scoring Our alignment scoring process is shown
in Figure 3. We first concatenate the question text
with the document text into T and then encode
them using the pre-trained BERT encoder. We
then compute a representation for each node in
the question and context using a span extractor,
which in our case is the self-attentive pooling layer
of Lee et al. (2017). The node representation in
the question can be computed in the same way.
Then the score of a node pair is computed as a dot
product S(q, c,T) = q · c.

Answer Extraction Our model so far produces
an alignment between question nodes and context
nodes. We assume that one question node contains
a wh-word and this node aligns to the context node
containing the answer.1 Ideally, we can use this
aligned node to extract the actual answer. How-
ever, in practice, the aligned context node may only
contain part of the answer and in some cases an-
swering the question only based the aligned context
node can be ambiguous. We therefore use the sen-
tence containing the wh-aligned context node as
the “new” context and use a standard BERT QA
model to extract the actual answer post-hoc. In the
experiments, we also show the performance of our
model by only use the aligned context node without
the sentence, which is only slightly worse.

3.2 Training

We train our model as an instance of a structured
support vector machine (SSVM). Ignoring the reg-
ularization term, this objective can be viewed as
a sum over the training data of a structured hinge
loss with the following formulation:
N∑︂
i=1

max(0,max
a∈A

[f(a,Qi,Ci,Ti) + Ham(a,a∗i )]

− f(a∗i ,Qi,Ci,Ti)])

1We discuss what to do with other questions in Section 4.1.



where a denotes the predicted alignment, a∗i is the
oracle alignment for the ith training example, and
Ham is the Hamming loss between these two. To
get the predicted alignment a during training, we
need to run loss-augmented inference as we will
discuss in the next section. When computing the
alignment for node j, if aj ̸= a∗j , we add 1 to the
alignment score to account for the loss term in the
above equation. Intuitively, this objective requires
the score of the gold prediction to be larger than
any other hypothesis a by a margin of Ham(a,a∗).

When training our system, we first do several
iterations of local training where we treat each
alignment decision as an independent prediction,
imposing no constraints, and optimize log loss over
this set of independent decisions. The local training
helps the global training converge more quickly and
achieve better performance.

3.3 Inference

Since our alignment constraints do not strongly
restrict the space of possible alignments (e.g., by
enforcing a one-to-one alignment with a connected
subgraph), searching over all valid alignments is in-
tractable. We therefore use beam search to find the
approximate highest-scoring alignment: (1) Initial-
ize the beam with top b highest aligned node pairs,
where b is the beam size. (2) For each hypothe-
sis (partial alignment) in the beam, compute a set
of reachable nodes based on the currently aligned
pairs under the locality constraint. (3) Extend the
current hypothesis by adding each of these possi-
ble alignments in turn and accumulating its score.
Beam search continues until all the nodes in the
question are aligned.

An example of one step of beam hypothesis ex-
pansion with locality constraint k = 2 is shown in
Figure 4. In this state, the two played nodes are
already aligned. In any valid alignment, the neigh-
bors of the played question node must be aligned
within 2 nodes of the played context node to re-
spect the locality constraint. We therefore only
consider aligning to the game, on Feb 7, 2016 and
Super Bowl 50. The alignment scores between
these reachable nodes and the remaining nodes in
the question are computed and used to extend the
beam hypotheses.

Note that this inference procedure allows us to
easily incorporate other constraints as well. For
instance, we could require a “hard” match on entity
nodes, meaning that two nodes containing entities
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Figure 4: An example of constraints during beam
search. The blue node played is already aligned. The
orange nodes denote all the valid context nodes that can
be aligned to for both Super Bowl 50 and what day in
the next step of inference given the locality constraint
with k = 2.

can only align if they share entities. With this
constraint, as shown in the figure, Super Bowl 50
can never be aligned to on February 7, 2016. We
discuss such constraints more in Section 5.

3.4 Oracle Construction

Training assumes the existence of gold alignments
a∗, which must be constructed via an oracle given
the ground truth answer. This process involves
running inference based on heuristically computed
alignment scores Soracle, where Soracle(q, c) is com-
puted by the Jaccard similarity between a question
node q and a context node c. Instead of initializ-
ing the beam with the b best alignment pairs, we
first align the wh-argument in the question with the
node(s) containing the answer in the context and
then initialize the beam with those alignment pairs.

