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ABSTRACT: The photoionization time of C2H4 is calculated as a model
for π-conjugated molecular systems. Analytical results are obtained using
the Wigner phase delay, which is compared with energy-streaking
measurements. We find that, although the ionization time averaged over
nuclear configurations compares well in the two measures, the dependence
on the nuclear configuration is different. Interference between different
ionization pathways depends significantly on the molecular geometry and
the ionizing electron energy and may lead to qualitative changes in the
ionization time.

Recently developed extreme ultraviolet (XUV) attosecond
pulses have enabled the study of the electron dynamics

and photoionization times in atoms, molecules, and
clusters.1−4 In experiment, an attosecond XUV pulse is used
to ionize an electron. A subcycle oscillation of high-intensity IR
laser pulse is then used to streak the photoionized electron.1,5,6

Depending on when the ionized electron enters the free state,
its dynamics and energy are governed by the IR field. The
change in photoelectron spectra with the time delay between
the XUV and IR pulses allows to estimate the ionization times
in atoms.7 Other experimental techniques, such as the
attoclock technique,8,9 and reconstruction of attosecond
beating by interference of two-photon transition (RABBIT),10

have also been employed to extract the ionization time
delay.4,11,12

Several theoretical approaches have been used to describe
laser-assisted ionization processes13,14 in atoms and mole-
cules15 (see also ref 16 and the references therein). Various
definitions have been proposed for the ionization time. These
include Larmor time, Buttiker time, Pollock−Miller time, and
Wigner time.17 In a recent work,18 a Bohmian tunneling time,
which corresponds to the time that Bohmian trajectory spends
in a classically forbidden region, has been introduced.
However, it was found that this time was several orders of
magnitude longer than the experimentally obtained ionization
time.
The photoionization process in molecules is more

challenging than in atoms. What sets a molecule apart is the
vibrational degrees of freedom, which may couple strongly to
the electron dynamics. Although during ionization the
electrons effectively experience a static nuclear force, a
statistical disorder of nuclear configurations may have a
significant effect on the ionization times. The static nuclear

heterogeneity has also been shown to affect charge migration
in molecules.19 Here, we calculate the Wigner ionization
time20,21 for linear π-conjugated molecules. Our primary goal is
to study the effect of the nuclear configuration on ionization
time using an analytically tractable model. We compare the
Wigner ionization time with the one estimated from the energy
streaking spectrogram obtained by using an IR laser pulse. The
two methods show different dependence on the nuclear
configuration. However, upon averaging over molecular
configurations, the ionization times from both methods are
found to agree well.
We study the ionization time of ethylene (C2H4) using the

Hückel model. This simple model allows us to derive
approximate analytical expressions. We take the molecular
bond axis along z, and the carbons are sp2-hybridized. The
valence electron dynamics can be treated by only considering
the π electrons and neglecting the σ electrons. The core
electrons and the σ electrons, which bind the two nuclei, are
treated within the mean-field approximation via screened
nuclear charge as seen by the π electrons. The π electrons are
assumed to only experience an effective nuclear charge, which
represents the σ and core electrons. Such treatment has been
quite successful in describing molecular valence orbitals.22 The
model represents a two-particle π-electron fermionic system in
an effective potential having cylindrical symmetry along the z
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axis. We treat the nuclear motion of the two C atoms as a
harmonic oscillator.
We start with the molecular Hamiltonian, HM = Hπ + Hσ +

Hσ − π, where Hπ represents the π electrons, Hσ denotes the σ-
bonded molecular backbone, and Hσ − π denotes the
interaction between Hπ and Hσ. Hπ + Hσ − π can be written as

H H
z
r

z
r

z z
r r

r R r R

1
2

1
2

1

1 2

1 2

1
2

2
2

1 2
+ = ∇ − ∇ − * − * +

| − |

− *
| − |

− *
| − |

π σ π−

(1)

where 1 and 2 are the π-electron indices and R is the bond
length. Boldface letters represent vectors, and r1 and r2 are the
positions of two electrons with respect to nucleus A (Figure 1
in the Supporting Information). z* denotes the effective
nuclear charge felt by π electrons. The first two terms in the
right-hand side of eq 1 denote the kinetic energy of the π
electrons, and the following two terms are the potential
energies due to nucleus A. The two-electron term represents
the repulsive potential energy between the π electrons, and the
remaining terms represent attractive potential energy between
the π electrons and nucleus B. We assume the harmonic
potential created by the σ and core electrons:

H R R V
1
2

1
2

( )R
2

0
2κ= − ∇ + − −σ (2)

which depends on the parameters κ, R0, and V. Hσ represents
the di-cationic system C2

2+. Parameters κ and V and z* are
obtained from quantum chemistry calculation on the ionized
system as discussed in the Supporting Information. The total
Hamiltonian represents the neutral system whose bound and
scattering states are obtained in the Supporting Information.
The XUV pulse interacts with the bound-state π electrons,

forcing an electron to move away from the nuclei. Within the
dipole approximation, the interaction (Hint) of the XUV
electric field with the molecule is Hint = − E(t) · μ̂, where E(t)
is the optical electric field and μ̂ = e · ∑i = 1,2rî is the dipole
moment operator. The dipole coupling between the neutral
ground and the scattering state facilitates the ionization
process. If ionization is instantaneous and independent of
electron energy, the ionizing electron wave packet is identical
to the XUV extra phase in the photoelectron wave packet. This
phase provides a measure of the time delay of the electronic
response to the interaction with the XUV field. The time-
dependent molecular wave packet is given by

t i t H t( ) d e ( )e
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Equation 3 is the exact solution of the Schrodinger equation
for the scattered molecular wave packet created by the XUV
pulse. Since the XUV field is weak, we compute the time-
dependent photoelectron wave packet, eq 3, by first-order
perturbative approximation. This is equivalent to replacing H
by HM in eq 3.
The scattered electron wave-packet amplitude in the kth

scattered state is obtained by projecting the scattering state
onto |Ψ(t)⟩. For the present calculation, we assume that the
XUV field is a Gaussian pulse16 with carrier frequency ωX

polarized along the molecular axis (z)̂, Ex(t) = z ̂ 0e
−at2 − iωXt,

where( )a 2ln(2)