If the Jaccard similarity between a question node
and all other context nodes is zero, we set these
as unaligned nodes. During training, our approach
can gracefully handle unaligned nodes by treating
these as latent variables in structured SVM: the
gold “target” is then highest scoring set of align-
ments consistent with the gold supervision. This
involves running a second decoding step on each
example to impute the values of these latent vari-
ables for the gold alignment.

4 Experiments: Adversarial and
Cross-domain Robustness

Our focus in this work is primarily robustness, in-
terpretability, and controllability of our model. We
focus on adapting to challenging settings in order
to “stress test” our approach.



SQuAD normal SQuAD addSent Natural Questions NewsQA BioASQ TBQA

ans in wh F1 ans in wh F1 ans in wh F1 ans in wh F1 ans in wh F1 ans in wh F1

Sub-part Alignment 84.7 84.5 49.5 50.5 65.8 61.5 49.3 48.1 63.5 53.4 35.1 38.4

− global train+inf 85.8 85.2 45.0 46.8 65.9 62.3 48.9 47.1 62.5 52.1 31.9 34.6
− ans from full sent 84.7 81.8 49.5 46.7 65.8 57.8 49.3 45.0 63.5 51.1 35.1 37.5

BERT QA − 87.8 − 39.2 − 59.4 − 48.5 − 52.4 − 25.3

Table 1: The performance and ablations of our proposed model on the development sets of SQuAD, adversarial
SQuAD, and four out-of-domain datasets. Our Sub-part Alignment model uses both global training and inference
as discussed in Section 3.2-3.3. − global train+inf denotes the locally trained and evaluated model. − ans from
full sent denotes extracting the answer using only the wh-aligned node. ans in wh denotes the percentage of
answers found in the span aligned to the wh-span, and F1 denotes the standard QA performance measure. Here for
addSent, we only consider the adversarial examples. Note also that this evaluation is only on wh-questions.

4.1 Experimental Settings

For all experiments, we train our model only on
the English SQuAD-1.1 dataset (Rajpurkar et al.,
2016) and examine how well it can generalize to
adversarial and out-of-domain settings with min-
imal modification, using no fine-tuning on new
data and no data augmentation that would cap-
ture useful transformations. We evaluate on the
addSent and addOneSent proposed by Jia and
Liang (2017), and the Universal Triggers
on SQuAD (Wallace et al., 2019). We also test the
performance of our SQuAD-trained models in zero-
shot adaptation to new English domains, namely
Natural Questions (Kwiatkowski et al., 2019),
NewsQA (Trischler et al., 2017), BioASQ (Tsat-
saronis et al., 2015) and TextbookQA (Kemb-
havi et al., 2017), taken from the MRQA shared
task (Fisch et al., 2019). Our motivation here was to
focus on text from a variety of domains where trans-
ferred SQuAD models may at least behave credibly.
We excluded, for example, HotpotQA (Yang et al.,
2018) and DROP (Dua et al., 2019), since these
are so far out-of-domain from the perspective of
SQuAD that we do not see them as a realistic cross-
domain target.

We compare primarily against a standard BERT
QA system (Devlin et al., 2019). We also investi-
gate a local version of our model, where we only
try to align each node in the question to its oracle,
without any global training (− global train + inf),
which can still perform reasonably because BERT
embeds the whole question and context. When
comparing variants of our proposed model, we only
consider the questions that have a valid SRL parse
and have a wh word (results in Table 1, Table 2,
and Figure 5). When comparing with prior systems,
for questions that do not have a valid SRL parse or

wh word, we back off to the standard BERT QA
system (results in Table 3).

We set the beam size b = 20 for the constrained
alignment. We use BERT-base-uncased for
all of our experiments, and fine-tune the model
using Adam (Kingma and Ba, 2014) with learn-
ing rate set to 2e-5. Our preprocessing uses a
SpanBERT-based coreference system (Joshi et al.,
2020) and a BERT-based SRL system (Shi and
Lin, 2019). We limit the length of the context to
512 tokens. For our global model, we initialize
the weights using a locally trained model and then
fine-tune using the SSVM loss. We find the initial-
ization helps the model converge much faster and
it achieves better performance than learning from
scratch. When doing inference, we set the locality
constraint k = 3.

4.2 Results on Challenging Settings
The results2 on the normal SQuAD development
set and other challenging sets are shown in Table 1.

Our model is not as good as BERT QA on nor-
mal SQuAD but outperforms it in challenging
settings. Compared to the BERT QA model, our
model is fitting a different data distribution (learn-
ing a constrained structure) which makes the task
harder. This kind of training scheme does cause
some performance drop on normal SQuAD, but
we can see that it consistently improves the F1
on the adversarial (on SQuAD addSent, a 11.3 F1
improvement over BERT QA) and cross-domain
datasets except NewsQA (where it is 0.4 F1 worse).
This demonstrates that learning the alignment helps
improve the robustness of our model.