XUV
2=

τ
and τXUV, and 0 denote the duration and

the amplitude of the XUV pulse, respectively. Photoelectron
spectra are usually measured long after the XUV field has
passed when the electron is free. In the t → ∞ limit, we obtain

i z k( ) ek
k E E a

I L,H
I 0

( ( /2) ) /4X
2

0 I
2∑ μΨ = − ·̂ ω

=

− − + −

(4)

where μI(k) is the dipole matrix element between the
scattering (denoted with index k) and the neutral ground
states of the molecule. More details are given in the Supporting
Information. I = H, L stands for the HOMO(H) and
LUMO(L) for the cation. The wave packet contains
contributions from both the ground (I = H) and the excited
(I = L) cationic states. E0 denotes the energy of the neutral
ground state, and EI are the energies of the cationic states. The
difference E0 − EH represents the ionization energy for the π
orbital. For model parameters (V, κ, z*), this ionization energy
can be computed from Eqs (10a) and (26) in the Supporting
Information. At equilibrium (R = 2.19 au), the ionization
energy is found to be 10.43 eV, which is in good agreement
with quantum chemistry calculation reported in ref 23 and
experiments.24,25

The Wigner ionization time delay is then computed as

t Rk( , )
k k

k
W

1 arg( ( ))k= ∂ Ψ
∂

where k is the free-electron kinetic

momentum. The ground and excited states of the cation
provide two pathways for the ionization process. The Wigner
ionization times associated with these two pathways are
different. If tWH

(k, R) and tWL
(k, R) are the Wigner times for

the ground and excited cationic states, respectively, the net
ionization time, tW(k, R), can be expressed as (see Eqs (63)−
(69) in the Supporting Information for derivation)
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, and

uH(L)/vH(L) are defined in Eqs (66)−(69) in the Supporting
Information. χ′, uH(L)′ , and vH(L)′ denote the derivative of χ,
uH(L), and vH(L) with respect to k, and
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Equation 5 together with eq 6 is our main result. The
parameter χ controls the relative weight of the two pathways in
the ionization process. The overlap function, S(R), and the
Dyson orbital coefficients, DH/L(R), for the ground/excited
cationic states are given in Eqs (32) and (33) in the
Supporting Information. χ decreases with increasing k,
indicating that the excited state pathway contribution
diminishes as k is increased. This is due to energy
conservation; for a given XUV photon energy, the ground
state pathway leaves the ionized electron in a higher energy
scattering state as compared to via the excited state pathway
where the cation energy is higher. Hence, for smaller values of
k, where χ is large, one expects tW(k, R) ≈ tWL

(k, R), while for

larger values of k, χ is small and tW(k, R) ≈ tWH
(k, R). For
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intermediate k values, both pathways contribute significantly to
tW(k, R), resulting in interesting interference effects. Note that
tW(k, R) depends on both the magnitude and the direction of
the wave vector k, which makes an angle θ with the molecular
axis. tW(k, R) is an antisymmetric function of θ around θ = π/2
for a given value of k, while the probability density of scattering
into an angle θ and θ + dθ is symmetric (Figure 2 in the
Supporting Information). This symmetry is due to the
symmetry of the eigenstates of the Hamiltonian H. Thus,
forward scattering (0 < θ < π/2) probability into an angle θ
with ionization time τ is the same as scattering into the angle θ
+ π/2 with ionization time −τ. We define the average
ionization time in the forward direction ⟨tW(k, R)⟩θ, k by
integrating over all forward angles and k values. This time is
plotted in Figure 1 for varying distance between the two

carbon atoms. This average ionization time is found to be
negative for all R values considered, indicating that the ionized
electron wave packet in the forward direction precedes the
XUV pulse. However, the averaged ionization time,

⟨tW(k, R)⟩θ, in the forward direction is very sensitive to the
scattered electron energy and shows qualitative differences as
compared to ⟨tW(k, R)⟩θ, k as R is varied. This is shown in the
inset of the figure. As R is decreased, interference between the
two pathways, which is significant at intermediate values of the
electron kinetic energy, increases and manifests itself in a peak-
like structure in ⟨tW(k, R)⟩θ. This results in a positive
ionization time in the forward direction for smaller values of
R at intermediate energies.
Finally, the molecular vibration different molecules in the

gas may have a statistical distribution over different nuclear
configurations during interaction with the XUV pulse. For a
harmonic vibration, the distribution in R is given by

f R( ) e R R/ ( )0
2

= κ
ωπ

κ ω− − , corresponding to the ground

eigenstate probability density of Hσ. ω and κ are the
corresponding frequency and force constant of the vibration.
The parameters in Hσ are obtained by quantum chemistry
calculation using Gaussian 09.26 Force constant (κ) = 1.38 au,
R0 = 2.19 au, and

c2
λ ̅ = ω

π
= 1050 cm−1 are obtained from

quantum chemistry calculation of C2
2+. c denotes the speed of

light in vacuum. We therefore define an average Wigner time,
⟨τW⟩R, by taking the average over the bond length as
⟨τW⟩R = ∫ dRf(R)⟨tW⟩ϑ, k We find ⟨τW⟩R = 0. 27 au or 6.5 as.
We next discuss the ionization time as probed in the