2Here we omit SQuAD addOneSent for simplicity,
since the performance on it has the same trend as SQuAD
addSent. Refer to the Appendix for the results on SQuAD
addOneSent.



Sub-part Alignment BERT
Type Normal Trigger ∆ Normal Trigger ∆

who 84.7 82.7 2.0 87.1 78.5 8.6
why 75.1 71.3 3.8 76.5 59.7 16.8
when 88.4 82.8 5.6 90.3 80.9 9.4
where 83.6 81.4 2.2 84.1 75.8 8.3

Table 2: The performance of our model on the Univer-
sal Triggers on SQuAD dataset (Wallace et al., 2019).
Compared with BERT, our model sees smaller perfor-
mance drops on all triggers.

Global training and inference improve perfor-
mance in adversarial settings, despite having no
effect in-domain. Normal SQuAD is a relatively
easy dataset and the answer for most questions
can be found by simple lexical matching between
the question and context. From the ablation of −
global train+inf, we can see that more than 80%
of answers can be located by matching the wh-
argument. We also observe a similar pattern on
Natural Questions.3 However, as there are very
strong distractors in SQuAD addSent, the wh-
argument matching is unreliable. In such situa-
tions, the constraints imposed by other argument
alignments in the question are useful to correct the
wrong wh-alignment through global inference. We
see that the global training plus inference is con-
sistently better than the local version on all other
datasets.

Using the strict wh answer extraction still gives
strong performance From the ablation of − ans
from full sent, we observe that our “strictest” sys-
tem that extracts the answer only using the wh-
aligned node is only worse by 3-4 points of F1 on
most datasets. Using the full sentence gives the sys-
tem more context and maximal flexibility, and al-
lows it to go beyond the argument spans introduced
by SRL. We believe that better semantic representa-
tions tailored for question answering (Lamm et al.,
2020) will help further improvement in this regard.

4.3 Results on Universal Triggers

The results on subsets of the universal triggers
dataset are shown in Table 2. We see that every
trigger results in a bigger performance drop on
BERT QA than our model. Our model is much
more stable, especially on who and where question

3For the MRQA task, only the paragraph containing the
short answer of NQ is provided as context, which eliminates
many distractors. In such cases, those NQ questions have
a similar distribution as those in SQuAD-1.1, and similarly
make no use of the global alignment.

types, in which case the performance only drops
by around 2%. Several factors may contribute to
the stability: (1) The triggers are ungrammatical
and their arguments often contain seemingly ran-
dom words, which are likely to get lower alignment
scores. (2) Because our model is structured and
trained to align all parts of the question, adversarial
attacks on span-based question answering models
may not fool our model as effectively as they do
BERT.

4.4 Comparison to Existing Systems
In Table 3, we compare our best model (not using
constraints from Section 5) with existing adversar-
ial QA models in the literature. We note that the
performance of our model on SQuAD-1.1 data is
relatively lower compared to those methods, yet
we achieve the best overall performance; we trade
some in-distribution performance to improve the
model’s robustness. We also see that our model
achieves the smallest normal vs. adversarial gap
on addSent and addOneSent, which demon-
strates that our constrained alignment process can
enhance the robustness of the model compared to
prior methods like adversarial training (Yang et al.,
2019) or explicit knowledge integration (Wang and
Jiang, 2018).

5 Generalizing by Alignment Constraints

One advantage of our explicit alignments is that
we can understand and inspect the model’s behav-
ior more deeply. This structure also allows us to
add constraints to our model to prohibit certain be-
haviors, which can be used to adapt our model to
adversarial settings.

In this section, we explore how two types of con-
straints enable us to reject examples the model is
less confident about. Hard constraints can enable
us to reject questions where the model finds no ad-
missible answers. Soft constraints allow us to set
a calibration threshold for when to return our an-
swer. We focus on evaluating our model’s accuracy
at various coverage points, the so-called selective
question answering setting (Kamath et al., 2020).

Constraints on Entity Matches By examining
addSent and addOneSent, we find the model
is typically fooled when the nodes containing en-
tities in the question align to “adversarial” entity
nodes. An intuitive constraint we can place on the
alignment is that we require a hard entity match—
for each argument in the question, if it contains



Normal addSent addOneSent

overall adv ∆ overall adv ∆

R.M-Reader (Hu et al., 2018) 86.6 58.5 − 31.1 67.0 − 19.6
KAR (Wang and Jiang, 2018) 83.5 60.1 − 23.4 72.3 − 11.2

BERT + Adv (Yang et al., 2019) 92.4 63.5 − 28.9 72.5 − 19.9

Our BERT 87.8 61.8 39.2 27.0 70.4 52.6 18.4
Sub-part Alignment* 84.7 65.8 47.1 18.9 72.8 60.1 11.9

Table 3: Performance of our systems compared to the literature on both addSent and addOneSent. Here,
overall denotes the performance on the full adversarial set, adv denotes the performance on the adversarial samples
alone. ∆ represents the gap between the normal SQuAD and the overall performance on adversarial set.

entities, it can only align to nodes in the context
sharing exact the same entities.

Constraints on Alignment Scores The hard en-
tity constraint is quite inflexible and does not gen-
eralize well, for example to questions that do not
contain a entity. However, the alignment scores
we get during inference time are good indicators
of how well a specific node pair is aligned. For a
correct alignment, every pair should get a reason-
able alignment score. However, if an alignment is
incorrect, there should exist some bad alignment
pairs which have lower scores than the others. We
can reject those samples by finding bad alignment
pairs, which both improves the precision of our
model and also serves as a kind of explanation as
to why our model makes its predictions.

We propose to use a simple heuristic to identify
the bad alignment pairs. We first find the max
score Smax over all possible alignment pairs for a
sample, then for each alignment pair (qi, cj) of the
prediction, we calculate the worst alignment gap
(WAG) g = min(q,c)∈a(Smax − S(q, c)). If g is
beyond some threshold, it indicates that alignment
pair is not reliable.4

Comparison to BERT Desai and Durrett (2020)
show that pre-trained transformers like BERT are
well-calibrated on a range of tasks. Since we are
rejecting the unreliable predictions to improve the
precision of our model, we reject the same number
of examples for the baseline using the posterior
probability of the BERT QA predictions. To be
specific, we rank the predictions of all examples by
the sum of start and end posterior probabilities
and compute the F1 score on the top k predictions.

4The reason we look at differences from the max alignment
is to calibrate the scores based on what “typical” scores look
like for that instance. We find that these are on different scales
across different instances, so the gap is more useful than an
absolute threshold.
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Figure 5: The F1-coverage curve of our model com-
pared with BERT QA. If our model can choose to an-
swer only the k percentage of examples it’s most confi-
dent about (the coverage), what F1 does it achieve? For
our model, the confidence is represented by our “worst
alignment gap” (WAG) metric. Smaller WAG indicates
higher confidence. For BERT, the confidence is repre-
sented by the posterior probability.

5.1 Results on Constrained Alignment

On Adversarial SQuAD, the confidence scores
of a normal BERT QA model do not align with
its performance. From Figure 5, we find that
the highest-confidence answers from BERT (i.e.,
in low coverage settings) are very inaccurate. One
possible explanation of this phenomenon is that
BERT overfits to the pattern of lexical overlap, and
is actually most confident on adversarial examples
highly similar to the input. In general, BERT’s con-
fidence is not an effective heuristic for increasing
accuracy.

Hard entity constraints improve the precision
but are not flexible. Figure 5 also shows that by
adding a hard entity constraint, we achieve a 71.4
F1 score which is an 8.6 improvement over the un-
constrained model at a cost of only 60% of samples
being covered. Under the hard entity constraint,
the model is not able to align to the nodes in the
adversarial sentence, but the performance is still



Question: Who led the North American Huguenot colonial expedition?

Oracle alignment: Barred by the government from settling in New 
France, Huguenots led by Jessé de Forest, sailed to North America in 1624

Adversarial alignment:Jeff Dean led the South British Acadian colonial 
expedition.

Question: Where did Super Bowl 50 take place?

Oracle alignment:Super Bowl 50 was …, The game was played on 
February 7, 2016, at Levi's Stadium in the San Francisco Bay Area

Adversarial alignment: Champ Bowl 40 took place in Chicago.
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32.3 35.5 13.0

14.0
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Question:  Who translated and printed Luther’s 95 These?

Oracle alignment: … friends of Luther translated the 95 Theses from Latin into 
German and printed and widely copied them.

Adversarial alignment: Jeff Dean translated and printed Vandross's 98 These.

20.924.2 23.1 26.5

26.824.9 25.5 20.4
Question:  Who created an engine using high pressure steam in 1801?