attosecond energy streaking experiment. In the streaking
measurement, after ionization, a strong IR field drags the
free electron to different momentum states. The quantity of
interest in this case is the streaking spectrogram, which is a
series of photoelectron spectra for varied time delay between
XUV and IR pulses. To obtain this distribution, we first
compute the amplitude of the ionized electron to be in one of
the scattering states. In the presence of the IR pulse, eq 3
represents the exact scattering wave packet due to interaction
with XUV and IR where we replace H(t) = HM + HF(t) +
HX(t), HIR(t) and HX(t) represent the interaction of the
molecular system with IR and XUV fields, respectively. Since
the IR pulse interacts with the electron wave packet only after
it reaches the scattering state, the corresponding wave packet
at time t acquires a phase ei(A(t) − A(t′)) · r, where A(t) is the
vector potential of the IR field and t′ is the time when the
electron wave packet starts to interact with the IR field. The

Figure 1. Wigner ionization time ⟨tW⟩θ, k (solid curve) as function of
the bond length, R, in atomic units. Dashed curve represents ⟨tWH

⟩θ, k,

and dotted curve denotes ⟨tWL
⟩θ, k. The inset shows variation in ⟨tW⟩θ

with the kinetic energy of the ionized electron for different values of R
= 2.1 to 0.5 in steps of 0.2 from bottom to top. The effective nuclear
charge z* = 1.8 au (neutral) and 2.2 au (cation).

Figure 2. (Left panel) Attosecond streaking spectrogram for ethylene at R = 2.19 au in the presence of vector potential

( )A t t( ) 0.5 cos cos(0.057 )t2 0.057
8

= au. Yellow and green solid curves show the average momentum and the vector potential, respectively.

(Right panel) Average momentum (dashed red line) and IR vector potential (solid green line) vs the XUV-IR delay.
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effect of the IR field can be incorporated by dressing the
scattering states with the vector potential as detailed in Eq (72)
in the Supporting Information.
The photoelectrons are collected at the detector at long time

T (much longer than the IR field period), when the IR field is
switched off. To obtain the photoelectron spectra at long time
T, we calculate the amplitude by projecting the scattering state
onto |Ψ(T)⟩:

R i t

t t

p

E

( , ) d e

( ) ( )e

I t

T

i t t iE T t

iE t t

p A

X p

( ( )) /2d ( )

I
( )

t
T

0

2
I

0 0

∫∑

μ

Ψ = −

·

− ∫ + ″ ″− −

−
(7)

where p is the free electron canonical momentum. The
photoelectron spectrum is given by |Ψp(R)|

2. Since the final
time, T, is not measured (the detector only resolves energy),
we average the wave packet over this long time. Using this time
averaged wave packet, we have computed the average kinetic
momentum of the photoelectrons for various delay, τ, between
the XUV field and IR vector potential. If the ionization process
is instantaneous, the average kinetic momentum should change
with τ in phase with the IR vector potential; the relative phase
delay between them is then a measure of the ionization time.
Numerically evaluated attosecond streaking spectra averaged

over all angles, ⟨|Ψ(τ, k)|2⟩θ, are shown in Figure 2 with varying
delay (τ) and kinetic momentum k at equilibrium R = 2.19 au.
The average kinetic momentum (yellow solid line) follows the
vector potential (green solid line). The phase delay between
the two corresponds to ionization time of −0.276 au (−6.65
as). The time is negative because the phase of the kinetic
momentum of the ionized electron precedes the vector
potential.
When the ionization time is obtained from the streaking

spectrogram at different values of R, we find that it shows an
overall non-monotonic increasing trend over the range of R
values as shown in Figure 3. Note that the ionization times for
individual pathways show a very different dependence on R.
The ionization time due to the excited (ground) state pathway
decreases (increases) as R is increased. The variation of the
overall ionization time is similar to the ground state pathway.
This R dependence is however different from the Wigner time

in Figure 1. Although, when averaged over the distribution,
f(R), the average ionization time delay is found to be −0.28 au
(−0.677 as), which is almost the same as average Wigner time.
In conclusion, we have analyzed the bond-length effect on

the ionization time in C2H4. Even though nuclei remain almost
frozen during the fast ionization process, the statistical
distribution of bond lengths can still affect the ionization
time. The Wigner scattering time and the energy streaking
method show different dependence on the bond length.
However, when averaged over the distribution of bond lengths,
both methods give similar ionization times. This is because the
ionization time at the equilibrium configuration of nuclei is
found to be the same in both approaches. Here, for simplicity,
we have considered ionization only from the π molecular
orbital (1b3u). However the ionization from other orbitals,
such as 1b3g, 3ag, and 1b2u, can also take place

23 using the XUV
pulse considered here. We expect to have maximum ionization
from the π orbital since it has the least ionization energy. Here,
we have assumed zero temperature. It will be interesting to
study finite temperatures involving excited vibrational states.
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Baltusǩa, A.; Horvath, B.; Schmidt, B.; Blümel, L.; Holzwarth, R.;
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Supplementary Materials: The photo-ionization time in π-conjugated molecular

systems
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Here we present some essential ingredients used in the main text to compute the Wigner

ionization time in Eq. (5). We first consider molecular orbitals for non-interacting case by

linear combinations of atomic orbitals as ansatz. Using these orbitals, we then construct

two-electron basis set to diagonalize the full interacting Hamiltonian to find its eigenstates

and energies. We construct the scattering states as anti-symmetrized direct product of

single electron cationic orbitals and the free electron orbitals. Thereafter, we compute

transition dipole moments between the bound and the scattering states which is used to

obtain the electron wave-packet in Eq. (4) in the main text. The derivative of phase of the

wave-packet with respect to kinetic energy yields Wigner time(tw) as given in Eq. (5) of

the main text.
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FIG. 1: Schematic diagram of two nuclei located along the ẑ-axis at points A and B. A is located
at the origin. An electron is located at point C with coordinates (r,θ , φ ) . ~AC and ~BC are in plane

AA′B′B which makes angle θ + π

4 from x− z plane.