Oracle alignment: Around 1800 Richard Trevithick and, separately, 
Oliver Evans in 1801 introduced engines using high-pressure steam;

Adversarial alignment: Jeff Dean created an engine using low pressure steam 
in 1790.

24.521.0 23.1 22.721.2 25.3

27.324.8 22.9 19.724.5 23.8

(a) (b)

Figure 6: Examples of alignment of our model on addOneSent: both the correct alignment and also adversarial
alignment are shown. The numbers are the actual alignment scores of the model’s output. Dashed arrows denote
the least reliable alignments and bolder arrows denote the alignment that contribute more to the model’s prediction.

lower than what it achieves on normal SQuAD. We
examine some of the error cases and find that for
a certain number of samples, there is no path from
the node satisfying the constraint to the node con-
taining the answer (e.g. they hold a more complex
discourse relation while we only consider corefer-
ence as cross-sentence relation). In such cases, our
method cannot find the answer.

A smaller worst alignment gap indicates better
performance. As opposed to BERT, our align-
ment score is well calibrated on those adversarial
examples. This substantiates our claim that those
learned alignment scores are good indicators of
how trustful alignment pairs are. Also, we see that
when the coverage is the same as the entity con-
straint, the performance under the alignment score
constraint is even better. The alignment constraints
are simultaneously more flexible than the hard con-
straint and also more effective.

5.2 Case Study on Alignment Scores

In this section, we give several examples of the
alignment and demonstrate how those scores can
act as an explanation to the model’s behavior.
Those examples are shown in Figure 6.

As shown by the dashed arrows, all adversar-
ial alignments contain at least one alignment with
significantly lower alignment score. The model is
overconfident towards the other alignments with a
high lexical overlap as shown by the bold arrows.
These overconfident alignments also show that the
predicate alignment learned on SQuAD-1.1 is not
reliable. To further improve the quality of predicate
alignment, either a more powerful training set or a

new predicate alignment module is needed.
Crucially, with these scores, it is easy for us

to interpret our model’s behavior. For instance, in
example (a), the very confident predicate alignment
forces Luther’s 95 Theses to have no choice but
align to Jeff Dean, which is unrelated. Because we
have alignments over the sub-parts of a question,
we can inspect our model’s behavior in a way that
the normal BERT QA model does not allow. We
believe that this type of debuggability provides a
path forward for building stronger QA systems in
high-stakes settings.

6 Related Work

Adversarial Attacks in NLP. Adversarial at-
tacks in NLP may take the form of adding sentences
like adversarial SQuAD (Jia and Liang, 2017), uni-
versal adversarial triggers (Wallace et al., 2019), or
sentence perturbations: Ribeiro et al. (2018) pro-
pose deriving transformation rules, Ebrahimi et al.
(2018) use character-level flips, and Iyyer et al.
(2018) use controlled paraphrase generation. The
highly structured nature of our approach makes it
more robust to such attacks and provides hooks
to constrain the system to improve performance
further.

Neural module networks. Neural module net-
works are a class of models that decompose a task
into several sub-tasks, addressed by independent
neural modules, which make the model more ro-
bust and interpretable (Andreas et al., 2016; Hu
et al., 2017; Cirik et al., 2018; Hudson and Man-
ning, 2018; Jiang and Bansal, 2019). Like these,
our model is trained end-to-end, but our approach



uses structured prediction and a static network
structure rather than dynamically assembling a net-
work on the fly. Our approach could be further
improved by devising additional modules with dis-
tinct parameters, particularly if these are trained
on other datasets to integrate additional semantic
constraints.

Unanswerable questions Our approach rejects
some questions as unanswerable. This is similar
to the idea of unanswerable questions in SQuAD
2.0 (Rajpurkar et al., 2018), which have been stud-
ied in other systems (Hu et al., 2019). However,
techniques to reject these questions differ substan-
tially from ours – many SQuAD 2.0 questions re-
quire not only a correct alignment between the
question and context but also need to model the
relationship between arguments, which is beyond
the scope of this work and could be a promising
future work. Also, the setting we consider here is
more challenging, as we do not assume access to
such questions at training time.

Graph-based QA Khashabi et al. (2018) pro-
pose to answer questions through a similar graph
alignment using a wide range of semantic abstrac-
tions of the text. Our model differs in two ways: (1)
Our alignment model is trained end-to-end while
their system mainly uses off-the-shelf natural lan-
guage modules. (2) Our alignment is formed as
node pair alignment rather than finding an opti-
mal sub-graph, which is a much more constrained
and less flexible formalism. Sachan et al. (2015);
Sachan and Xing (2016) propose to use a latent
alignment structure most similar to ours. How-
ever, our model supports a more flexible alignment
procedure than theirs does, and can generalize to
handle a wider range of questions and datasets.