We consider the coordinate system defined by two nuclei and one electron as depicted in Fig.

(1).

CONSTRUCTION OF MOLECULAR ORBITALS

The π-type valence molecular orbitals which construct the two electron non-interacting states

are formed by linear combinations of 2p1 type atomic orbitals centered on two different carbon

atoms. These molecular orbitals are given as follows,

φH/L(r) =
ψA(r)±ψB(r)√

2(1±S(R))
(1)

2



The atomic orbitals are given by,

ψA = ψ
A
211(r,θ ,φ) =−

1
8
√

π

(z∗

a

) 3
2
(z∗r

a

)
e−

z∗r
2a sin(θ)eiφ . (2)

ψB = ψ
B
211(r,θ ,φ) =−

1
8
√

π

(z∗

a

) 3
2
(z∗r

a

)
e−

z∗
√

r2+R2−2rRcos(θ)
2a sin(θ)eiφ . (3)

Here ψX
nlm are Hydrogen-like atomic orbitals centered on atom X , with n, l, m being correspond-

ing principal, azimuthal and magnetic quantum numbers and z∗ is the effective nuclear charge due

to the screening effects of the core electrons. R is the distance between two atoms and a(= 4πε0h̄2

me2 )

is the bohr radius. The spatial overlap(S(R)) between ψA and ψB is obtained as follows,

S(R,b) =
b5

2π

∫
drr4e−br

∫
dΩsin2(θ)e−b

√
r2+R2−2rRcos(θ), (4a)

where, b = z∗
2a and dΩ = sin(θ)dθdφ . Putting cos(θ) = x we get,

S(R,b) = b5
∫

drr4e−br
∫ 1

−1
dx(1− x2)e−b

√
r2+R2−2rRx. (4b)

Let us consider the integral,

I =
∫ 1

−1
dx(1− x2)e−a

√
r2+R2−2rRx. (4c)

Putting u2 = r2 +R2−2rRx and udu =− 1
rRdx,

I =
1

4(rR)3

∫ |r−R|

r+R
du
(

u5−2(r2 +R2)u3 +(r2−R2)2u
)

e−au. (4d)

By Substituting Eq. (4d) to Eq. (4b) and integrating over r we get,

S(R,b) =
e−bR

15

(
R3b3 +6R2b2 +15Rb+15

)
. (4e)

The two cationic molecular orbitals are similarly obtained as,

φ
C
H/L(r) =

1√
2
(

1±S(R,b′)
)(ψ

cat
A (r)±ψ

cat
B (r)

)
, (5)
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where +/− represents ground(H) / excited(L) cationic molecular orbital. ψcat
A and ψcat

B are

cationic atomic orbitals obtained from Eq.(2) and Eq. (3) by replacing b with b′(> b) .

To describe the ionized electron, the free electron basis orthogonal to bound orbital of the

neutral system is chosen. This allows to maintain the orthogonality criterion between the bound

and the scattering states of the molecular system. These are denoted as scattering orbital. The

scattering orbital, φk(r), is orthogonal to neutral molecular orbitals1,2 and is given by,

φk(r) =
eik·r

(2π)
3
2
− cH(k)φH(r)− cL(k)φL(r), (6)

where coefficient cH/L(k) are given in Eqs.(61) and (62) . The index ’k’ on φk represents momen-

tum of the electron in φk(r) state. Here cH and cL contain the effect of molecular potential on the

free electron state. Note that due to contribution from molecular orbitals, φk(r) is not a definite

momentum state. However , the molecular contribution decays quickly with increasing k value

and φk(r) becomes effectively a free electron state with momentum k.

The non-interacting two-electron basis to describe the bound states are constructed from the

molecular orbitals (φH/L(r)) are given as,

Φ
0(r1,r2) =φH(r1)φH(r2) (7a)

Φ
0
1(r1,r2) =

1√
2

[
φH(r1)φL(r2)−φL(r1)φH(r2)

]
(7b)

Φ
0
2(r1,r2) =φL(r1)φL(r2). (7c)

Here only the state with zero spin is considered because in the electric pulse mediated ionization

process spin is preserved. Since without any external interaction with light pulse ionization process

is prohibited the scattering many-electron states must be orthogonal with respect to the neutral

molecular states. This criterion is taken care by suitable choice of scattering orbitals as discussed

above. These scattering states are formed as anti-symmetrized direct products of cation states and

a single-electron scattering orbital, φk(r).

ΦH/L,k(r1,r2) = ˆA [φC
H/L⊗φk]. (8)

Here, ˆA is the anti-symmetric operator.
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DIAGONALIZATION OF THE MOLECULAR HAMILTONIAN

There are three bound states of molecular Hamiltonian (HM) which can be expressed in non-

interacting two-electron basis. HM can be written in terms of the non-interacting two-electron

basis in Eq. (7) as follows:

HM =


H11 H12 H13

H12 H22 H23

H13 H23 H33.

 (9)

Matrix elements Hi j, i, j = 1,2,3 are given below in Eqs. (21)-(25).

Eigenvalues and eigenvectors of the full molecular Hamiltonian are obtained by diagonalizing

HM. The eigenvalues are given by,

E0 =
H11 +H33−

√
(H11−H33)2 +4H2

13

2
(10a)

E1 = H22 (10b)

E2 =
H11 +H33 +

√
(H11−H33)2 +4H2

13

2
. (10c)

The respective eigenstates are written as,

Φ(r1,r2) =
(E0−H33)Φ

0(r1,r2)+H13Φ0
2(r1,r2)√

(E0−H33)2 +H2
13

(11a)

Φ1(r1,r2) = Φ
0
1(r1,r2) (11b)

Φ2(r1,r2) =
(E0−H33)Φ

0(r1,r2)−H13Φ0
2(r1,r2)√

(E0−H33)2 +H2
13

(11c)

CALCULATION OF THE HAMILTONIAN MATRIX ELEMENTS

The following integrals are important to calculate the matrix elements of the full Hamiltonian,

E(b) =
∫

d3rψ
∗
A(r)[−

1
2

∇
2− z∗

r
]ψA(r) =−a2b2E ′. (12)
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E ′ is the ground state ionization energy of Hydrogen atom.

α̃(R,b) =
∫

d3rψ
∗
A(r)

z∗

|r−R|
ψA(r)

=
1

bR3

[
e−2bR(3+6bR+4b2R2 +b3R3)− (3−2b2R2)

]
, (13)

β̃ (R,b) =
∫

d3rψ
∗
A(r)

z∗

r
ψB(r)

=
b2e−bR

3
(
3+3bR+b2R2). (14)

The two-electron integrals are then calculated by expressing two-electron repulsion potential in

terms of infinite sum of Legendre polynomial(Pl) as follows:

1
|r1− r2|

= ∑
l

r<l

r>l+1 Pl(cos(θ ′)). (15)

r<(r>) is denoted as the lesser(greater) among r1 and r2. The angle between r1 and r2 is θ ′.

Pl(cos(θ)) is written in terms of the product of spherical harmonics Yl,m(θ ,φ) as follows,

Pl(cos(θ)) =
4π

2l +1

l

∑
m=−l

Yl,m(θ1,φ1)Y ∗l,m(θ2,φ2). (16)

J2 =
∫

d3r1d3r2ψ
∗
A(r1)ψ

∗
A(r2)

1
|r1− r2|

ψA(r1)ψA(r2)

=
237
640

b. (17)

J1 =
∫

d3r1d3r2ψ
∗
A(r1)ψ

∗
B(r2)

1
|r1− r2|

ψA(r1)ψA(r2)

= e−3bR
[693

512
+

2079
512

bR+
107
32

b2R2 +
41
32

b3R3 +
1
4

b4R4 +
1

48
b5R5

]
+ e−bR

[
− 693

512
− 693

512
bR+

265
128

b2R2− 35
64

b3R3 +
1
2

b4R4 +
1
6

b5R5
]
. (18)
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We have taken only the contribution for P0, as the the contribution for P2 is extremely small com-

pared to that of P0.

J0 =
∫

d3r1d3r2ψ
∗
A(r1)ψ

∗
B(r2)

1
|r1− r2|

ψB(r1)ψA(r2)

= e−4bR
[6435

512
+

6435
128

bR+
34749
512

b2R2 +
5709
128

b3R3 +
1023
64

b4R4 +
49
16

b5R5 +
1
4

b6R6
]

+ e−2bR
[
− 6435

512
− 6435

256
bR+

3861
512

b2R2 +
1881
256

b3R3− 495
128

b4R4 +
1
32

b5R5 +
25
32

b6R6

+
22
35

b7R7 +
131
210

b8R8 +
101
315

b9R9 +
5

63
b10R10 +

5
630

b11R11
]
. (19)

ρ0 =
∫

d3r1d3r2ψ
∗
A(r1)ψ

∗
A(r2)

1
|r1− r2|

ψB(r1)ψB(r2)

=
e−2bR

b2R3

(3
2
+3(bR)+2(bR)2 +

93
256

(bR)3− 35
128

(bR)4− 71
320

(bR)5− 19
240

(bR)6

− 9
560

(bR)7 +
1

630
(bR)8

)
− 1

2

( 3
b2R3 −

2
R

)
. (20)

We can write the matrix elements in terms of the above expressions as follows,

H11 =
∫

d3r1

∫
d3r2Φ

0∗(r1,r2)ĤΦ
0(r1,r2)

= 2E−2
(

α̃(R,b)+ β̃ (R,b)
1+S(R,b)

)
+

J2 +4J1 +2J0 +ρ0

2(1+S(R,b))2 , (21)

H22 =
∫

d3r1

∫
d3r2Φ

0∗
1 (r1,r2)ĤΦ

0
1(r1,r2)

= 2E−2
(

α̃(R,b)−S(R,b)β̃ (R,b)
1−S2(R,b)

)
+
(

ρ0− J0

1−S2

)
, (22)

H33 =
∫

d3r1

∫
d3r2Φ

0∗
2 (r1,r2)ĤΦ

0
2(r1,r2)

= 2E−2
(

α̃(R,b)− β̃ (R,b)
1−S(R,b)

)
++

J2−4J1 +2J0 +ρ0

2(1−S(R,b))2 , (23)

and,

H12 = H21 = H23 = H32 = 0. (24)

H31 = H13 =
J2−ρ0

2(1−S2(R,b))
. (25)
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The energy EH/L for single particle cationic orbital is given as,

EH/L = E(b′)−
(

α̃(R,b′)± β̃ (R,b′)
1±S(R,b′)

)
. (26)

Parameters obtained from quantum chemistry

To obtain the effective nuclear charge (z∗) for the neutral and the cation molecule, we perform

Density Functional Theory calculation. We use b3lyp functional and 6−31g(d, p) basis to obtain

energy differences between neutral and cationic state as a function of C-C bond. We then fit

this data with the theoretical function E0−EH (Eqs. 10a and 26 in SM) around the equilibrium

R = 2.19 au by varying z∗ for neutral and cationic systems. This gives z∗ = 1.8 au for the neutral

and z∗ = 2.2 au for the cationic system. The force constant κ and V are obtained by fitting the

DFT data for the total energy of ethylene molecule around the equilibrium with the potential

energy function in Eq. (2) in the main text. This gives κ = 1.38 au and V = .... au.