Past work has also decomposed complex ques-
tions to answer them more effectively (Talmor and
Berant, 2018; Min et al., 2019; Perez et al., 2020).
Wolfson et al. (2020) further introduce a Question
Decomposition Meaning Representation (QDMR)
to explicitly model this process. However, the ques-
tions they answer, such as those from HotpotQA
(Yang et al., 2018), are fundamentally designed
to be multi-part and so are easily decomposed,
whereas the questions we consider are not. Our
model theoretically could be extended to leverage
these question decomposition forms as well.

7 Discussion and Conclusion

We note a few limitations and some possible future
directions of our approach. First, errors from SRL
and coreference resolution systems can propagate
through our system. However, because our graph
alignment is looser than those in past work, we did
not observe this to be a major performance bottle-
neck. The main issue here is the inflexibility of the
SRL spans. For example, not every SRL span in the
question can be appropriately aligned to a single
SRL span in the context. Future works focusing
on the automatic span identification and alignment
like recent work on end-to-end coreference sys-
tems (Lee et al., 2017), would be promising.

Second, from the error analysis we see that our
proposed model is good at performing noun phrase
alignment but not predicate alignment, which calls
attention to the better modeling of the predicate
alignment process. For example, we can decom-
pose the whole alignment procedure into separate
noun phrase and predicate alignment modules, in
which predicate alignment could be learned using
different models or datasets.

Finally, because our BERT layer looks at the
entire question and answer, our model can still
leverage uninterpretable interactions in the text.
We believe that modifying the training objective to
more strictly enforce piecewise comparisons could
improve interpretability further while maintaining
strong performance.

In this work, we presented a model for ques-
tion answering through sub-part alignment. By
structuring our model around explicit alignment
scoring, we show that our approach can generalize
better to other domains. Having alignments also
makes it possible to filter out bad model predic-
tions (through score constraints) and interpret the
model’s behavior (by inspecting the scores).
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A Adversarial Datasets

Added sentences Jia and Liang (2017) propose
to append an adversarial distracting sentence to
the normal SQuAD development set to test the ro-
bustness of a QA model. In this paper, we use the
two main test sets they introduced: addSent and
addOneSent. Both of the two sets augment the
normal test set with adversarial samples annotated
by Turkers that are designed to look similar to ques-
tion sentences. In this work, we mainly focus on
the adversarial examples.

Universal Triggers Wallace et al. (2019) use a
gradient based method to find a short trigger se-
quence. When they insert the short sequence to
the original text, it will trigger the target predic-
tion in the sequence independent of the rest of the
passage content or the exact nature of the question.
For QA, they generate different triggers for differ-
ent types of questions including “who”, “when”,
“where” and “why”.

Datasets from MRQA For Natural
Questions (Kwiatkowski et al., 2019),
NewsQA (Trischler et al., 2017), BioASQ (Tsat-
saronis et al., 2015) and TextbookQA (Kembhavi
et al., 2017), we use the pre-processed datasets
from MRQA (Fisch et al., 2019). They differ from
the original datasets in that only the paragraph
containing the answer is picked as the context and
the maximum length of the context is cut to 800
tokens.

B Results on SQuAD addOneSent

The results of our model compared to BERT QA
on SQuAD addOneSent is shown in Table 4.
Here we see the results on addOneSent and
addSent generally have the same trend. The
global train+inf helps more on the more difficult
addSent.



SQuAD normal SQuAD addSent SQuAD addOneSent

ans in wh F1 ans in wh F1 ans in wh F1

Sub-part Alignment 84.7 84.5 49.5 50.5 61.9 62.8
- global train+inf 85.8 85.2 45.0 46.8 58.9 59.6
- ans from full sent 84.7 81.8 49.5 46.7 61.9 59.2

BERT QA − 87.8 − 39.2 − 52.6

Table 4: The performance and ablations of our proposed model on the development set of SQuAD normal, SQuAD
addSent, and SQuAD addOneSent. − global train+inf denotes the locally trained and evaluated model. − ans
from full sent denotes extracting the answer using only the wh-aligned node. ans in wh denotes the percentage of
answers found in the span aligned to the wh-span, and F1 denotes the standard QA performance measure.