DIPOLE MATRIX ELEMENTS

Dipole matrix element between scattering state and the bound state:

The matrix element of the dipole operator between the scattering state ΦI,k(r1,r) and the neutral

ground molecular state Φ(r1,r) is given as,

µI(k) =
∫

d3r1

∫
d3rΦ

∗
I,k(r1,r)r̂Φ(r1,r). (27)

Note that ’r’ is the vector coordinate for the ionized electron.

The dipole matrix element (Eq. (27)) is computed using Dyson orbitals3 in the following way,

µI(k) =
∫

d3r1d3rΦ
∗
I,k(r1,r)r̂Φ(r1,r)+Φ

∗
I,k(r1,r)r̂1Φ(r1,r),

=
∫

d3rφ
∗
k (r)r

∫
d3r1φ

C∗
I (r1)Φ(r1,r)+

∫
d3rφk(r)

∫
d3r1φ

C∗
I (r1)rΦ(r,r1),

=
∫

d3rφ
∗
k (r)rDI(r)+

∫
d3r1r1φ

C∗
I (r1)

∫
d3rφ

∗
k (r)Φ(r,r1). (28)

DI(r) =
∫

d3r1φC∗
I (r1)Φ(r1,r) is Dyson orbital corresponding to the I’th cationic and the neutral

ground states. DI(r) may be interpreted as the electron wave-packet corresponding to the elec-

8



tron being ionized keeping the cationic system in the I’th state. Since the scattered orbitals are

orthogonal to neutral orbitals, the second term in the above equation becomes zero. Hence, µI(k)

is written as,

µI(k) =
∫

d3rφ
∗
k (r)rDI(r)

=
∫

d3r
[ e−ik·r

(2π)3/2 − c∗H(k)φ
∗
H(r)− c∗L(k)φ

∗
L(r)

]
rDI(r) (29)

The Dyson orbitals (DI(r)) mentioned above are given as follows:

DH(r) = DH(R)φH(r), (30)

DL(r) = DL(R)φL(r), (31)

where DH/L(R) are the Dyson orbital coefficient given as,

DH(R) =
E0−H33

N
√

(1+S(R,b))(1+S(R,b′))

[(2
√

bb′

b+b′

)5
+S(R,b,b′)

]
(32)

DL(R) =
H13

N
√

(1−S(R,b))(1−S(R,b′))

[(2
√

bb′

b+b′

)5
−S(R,b,b′)

]
, (33)

where, b′ = z′
2a .

S(R,b,b′) =
(bb′)5/2

(b2−b′2)5R3 e−(b+b′)R
(

32bebR(R3(b2−b′2)2 +12b′R2(b′−b)(b+b′)+48b′2R

+ 48b′
)
−32b′eb′R(R3(b2−b′2)2 +48b2R+12bR2(b−b′)(b+b′)+48b

))
, (34)

N =
√

(E0−H33)2 +H2
13. (35)

Substituting for the Dyson orbitals in Eq. (29), we note that calculation of µI(k) requires

dipole elements between molecular bound orbitals and the free particle wave-function, φ(k). This

is calculated as follows.

µH/L =
∫

d3re−ik.r(rxx̂+ ryŷ+ rzẑ)φH/L(r)

= ∑
i=x,y,z

î
µA

i ±µB
i√

2(1±S(R))
(36)
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µ
A/B
i is defined as,

µ
A/B
i =

∫
d3re−ik.r(rxx̂+ ryŷ+ rzẑ)ψA/B

=
∫

d3re−i(kxrx+kyry+kzrz)(rxx̂+ ryŷ+ rzẑ)ψA/B

= i
∂

∂ki

∫
d3re−i(kxrx+kyry+kzrz)ψA/B

= i
∂

∂ki
c∗A/B (k,ϑ ,ϕ) (37)

We can write the derivative operator ∂

∂ki
in terms of k, ϑ and ϕ as follows:

∂

∂kz
= cos(ϑ)

∂

∂k
− sin(ϑ)

k
∂

∂ϑ
(38)

∂

∂kx
= sin(ϑ)cos(ϕ)

∂

∂k
+

cos(ϑ)cos(ϕ)
k

∂

∂ϑ
− sin(ϕ)

ksin(ϑ)

∂

∂ϕ
(39)

∂

∂ky
= sin(ϑ)sin(ϕ)

∂

∂k
+

cos(ϑ)sin(ϕ)
k

∂

∂ϑ
+

cos(ϕ)
ksin(ϑ)

∂

∂ϕ
(40)

We obtain µ
A/B
z as follows,

µ
A
z =−24b7/2eiϕk2sin(2ϑ)

π (b2 + k2)
4

=− 48b7/2

π(b2 + k2)4

(
kz(kx + iky)

)
(41)

µ
B
z ==

8b7/2eiϕ

π(b2 + k2)3

(
ikRsin(ϑ)+3sin(2ϑ)

k2

b2 + k2

)
exp(−ikRcos(ϑ))

=
8b7/2

π(b2 + k2)3

(
i(kx + iky)R+

6kz(kx + iky)

b2 + k2

)
e−ikzR (42)

µ
A/B
x are obtained as,

µ
A
x =

8b7/2

π(b2 + k2)3

(
1−6eiϕsin2(ϑ)cos(ϕ)

k2

b2 + k2

)
=

8b7/2

π(b2 + k2)3

(
1−6

kx(kx + iky)

b2 + k2

)
(43)

µ
B
x =

(
8b7/2

π(b2 + k2)3

(
1−6eiϕsin2(ϑ)cos(ϕ)

k2

b2 + k2

))
exp(−ikRcos(ϑ))

=
8b7/2

π(b2 + k2)3

(
1−6

kx(kx + iky)

b2 + k2

)
e−ikzR (44)

10



µ
A/B
y are obtained as,

µ
A
y = i

8b7/2

π(b2 + k2)3

(
1+ i6eiϕsin2(ϑ)sin(ϕ)

k2

b2 + k2

)
= i

8b7/2

π(b2 + k2)3

(
1+ i6

ky(kx + iky)

b2 + k2

)
(45)

µ
B
y =

8b7/2

π(b2 + k2)3

(
1+ i6eiϕsin2(ϑ)sin(ϕ)

k2

b2 + k2

)
exp(−ikRcos(ϑ))

= i
8b7/2

π(b2 + k2)3

(
1+ i6

ky(kx + iky)

b2 + k2

)
e−ikzR. (46)

The x, y and z component of µI(k)(I = H,L) are given as follows

x̂ ·µH/L(k) =
24
√

2DH/L(R)√
1±S(R)

b7/2

π(b2 + k2)3

(kx(kx + iky)

b2 + k2 − 1
6

)(
1± e−ikzR

)
(47)

ŷ ·µH/L(k) =
24
√

2DH/L(R)√
1±S(R)

b7/2

π(b2 + k2)3

(ky(kx + iky)

b2 + k2 − i
6

)(
1± e−ikzR

)
, (48)

ẑ ·µH/L(k) = DH/L(R)

[
1√

2(1±S(R))

8b7/2(kx + iky)

π(b2 + k2)3

[ 6kz

b2 + k2

(
1± e−ikzR

)
± iRe−ikzR

]
−

c∗H/L(k)RS(R)

2(1±S(R))

]
(49)

where the parameter b(= z
2a , a is the bohr radius) represents the effective nuclear charge as felt by

the π-electrons. S is the overlap between atomic orbitals given in Eq.(4) and DH/L(R) are defined

in Eqs.(32) and (33).

Dipole matrix element between bound states:

The dipole moment between bound orbitals are given by,

∫
d3rφ

∗
X(r)(rxx̂+ ryŷ+ rzẑ)φY (r), (50)

where i = x,y,z three different components of dipole moment along the respective directions. X ,

Y denote the molecular orbitals H and L. The dipole moment between atomic orbitals centered at

same coordinate becomes zero, which is evident from symmetry argument. When the two orbital

orbitals are centered on two different coordinate the dipole moment matrix element obtained as

11



follows,

e−bR

30
(b3R4 +6b2R3 +15bR2 +15R) =

RS(R)
2

. (51)

The dipole moment along x and y direction between the bound orbitals becomes zero.

Calculation of cH/L

To construct the scattered orbital(φk(r)) orthogonal to neutral molecular orbital we calculate

the overlap of molecular orbital with free particle wave function and subtract their contribution

from the free particle wave function. cH/cL is the overlap of molecular bonding/anti-bonding

orbital with free particle wave function. cH/cL is expressed in terms of atomic overlap integrals

cX (where X correspond to atomic center X = A,B)in the following way.

cH(k,ϑ ,ϕ) =
1√

2(1+S(R))

(
cA + cB

)
, (52)

cL(k,ϑ ,ϕ) =
1√

2(1−S(R))

(
cA− cB

)
. (53)

In order to compute cX , we express eik.r in spherical co-ordinate,

eik·x = 4π

∞

∑
l=0

l

∑
m=−l

il jl(kr)Ylm(θ ,φ)Y ∗lm(ϑ ,ϕ). (54)

jl(kr) is l′th spherical Bessel function. cA is then calculated as,

cA =
1

(
√

2π)3

∫
d3rψ

∗
Aeik.r

=

√
2
π

∞

∑
l=0

l

∑
m=−l

il
∫

d3rψ
∗
A(r,θ ,φ) jl(kr)Ylm(θ ,φ)Y ∗lm(ϑ ,ϕ)

=
1

4
√

2π
(

z
a
)5/2

∞

∑
l=0

l

∑
m=−l

il
∫

drr3 jl(kr)e−
zr
2a

∫
dθdφsin2(θ)e−iφYlm(θ ,φ)Y ∗lm(ϑ ,ϕ).

By applying the substitution b = z
2a , we get,

=
b5/2

π

∞

∑
l=0

l

∑
m=−l

il
∫

drr3 jl(kr)e−br
∫

dθdφsin2(θ)e−iφYlm(θ ,φ)Y ∗lm(ϑ ,ϕ). (55a)

12



Integration over spherical coordinate gives,

cA(k,ϑ ,ϕ) =
8b7/2e−iϕksin(ϑ)

iπ (b2 + k2)
3 , (55b)

where ψB is not centered at origin. We calculate the overlap for electronic wave-packet with ψB,

cB which is defined as,

cB(k) =
1

(2π)3/2

∫
d3rψ

∗
B(r)e

ik·r. (56)

From the Eq.(2) and Eq.(3) we can clearly see that, ψB(~r) can be expressed in terms of ψA(~r) as

follows.

ψB(~r) = ψA(~r−~R). (57)

Substituting the form of ψb in terms of ψA in the Eq.(56), we get,

cB(k) =
1

(2π)3/2

∫
d3rψ

∗
B(r)e

ik·r

=
1

(2π)3/2

∫
d3rψ

∗
A(~r−~R)eik·r. (58)

(59)

Substituting,~z =~r−~R, in above equation we get,

cB(k,ϑ ,ϕ) =
eik.R

(2π)3/2

∫
dz3

ψ
∗
A(z)e

ik·z

= eikRcos(ϑ)cA(k,ϑ ,ϕ). (60)

Hence, cH/L(k) is given as,

cH(k) =−
8b7/2

π(b2 + k2)3
√

2(1+S(R))
(ikx + ky)

[
1+ eikzR

]
(61)

cL(k) =−
8b7/2

π(b2 + k2)3
√

2(1−S(R))
(ikx + ky)

[
1− eikzR

]
. (62)
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CALCULATION OF PHASE AND CORRESPONDING IONIZATION TIME:

Wigner ionization timetW (k,R) is calculated from the energy derivative of the phase of free-

electron wave-packet. The phase of the wave-packet in Eq. (4) in the main text is given by,

tan(P) =
u
v
, (63)

Where,

u = uH +χuL, (64)

v = vH +χvL. (65)

uH , uL, vH , vL are given by,

uH =−m(1+ cos(kzR))−Rsin(kzR)+
RS

2(1+S)
sin(kzR) (66)

uL =−m(1− cos(kzR))−Rsin(kzR)+
RS

2(1−S)
sin(kzR), (67)

vH =−m(sin(kzR))+Rcos(kzR)−
RS

2(1+S)
(1+ cos(kzR)) (68)

vL = m(sin(kzR))−Rcos(kzR)−
RS

2(1−S)
cos(kzR). (69)

Here, m = 6kz
b2+k2 and χ =

√
1+S
1−S

DH(R)
DL(R)

e−
(ωX−

k2
2 +E0−EL)

2

4a

e−
(ωX−

k2
2 +E0−EH )2

4a

.

Wigner ionization time(tW (k,R)) is given as,

tW (k,R) =
1
k

∂P

∂k
. (70)

This results in Eq. (5) of the main text.

WAVE-PACKET AND ANGLE RESOLVED tW :

The Wigner ionization time, tW (k,R) , calculated from Eq. (5) in the main text, is anti-

symmetric with respect to ϑ = π

2 for all k, while ϑ -dependent photo-ionized electron probability

density, |Ψk(ϑ)|2, is symmetric, as shown in Fig. (3). This symmetry in tW (k,R) and |Ψk(ϑ)|2
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FIG. 2: Photo-electron spectrum (solid curve) for the ionization of the eth ylene model system by
a 68 eV XUV pulse (E0 = 0.01 au and FWHM 242 as ) at equilibrium R = 2.19 au. Dashed and

dotted curves represent contributions to |Ψk|2 coming from the ground and excited cationic
states, respectively. The dashed vertical lines show the peak positions.

is due to the same symmetry of the ground neutral state. The negative values of tW (k,R) suggests

the peak of the XUV pulse recedes that of the photo-electron waver-packet. For instantaneous

ionization for all k, the two peaks must appear at zero time, when the XUV is maximum.

From the angular symmetry of tW (k,R) and |ψk|2, we conclude that the electrons having posi-

tive and negative tW (k,R) are equally probable, that is, the intensity of the forward and the back-

ward scattered electrons is the same. Note that in both directions, for a given kinetic energy of

scattered electron, electrons having positive as well as negative tW (k,R) contribute to the same

intensity.

DRESSED SCATTERING STATES IN STREAKING PROCESS

In case of the streaking experiment, we need to "dress" the scattering states with the IR vector

potential as discussed in the main text. The effect of the IR field can be incorporated by modifying
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FIG. 3: Left panel: Wigner ionization time-delay(tW (k,R)) for several values of k in atomic unit
at equilibrium, R = 2.19 au. Right Panel: Ionization probability(|Ψ(k,ϑ ,R)|2) for corresponding

k and R.

the scattering state, Eq.(6) , due to the IR vector potential,

φk(r, t; t ′) =
ei(k′+A(t)−A(t ′))·r√

(2π)3
− cH(k′, t, t ′)φH(r)− cL(k′, t, t ′)φL(r). (71)

Here A(t)−A(t ′) represents change in momentum of the scattering wave-packet during the time

t− t ′. Note that the momentum k′(≡ k(t ′)) represents the kinetic momentum of the free electron

at t ′. The canonical momentum p = k(t ′)−A(t ′) = k(t)−A(t) remains constant. φk(r, t, t ′) can

16



then be written in term of canonical momentum as,

φk(r, t)≡ φp(r, t) =
ei(p+A(t))·r√

(2π)3
− cH(p, t)φH(r)− cL(p, t)φL(r). (72)

Equation(72) is very similar to the Volkov states4 used to represent a free particle state in the

presence of a vector potential. The terms cH and cL represent the effect of molecular potential

on the ionized states and vanish for large values of kinetic momentum, and the scattering state

becomes truly free. This is because cH and cL are decaying functions of p+A(t) (see (61) and

Eq.(62)). Assuming that the molecular potential does not significantly affect the energy of the

scattering orbital, the corresponding energy for φp(r, t) then can be approximated as only due to

the free part ,

Ep(t) =
1
2
|p+A(t)|2. (73)

Ep(t) represents the kinetic energy of ionized electron at time t dressed with IR pulse. Here the

effect of the XUV field on the scattering electron is ignored since intensity of the XUV field

is significantly lesser compared to that of the IR field. Using Eq. (72) in Eq.(8), we generate

scattering states modified by the IR vector potential.
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